JPH0621358A - Insulated gate type bipolar transistor - Google Patents

Insulated gate type bipolar transistor

Info

Publication number
JPH0621358A
JPH0621358A JP4175430A JP17543092A JPH0621358A JP H0621358 A JPH0621358 A JP H0621358A JP 4175430 A JP4175430 A JP 4175430A JP 17543092 A JP17543092 A JP 17543092A JP H0621358 A JPH0621358 A JP H0621358A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
region
bipolar transistor
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4175430A
Other languages
Japanese (ja)
Other versions
JP2950025B2 (en
Inventor
Naoto Okabe
直人 岡部
Norihito Tokura
規仁 戸倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4175430A priority Critical patent/JP2950025B2/en
Publication of JPH0621358A publication Critical patent/JPH0621358A/en
Application granted granted Critical
Publication of JP2950025B2 publication Critical patent/JP2950025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Abstract

PURPOSE:To improve withstand voltage of a gird ring of IGBT without increasing an ON-resistance. CONSTITUTION:By implanting He ions in an N<-> layer 3 of a gird ring part (region B), a crystal defect is formed selectively. In a bipolar transistor formed internally of P layers 10 and 4' constituting the gird ring and of an N<-> layer 3 and a P<+> layer 2 operating as a collector, a base and an emitter respectively, the amount of hole reaching the collector through the base out of the one injected from the emitter is decreased thereby and the current amplification factor betaof the bipolar transistor is reduced. With the reduction of this current amplification factor beta, the withstand voltage BVCEO of the bipolar transistor is improved and, in other words, the withstand voltage of the gird ring part is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高耐圧,大電流のパワ
ースイッチング素子として用いる絶縁ゲート型バイポー
ラトランジスタ(以下、IGBTと記す)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated gate bipolar transistor (hereinafter referred to as an IGBT) used as a high voltage and large current power switching element.

【0002】[0002]

【従来の技術】IGBTはパワーMOSFETと類似の
構造を有するが、ドレイン領域にpn接合を設ける事に
より動作時に高抵抗ドレイン層に導電率変調を起こさ
せ、パワーMOSFETでは不可能な高耐圧と低オン抵
抗の両立が達成できる。
2. Description of the Related Art An IGBT has a structure similar to that of a power MOSFET, but by providing a pn junction in the drain region, conductivity modulation occurs in a high resistance drain layer during operation, resulting in a high breakdown voltage and a low breakdown voltage that cannot be achieved by a power MOSFET. Both on-resistance can be achieved.

【0003】しかしながら、通常高耐圧化手段として用
いられる素子外周部のガードリング構造部の耐圧は、n
チャネルIGBTを例にとると、内在pnp3層構造の
ブレークダウン動作により耐圧が決まり、pn2層構造
のブレークダウンで耐圧が決まるパワーMOSFETと
比較すると、同じ抵抗率と厚さの高抵抗ドレイン層を有
する場合、オン抵抗は格段に小さいが耐圧が低くなる。
これに対し特開昭62−219667号公報によれば、
IGBT素子の外周部の高抵抗ドレイン層3表面にn+
ベース領域15を設け、このn+ ベース領域15と基板
+ 領域2を外部配線により電気的にショートする構造
を提案している(図4参照)。
However, the breakdown voltage of the guard ring structure portion at the outer peripheral portion of the element, which is usually used as a high breakdown voltage increasing means, is n.
Taking the channel IGBT as an example, the breakdown voltage of the internal pnp3 layer structure determines the breakdown voltage, and compared with a power MOSFET whose breakdown voltage is determined by the breakdown of the pn2 layer structure, it has a high resistance drain layer of the same resistivity and thickness. In this case, the on-resistance is remarkably small, but the breakdown voltage is low.
On the other hand, according to Japanese Patent Laid-Open No. 62-219667,
N + is formed on the surface of the high resistance drain layer 3 at the outer periphery of the IGBT element.
A structure is proposed in which a base region 15 is provided and the n + base region 15 and the substrate p + region 2 are electrically short-circuited by an external wiring (see FIG. 4).

【0004】しかし、この従来構成ではn+ ベース領域
15とp+ ドレイン層2を電気的にショートするための
ワイヤボンディング用電極パッド14を表面n+ ベース
領域15に設ける必要があり、素子の電流通路となる有
効面積が減少する。また高耐圧化の効果が大きくないと
いう問題がある。
However, in this conventional structure, the wire bonding electrode pad 14 for electrically short-circuiting the n + base region 15 and the p + drain layer 2 must be provided on the surface n + base region 15 and the device current The effective area that serves as a passage is reduced. There is also a problem that the effect of increasing the breakdown voltage is not great.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の問題を
鑑みなされたもので、IGBT素子に新たな電極パッド
を必要とせず、かつオン抵抗の犠牲無しにガードリング
部の耐圧を向上させる構造を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a structure that does not require a new electrode pad in an IGBT element and improves the breakdown voltage of a guard ring portion without sacrificing on-resistance. Is provided.

