JP2808871B2 - Method for manufacturing MOS type semiconductor device - Google Patents

Method for manufacturing MOS type semiconductor device

Info

Publication number
JP2808871B2
JP2808871B2 JP2246561A JP24656190A JP2808871B2 JP 2808871 B2 JP2808871 B2 JP 2808871B2 JP 2246561 A JP2246561 A JP 2246561A JP 24656190 A JP24656190 A JP 24656190A JP 2808871 B2 JP2808871 B2 JP 2808871B2
Authority
JP
Japan
Prior art keywords
gate
layer
region
insulating film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2246561A
Other languages
Japanese (ja)
Other versions
JPH04125972A (en
Inventor
武義 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2246561A priority Critical patent/JP2808871B2/en
Publication of JPH04125972A publication Critical patent/JPH04125972A/en
Application granted granted Critical
Publication of JP2808871B2 publication Critical patent/JP2808871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体基板の表面上にゲート絶縁膜を介し
て設けられたゲートへの電圧印加により、半導体基板の
表面層に設けられた逆導電型の領域の一部にチャネルを
形成してその逆導電型の領域に接触する主電極から基板
本来の領域に流れ込む電流を制御するMOS型半導体素子
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of applying a voltage to a gate provided on a surface of a semiconductor substrate via a gate insulating film to thereby apply a voltage to a gate formed on a surface layer of the semiconductor substrate. The present invention relates to a method of manufacturing a MOS semiconductor device in which a channel is formed in a part of a conductive type region and a current flowing from a main electrode in contact with a region of the opposite conductive type to an original region of a substrate is controlled.

〔従来の技術〕[Conventional technology]

主電極に流れる電流を、主電極を囲んで設けられたゲ
ートへの電圧印加により制御するMOS型半導体素子とし
ては電力用MOSFETあるいは絶縁ゲートバイポーラトラン
ジスタ(IGBT)などがある。このような素子のオン抵抗
を低減させるには、主表面上において主電極を囲むゲー
トの面積の比率をゲートのない部分にくらべて高くする
ことにより、基板本来の領域とチャネルの形成される逆
導電型の領域との間の接合によるJ−FET効果を減少せ
しめる方法、あるいはゲート下部の半導体基板の表面層
の不純物濃度を高くして抵抗を下げ同時にJ−FET効果
を減少させる方法がある。第2図はそのような表面層の
不純物濃度を高めたMOSFETを示す。図において、n-シリ
コン基板1の表面層にはp型チャネル領域2が間隔を介
して形成され、その中央にp+ウエル領域3、また外周に
近い所に環状のn+ソース領域4が形成されている。そし
て、チャネル領域2のn+ソース領域4とn-層1の間にn
チャネルを形成するために、ゲート酸化膜5を介して多
結晶シリコン層6が形成され、ゲートとして働く。多結
晶シリコン層6は平面図(a)に示すようにn+ソース領
域4をとり囲んでいる。そして、p+ウエル領域3および
n+ソース領域4に共通にAl−Si合金よりなるソース電極
7が多結晶シリコン層との絶縁のためのPSG膜8に明け
られたコンタクトホール81で接触している。n-基板1の
表面にはドナー不純物が低不純物濃度で拡散され、第2
図(b)の点線より上の表面層にn層11が形成されてい
る。
As a MOS type semiconductor element which controls a current flowing through a main electrode by applying a voltage to a gate provided surrounding the main electrode, there is a power MOSFET or an insulated gate bipolar transistor (IGBT). In order to reduce the on-resistance of such an element, the ratio of the area of the gate surrounding the main electrode on the main surface is made higher than that of the part without the gate, so that the region where the substrate is originally formed and the channel are formed. There is a method of reducing the J-FET effect due to the junction with the conductive type region, or a method of increasing the impurity concentration of the surface layer of the semiconductor substrate below the gate to lower the resistance and simultaneously reducing the J-FET effect. FIG. 2 shows a MOSFET in which the impurity concentration of such a surface layer is increased. In the figure, a p-type channel region 2 is formed at intervals in a surface layer of an n - silicon substrate 1, ap + well region 3 is formed in the center thereof, and an annular n + source region 4 is formed near an outer periphery. Have been. Then, n is between n + source region 4 of channel region 2 and n layer 1.
In order to form a channel, a polycrystalline silicon layer 6 is formed via a gate oxide film 5 and functions as a gate. Polycrystalline silicon layer 6 surrounds n + source region 4 as shown in plan view (a). And p + well region 3 and
A source electrode 7 commonly made of an Al-Si alloy is in contact with the n + source region 4 through a contact hole 81 formed in the PSG film 8 for insulation from the polycrystalline silicon layer. On the surface of the n - substrate 1, donor impurities are diffused at a low impurity concentration,
The n-layer 11 is formed on the surface layer above the dotted line in FIG.

