JP2903452B2 - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JP2903452B2
JP2903452B2 JP5162469A JP16246993A JP2903452B2 JP 2903452 B2 JP2903452 B2 JP 2903452B2 JP 5162469 A JP5162469 A JP 5162469A JP 16246993 A JP16246993 A JP 16246993A JP 2903452 B2 JP2903452 B2 JP 2903452B2
Authority
JP
Japan
Prior art keywords
region
source
divided
base
source region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5162469A
Other languages
Japanese (ja)
Other versions
JPH0766392A (en
Inventor
和夫 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI NIPPON DENKI KK
Original Assignee
KANSAI NIPPON DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI NIPPON DENKI KK filed Critical KANSAI NIPPON DENKI KK
Priority to JP5162469A priority Critical patent/JP2903452B2/en
Publication of JPH0766392A publication Critical patent/JPH0766392A/en
Application granted granted Critical
Publication of JP2903452B2 publication Critical patent/JP2903452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、スイッチング電源など
に使用されるパワー用縦型の電界効果トランジスタ(以
下、FETと称する)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical power field effect transistor (hereinafter referred to as "FET") used for a switching power supply or the like.

【0002】[0002]

【従来の技術】パワー用縦型FETは、例えば図3
(a)(b)に示す構造が一般的である。図3(a)は
nチャネル型の縦型FETの断面が示され、ドレイン領
域DとなるN型の半導体基板(1)の表面側にP型のベ
ース領域BとN+型のソース領域Sが不純物選択拡散で
形成され、半導体基板(1)の表面上にゲート酸化膜
(2)、ゲート電極G、層間絶縁膜(3)、ゲート電極パ
ターン(4)、ソース電極パターン(5)が形成される。
2. Description of the Related Art A vertical power FET is shown in FIG.
The structures shown in (a) and (b) are general. FIG. 3A shows a cross section of an n-channel type vertical FET, in which a P-type base region B and an N + -type source region S are formed on the surface side of an N-type semiconductor substrate (1) serving as a drain region D. Are formed by impurity selective diffusion, and a gate oxide film (2), a gate electrode G, an interlayer insulating film (3), a gate electrode pattern (4), and a source electrode pattern (5) are formed on the surface of the semiconductor substrate (1). Is done.

【0003】半導体基板(1)は、例えばN+型サブスト
レート(1')上にN-型エピタキシャル成長層(1")を
積層したもので、エピタキシャル成長層(1")の表層部
に複数のベース領域Bが所定の配列ピッチと形状、例え
ば図3(b)に示すように、同一サイズの略正方形のも
のが、縦横に定ピッチで碁盤の目配列で形成される。各
ベース領域BにN+型不純物を選択拡散してソース領域
Sが形成され、各ソース領域Sの中央部を貫通させてベ
ースコンタクト領域Baが形成される。ベース領域Bの
外周とソース領域Sの外周の間にソース・ドレイン導通
用チャネル部Cが形成される。
A semiconductor substrate (1) is, for example, a structure in which an N type epitaxial growth layer (1 ″) is laminated on an N + type substrate (1 ′), and a plurality of bases are provided on a surface portion of the epitaxial growth layer (1 ″). The area B has a predetermined arrangement pitch and shape, for example, as shown in FIG. 3B, a substantially square one having the same size is formed in a grid pattern at a constant pitch vertically and horizontally. A source region S is formed by selectively diffusing an N + -type impurity into each base region B, and a base contact region Ba is formed so as to penetrate a central portion of each source region S. A source / drain conduction channel portion C is formed between the outer periphery of the base region B and the outer periphery of the source region S.

【0004】半導体基板(1)の隣接するベース領域B
間とチャネル部C上にゲート酸化膜(2)が形成され、
その上にゲートポリシリコンのゲート電極Gが形成され
る。ゲート電極Gを覆うように層間絶縁膜(3)が形成
され、最後にアルミニウムの配線パターンであるゲート
電極パターン(4)とソース電極パターン(5)が形成さ
れる。
A base region B adjacent to a semiconductor substrate (1)
A gate oxide film (2) is formed between and on the channel portion C,
A gate electrode G of gate polysilicon is formed thereon. An interlayer insulating film (3) is formed so as to cover the gate electrode G, and finally, a gate electrode pattern (4) and a source electrode pattern (5), which are aluminum wiring patterns, are formed.