【0006】[0006]

【課題を解決するための手段】IGBTは、ドレイン電
極側から第1導電型の第1半導体層、この上にキャリア
注入により導電率変調を起こす第2導電型の第2半導体
層が形成され、この第2半導体層の表面に選択的に第1
導電型の第3半導体層が形成され、この第3半導体層の
表面に選択的に第2導電型の第4半導体層が形成され、
第2半導体層と第4半導体層の間の第3半導体層表面に
ゲート絶縁膜を介してゲート電極が形成され、第3半導
体層表面から第4半導体層表面に渡ってソース電極が形
成されている。
In the IGBT, a first conductivity type first semiconductor layer is formed from a drain electrode side, and a second conductivity type second semiconductor layer that causes conductivity modulation by carrier injection is formed on the first conductivity type first semiconductor layer. The first semiconductor is selectively formed on the surface of the second semiconductor layer.
A conductive type third semiconductor layer is formed, and a second conductive type fourth semiconductor layer is selectively formed on the surface of the third semiconductor layer;
A gate electrode is formed on the surface of the third semiconductor layer between the second semiconductor layer and the fourth semiconductor layer via a gate insulating film, and a source electrode is formed from the surface of the third semiconductor layer to the surface of the fourth semiconductor layer. There is.

【0007】上記目的を実現すべく、本発明のIGBT
は、前記第3及び第4半導体層が複数配置された領域
(以下A領域と呼ぶ)の縁端から第2半導体層の周端に
至る領域(以下B領域)の第2半導体層に対して形成さ
れたガードリング耐圧構造を含む周辺領域においての
み、選択的に該第2半導体層の少数キャリアの寿命を短
縮させる手段を備えることを特徴としている。
In order to achieve the above object, the IGBT of the present invention
With respect to the second semiconductor layer in the region (hereinafter referred to as B region) from the edge of the region where the third and fourth semiconductor layers are arranged (hereinafter referred to as A region) to the peripheral end of the second semiconductor layer. It is characterized in that a means for selectively shortening the life of minority carriers of the second semiconductor layer is provided only in the peripheral region including the formed guard ring breakdown voltage structure.

【0008】より具体的には、B領域の第2半導体層内
に少数キャリアの寿命を短縮する事を目的に、結晶欠陥
を形成するものである。また、別の構成は、B領域の第
2半導体層と第1半導体層の境界面あるいはその近傍に
第2半導体層よりも高濃度の不純物を含む第2導電型の
第6半導体層を設けるようにしているものである。
More specifically, crystal defects are formed in the second semiconductor layer in the B region for the purpose of shortening the life of minority carriers. Another configuration is to provide a sixth semiconductor layer of the second conductivity type containing an impurity at a concentration higher than that of the second semiconductor layer at or near the boundary surface between the second semiconductor layer and the first semiconductor layer in the B region. Is what you are doing.

【0009】さらに本発明の別の構成は、B領域の第2
半導体層中に結晶欠陥を形成するとともに、第2半導体
層と第1半導体層の境界面あるいはその近傍に第2導電
型の第6半導体層を設けるようにしているものである。
Still another structure of the present invention is the second B area.
A crystal defect is formed in the semiconductor layer, and a sixth semiconductor layer of the second conductivity type is provided at or near the boundary surface between the second semiconductor layer and the first semiconductor layer.

【0010】[0010]

【作用および効果】上記構成により達成される作用およ
び効果について以下に説明する。ドレイン電極とソース
電極の間に電圧が印加され、第3半導体層と第2半導体
層とからなるpn接合が逆バイアス状態になり、高抵抗
の第2半導体層に空乏層が広がる状況を考える。ここで
A領域においては隣合う第3半導体層およびその間に位
置する第2半導体層領域では、隣合う第3半導体層から
その間に位置する第2半導体層に空乏層が伸び互いに重
なる事により電界の緩和が達成される。そして第3半導
体層の底部のpn接合部で最大の電界値EA をとる。一
方、第3半導体層の繰り返し配置が終わるA領域の縁端
では上記電界緩和効果がなくなり、縁端の第3半導体層
のコーナー部ないし第3半導体層近傍の第2半導体層表
面で最大電界値EB をとる。ここで一般にEA <EB
なるため、A領域よりB領域で雪崩降状が先に発生し、
素子の耐圧はB領域の耐圧で決定される。そこで素子の
耐圧を高くするため、B領域の最大電界EB を小さくす
べく、繰り返し配置された第3半導体層の縁端から第2
半導体層の周端に至るB領域において耐圧構造が設けら
れる。一般的に素子耐圧の向上にはガードリング構造が
使われるが、ここでIGBTのガードリング耐圧は、A
領域縁端部のソース電極−第3半導体層−第2半導体層
−第1半導体層−ドレイン電極によって内在されるバイ
ポーラトランジスタの耐圧BVCEO となる。このため第
3半導体層−第2半導体層からなるpn接合の耐圧BV
CBO よりも低い耐圧になる。この現象は次式により説明
される。
[Operation and Effect] The operation and effect achieved by the above configuration will be described below. Consider a situation in which a voltage is applied between the drain electrode and the source electrode, the pn junction composed of the third semiconductor layer and the second semiconductor layer is in a reverse bias state, and the depletion layer spreads in the high-resistance second semiconductor layer. Here, in the A region, in the adjacent third semiconductor layers and the second semiconductor layer regions located between them, depletion layers extend from the adjacent third semiconductor layers to the second semiconductor layers located between them and overlap each other, so Mitigation is achieved. Then, the maximum electric field value E A is taken at the pn junction at the bottom of the third semiconductor layer. On the other hand, at the edge of the A region where the repeated arrangement of the third semiconductor layer ends, the above-mentioned electric field relaxation effect disappears, and the maximum electric field value at the corner of the third semiconductor layer at the edge or the surface of the second semiconductor layer near the third semiconductor layer. Take E B. Since E A <E B in general, the avalanche pattern occurs in the B region before in the A region,
The breakdown voltage of the device is determined by the breakdown voltage of the B region. Therefore, in order to increase the breakdown voltage of the device, in order to reduce the maximum electric field E B of the B region, the second electric field from the edge of the repeatedly arranged third semiconductor layer is increased.
The breakdown voltage structure is provided in the B region reaching the peripheral edge of the semiconductor layer. Generally, a guard ring structure is used to improve the breakdown voltage of the element. Here, the IGBT guard ring breakdown voltage is A
The withstand voltage BV CEO of the bipolar transistor is formed by the source electrode-third semiconductor layer-second semiconductor layer-first semiconductor layer-drain electrode at the edge of the region. Therefore, the breakdown voltage BV of the pn junction composed of the third semiconductor layer and the second semiconductor layer
It has a lower breakdown voltage than CBO . This phenomenon is explained by the following equation.

