JP2003332577A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method

Info

Publication number
JP2003332577A
JP2003332577A JP2002141500A JP2002141500A JP2003332577A JP 2003332577 A JP2003332577 A JP 2003332577A JP 2002141500 A JP2002141500 A JP 2002141500A JP 2002141500 A JP2002141500 A JP 2002141500A JP 2003332577 A JP2003332577 A JP 2003332577A
Authority
JP
Japan
Prior art keywords
layer
emitter
type
semiconductor device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002141500A
Other languages
Japanese (ja)
Inventor
Yuichiro Motomi
雄一郎 本美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2002141500A priority Critical patent/JP2003332577A/en
Publication of JP2003332577A publication Critical patent/JP2003332577A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device that can be improved in short- circuit resistance while contact resistance against an emitter electrode is maintained at a low level and the fall of avalanche resistance is prevented, and to provide a method of manufacturing the device. <P>SOLUTION: In this semiconductor device, an n-type electrical conductivity modulating layer 2 is formed on a p-type collector layer 1 and a p-type channel layer 3 is formed in a well-like state on the surface of the modulating layer 2. In addition, two emitter layers 9 are formed in parallel with each other in well-like states and stripe-like states on the surface of the channel layer 3 and, at the same time, a p+-type diffusion layer 5 is formed between the emitter layers 9. Each emitter layer 9 is has n+-type high-resistance regions 10 and n+-type low-resistance regions 11 alternately arranged along the length direction. Moreover, gas electrodes 7 are formed astride the electrical conductivity modulating layer 2 and emitter layers 9, and an emitter electrode 8 is formed astride the p+-type diffusion layer 5 and both the emitter layers 9. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、半導体装置及び
その製造方法に係り、特にチャネル層の表面にエミッタ
層がウェル状で且つストライプ状に形成された大電流タ
イプの半導体装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a large current type semiconductor device in which an emitter layer is formed in a well and stripe shape on the surface of a channel layer and a method for manufacturing the same. .

【0002】[0002]

【従来の技術】従来の絶縁ゲートバイポーラトランジス
タ(IGBT)の構造を図3に示す。裏面にコレクタ電
極が形成されたp型のコレクタ層1の上にn型の伝導度
変調層2が形成され、伝導度変調層2の表面にp型のチ
ャネル層3がウェル状に形成されている。チャネル層3
の表面には、互いに平行にn+型の二つのエミッタ層4
がウェル状に且つストライプ状に形成されると共にこれ
らエミッタ層4の間にp+拡散層5が形成されている。
さらに、伝導度変調層2とエミッタ層4とに跨ってゲー
ト酸化膜6が形成され、その上にゲート電極7が形成さ
れている。また、p+拡散層5と双方のエミッタ層4と
に跨ってエミッタ電極8が形成されている。
2. Description of the Related Art The structure of a conventional insulated gate bipolar transistor (IGBT) is shown in FIG. An n-type conductivity modulation layer 2 is formed on a p-type collector layer 1 having a collector electrode formed on its back surface, and a p-type channel layer 3 is formed in a well shape on the surface of the conductivity modulation layer 2. There is. Channel layer 3
On the surface of the two n + type emitter layers 4 parallel to each other.
Are formed in a well shape and in a stripe shape, and a p + diffusion layer 5 is formed between these emitter layers 4.
Further, a gate oxide film 6 is formed across the conductivity modulation layer 2 and the emitter layer 4, and a gate electrode 7 is formed thereon. Further, an emitter electrode 8 is formed across the p + diffusion layer 5 and both emitter layers 4.