【0005】ゲート電極Gに正電圧を印加すると、チャ
ネル部CがN型に反転してソース領域Sとドレイン領域
D間が導通し、ソース領域Sからチャネル部Cを経てド
レイン領域Dに縦型の電子流Idが流れる。このとき、
ドレイン領域Dは不純物濃度が低く、電子流Idの導通
抵抗が大きくなるため、予め基板の極表面付近に高濃度
のN型不純物領域を薄く形成したものもある。
When a positive voltage is applied to the gate electrode G, the channel portion C is inverted to N-type, and conduction between the source region S and the drain region D is established. Electron flow Id flows. At this time,
Since the drain region D has a low impurity concentration and a high conduction resistance of the electron current Id, a thin high-concentration N-type impurity region is formed in advance near the extreme surface of the substrate.

【0006】[0006]

【発明が解決しようとする課題】図3(a)のFETに
おいては、ソース領域Sとベース領域B及びドレイン領
域Dの間で、図3(c)に示されるような寄生トランジ
スタQが形成される。この寄生トランジスタQのエミッ
タとベース間は、ソース領域Sの真下のベース領域B内
に形成された拡散抵抗(ベース抵抗)Raで電気的接続
される。拡散抵抗Raは、ソース領域Sの真下のベース
領域Bが薄く、かつ、不純物濃度が低いために大きく
て、平均値は1000Ω/□を超えている。
In the FET shown in FIG. 3A, a parasitic transistor Q as shown in FIG. 3C is formed between the source region S, the base region B and the drain region D. You. The emitter and the base of the parasitic transistor Q are electrically connected by a diffusion resistance (base resistance) Ra formed in the base region B immediately below the source region S. The diffusion resistance Ra is large because the base region B immediately below the source region S is thin and has a low impurity concentration, and the average value exceeds 1000Ω / □.

【0007】ベース領域Bの拡散抵抗Raの平均値が大
きくなるほど、小さいベース電流で寄生トランジスタQ
にベース・エミッタ間電圧が生じてコレクタ電流が流れ
易くなる。そこで、ソース・ドレイン間が導通から遮断
する瞬間にインダクタンス負荷(L負荷)で高い衝撃電
圧が加わると、ドレイン電流と異なる不所望な寄生コレ
クタ電流が流れて、トランジスタ素子が破壊に到る不具
合が生じることがある。このような不具合の発生率は、
拡散抵抗Raの平均値が大きく、L負荷耐量が小さくな
るほど高い。つまり、1000Ω/□を超える拡散抵抗
Raのある現状のFETにおいては、ベース電圧オフ時
に寄生トランジスタQがオンし易くて、L負荷耐量が小
さく、寄生コレクタ電流で破壊される確率が高い問題が
あった。
As the average value of the diffusion resistance Ra in the base region B increases, the parasitic transistor Q
, A base-emitter voltage is generated and the collector current easily flows. Therefore, when a high impact voltage is applied with an inductance load (L load) at the moment when the source-drain is cut off from conduction, an undesirable parasitic collector current different from the drain current flows, and the transistor element is damaged. May occur. The incidence of such defects is
The larger the average value of the diffusion resistance Ra is, the higher the L load withstand capacity becomes. That is, in the current FET having a diffusion resistance Ra exceeding 1000 Ω / □, there is a problem that the parasitic transistor Q is easily turned on when the base voltage is off, the L load tolerance is small, and the probability of being destroyed by the parasitic collector current is high. Was.

【0008】また、ソース領域Sの中心にベースコンタ
クト領域Baを目合わせして形成しているが、目合わせ
時の目ずれでソース領域Sの中心とベースコンタクト領
域Baの中心がずれ、例えば図3(b)の鎖線に示すよ
うに、ベースコンタクト領域Baがソース領域Sの中心
部から外れることがある。このように目ずれを起こす
と、ソース領域Sの真下のベース領域Bのベースコンタ
クト領域Baを中心とする放射方向での拡散抵抗値分布
が、目ずれをした図3(b)のm側より反対のn側で高
くなり、拡散抵抗Raの最大値が増大して、上記不具合
の発生率を尚更に高くしていた。
Further, the base contact region Ba is aligned with the center of the source region S, but the center of the source region S and the center of the base contact region Ba are shifted due to misalignment at the time of alignment. 3B, the base contact region Ba may deviate from the center of the source region S. When such misalignment occurs, the diffusion resistance distribution in the radial direction centering on the base contact region Ba of the base region B immediately below the source region S becomes closer to the misaligned m-side in FIG. On the other hand, it becomes higher on the n side, and the maximum value of the diffusion resistance Ra is increased, thereby further increasing the occurrence rate of the above-mentioned problem.