【0011】[0011]

【数1】BVCEO =BVCBO /(1+β)1/n [ Formula 1] BV CEO = BV CBO / (1 + β) 1 / n

【0012】[0012]

【数2】β=γ・αT /(1−γ・αT ) なお、数1,数2は、“半導体デバイスの基礎”、(マ
グロウヒル社発行、垂井康夫 監訳)、P259および
P244より抜粋したものである。
[Formula 2] β = γ · α T / (1−γ · α T ) Formula 1 and Formula 2 are excerpts from “Basics of Semiconductor Devices” (published by McGraw-Hill Company, translated by Yasuo Tarui), P259 and P244. It was done.

【0013】数1より、ブレークダウン時の内在バイポ
ーラトランジスタの動作により、バイポーラトランジス
タの電流増幅率βの影響でガードリングの雪崩降状によ
るブレークダウン電圧BVCEO は、pn接合の雪崩降状
によるブレークダウン電圧BVCBO よりさらに低下する
現象が起こる。ここでB領域の内在バイポーラトランジ
スタのβ値を小さくする事によりBVCEO をBVCBO
近づけガードリング耐圧を向上する事ができる。
From equation 1, the breakdown voltage BV CEO due to the avalanche of the guard ring is affected by the current amplification factor β of the bipolar transistor due to the operation of the internal bipolar transistor at the time of breakdown, and the breakdown voltage BV CEO is due to the avalanche of the pn junction. There occurs a phenomenon that the voltage is lower than the down voltage BV CBO . Here, by reducing the β value of the intrinsic bipolar transistor in the B region, BV CEO can be brought closer to BV CBO and the guard ring breakdown voltage can be improved.

【0014】本発明では、A領域縁端からB領域におい
て、第2半導体層内部に少数キャリアの寿命を短縮する
結晶欠陥を形成する。これによりガードリング領域の内
在バイポーラトランジスタの少数キャリアの到達率αT
(輸送効率とも言う)が小さくなり、それにより数2で
示される様に、β値は小さくなり、その結果BVCEO
値が増加する。
In the present invention, a crystal defect that shortens the life of minority carriers is formed inside the second semiconductor layer from the edge of the A region to the B region. As a result, the arrival rate α T of the minority carriers of the bipolar transistor in the guard ring region is
(Also referred to as transportation efficiency) becomes smaller, and as a result, the β value becomes smaller, as shown in Equation 2, and as a result, the value of BV CEO increases.

【0015】次に本発明の別の構成による作用と効果を
説明する。B領域の第2半導体層と第1半導体層の境界
面あるいはその近傍に第2半導体層よりも高濃度の不純
物を含む第2導電型の第6半導体層を設ける事により内
在バイポーラトランジスタの第1半導体層からの少数キ
ャリアの注入が抑制される。すなわち内在バイポーラト
ランジスタの注入効率γが減少し数2で示される様に、
電流増幅率βは小さくなりその結果BVCEO が増加す
る。
Next, the operation and effect of another structure of the present invention will be described. By providing a sixth semiconductor layer of the second conductivity type containing a higher concentration of impurities than the second semiconductor layer at or near the boundary surface between the second semiconductor layer and the first semiconductor layer in the B region, Injection of minority carriers from the semiconductor layer is suppressed. That is, the injection efficiency γ of the intrinsic bipolar transistor decreases, and as shown in Equation 2,
The current amplification factor β decreases, and as a result BV CEO increases.