【0003】ゲート電極7とエミッタ電極8との間に正
バイアス電圧を印可すると、ゲート電極7の直下に位置
するチャネル層3の表面にnチャネルが形成され、図4
に示されるように、電子電流がコレクタ電極からコレク
タ層1及び伝導度変調層2を通り、さらにチャネル層3
のnチャネルからエミッタ層4を通ってエミッタ電極8
へと流れる。また、ホール電流がコレクタ層1、伝導度
変調層2及びエミッタ電極8を経て流れる。
When a positive bias voltage is applied between the gate electrode 7 and the emitter electrode 8, an n channel is formed on the surface of the channel layer 3 located immediately below the gate electrode 7, and FIG.
, An electron current passes from the collector electrode through the collector layer 1 and the conductivity modulation layer 2, and further to the channel layer 3
From the n channel of the emitter electrode 4 through the emitter layer 4
Flows to. Further, a hole current flows through the collector layer 1, the conductivity modulation layer 2 and the emitter electrode 8.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、エミッ
タ層4がエミッタ電極8とのコンタクト抵抗を下げるた
めに比抵抗の小さいn+型に形成されているため、負荷
短絡時には、エミッタ層4の電圧降下が小さく、大きな
電子電流が流れる。また、それに誘起されるホール電流
も増加し、その結果、飽和電流値が高く、短絡耐量が低
下するという問題点があった。ここで、エミッタ層4の
比抵抗を上げれば、大電流時のエミッタ層4の電圧降下
が大きくなり、飽和電流値を下げて短絡耐量を向上させ
ることができるが、今度はエミッタ電極8とのコンタク
ト抵抗が増大するという問題を生じてしまう。
However, since the emitter layer 4 is formed in the n + type having a small specific resistance in order to reduce the contact resistance with the emitter electrode 8, the voltage drop of the emitter layer 4 occurs when the load is short-circuited. A small and large electron current flows. In addition, there is a problem that the hole current induced by it also increases, resulting in a high saturation current value and a reduction in short circuit withstand capability. Here, if the specific resistance of the emitter layer 4 is increased, the voltage drop of the emitter layer 4 at the time of a large current becomes large, and the saturation current value can be decreased to improve the short circuit withstand capability. This causes a problem that contact resistance increases.

【0005】また、エミッタ電極をエミッタ層に直接接
触させずに、ストライプ状のエミッタ層からその幅方向
に櫛歯状の複数の分岐部を延出させてこの分岐部の上に
エミッタ電極を形成することにより、分岐部に寄生する
拡散抵抗に起因して電圧降下を大きくする提案がなされ
ている。しかし、分岐部の距離を確保して抵抗値を大き
くするために、ゲート電極とエミッタ電極との間隔が広
がり、その結果、寄生トランジスタのベース抵抗が増大
してアバランシェ耐量が低下するという問題を誘引して
しまう。
Further, without directly contacting the emitter electrode with the emitter layer, a plurality of comb-shaped branch portions are extended from the stripe-shaped emitter layer in the width direction and the emitter electrode is formed on the branch portions. By doing so, it has been proposed to increase the voltage drop due to the diffusion resistance parasitic on the branch portion. However, in order to secure the distance of the branch portion and increase the resistance value, the distance between the gate electrode and the emitter electrode is widened, and as a result, the base resistance of the parasitic transistor is increased and the avalanche withstand capability is reduced. Resulting in.

【0006】この発明はこのような問題点を解消するた
めになされたもので、エミッタ電極とのコンタクト抵抗
を低く保ち且つアバランシェ耐量の低下を防止しつつも
短絡耐量を向上させることができる半導体装置及びその
製造方法を提供することを目的とする。
The present invention has been made in order to solve such a problem, and a semiconductor device capable of maintaining a low contact resistance with an emitter electrode and preventing a decrease in avalanche withstand capability while improving a short circuit withstand capability. And its manufacturing method.