また、オフ時のスイッチング速度を速くするためにゲ
ート・ドレイン間のゲート容量を小さくするには、ゲー
ト面積を小さくする方法、ゲート酸化膜の全部あるいは
一部を厚くする方法あるいは半導体基板表面に基板と逆
の導電型にする働きをもつ不純物を拡散させる方法など
がある。第3図はゲート酸化膜の一部を厚くしたMOSFET
を示し、第2図と共通の部分には同一の符号が付されて
いるが、図より明らかなようにゲート酸化膜5の一部51
は厚くされている。平面図の第3図(a)ではこの厚い
部分51の境界が点線で示されている。
In order to reduce the gate capacitance between the gate and the drain in order to increase the switching speed at the time of off, a method of reducing the gate area, a method of increasing the thickness of all or part of the gate oxide film, or a method of forming the substrate on the surface of the semiconductor substrate. For example, there is a method of diffusing impurities having a function of making the conductivity type opposite to the above. Fig. 3 shows a MOSFET with a part of the gate oxide film thickened.
2 are denoted by the same reference numerals as in FIG. 2, but as is clear from the drawing, a portion 51
Is thicker. In FIG. 3 (a) of a plan view, the boundary of the thick portion 51 is indicated by a dotted line.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

オン抵抗を低減させるためにセル寸法を変更し、p領
域2およびn+ソース領域4の面積に比して多結晶シリコ
ン層の面積の比率を高くしても、低減には限度があり、
p領域2とn-層1の間の空乏層が広がりにくくなって耐
圧の低下という現象も発生してくる。第2図に示した低
不純物濃度の拡散層11を形成する方法は、ドープしすぎ
ると耐圧の低下やその他の特性を悪化させてしまうほ
か、ゲート下部の半導体基板表面の不純物濃度を上げて
しまうためにゲート容量が増加してしまうという問題が
ある。
Even if the cell size is changed to reduce the on-resistance and the ratio of the area of the polycrystalline silicon layer to the area of the p region 2 and the area of the n + source region 4 is increased, the reduction is limited.
A depletion layer between the p region 2 and the n layer 1 is hardly spread, and a phenomenon that the breakdown voltage is reduced also occurs. In the method of forming the diffusion layer 11 having a low impurity concentration shown in FIG. 2, if the doping is too much, the breakdown voltage is reduced and other characteristics are deteriorated, and the impurity concentration on the surface of the semiconductor substrate below the gate is increased. Therefore, there is a problem that the gate capacitance increases.

ゲート容量を低減させるために、第3図に示したよう
にゲート酸化膜5の一部を厚くする方法は、その厚い酸
化膜51の幅が広いとフィールドプレート効果がなくなっ
て耐圧が低下する問題がある。それ以外の方法は容量は
低減できるが、オン抵抗やしきい値電圧などの電気特性
が変化してしまう問題がある。
The method of increasing the thickness of a part of the gate oxide film 5 as shown in FIG. 3 in order to reduce the gate capacitance has a problem that if the width of the thick oxide film 51 is large, the field plate effect is lost and the withstand voltage is reduced. There is. The other methods can reduce the capacitance, but have a problem in that electrical characteristics such as on-resistance and threshold voltage change.

本発明の目的は、これらの問題を解決し、耐圧を低下
させることなくオン抵抗を小さくし、ゲート容量を低減
させたMOS型半導体素子およびその製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and to provide a MOS type semiconductor device in which the ON resistance is reduced without lowering the breakdown voltage and the gate capacitance is reduced, and a method of manufacturing the same.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するために、本発明は、第一導電型
の半導体基板の表面層に複数の第二導電型のチャネル領
域を形成する工程と、半導体基板の表面上にそのチャネ
ル領域を相互間の中間部上からチャネル領域の周辺部上
にかけて延びるゲート絶縁膜であって、前記中間部上の
領域では厚く、前記周辺部上にかけての領域では薄くさ
れたゲート絶縁膜を形成する工程と、そのゲート絶縁膜
をマスクとしてゲート絶縁膜の薄い領域のみを通して不
純物を導入し、半導体基板の表面層に半導体基板より不
純物濃度の高い第一導電型の層を形成する工程と、ゲー
ト絶縁膜の上にゲートを積層する工程を含むものとす
る。
In order to achieve the above object, the present invention provides a step of forming a plurality of channel regions of a second conductivity type on a surface layer of a semiconductor substrate of a first conductivity type, and forming the channel regions on a surface of the semiconductor substrate. A step of forming a gate insulating film extending from the intermediate portion on the peripheral portion of the channel region to the peripheral portion of the channel region, the gate insulating film being thick in the region on the intermediate portion and thinned in the region over the peripheral portion; Using the gate insulating film as a mask, introducing impurities only through the thin region of the gate insulating film, forming a first conductivity type layer having a higher impurity concentration than the semiconductor substrate on the surface layer of the semiconductor substrate; And a step of stacking gates.