【0016】さらにもう1つの構成である、B領域の第
2半導体層中の結晶欠陥の形成と、第2半導体層と第1
半導体層の境界面あるいはその近傍の第6半導体層の形
成を複合して行えば、B領域の内在バイポーラトランジ
スタの到達率αT と注入効率γの両者を減少させる事に
より電流増幅率βは相剰的に小さくなり、より一層BV
CEO の増加が達成される。
In yet another configuration, the formation of crystal defects in the second semiconductor layer in the B region, the second semiconductor layer and the first semiconductor layer
If the formation of the sixth semiconductor layer at or near the boundary surface of the semiconductor layers is carried out in combination, the current amplification factor β is reduced by decreasing both the arrival rate α T and the injection efficiency γ of the internal bipolar transistor in the B region. It becomes smaller, and BV becomes even more
An increase in CEO is achieved.

【0017】以上述べた構成においては、素子表面に新
たな電極パッドを形成しセル領域であるA領域の面積を
減少させる必要は無く、さらにB領域の内在バイポーラ
トランジスタの電流増幅率βを減少させるのみで、A領
域の内在バイポーラトランジスタの電流増幅率の減少は
一切ないため、オン状態での抵抗の増加は無い。従って
素子のオン抵抗の増加なしにガードリング耐圧を向上す
ることができる。
In the structure described above, it is not necessary to form a new electrode pad on the device surface to reduce the area of the A region which is the cell region, and further reduce the current amplification factor β of the internal bipolar transistor in the B region. However, since there is no decrease in the current amplification factor of the intrinsic bipolar transistor in the region A, there is no increase in the resistance in the ON state. Therefore, the breakdown voltage of the guard ring can be improved without increasing the on-resistance of the element.

【0018】[0018]

【実施例】以下、本発明を図に示す実施例に基づいて説
明する。実施例では、第1導電型としてp型、第2導電
型としてn型を用いたnチャネルIGBTの場合を説明
する。
The present invention will be described below based on the embodiments shown in the drawings. In the example, an n-channel IGBT using p-type as the first conductivity type and n-type as the second conductivity type will be described.

【0019】図1は、本発明の第1実施例を適用したI
GBT素子の単位セル部(A領域)及びガードリング部
(B領域)の断面図である。これを製造工程に従って説
明する。
FIG. 1 is a block diagram of an I to which the first embodiment of the present invention is applied.
It is sectional drawing of a unit cell part (A area | region) and a guard ring part (B area | region) of a GBT element. This will be described according to the manufacturing process.

【0020】まず、半導体基板であるp+ ドレイン層2
(第1半導体層)を用意し、この上に気相成長法あるい
はウェハ直接接合法等により高抵抗のn- ドレイン層3
(第2半導体層)を所定の不純物濃度ND と厚さte
形成する。次に3〜6μmの深さにpウェル層4a(第
3半導体層の一部をなす)、p層10及びp層4′を選
択拡散法により同時に形成する。ここでp層10は高耐
圧化の目的で形成したガードリングであり、p層4′は
ソース電極へ余剰キャリアを抜きとる抜きとり層であ
る。更にp層4aと重なるようにpチャネル層4b、お
よびこのpウェル層4a,pチャネル層4bからなるp
層(第3半導体層)内にn+ ソース層5(第4半導体
層)を形成する。なお、以上の製造工程において、n-
ドレイン層3の表面を酸化して形成されたゲート酸化膜
6の上に形成されたゲート電極7をマスクとして、いわ
ゆるDSA技術(Diffusion Self Al
ignment)によりpチャネル層14bとn+ ソー
ス層5が自己整合的に形成され、これによりチャネルが
形成される。
First, the p + drain layer 2 which is a semiconductor substrate
(First semiconductor layer) is prepared, and a high resistance n - drain layer 3 is formed on the first semiconductor layer by vapor deposition or wafer direct bonding.
The (second semiconductor layer) is formed with a predetermined impurity concentration N D and a thickness t e . Then, the p-well layer 4a (which forms a part of the third semiconductor layer), the p-layer 10 and the p-layer 4'are simultaneously formed to a depth of 3 to 6 m by the selective diffusion method. Here, the p-layer 10 is a guard ring formed for the purpose of increasing the breakdown voltage, and the p-layer 4'is an extraction layer for extracting excess carriers to the source electrode. Further, a p-channel layer 4b is formed so as to overlap the p-layer 4a, and a p-channel layer 4b is formed of the p-well layer 4a and the p-channel layer 4b.
An n + source layer 5 (fourth semiconductor layer) is formed in the layer (third semiconductor layer). In the above manufacturing process, n
Using the gate electrode 7 formed on the gate oxide film 6 formed by oxidizing the surface of the drain layer 3 as a mask, the so-called DSA technique (Diffusion Self Al) is used.
The p channel layer 14b and the n + source layer 5 are formed in a self-aligned manner by the ion implantation), thereby forming a channel.