【0007】[0007]

【課題を解決するための手段】この発明に係る半導体装
置は、第1の導電型のコレクタ層の上に形成された第2
の導電型の伝導度変調層の表面に第1の導電型のチャネ
ル層がウェル状に形成されると共にチャネル層の表面に
第2の導電型のエミッタ層がウェル状で且つストライプ
状に形成され、伝導度変調層とエミッタ層とに跨ってゲ
ート電極が形成され且つチャネル層とエミッタ層とに跨
ってエミッタ電極が形成された半導体装置において、エ
ミッタ層をその長手方向に沿って交互に配列された高抵
抗領域と低抵抗領域とから形成したものである。
According to another aspect of the present invention, there is provided a semiconductor device having a second conductive layer formed on a first conductive type collector layer.
The first conductivity type channel layer is formed in a well shape on the surface of the second conductivity type conductivity modulation layer, and the second conductivity type emitter layer is formed in a well shape and in a stripe shape on the surface of the channel layer. In a semiconductor device in which a gate electrode is formed across a conductivity modulation layer and an emitter layer and an emitter electrode is formed across a channel layer and an emitter layer, the emitter layers are alternately arranged along the longitudinal direction. And a high resistance region and a low resistance region.

【0008】この発明に係る半導体装置の製造方法は、
第1の導電型のチャネル層の表面に第2の導電型のエミ
ッタ層がウェル状で且つストライプ状に形成された半導
体装置の製造方法において、チャネル層の表面上に酸化
膜を形成し、酸化膜を厚膜領域と薄膜領域とが交互に配
列されるようにエッチングし、酸化膜の上から第2の導
電型の不純物を注入拡散させることにより高抵抗領域と
低抵抗領域とが交互に配列されたエミッタ層を形成し、
酸化膜を除去する方法である。
A method of manufacturing a semiconductor device according to the present invention is
In a method of manufacturing a semiconductor device in which a second conductive type emitter layer is formed in a well-like and stripe-like shape on a surface of a first conductive type channel layer, an oxide film is formed on the surface of the channel layer and oxidation is performed. The film is etched so that the thick film region and the thin film region are alternately arranged, and the high resistance region and the low resistance region are alternately arranged by implanting and diffusing the second conductivity type impurity from above the oxide film. Formed emitter layer,
This is a method of removing the oxide film.

【0009】[0009]

【発明の実施の形態】以下、この発明の実施の形態を添
付図面に基づいて説明する。図1に絶縁ゲートバイポー
ラトランジスタ(IGBT)に適用されたこの発明の実
施の形態に係る半導体装置の構成を示す。裏面にコレク
タ電極が形成されたp型のコレクタ層1の上にn型の伝
導度変調層2が形成され、伝導度変調層2の表面にp型
のチャネル層3がウェル状に形成されている。チャネル
層3の表面には、互いに平行に二つのエミッタ層9がウ
ェル状に且つストライプ状に形成されると共にこれらエ
ミッタ層9の間にp+拡散層5が形成されている。各エ
ミッタ層9は、その長手方向に沿ってn−型の高抵抗領
域10とn+型の低抵抗領域11とが交互に配列された
構造を有している。さらに、伝導度変調層2とエミッタ
層9とに跨ってゲート酸化膜6が形成され、その上にゲ
ート電極7が形成されている。また、p+拡散層5と双
方のエミッタ層9とに跨ってエミッタ電極8が形成され
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows the configuration of a semiconductor device according to an embodiment of the present invention applied to an insulated gate bipolar transistor (IGBT). An n-type conductivity modulation layer 2 is formed on a p-type collector layer 1 having a collector electrode formed on its back surface, and a p-type channel layer 3 is formed in a well shape on the surface of the conductivity modulation layer 2. There is. On the surface of the channel layer 3, two emitter layers 9 are formed in parallel with each other in a well shape and in a stripe shape, and a p + diffusion layer 5 is formed between these emitter layers 9. Each emitter layer 9 has a structure in which n − type high resistance regions 10 and n + type low resistance regions 11 are alternately arranged along the longitudinal direction. Further, a gate oxide film 6 is formed across the conductivity modulation layer 2 and the emitter layer 9, and a gate electrode 7 is formed thereon. Further, an emitter electrode 8 is formed across the p + diffusion layer 5 and both emitter layers 9.