〔作用〕[Action]

半導体基板の表面層のチャネル領域を囲む限られた領
域のみに半導体基板より不純物濃度の高い同一導電型の
層を形成することにより、その高不純物濃度層による空
乏層容量の増加はほとんどなくなり、また、空乏層の広
がりが少なくなってJ−FET効果が弱くなるので耐圧の
低下も起こらなく、オン抵抗が低減される。また、この
高不純物濃度を表面より少し離して形成した場合は、し
きい値電圧の低下も防ぐことができる。さらに、高不純
物濃度層によりオン抵抗を低減させたことにより、チャ
ネル領域間の寸法を小さくすることができるため、ゲー
ト絶縁膜の一部を厚くしてもフィールドプレート効果の
減退による耐圧の低下が起こらず、ゲート容量を小さく
することができる。そして厚い絶縁膜と薄い絶縁膜の境
界に傾斜面を形成することにより、電界の集中を防ぎ、
耐圧低下を防ぐことができる。これらの顕著な効果を奏
する高不純物濃度層をゲート絶縁膜の厚い部分をマスク
として容易に形成することができる。
By forming a layer of the same conductivity type having a higher impurity concentration than the semiconductor substrate only in a limited region surrounding the channel region of the surface layer of the semiconductor substrate, the high impurity concentration layer hardly increases the depletion layer capacitance, and In addition, the spread of the depletion layer is reduced and the J-FET effect is weakened, so that the breakdown voltage does not decrease and the on-resistance is reduced. If the high impurity concentration is formed slightly away from the surface, the threshold voltage can be prevented from lowering. Further, since the on-resistance is reduced by the high impurity concentration layer, the dimension between the channel regions can be reduced. Therefore, even if a part of the gate insulating film is thickened, the withstand voltage is reduced due to the reduction of the field plate effect. This does not occur, and the gate capacitance can be reduced. By forming an inclined surface at the boundary between the thick insulating film and the thin insulating film, concentration of the electric field is prevented,
A decrease in withstand voltage can be prevented. A high impurity concentration layer exhibiting these remarkable effects can be easily formed using the thick portion of the gate insulating film as a mask.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示し、以下の各図同様第
2図,第3図と共通の部分には同一の符号が付されてい
る。この場合は、第3図と同様、500〜1200Åの厚さの
ゲート酸化膜5の一部分51は6000Å近くに厚くされてい
るが、そのほかにこのゲート酸化膜を通してのドナー不
純物ドープにより、薄い部分の下にのみソース領域4よ
りも深く、p+ウエル領域3よりも浅い不純物濃度1015
1016/cm3のn層11が形成されている。このn層11により
オン抵抗は増加するが、領域が限られているため、空乏
層容量の増加はほとんどなくなる。
FIG. 1 shows an embodiment of the present invention, and like parts to those in the following figures, parts common to FIGS. 2 and 3 are denoted by the same reference numerals. In this case, as in FIG. 3, a portion 51 of the gate oxide film 5 having a thickness of 500 to 1200 ° is thickened to about 6000 °. deeper than the source region 4 only under, p + shallow impurity concentration of 10 15 than the well region 3 to
An n layer 11 of 10 16 / cm 3 is formed. Although the ON resistance is increased by the n-layer 11, the increase in the depletion layer capacitance hardly occurs because the region is limited.

第4図は別の実施例を示し、厚い酸化膜51の周縁部に
エッチングを施し、15〜40゜の角度のテーパ面52を形成
して電界の集中を防いだものである。
FIG. 4 shows another embodiment, in which the peripheral portion of the thick oxide film 51 is etched to form a tapered surface 52 having an angle of 15 to 40 ° to prevent the concentration of the electric field.