【0021】その後、層間絶縁膜8を形成して、続いて
p層4及びn+ 層5にオーミック接触を形成するため
に、ゲート酸化膜6と層間絶縁膜8にコンタクト孔を開
口し、アルミニウムを数μm蒸着し、選択エッチングす
ることにより、ソース電極9及びゲート電極パッド(図
示せず)を形成する。そして、p+ ドレイン層2の裏面
に金属膜を蒸着して、ドレイン電極1を形成する。
Then, an interlayer insulating film 8 is formed, and subsequently, in order to form ohmic contact with the p layer 4 and the n + layer 5, a contact hole is opened in the gate oxide film 6 and the interlayer insulating film 8, and aluminum is formed. Is vapor-deposited by several μm and selectively etched to form the source electrode 9 and the gate electrode pad (not shown). Then, a metal film is deposited on the back surface of the p + drain layer 2 to form the drain electrode 1.

【0022】さらに金属マスク(たとえばステンレスマ
スク)を用いガードリング領域(B領域)に選択的に、
イオン打ち込み法によりたとえばヘリウムイオンを打ち
込み、領域(斜線にて図示)13の少なくとも1部に結
晶欠陥を形成する。さらに素子の電気特性安定化のため
の熱処理を行う。
Further, using a metal mask (for example, a stainless mask), selectively in the guard ring region (B region),
For example, helium ions are implanted by the ion implantation method to form crystal defects in at least a part of the region (shown by hatching) 13. Further, heat treatment is performed to stabilize the electric characteristics of the device.

【0023】このように構成されたIGBT素子のガー
ドリング領域において、内在バイポーラトランジスタの
エミッタ領域(基板p+ 層2)から注入される少数キャ
リアのうちベース領域(n- 領域3)を経由してコレク
タ領域(p+ 層10)に到達する量が減少し、それによ
り上述の数2に示すように、電流増幅率βが減少し、そ
の結果ガードリング領域のブレークダウン電圧BVCEO
が向上する。
In the guard ring region of the thus-configured IGBT element, among minority carriers injected from the emitter region (substrate p + layer 2) of the internal bipolar transistor, via the base region (n region 3). The amount reaching the collector region (p + layer 10) is reduced, and as a result, the current amplification factor β is reduced, as a result of the above equation 2, and as a result, the breakdown voltage BV CEO of the guard ring region is reduced.
Is improved.

【0024】尚、結晶欠陥の形成は上述のHe+ の他、
Arイオン、H+ イオンの打ち込み、電子線あるいは中
性子線の照射によっても可能である。図2に第2実施例
の構造を示す。図1と異なる点は、ガードリング領域
(B領域)の基板pn接合12の近傍に選択的にn+
11を形成した事である。n+層11は、半導体基板で
あるp+ 層2の表面に不純物を選択拡散するか、あるい
はp+ 層の表面にn- 層をある厚さ形成した後その表面
に不純物を選択拡散し、その後図1で示した製造工程を
施すことにより、基板pn接合12の近傍に形成するこ
とができる。
The formation of crystal defects is not limited to He + described above,
It is also possible by implanting Ar ions or H + ions, or irradiating with an electron beam or a neutron beam. FIG. 2 shows the structure of the second embodiment. The difference from FIG. 1 is that the n + layer 11 is selectively formed in the vicinity of the substrate pn junction 12 in the guard ring region (B region). The n + layer 11 selectively diffuses impurities on the surface of the p + layer 2, which is a semiconductor substrate, or forms an n layer on the surface of the p + layer to a certain thickness and then selectively diffuses impurities on the surface. After that, by performing the manufacturing process shown in FIG. 1, it can be formed in the vicinity of the substrate pn junction 12.

【0025】このように構成されたIGBT素子のガー
ドリング領域において、内在バイポーラトランジスタの
エミッタ領域(基板p+ 層2)からベース領域(n-
3)への少数キャリア(正孔)の注入が抑制され、上述
のように数2に示す電流増幅率βが減少し、その結果ガ
ードリング領域のブレークダウン電圧BVCEO が増加す
る。
In the guard ring region of the thus-configured IGBT element, minority carriers (holes) are injected from the emitter region (substrate p + layer 2) of the internal bipolar transistor to the base region (n layer 3). This is suppressed, and the current amplification factor β shown in Formula 2 decreases as described above, and as a result, the breakdown voltage BV CEO in the guard ring region increases.

【0026】また、図3に示す第3実施例のように上記
第1,第2実施例を複合するようにしてもよい。本実施
例によれば、ガードリング領域(B領域)における内在
バイポーラトランジスタのエミッタ領域(基板p+
2)から注入される少数キャリアのうちベース領域(n
- 領域3)を経由してコレクタ領域(p+ 層10)に到
達する量が減少するのに加えて、エミッタ領域(基板p
+ 層2)からベース領域(n- 層3)への少数キャリア
(正孔)の注入が抑制され、その結果上述の数2に示す
電流増幅率βが激減し、ガードリング領域のブレークダ
ウン電圧BVCEOをさらに増加させることができる。
Further, the first and second embodiments may be combined as in the third embodiment shown in FIG. According to this embodiment, the base region (n) of the minority carriers injected from the emitter region (substrate p + layer 2) of the intrinsic bipolar transistor in the guard ring region (B region).
- region 3) was added to reduce the amount reaching the collector region (p + layer 10) via the emitter region (substrate p
Injection of minority carriers (holes) from the + layer 2) to the base region (n layer 3) is suppressed, and as a result, the current amplification factor β shown in Formula 2 above is drastically reduced, and the breakdown voltage of the guard ring region is reduced. BV CEO can be increased further.