【0009】本発明の目的は、ベース領域の実質上の拡
散抵抗を下げてL負荷耐量を大きくしたパワー用縦型F
ETを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce the substantial diffusion resistance of the base region to increase the L load withstand capability.
To provide ET.

【0010】[0010]

【課題を解決するための手段】本発明は、ドレイン領域
となる一導電型半導体基板の表面の所定領域に他導電型
不純物を選択拡散して形成した略正方形のベース領域の
中央部分に、同ベース領域と異なる一導電型不純物を選
択拡散して形成される全体が略正方形のソース領域が、
幅狭で一定幅の他導電型ソース分割ベース領域により略
4等分に分割された4分割ソース領域である構造にて、
上記目的を達成するものである。
According to the present invention, there is provided a semiconductor device having a substantially square base region formed by selectively diffusing impurities of another conductivity type into a predetermined region on the surface of a semiconductor substrate serving as a drain region. A source region having a substantially square shape formed by selectively diffusing one conductivity type impurity different from the base region,
Narrow, constant width, other conductivity type
In a structure that is a four-divided source region divided into four equal parts ,
The above object is achieved.

【0011】上記ソース領域は、具体的には対角線で4
等分されていてもよい。
[0011] Specifically, the source region has a diagonal line of 4
It may be equally divided.

【0012】[0012]

【作用】ソース領域を複数に分割し、分割された複数の
分割ソース領域間をベース領域にしておくと、分割ソー
ス領域間のベース領域での拡散抵抗がソース領域真下の
ベース領域の拡散抵抗より大幅に小さくなり、この小さ
な拡散抵抗の存在でベース領域全体の実質上の拡散抵抗
が減少して、寄生トランジスタがオンし難くなり、L負
荷耐量を大きくすることが可能となる。
When a source region is divided into a plurality of divided source regions and the base region is set between the divided source regions, the diffusion resistance in the base region between the divided source regions is smaller than the diffusion resistance of the base region immediately below the source region. The diffusion resistance is greatly reduced, and the substantial diffusion resistance of the entire base region is reduced due to the presence of the small diffusion resistance, so that the parasitic transistor is hardly turned on, and the L load tolerance can be increased.

【0013】[0013]

【実施例】本発明の図3のパワー用縦型のFETに適用
した実施例を、図1(a)(b)及び図2を参照して説
明する。なお、図1と図2の各実施例の図3と同一、又
は、相当部分には同一符号を付して、説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention applied to a vertical power FET shown in FIG. 3 will be described with reference to FIGS. 1 (a) and 1 (b) and FIG. The same reference numerals are given to the same or corresponding parts as in FIG. 3 of each embodiment of FIGS. 1 and 2, and the description is omitted.

【0014】図1(a)(b)に示されるように、本発
明は1ベース領域Bに形成されるソース領域Sを複数に
分割したことを特徴とする。図1の実施例のソース領域
Sは、全体が略正方形であり、その各辺の中央と直交す
る十文字状の分割線で互いに離隔させて4等分された4
分割ソース領域S'…で構成される。各分割ソース領域
S'…間は、分割ソース領域S'…の真下のベース領域B
と同一の十文字状のソース分割ベース領域B'である。
ソース分割ベース領域B'は半導体基板(1)の表面に露
呈して、その十文字中央部がベースコンタクト領域Ba
となる。
As shown in FIGS. 1A and 1B, the present invention is characterized in that a source region S formed in one base region B is divided into a plurality. The source region S of the embodiment of FIG. 1 is substantially square in its entirety, and is divided into four equal parts at a cross-shaped dividing line perpendicular to the center of each side.
It is composed of divided source areas S '. Between the divided source regions S ', the base region B immediately below the divided source regions S'.
This is the same cross-shaped source division base area B ′.
The source divided base region B 'is exposed on the surface of the semiconductor substrate (1), and the center of the cross is located at the base contact region Ba.
Becomes