【0010】次に、このIGBTの動作について説明す
る。ゲート電極7とエミッタ電極8との間に正バイアス
電圧を印可すると、ゲート電極7の直下に位置するチャ
ネル層3の表面にnチャネルが形成され、電子電流がコ
レクタ電極からコレクタ層1及び伝導度変調層2を通
り、さらにチャネル層3の表面のnチャネルからエミッ
タ層9を通ってエミッタ電極8へと流れる。
Next, the operation of this IGBT will be described. When a positive bias voltage is applied between the gate electrode 7 and the emitter electrode 8, an n channel is formed on the surface of the channel layer 3 located immediately below the gate electrode 7, and an electron current flows from the collector electrode to the collector layer 1 and the conductivity. The current flows from the n-channel on the surface of the channel layer 3 to the emitter electrode 8 through the emitter layer 9 through the modulation layer 2.

【0011】ここで、エミッタ層9がn+型の低抵抗領
域11だけでなく、この低抵抗領域11と交互に配列さ
れたn−型の高抵抗領域10を有しているため、電子電
流がエミッタ層9を流れる際に電圧降下が大きくなり、
これにより、飽和電流値が下がって短絡耐量が向上する
こととなる。一方、エミッタ層9がn−型の高抵抗領域
10と交互に配列されたn+型の低抵抗領域11を有し
ているため、エミッタ層9とエミッタ電極8とのコンタ
クト抵抗を低く維持して低いオン電圧を実現することが
できる。
Here, since the emitter layer 9 has not only the n + type low resistance regions 11 but also the n− type high resistance regions 10 alternately arranged with the low resistance regions 11, an electron current is generated. The voltage drop increases when flowing through the emitter layer 9,
As a result, the saturation current value is reduced and the short circuit withstand capability is improved. On the other hand, since the emitter layer 9 has the n + type low resistance regions 11 alternately arranged with the n− type high resistance regions 10, the contact resistance between the emitter layer 9 and the emitter electrode 8 is kept low. A low on-voltage can be realized.

【0012】また、エミッタ電極8がエミッタ層9に直
接接触する構造となっているので、ゲート電極7とエミ
ッタ電極8との間隔が広がることがなく、このためエミ
ッタ層9とチャネル層3と伝導度変調層2とから構成さ
れる寄生トランジスタのベース抵抗が増大してアバラン
シェ耐量が低下することが防止されている。
Since the emitter electrode 8 is in direct contact with the emitter layer 9, the distance between the gate electrode 7 and the emitter electrode 8 does not increase, and therefore the emitter layer 9 and the channel layer 3 are electrically connected. It is prevented that the base resistance of the parasitic transistor composed of the frequency modulation layer 2 and the avalanche resistance is lowered.

【0013】このような半導体装置の製造方法について
説明する。まず、p型のコレクタ層1の上にn型の伝導
度変調層2を積層形成し、伝導度変調層2の表面上にゲ
ート酸化膜6を形成する。このゲート酸化膜6の上にゲ
ート電極7を形成する。さらに、ゲート電極7をマスク
として、例えばボロンBをイオン注入した後、熱拡散さ
せてp型のチャネル層3をウェル状に形成する。
A method of manufacturing such a semiconductor device will be described. First, the n-type conductivity modulation layer 2 is laminated on the p-type collector layer 1, and the gate oxide film 6 is formed on the surface of the conductivity modulation layer 2. A gate electrode 7 is formed on this gate oxide film 6. Further, using the gate electrode 7 as a mask, for example, boron B is ion-implanted and then thermally diffused to form the p-type channel layer 3 in a well shape.