【0027】なお、上記種々の実施例では、第1導電型
としてp型、第2導電型としてn型を用いた例を説明し
たが、これらの導電型を逆にしたpチャネル型のIGB
Tにおいても本発明は有効である。
In the above-described various embodiments, the p-type is used as the first conductivity type and the n-type is used as the second conductivity type. However, a p-channel type IGBT in which these conductivity types are reversed is used.
The present invention is effective for T.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1実施例のIGBTのセル領域と外周
部ガードリング領域の断面構造図である。
FIG. 1 is a sectional structural view of a cell region and an outer peripheral guard ring region of an IGBT according to a first embodiment of the present invention.

【図2】本発明第2実施例のIGBTのセル領域と外周
部ガードリング領域の断面構造図である。
FIG. 2 is a sectional structural view of a cell region and an outer peripheral guard ring region of an IGBT according to a second embodiment of the present invention.

【図3】本発明第3実施例のIGBTのセル領域と外周
部ガードリング領域の断面構造図である。
FIG. 3 is a sectional structural view of a cell region and an outer peripheral guard ring region of an IGBT according to a third embodiment of the present invention.

【図4】従来のIGBT素子のセル領域と外周部ガード
リング領域の断面構造図である。
FIG. 4 is a sectional structural view of a cell region and a peripheral guard ring region of a conventional IGBT element.

【符号の説明】[Explanation of symbols]

1 ドレイン電極 2 P+ 層(第1半導体層) 3 n- 層(第2半導体層) 4 p層(第3半導体層) 5 n+ 層(第4半導体層) 6 ゲート絶縁膜 7 ゲート電極 9 ソース電極 10 p層(第5半導体層) 11 n+ 層(第6半導体層) 12 基板pn接合部 13 ライフタイムキラー形成領域1 the drain electrode 2 P + layer (first semiconductor layer) 3 n - layer (second semiconductor layer) 4 p layer (third semiconductor layer) 5 n + layer (fourth semiconductor layer) 6 gate insulating film 7 a gate electrode 9 Source electrode 10 p layer (fifth semiconductor layer) 11 n + layer (sixth semiconductor layer) 12 substrate pn junction 13 lifetime killer formation region

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/784 9168−4M H01L 29/78 321 J 9168−4M 321 K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location H01L 29/784 9168-4M H01L 29/78 321 J 9168-4M 321 K