【0015】図1のFETにおいても、ソース領域Sと
ベース領域B及びドレイン領域Dの間で寄生トランジス
タQが形成される。この寄生トランジスタQのエミッタ
とベース間は、4分割ソース領域S'…の真下のベース
領域B中の拡散抵抗Raと、4分割ソース領域S'…の
間のソース分割ベース領域B'中の拡散抵抗Rbで電気
的接続される。拡散抵抗Raは、ソース領域Sの真下の
ベース領域Bが薄く、かつ、不純物濃度が低いために大
きいが、ソース分割ベース領域B'の拡散抵抗Rbは、
拡散抵抗Raより大幅に小さい。すなわち、ソース分割
ベース領域B'は、ソース領域S真下のベース領域Bよ
りソース領域Sの厚さ分だけ厚く形成され、かつ、ソー
ス分割ベース領域B'の表層部の不純物濃度がソース領
域S真下のベース領域Bの不純物濃度より高いので、こ
この拡散抵抗Rbが小さくなる。実験によると、拡散抵
抗Raが1000Ω/□を超えるものにおいて、拡散抵
抗Rbは50〜100Ω/□であり、拡散抵抗Raの約
1/10まで小さくなることが分かっている。
In the FET of FIG. 1, a parasitic transistor Q is formed between the source region S, the base region B, and the drain region D. Between the emitter and the base of the parasitic transistor Q, the diffusion resistance Ra in the base region B directly below the four-divided source region S ', and the diffusion in the source-divided base region B' between the four divided source regions S '. They are electrically connected by a resistor Rb. The diffusion resistance Ra is large because the base region B immediately below the source region S is thin and has a low impurity concentration, but the diffusion resistance Rb of the source divided base region B ′ is
It is significantly smaller than the diffusion resistance Ra. That is, the source divided base region B ′ is formed to be thicker than the base region B immediately below the source region S by the thickness of the source region S, and the impurity concentration of the surface layer portion of the source divided base region B ′ is directly below the source region S. Is higher than the impurity concentration of the base region B, the diffusion resistance Rb here becomes small. According to an experiment, when the diffusion resistance Ra exceeds 1000 Ω / □, the diffusion resistance Rb is 50 to 100 Ω / □, which is reduced to about 1/10 of the diffusion resistance Ra.

【0016】したがって、小さいベース電流で寄生トラ
ンジスタQにベース・エミッタ間電圧が生じてコレクタ
電流が流れるとき、コレクタ電流は拡散抵抗値の小さい
ソース分割ベース領域B'を主として流れて、拡散抵抗
値の大きい分割ソース領域S'の真下のベース領域Bの
拡散抵抗Raの影響力を弱める。かつ、分割ベース領域
B…を含むベース領域Bの全体の平均的拡散抵抗値が、
拡散抵抗Rbのために小さくなり、その結果、図1のF
ETの寄生トランジスタQがベース電圧オフ時に導通し
難くなり、L負荷耐量が上がる。
Accordingly, when a base-emitter voltage is generated in the parasitic transistor Q with a small base current and a collector current flows, the collector current mainly flows through the source divided base region B 'having a small diffusion resistance value, and The influence of the diffusion resistance Ra of the base region B directly below the large divided source region S ′ is reduced. And the average diffusion resistance of the entire base region B including the divided base regions B.
It becomes smaller due to the diffusion resistance Rb, and as a result, F
When the base voltage is off, the ET parasitic transistor Q becomes difficult to conduct, and the L load tolerance increases.

【0017】また、ソース領域Sを4分割するソース分
割ベース領域B'の中心と全体のソース領域Sの中心が
目ずれを起こして、拡散抵抗Raに場所的なバラツキが
生じても、これはソース分割ベース領域B'の小さな拡
散抵抗Raの存在で無視できる。
Further, even if the center of the source divided base region B 'which divides the source region S into four and the center of the entire source region S are misaligned, a local variation occurs in the diffusion resistance Ra. It can be neglected due to the presence of the small diffusion resistance Ra in the source division base region B ′.