【0014】次に、図2(a)に示されるように、チャ
ネル層3の上に酸化シリコンSiO 膜12を形成し、
図2(b)に示されるように、厚膜領域13と薄膜領域
14とが交互に配列されるように酸化シリコンSiO
膜12をエッチングする。図2(b)では、薄膜領域1
4は膜厚が0、すなわち酸化シリコンSiO膜12が
完全に除去されている。この状態で、図2(c)に示さ
れるように、例えば砒素Asを不純物としてイオン注入
させると、チャネル層3の表面に厚膜領域13は低濃度
に、薄膜領域14は高濃度にそれぞれ砒素Asが注入さ
れることとなる。さらに、アニール処理を施すことによ
り、図2(d)に示されるように、n−型の高抵抗領域
10とn+型の低抵抗領域11とが交互に配列形成され
る。なお、砒素Asの拡散時には、既に形成されている
ゲート電極7がマスクとなり、セルフアラインにより高
抵抗領域10と低抵抗領域11とが形成される。さら
に、図2(e)に示されるように、酸化シリコンSiO
膜12を除去する。
Next, as shown in FIG.
Silicon oxide SiO on the flannel layer 3 TwoForming the membrane 12,
As shown in FIG. 2B, the thick film region 13 and the thin film region
Silicon oxide SiO so that 14 and 14 are alternately arranged.Two
The film 12 is etched. In FIG. 2B, the thin film region 1
4 has a film thickness of 0, that is, silicon oxide SiOTwoThe membrane 12
It has been completely removed. In this state, as shown in FIG.
Ion implantation using arsenic As as an impurity.
Then, the thick film region 13 has a low concentration on the surface of the channel layer 3.
In addition, the thin film region 14 is heavily implanted with arsenic As.
Will be done. Furthermore, by applying an annealing treatment,
As shown in FIG. 2D, the n-type high resistance region
10 and n + type low resistance regions 11 are alternately arranged.
It Incidentally, when arsenic As is diffused, it is already formed.
The gate electrode 7 serves as a mask, and self-alignment
A resistance region 10 and a low resistance region 11 are formed. Furthermore
In addition, as shown in FIG.
TwoThe film 12 is removed.

【0015】その後、レジストマスクにより例えばボロ
ンBをイオン注入し、レジストマスクを除去した後にア
ニール処理してp+拡散層5を形成する。このp+拡散
層5は、p型のコンタクト抵抗または寄生トランジスタ
のベース抵抗を下げるためのものである。なお、このp
+拡散層5の形成は、チャネル層3の形成後でエミッタ
層9の形成前に行ってもよい。さらに、ゲート電極7を
覆うように図示しない絶縁膜を形成した後、エミッタ電
極8が形成される。
After that, boron B, for example, is ion-implanted by using a resist mask, and after removing the resist mask, annealing treatment is performed to form the p + diffusion layer 5. The p + diffusion layer 5 is for reducing the p-type contact resistance or the base resistance of the parasitic transistor. In addition, this p
The + diffusion layer 5 may be formed after the channel layer 3 is formed and before the emitter layer 9 is formed. Further, after forming an insulating film (not shown) so as to cover the gate electrode 7, the emitter electrode 8 is formed.

【0016】以上のように、酸化シリコンSiO膜1
2の膜厚差を利用することにより、1枚の酸化シリコン
SiO膜12で交互に配列された高抵抗領域10と低
抵抗領域11との形成が可能となる。なお、n型の不純
物として砒素Asを、p型の不純物としてボロンBを使
用したが、これに限るものではなく、周知の各種の不純
物を利用することができる。また、図1にはnチャネル
型のIGBTを示したが、pチャネル型とすることもで
きる。さらに、この発明は、IGBTに限るものではな
く、例えば、パワーMOSFET等の他の半導体装置に
適用することが可能である。パワーMOSFETに適用
する場合には、上述した説明において、コレクタ電極及
びコレクタ層1の代わりにドレイン電極及びドレイン層
を、エミッタ電極8及びエミッタ層9の代わりにソース
電極及びソース層をそれぞれ用いればよい。
As described above, the silicon oxide SiO 2 film 1
By utilizing the film thickness difference of 2, it becomes possible to form the high resistance regions 10 and the low resistance regions 11 alternately arranged in one silicon oxide SiO 2 film 12. Although arsenic As was used as the n-type impurity and boron B was used as the p-type impurity, the present invention is not limited to this, and various known impurities can be used. Although an n-channel type IGBT is shown in FIG. 1, it may be a p-channel type. Further, the present invention is not limited to the IGBT, but can be applied to other semiconductor devices such as a power MOSFET. When applied to a power MOSFET, in the above description, the drain electrode and the drain layer may be used instead of the collector electrode and the collector layer 1, and the source electrode and the source layer may be used instead of the emitter electrode 8 and the emitter layer 9, respectively. .