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の第1ドレイン層と、 この第1ドレイン層の上面に接する第2導電型の第2ド
レイン層と、 この第2ドレイン層の一領域に形成され、該第2ドレイ
ン層表面に形成された第1導電型半導体層および、この
第1導電型半導体層内に形成された第2導電型半導体層
を各々チャネル層,ソース層とする絶縁ゲート構造と、 前記第2ドレイン層の一領域を囲む周辺領域において形
成された第1導電型のガードリング構造と、 前記周辺領域においてのみ選択的に設定され、該周辺領
域の第1,第2ドレイン層およびガードリング構造から
なるバイポーラトランジスタの電流増幅率を小さくする
手段とを備えることを特徴とする絶縁ゲート型バイポー
ラトランジスタ。
1. A first drain layer of the first conductivity type, a second drain layer of the second conductivity type in contact with an upper surface of the first drain layer, and a second drain layer formed in a region of the second drain layer. A first conductive type semiconductor layer formed on the surface of the second drain layer, and an insulated gate structure using the second conductive type semiconductor layer formed in the first conductive type semiconductor layer as a channel layer and a source layer, respectively. A first-conductivity-type guard ring structure formed in a peripheral region surrounding one region of the two drain layers, and first and second drain layers and a guard ring structure in the peripheral region selectively set only in the peripheral region And a means for reducing the current amplification factor of the bipolar transistor including the insulated gate bipolar transistor.
【請求項2】 第1導電型の第1半導体層と、 この第1半導体層に接する第2導電型の第2半導体層
と、 この第2半導体層内に形成されるとともに、前記第2半
導体層表面に接合部が終端するように部分的に形成され
た第1導電型の第3半導体層と、 この第3半導体層内に形成されるとともに、前記第3半
導体層表面に接合部が終端するように部分的に形成され
た第2導電型の第4半導体層と、 前記第2半導体層と第4半導体層間の前記第3半導体層
をチャネル領域として、少なくともこのチャネル領域上
にゲート絶縁膜を介して形成されたゲート電極と、 前記第3半導体層と前記第4半導体層の両方に接触部を
有するソース電極と、 前記第3及び第4半導体層が複数配置された領域の外側
の第2半導体層において、該第2半導体層に形成された
第1導電型の第5半導体層からなるガードリング構造を
含む周辺領域と、 前記第1半導体層を介してドレイン電流を供給するドレ
イン電極とを備えてなる絶縁ゲート型バイポーラトラン
ジスタにおいて、 繰り返し配置された前記第3及び第4半導体層の縁端部
から前記第2半導体層の周端部に至る第2半導体層内部
あるいはその近傍に選択的に形成され、第2半導体層へ
の少数キャリアの注入量を制限するか、第2半導体層内
の少数キャリアの寿命を短縮する手段を備えることを特
徴とする絶縁ゲート型バイポーラトランジスタ。
2. A first-conductivity-type first semiconductor layer, a second-conductivity-type second semiconductor layer in contact with the first-semiconductor layer, and a second semiconductor layer formed in the second-semiconductor layer. A third semiconductor layer of the first conductivity type which is partially formed on the surface of the layer so as to terminate the junction, and a junction which is formed in the third semiconductor layer and terminates at the surface of the third semiconductor layer. The fourth conductive type fourth semiconductor layer partially formed as described above, and the third semiconductor layer between the second semiconductor layer and the fourth semiconductor layer as a channel region, and at least a gate insulating film on the channel region. A gate electrode formed through the source electrode, a source electrode having a contact portion on both the third semiconductor layer and the fourth semiconductor layer, and a source electrode outside a region where a plurality of the third and fourth semiconductor layers are arranged. 2 semiconductor layers, formed on the second semiconductor layer An insulated gate bipolar transistor comprising: a peripheral region including a guard ring structure composed of the first conductive type fifth semiconductor layer; and a drain electrode for supplying a drain current through the first semiconductor layer. Minority carriers to the second semiconductor layer, which are selectively formed inside the second semiconductor layer or in the vicinity thereof from the edge portions of the arranged third and fourth semiconductor layers to the peripheral edge portion of the second semiconductor layer. An insulated gate bipolar transistor comprising means for limiting the implantation amount of or for shortening the life of minority carriers in the second semiconductor layer.
【請求項3】 上記第2半導体層への少数キャリアの注
入量を制限する手段は、イオン打ち込みにより形成され
た欠陥であることを特徴とする請求項2に記載の絶縁ゲ
ート型バイポーラトランジスタ。
3. The insulated gate bipolar transistor according to claim 2, wherein the means for limiting the amount of the minority carriers injected into the second semiconductor layer is a defect formed by ion implantation.
【請求項4】 上記第2半導体層への少数キャリアの注
入量を制限する手段は、前記第3及び第4半導体層の縁
端部から前記第2半導体層の周端部に至り、第2半導体
層と第1半導体層の接合面あるいはその近傍に形成され
た、前記第2半導体層よりも高い不純物濃度の第2導電
型の第6半導体層であることを特徴とする請求項2に記
載の絶縁ゲート型バイポーラトランジスタ。
4. The means for limiting the injection amount of minority carriers into the second semiconductor layer extends from an edge portion of the third and fourth semiconductor layers to a peripheral edge portion of the second semiconductor layer, The sixth semiconductor layer of the second conductivity type having a higher impurity concentration than that of the second semiconductor layer, the sixth semiconductor layer being formed at or near the junction surface between the semiconductor layer and the first semiconductor layer. Insulated gate bipolar transistor.
【請求項5】 上記第2半導体層への少数キャリアの注
入量を制限する手段は、前記第3及び第4半導体層の縁
端部から前記第2半導体層の周端部に至り、第2半導体
層と第1半導体層の接合面あるいはその近傍に形成され
た、前記第2半導体層よりも高い不純物濃度の第2導電
型の第6半導体層であることを特徴とする請求項3に記
載の絶縁ゲート型バイポーラトランジスタ。
5. The means for limiting the injection amount of minority carriers into the second semiconductor layer extends from an edge portion of the third and fourth semiconductor layers to a peripheral edge portion of the second semiconductor layer, 4. The sixth conductivity type sixth semiconductor layer having an impurity concentration higher than that of the second semiconductor layer, which is formed at or near the junction surface between the semiconductor layer and the first semiconductor layer. Insulated gate bipolar transistor.
JP4175430A 1992-07-02 1992-07-02 Insulated gate bipolar transistor Expired - Lifetime JP2950025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4175430A JP2950025B2 (en) 1992-07-02 1992-07-02 Insulated gate bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4175430A JP2950025B2 (en) 1992-07-02 1992-07-02 Insulated gate bipolar transistor

Publications (2)

Publication Number Publication Date
JPH0621358A true JPH0621358A (en) 1994-01-28
JP2950025B2 JP2950025B2 (en) 1999-09-20

Family

ID=15995971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4175430A Expired - Lifetime JP2950025B2 (en) 1992-07-02 1992-07-02 Insulated gate bipolar transistor

Country Status (1)