【0018】図2に示される実施例のFETは、略正方
形のソース領域Sを対角線方向に4分割している。4つ
の分割ソース領域S'…は略扇形をなし、それぞれの間
のソース分割ベース領域B'の拡散抵抗Rbが50〜1
00Ω/□と小さくなって、上記実施例と同様な作用効
果を発揮する。
In the FET of the embodiment shown in FIG. 2, a substantially square source region S is divided into four in a diagonal direction. The four divided source regions S 'have a substantially sector shape, and the diffusion resistance Rb of the source divided base region B' between them is 50 to 1
It becomes as small as 00 Ω / □, and the same operation and effect as in the above embodiment are exhibited.

【0019】以上の実施例におけるソース分割ベース領
域B'の幅Wは任意であるが、ソース領域Sが1μm程
度の深さで形成されているものにおいては、幅Wは2〜
3μmが適当である。また、ソース領域Sを4等分に分
割したもので説明したが、2等分に分割したもの、或い
は5等分以上に分割することも可能である。このソース
領域Sの分割数は、多くなるほど各々の分割ソース領域
の面積が少なくなり、FET本来の特性を変えることに
なるので、4分割程度が望ましい。
In the above embodiment, the width W of the source divided base region B 'is arbitrary, but when the source region S is formed to a depth of about 1 μm, the width W is 2 to 2.
3 μm is appropriate. Also, the source region S is described as being divided into four equal parts, but it is also possible to divide the source region S into two equal parts, or to divide it into five or more equal parts. As the number of divisions of the source region S increases, the area of each divided source region decreases and the original characteristics of the FET are changed.

【0020】なお、本発明はnチャネル型FETに限ら
ず、pチャネル型FETにも適用可能である。
The present invention is not limited to an n-channel FET, but is applicable to a p-channel FET.

【0021】[0021]

【発明の効果】本発明によれば、1ベース領域にソース
領域を分割して形成し、複数の分割ソース領域間をベー
ス領域にしたので、分割ソース領域間のソース分割ベー
ス領域での拡散抵抗がソース領域真下のベース領域の拡
散抵抗より大幅に小さくなって、ベース領域全体の実質
上の拡散抵抗が減少して、ソース領域とベース領域とド
レイン領域間で発生する寄生トランジスタがゲート電圧
オフ時に導通し難くなり、インダクタンス負荷耐量を大
きくすることが可能となる。
According to the present invention, the source region is divided into one base region and the base region is formed between the plurality of divided source regions. Therefore, the diffusion resistance in the source divided base region between the divided source regions is reduced. Is significantly smaller than the diffusion resistance of the base region immediately below the source region, the effective diffusion resistance of the entire base region is reduced, and the parasitic transistor generated between the source region, the base region, and the drain region is turned off when the gate voltage is turned off. Conduction becomes difficult, and it becomes possible to increase the inductance load resistance.

【0022】また、ソース領域を分割して、分割ソース
領域間の拡散抵抗を小さくすることで、ソース領域にベ
ースコンタクト領域を形成するときの目ずれの影響が少
なくできて、電界効果トランジスタの特性を安定させた
製造が容易にできるようになる。
Further, by dividing the source region and reducing the diffusion resistance between the divided source regions, the influence of misalignment when forming the base contact region in the source region can be reduced, and the characteristics of the field effect transistor can be reduced. Can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明に係る電界効果トランジスタの
一実施例の要部断面図、(b)は図1(a)の電界効果
トランジスタにおける半導体基板の部分平面図。
1A is a cross-sectional view of a main part of an embodiment of a field-effect transistor according to the present invention, and FIG. 1B is a partial plan view of a semiconductor substrate in the field-effect transistor of FIG.

【図2】本発明の他の実施例の電界効果トランジスタに
おける半導体基板の部分平面図。
FIG. 2 is a partial plan view of a semiconductor substrate in a field effect transistor according to another embodiment of the present invention.

【図3】(a)は従来のパワー用縦型電界効果トランジ
スタの要部断面図、(b)は図2(a)の電界効果トラ
ンジスタにおける半導体基板の部分平面図、(c)は図
3(a)(b)の電界効果トランジスタに発生する寄生
トランジスタの回路図。
3A is a sectional view of a main part of a conventional vertical field effect transistor for power, FIG. 3B is a partial plan view of a semiconductor substrate in the field effect transistor of FIG. 2A, and FIG. FIGS. 4A and 4B are circuit diagrams of parasitic transistors generated in the field-effect transistor of FIGS.