【0017】[0017]

【発明の効果】以上説明したように、この発明によれ
ば、チャネル層の表面にストライプ状に形成されたエミ
ッタ層がその長手方向に沿って交互に配列された高抵抗
領域と低抵抗領域とからなるので、エミッタ電極とのコ
ンタクト抵抗を低く保ち且つアバランシェ耐量の低下を
防止しつつ飽和電流値を下げて短絡耐量を向上させるこ
とが可能となる。
As described above, according to the present invention, the high resistance region and the low resistance region in which the emitter layers formed in stripes on the surface of the channel layer are alternately arranged along the longitudinal direction thereof are provided. Therefore, it becomes possible to maintain the contact resistance with the emitter electrode low and prevent the avalanche withstand capability from lowering while lowering the saturation current value and improving the short-circuit withstand capability.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態に係る半導体装置の構
成を示す断面図である。
FIG. 1 is a sectional view showing a configuration of a semiconductor device according to an embodiment of the present invention.

【図2】 実施の形態に係る半導体装置の製造工程の一
部を工程順に示す断面図である。
FIG. 2 is a cross-sectional view showing a part of the manufacturing process of the semiconductor device according to the embodiment in the order of processes.

【図3】 従来の半導体装置の構成を示す断面図であ
る。
FIG. 3 is a sectional view showing a configuration of a conventional semiconductor device.

【図4】 半導体装置における電子電流の経路を示す断
面図である。
FIG. 4 is a cross-sectional view showing a path of an electron current in a semiconductor device.

【符号の説明】 1 コレクタ層、2 伝導度変調層、3 チャネル層、
7 ゲート電極、8エミッタ電極、9 エミッタ層、1
0 高抵抗領域、11 低抵抗領域、12酸化シリコン
膜、13 厚膜領域、14 薄膜領域。
[Explanation of Codes] 1 collector layer, 2 conductivity modulation layer, 3 channel layer,
7 gate electrode, 8 emitter electrode, 9 emitter layer, 1
0 high resistance region, 11 low resistance region, 12 silicon oxide film, 13 thick film region, 14 thin film region.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の導電型のコレクタ層の上に形成さ
れた第2の導電型の伝導度変調層の表面に第1の導電型
のチャネル層がウェル状に形成されると共にチャネル層
の表面に第2の導電型のエミッタ層がウェル状で且つス
トライプ状に形成され、伝導度変調層とエミッタ層とに
跨ってゲート電極が形成され且つチャネル層とエミッタ
層とに跨ってエミッタ電極が形成された半導体装置にお
いて、 前記エミッタ層がその長手方向に沿って交互に配列され
た高抵抗領域と低抵抗領域とからなることを特徴とする
半導体装置。
1. A channel layer of a first conductivity type is formed on a surface of a conductivity modulation layer of a second conductivity type formed on a collector layer of the first conductivity type, and has a well shape. A second conductivity type emitter layer is formed in a well shape and in a stripe shape on the surface of the, a gate electrode is formed across the conductivity modulation layer and the emitter layer, and an emitter electrode is formed across the channel layer and the emitter layer. In the semiconductor device having the structure described above, the emitter layer includes high resistance regions and low resistance regions arranged alternately along the longitudinal direction thereof.
【請求項2】 第1の導電型のチャネル層の表面に第2
の導電型のエミッタ層がウェル状で且つストライプ状に
形成された半導体装置の製造方法において、 チャネル層の表面上に酸化膜を形成し、 酸化膜を厚膜領域と薄膜領域とが交互に配列されるよう
にエッチングし、 酸化膜の上から第2の導電型の不純物を注入拡散させる
ことにより高抵抗領域と低抵抗領域とが交互に配列され
たエミッタ層を形成し、 酸化膜を除去することを特徴とする半導体装置の製造方
法。
2. A second conductive layer is formed on the surface of the first conductive type channel layer.
In a method of manufacturing a semiconductor device in which a conductive type emitter layer is formed in a well shape and in a stripe shape, an oxide film is formed on a surface of a channel layer, and the oxide film is alternately arranged in a thick film region and a thin film region. As described above, the second conductivity type impurity is injected and diffused from above the oxide film to form an emitter layer in which high resistance regions and low resistance regions are alternately arranged, and the oxide film is removed. A method of manufacturing a semiconductor device, comprising:
JP2002141500A 2002-05-16 2002-05-16 Semiconductor device and its manufacturing method Withdrawn JP2003332577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002141500A JP2003332577A (en) 2002-05-16 2002-05-16 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002141500A JP2003332577A (en) 2002-05-16 2002-05-16 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003332577A true JP2003332577A (en) 2003-11-21