Country Link
JP (1) JP2950025B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033326A (en) * 2000-07-13 2002-01-31 Nippon Inter Electronics Corp Semiconductor device and method for manufacturing the same
WO2004066394A1 (en) * 2003-01-20 2004-08-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
JP2005197472A (en) * 2004-01-07 2005-07-21 Toyota Motor Corp Bipolar semiconductor device
JP2007134714A (en) * 2005-11-09 2007-05-31 Infineon Technologies Ag Power igbt with high intensity
JP2010087510A (en) * 2008-09-30 2010-04-15 Infineon Technologies Austria Ag Robust semiconductor device
JP2011077202A (en) * 2009-09-29 2011-04-14 Fuji Electric Holdings Co Ltd Semiconductor device
JP2011129622A (en) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp High breakdown voltage semiconductor device
JP2012079928A (en) * 2010-10-01 2012-04-19 Mitsubishi Electric Corp Semiconductor device
DE102012201950A1 (en) 2011-04-26 2012-10-31 Mitsubishi Electric Corp. Semiconductor device
US8963198B2 (en) 2011-12-16 2015-02-24 Mitsubishi Electric Corporation Semiconductor device
WO2019102759A1 (en) 2017-11-22 2019-05-31 信越半導体株式会社 Method of selecting silicon single crystalline substrate and silicon single crystalline substrate
WO2019208013A1 (en) 2018-04-25 2019-10-31 信越半導体株式会社 Method of sorting silicon single crystal substrate and silicon single crystal substrate
US11527660B2 (en) 2020-02-28 2022-12-13 Fuji Electric Co., Ltd. Semiconductor device with a lifetime killer region in the substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889072B2 (en) * 2003-12-19 2012-02-29 オンセミコンダクター・トレーディング・リミテッド Semiconductor device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033326A (en) * 2000-07-13 2002-01-31 Nippon Inter Electronics Corp Semiconductor device and method for manufacturing the same
WO2004066394A1 (en) * 2003-01-20 2004-08-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US7635892B2 (en) 2003-01-20 2009-12-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
JP2005197472A (en) * 2004-01-07 2005-07-21 Toyota Motor Corp Bipolar semiconductor device
JP2007134714A (en) * 2005-11-09 2007-05-31 Infineon Technologies Ag Power igbt with high intensity
US8828810B2 (en) 2008-09-30 2014-09-09 Infineon Technologies Austria Ag Method of producing a semiconductor including two differently doped semiconductor zones
JP2010087510A (en) * 2008-09-30 2010-04-15 Infineon Technologies Austria Ag Robust semiconductor device
JP2011077202A (en) * 2009-09-29 2011-04-14 Fuji Electric Holdings Co Ltd Semiconductor device
JP2011129622A (en) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp High breakdown voltage semiconductor device
US8253163B2 (en) 2009-12-16 2012-08-28 Mitsubishi Electric Corporation High voltage semiconductor device including a free wheel diode
JP2012079928A (en) * 2010-10-01 2012-04-19 Mitsubishi Electric Corp Semiconductor device
DE102012201950A1 (en) 2011-04-26 2012-10-31 Mitsubishi Electric Corp. Semiconductor device
US8598622B2 (en) 2011-04-26 2013-12-03 Mitsubishi Electric Corporation Semiconductor device
JP2012231011A (en) * 2011-04-26 2012-11-22 Mitsubishi Electric Corp Semiconductor device
TWI464830B (en) * 2011-04-26 2014-12-11 Mitsubishi Electric Corp Semiconductor device
DE102012201950B4 (en) 2011-04-26 2019-01-03 Mitsubishi Electric Corp. Semiconductor device
US8963198B2 (en) 2011-12-16 2015-02-24 Mitsubishi Electric Corporation Semiconductor device
WO2019102759A1 (en) 2017-11-22 2019-05-31 信越半導体株式会社 Method of selecting silicon single crystalline substrate and silicon single crystalline substrate
WO2019208013A1 (en) 2018-04-25 2019-10-31 信越半導体株式会社 Method of sorting silicon single crystal substrate and silicon single crystal substrate
US11527660B2 (en) 2020-02-28 2022-12-13 Fuji Electric Co., Ltd. Semiconductor device with a lifetime killer region in the substrate

Also Published As

Publication number Publication date
JP2950025B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
JP3417013B2 (en) Insulated gate bipolar transistor
US20150035006A1 (en) Manufacturing method of semiconductor device
JP4746927B2 (en) Manufacturing method of semiconductor device
JP2001339063A (en) Semiconductor device and its manufacturing method
JP5321377B2 (en) Power semiconductor device
JPH07249765A (en) Insulated gate type field effect transistor
US20190386129A1 (en) Power device having super junction and schottky diode
JPH0457111B2 (en)
US10516017B2 (en) Semiconductor device, and manufacturing method for same
JP2950025B2 (en) Insulated gate bipolar transistor
JP2020077674A (en) Semiconductor device and manufacturing method
KR100397882B1 (en) Field effect controllable semiconductor component
US20160155831A1 (en) Mos-bipolar device
JP2006332199A (en) SiC SEMICONDUCTOR DEVICE
KR0134887B1 (en) Dipole transistor manufacturing method
KR0163875B1 (en) A semiconductor device and method for fabricating thereof
JP2002261281A (en) Manufacturing method of insulated gate bipolar transistor
JP2004247593A (en) Semiconductor device, and manufacturing method thereof
CN111129135B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP3357804B2 (en) Semiconductor device and manufacturing method thereof
JP3935343B2 (en) Insulated gate bipolar transistor and manufacturing method thereof
JP4177229B2 (en) Semiconductor device and manufacturing method thereof
JP4097416B2 (en) Insulated gate bipolar transistor and manufacturing method thereof
JP4830184B2 (en) Manufacturing method of semiconductor device
JP2008053610A (en) Insulated-gate bipolar transistor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 13

EXPY Cancellation because of completion of term