このように、ゲート酸化膜の薄い部分と厚い部分の境
界に、望ましくは15〜40゜の角度の傾斜面を形成するこ
とで耐圧低下の防止に有効である。第5図のさらに別の
実施例では、一部厚くされたゲート酸化膜5を通しての
ドナー不純物ドープにより形成したn層11の表面層にア
クセプタ不純物をドープし、基板1と同程度の不純物濃
度のn-層12としたもので、ドナー不純物ドープにより発
生するしきい値電圧の低下を防いだものである。
As described above, by forming an inclined surface having an angle of preferably 15 to 40 ° at the boundary between the thin portion and the thick portion of the gate oxide film, it is effective to prevent a reduction in breakdown voltage. In another embodiment shown in FIG. 5, an acceptor impurity is doped into the surface layer of the n-layer 11 formed by donor impurity doping through the gate oxide film 5 partially thickened, so that the impurity concentration is substantially the same as that of the substrate 1. This is an n layer 12, which prevents a decrease in threshold voltage caused by donor impurity doping.

このように、チャネル領域を囲む限られた領域の半導
体基板表面層を基板と同一導電型で不純物濃度の高い層
にすることにより、耐圧の低下、ゲート容量の増加を招
くことなく、オン抵抗を低減させることができ、さらに
この高不純物濃度層を表面より少し離れて形成した場合
はしきい値電圧の低下を防ぐこともできる。このように
オン抵抗を低減させることにより、ゲート酸化膜の一部
を厚くしてゲート容量の低減をはかることも可能であ
る。
As described above, by making the semiconductor substrate surface layer of the limited region surrounding the channel region a layer of the same conductivity type as the substrate and having a high impurity concentration, the on-resistance can be reduced without lowering the breakdown voltage and increasing the gate capacitance. When the high impurity concentration layer is formed slightly away from the surface, a decrease in threshold voltage can be prevented. By reducing the on-resistance in this manner, it is possible to increase the thickness of a part of the gate oxide film to reduce the gate capacitance.

〔発明の効果〕〔The invention's effect〕

本発明によれば、ゲート酸化膜の厚い部分をドープの
際のマスクに利用することにより、チャネル領域を囲む
限られた領域への高不純物濃度層を容易に形成すること
ができる。また、ゲート酸化膜の薄い部分と厚い部分の
境界に、望ましくは15〜40゜の角度の傾斜面を形成する
ことが耐圧低下の防止に有効である。
According to the present invention, a high impurity concentration layer in a limited region surrounding a channel region can be easily formed by using a thick portion of a gate oxide film as a mask for doping. Also, it is effective to prevent a decrease in breakdown voltage by forming an inclined surface having an angle of preferably 15 to 40 ° at a boundary between a thin portion and a thick portion of the gate oxide film.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例のMOSFETを示し、そのうち
(a)は基板表面の平面図、(b)は(a)のA−A線
断面図、第2図,第3図はMOSFETの二つの従来例をそれ
ぞれ示し、そのうち(a)は平面図、(b)は(a)の
B−B線およびC−C線断面図、第4図,第5図は本発
明の二つの異なる実施例のMOSFETの断面図である。 1:n-シリコン基板、11:n層、12:n-層、2:p型チャネル領
域、4:n+ソース領域、5:ゲート酸化膜、51:厚いゲート
酸化膜、52:テーパ面、6:多結晶シリコンゲート、7:ソ
ース電極、8:PSG膜。
FIG. 1 shows a MOSFET according to an embodiment of the present invention, in which (a) is a plan view of a substrate surface, (b) is a cross-sectional view taken along the line AA of (a), and FIGS. (A) is a plan view, (b) is a cross-sectional view taken along line BB and CC of (a), and FIGS. 4 and 5 are two examples of the present invention. It is sectional drawing of the MOSFET of a different Example. 1: n - silicon substrate, 11: n-layer, 12: n - layer, 2: p-type channel region, 4: n + source region, 5: gate oxide film, 51: thick gate oxide film, 52: tapered surface, 6: polycrystalline silicon gate, 7: source electrode, 8: PSG film.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第一導電型の半導体基板の表面層に複数の
第二導電型のチャネル領域を形成する工程と、半導体基
板の表面上にそのチャネル領域の相互間の中間部上から
チャネル領域の周辺部上にかけて延びるゲート絶縁膜で
あって、前記中間部上の領域では厚く、前記周辺部上に
かけての領域では薄くされたゲート絶縁膜を形成する工
程と、そのゲート絶縁膜をマスクとしてゲート絶縁膜の
薄い領域のみを通して不純物を導入し、半導体基板の表
面層より不純物濃度の高い第一導電型の層を形成する工
程と、ゲート絶縁膜の上にゲートを積層する工程とを含
むことを特徴とするMOS型半導体素子の製造方法。
A step of forming a plurality of channel regions of a second conductivity type on a surface layer of a semiconductor substrate of a first conductivity type; and a step of forming a channel region on a surface of the semiconductor substrate from an intermediate portion between the channel regions. Forming a gate insulating film extending over the peripheral portion of the gate insulating film, the gate insulating film being thicker in the region above the intermediate portion and thinned in the region above the peripheral portion; and forming the gate using the gate insulating film as a mask. Introducing a impurity only through a thin region of the insulating film, forming a first conductivity type layer having a higher impurity concentration than the surface layer of the semiconductor substrate, and laminating a gate on the gate insulating film. Characteristic method for manufacturing a MOS type semiconductor device.
JP2246561A 1990-09-17 1990-09-17 Method for manufacturing MOS type semiconductor device Expired - Lifetime JP2808871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2246561A JP2808871B2 (en) 1990-09-17 1990-09-17 Method for manufacturing MOS type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2246561A JP2808871B2 (en) 1990-09-17 1990-09-17 Method for manufacturing MOS type semiconductor device