Family

ID=29702064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002141500A Withdrawn JP2003332577A (en) 2002-05-16 2002-05-16 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003332577A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104285301A (en) * 2012-05-15 2015-01-14 三菱电机株式会社 Semiconductor device and method for manufacturing same
JP2015170818A (en) * 2014-03-10 2015-09-28 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
JP2017076812A (en) * 2016-12-15 2017-04-20 株式会社東芝 Semiconductor device
US11189723B2 (en) 2019-12-10 2021-11-30 Fuji Electric Co., Ltd. Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104285301A (en) * 2012-05-15 2015-01-14 三菱电机株式会社 Semiconductor device and method for manufacturing same
US9525057B2 (en) 2012-05-15 2016-12-20 Mitsubishi Electric Corporation Semiconductor device
JP2015170818A (en) * 2014-03-10 2015-09-28 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
JP2017076812A (en) * 2016-12-15 2017-04-20 株式会社東芝 Semiconductor device
US11189723B2 (en) 2019-12-10 2021-11-30 Fuji Electric Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
TWI383497B (en) Double gate insulated gate bipolar transistor
KR100854078B1 (en) MOS gated power semiconductor device and method for fabricating the same
US20060001110A1 (en) Lateral trench MOSFET
KR101530582B1 (en) A semiconductor device and method for manufacturing the same
US7999285B2 (en) Insulated gate bipolar transistor and method for manufacturing the same
SE513284C3 (en) Semiconductor component with linear current-to-voltage characteristics
JPH0613621A (en) Semiconductor device and its manufacture
KR100194668B1 (en) Power insulated gate bipolar transistor
JP2002124671A (en) Semiconductor device and its manufacturing method
JP7127389B2 (en) Silicon carbide semiconductor device
JP2001060685A (en) High breakdown-strength transistor
JP2000031471A (en) Mosfet constituting element
JPH07101737B2 (en) Method for manufacturing semiconductor device
US20020195654A1 (en) DMOS transistor and fabricating method thereof
JP2005354008A (en) Insulated gate-type semiconductor device and its manufacturing method
JP2003332577A (en) Semiconductor device and its manufacturing method
JPS63186475A (en) Conductivity modulation type mosfet
US6281546B1 (en) Insulated gate field effect transistor and manufacturing method of the same
JP2001119019A (en) Semiconductor device and manufacturing method therefor
JP2005136092A (en) Semiconductor device and its manufacturing method
JPH0555594A (en) Vertical field-effect transistor
JP2004356534A (en) Semiconductor device and its manufacturing method
JPH06275818A (en) Power semiconductor device
JP2004146465A (en) Silicon carbide semiconductor device and its manufacturing method
JPH01132167A (en) Semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802