【符号の説明】[Explanation of symbols]

1 半導体基板 D ドレイン領域 B ベース領域 B' ソース分割ベース領域 S ソース領域 S' 分割ソース領域 1 Semiconductor substrate D Drain region B Base region B 'Source division base region S Source region S' Division source region

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ドレイン領域となる一導電型半導体基板
の表面の所定領域に他導電型不純物を選択拡散して形成
した略正方形のベース領域の中央部分に、同ベース領域
と異なる一導電型不純物を選択拡散して形成される全体
が略正方形のソース領域が、幅狭で一定幅の他導電型ソ
ース分割ベース領域により略4等分に分割された4分割
ソース領域である電界効果トランジスタ。
An impurity of one conductivity type different from that of the base region is formed at a central portion of a substantially square base region formed by selectively diffusing impurities of another conductivity type into a predetermined region on a surface of a semiconductor substrate serving as a drain region. The source region having a substantially square shape formed by selectively diffusing the source is a narrow, constant width, other conductivity type source region.
Divided into approximately four equal parts by the source divided base area
A field effect transistor that is a source region .
【請求項2】 前記ソース領域が対角線で4等分されて
いる請求項1記載の電界効果トランジスタ。
2. The field effect transistor according to claim 1, wherein said source region is divided into four equal parts on a diagonal line.
JP5162469A 1993-06-30 1993-06-30 Field effect transistor Expired - Lifetime JP2903452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5162469A JP2903452B2 (en) 1993-06-30 1993-06-30 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5162469A JP2903452B2 (en) 1993-06-30 1993-06-30 Field effect transistor

Publications (2)

Publication Number Publication Date
JPH0766392A JPH0766392A (en) 1995-03-10
JP2903452B2 true JP2903452B2 (en) 1999-06-07

Family

ID=15755221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5162469A Expired - Lifetime JP2903452B2 (en) 1993-06-30 1993-06-30 Field effect transistor

Country Status (1)

Country Link
JP (1) JP2903452B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705408B2 (en) 2005-04-11 2010-04-27 Nec Electronics Corporation Vertical field effect transistor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3230504B2 (en) 1998-12-11 2001-11-19 日本電気株式会社 MIS type semiconductor device and method of manufacturing the same
JP4531861B2 (en) 2008-07-09 2010-08-25 パナソニック株式会社 Semiconductor device and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4641162A (en) * 1985-12-11 1987-02-03 General Electric Company Current limited insulated gate device
JPS63289871A (en) * 1987-05-21 1988-11-28 Hitachi Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705408B2 (en) 2005-04-11 2010-04-27 Nec Electronics Corporation Vertical field effect transistor

Also Published As

Publication number Publication date
JPH0766392A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
JPH02275675A (en) Mos type semiconductor device
JPH0358187B2 (en)
JPH01125979A (en) Insulated gate bipolar transistor
JPH0864811A (en) Power device integrated structure
JPS62232167A (en) Semiconductor device
JP2903452B2 (en) Field effect transistor
JP3099917B2 (en) Field effect transistor
JP3063278B2 (en) Vertical field-effect transistor
JP3114317B2 (en) Semiconductor device
JPS6373670A (en) Conductive modulation type mosfet
JP3230504B2 (en) MIS type semiconductor device and method of manufacturing the same
US5270566A (en) Insulated gate semiconductor device
JPH05110085A (en) Field effect semiconductor device and manufacture thereof
JP3217552B2 (en) Horizontal high voltage semiconductor device
JP3217484B2 (en) High voltage semiconductor device
JPH08250734A (en) Latch preventing insulated gate semiconductor device and its manufacture
JP2526960B2 (en) Conduction modulation type MOSFET
JP2988047B2 (en) Semiconductor device
JPS6241427B2 (en)
JP3278498B2 (en) Insulated gate power semiconductor device
JP3342944B2 (en) Horizontal high voltage semiconductor device
JP2917945B2 (en) Vertical field-effect transistor
JP3112376B2 (en) Vertical semiconductor device
JP2917687B2 (en) Vertical field-effect transistor
JP2973633B2 (en) Conductivity modulation type MOSFET and manufacturing method thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 15

EXPY Cancellation because of completion of term