Publications (2)

Publication Number Publication Date
JPH04125972A JPH04125972A (en) 1992-04-27
JP2808871B2 true JP2808871B2 (en) 1998-10-08

Family

ID=17150247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2246561A Expired - Lifetime JP2808871B2 (en) 1990-09-17 1990-09-17 Method for manufacturing MOS type semiconductor device

Country Status (1)

Country Link
JP (1) JP2808871B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689874B2 (en) * 1993-12-17 1997-12-10 関西日本電気株式会社 High voltage MOS transistor
JP2007081436A (en) * 1996-10-18 2007-03-29 Hitachi Ltd Semiconductor device and power converter using the same
EP1531497A1 (en) * 2003-11-17 2005-05-18 ABB Technology AG IGBT cathode design with improved safe operating area capability
JP2008262982A (en) * 2007-04-10 2008-10-30 Toyota Central R&D Labs Inc Group iii nitride semiconductor device, and manufacturing method thereof
JP5246638B2 (en) * 2007-09-14 2013-07-24 三菱電機株式会社 Semiconductor device
JP5597217B2 (en) * 2012-02-29 2014-10-01 株式会社東芝 Semiconductor device and manufacturing method thereof
JP6700648B2 (en) 2012-10-18 2020-05-27 富士電機株式会社 Method of manufacturing semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151466A (en) * 1983-02-17 1984-08-29 Nissan Motor Co Ltd Vertical type metal oxide semiconductor field-effect transistor
JPS6457675A (en) * 1987-08-27 1989-03-03 Nec Corp Vertical field-effect transistor
JPH0237777A (en) * 1988-07-27 1990-02-07 Nec Corp Vertical type field-effect transistor

Also Published As

Publication number Publication date
JPH04125972A (en) 1992-04-27

Similar Documents

Publication Publication Date Title
US4831424A (en) Insulated gate semiconductor device with back-to-back diodes
US5136349A (en) Closed cell transistor with built-in voltage clamp
JP3202021B2 (en) Punch-through field-effect transistor
JP3191747B2 (en) MOS type semiconductor device
US5304831A (en) Low on-resistance power MOS technology
US5698454A (en) Method of making a reverse blocking IGBT
US4952991A (en) Vertical field-effect transistor having a high breakdown voltage and a small on-resistance
EP1394860A2 (en) Power devices with improved breakdown voltages
JPH0457111B2 (en)
JPH02275675A (en) Mos type semiconductor device
JPH04251983A (en) Semiconductor device
EP0071335B1 (en) Field effect transistor
JPH06310726A (en) Protective diode for transistor
US6104060A (en) Cost savings for manufacturing planar MOSFET devices achieved by implementing an improved device structure and fabrication process eliminating passivation layer and/or field plate
JP2000188399A (en) Silicon carbide semiconductor device and its manufacture
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JP3869580B2 (en) Semiconductor device
US5912491A (en) MOS device
JPH03205832A (en) Insulated-gate semiconductor device and manufacture thereof
JP3180672B2 (en) Semiconductor device
JPH01238174A (en) Vertical mosfet
JPS5987871A (en) Insulated gate field effect semiconductor device
JPH0493083A (en) Semiconductor device and manufacture thereof
US6180981B1 (en) Termination structure for semiconductor devices and process for manufacture thereof
JP3271381B2 (en) Semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 13