JPH0555594A - Vertical field-effect transistor - Google Patents

Vertical field-effect transistor

Info

Publication number
JPH0555594A
JPH0555594A JP3240316A JP24031691A JPH0555594A JP H0555594 A JPH0555594 A JP H0555594A JP 3240316 A JP3240316 A JP 3240316A JP 24031691 A JP24031691 A JP 24031691A JP H0555594 A JPH0555594 A JP H0555594A
Authority
JP
Japan
Prior art keywords
region
effect transistor
vertical field
source
base region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3240316A
Other languages
Japanese (ja)
Other versions
JP3063278B2 (en
Inventor
Hitoshi Kubota
等 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3240316A priority Critical patent/JP3063278B2/en
Publication of JPH0555594A publication Critical patent/JPH0555594A/en
Application granted granted Critical
Publication of JP3063278B2 publication Critical patent/JP3063278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps

Abstract

PURPOSE:To enable an amount of surge resistance of a vertical field-effect transistor to be improved by preventing a parasitic transistor from being turned on easily in a vertical field-effect transistor. CONSTITUTION:In a vertical field-effect transistor with a base region 4 at a semiconductor substrate (a substrata 1, an epitaxial layer 2) and with a source region 5 at this base region 4, a high oxygen concentration region (for example, an oxide film 11) is provided at least at a lower side of the source region 5 within the base region 4, thus enabling a base current of a parasitic transistor consisting of the source region 5, the base region 4, and the epitaxial layer 2 to be shut off preventing the parasitic transistor from being turned on easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は縦型電界効果トランジス
タに関し、特にサージ耐量を改善したトランジスタに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical field effect transistor, and more particularly to a transistor having improved surge withstand capability.

【0002】[0002]

【従来の技術】従来、縦型電界効果トランジスタは、図
3にNチャネル型トランジスタを示すように、N型シリ
コン基板1の裏面をドレイン電極とし、シリコン基板1
の表面に成長させたエピタキシャル層2に基板と反対導
電型のP高ベース領域4及びウェル領域3を形成し、更
にベース領域4に基板と同じ導電型のN型ソース領域5
を形成している。ウェル領域3とベース領域4上にはポ
リシリコンのゲート電極7と、アルミニウムのソース電
極9が設けられる。又、ゲート電極7は、ゲート酸化膜
6と層間膜8によって、ベース領域4、ソース領域5、
及びソース電極9と絶縁されている。ソース電極9は、
バックゲート部10でウェル領域3及びソース領域5と
電気的に接続している。
2. Description of the Related Art Conventionally, in a vertical field effect transistor, as shown in an N-channel type transistor in FIG. 3, the back surface of an N-type silicon substrate 1 is used as a drain electrode, and
A P high base region 4 and a well region 3 of opposite conductivity type to the substrate are formed on the epitaxial layer 2 grown on the surface of the substrate, and an N type source region 5 of the same conductivity type as the substrate is further formed in the base region 4.
Is formed. A gate electrode 7 made of polysilicon and a source electrode 9 made of aluminum are provided on the well region 3 and the base region 4. In addition, the gate electrode 7 includes the base region 4, the source region 5, the gate oxide film 6 and the interlayer film 8.
And is insulated from the source electrode 9. The source electrode 9 is
The back gate portion 10 is electrically connected to the well region 3 and the source region 5.

【0003】この縦型電界効果トランジスタでは、ウェ
ル領域3及びベース領域4とエピタキシャル層2はダイ
オードを形成し、ドレイン電極からソース電極にかけて
は、逆方向になるが、ゲート電極7,ソース電極9間に
電圧を印加することによりチャネル部15の導電型が反
転し導通する。このような縦型電界効果トランジスタは
バイポーラトランジスタに比べ高速動作が可能であり、
又電圧駆動であることから駆動回路が設計しやすいとい
う利点があり、スイッチング素子として広く使用されて
いる。
In this vertical field effect transistor, the well region 3 and the base region 4 and the epitaxial layer 2 form a diode, and the direction from the drain electrode to the source electrode is opposite, but between the gate electrode 7 and the source electrode 9. When a voltage is applied to the channel 15, the conductivity type of the channel portion 15 is inverted and the channel portion 15 becomes conductive. Such a vertical field effect transistor can operate at higher speed than a bipolar transistor,
Further, since it is driven by voltage, it has an advantage that a drive circuit can be easily designed, and is widely used as a switching element.

【0004】[0004]

【発明が解決しようとする課題】しかし、この種のトラ
ンジスタにおいては、インダクタンス性の負荷を駆動す
るために用いた場合に素子が破壊することがある。これ
は、ターンオフ時に、負荷に発生したサージ電圧(逆起
電力)によって素子内部の寄生トランジスタがオンして
しまい、ソース・ドレイン間に過大な電流が流れるため
である。即ち、ソース領域5,ベース領域4,エピタキ
シャル層2がNPNトランジスタを形成しており、この
寄生トランジスタがオンしてしまうのである。
However, in this type of transistor, the element may be destroyed when it is used to drive an inductive load. This is because the parasitic transistor inside the element is turned on by the surge voltage (back electromotive force) generated in the load at the time of turn-off, and an excessive current flows between the source and the drain. That is, the source region 5, the base region 4, and the epitaxial layer 2 form an NPN transistor, and this parasitic transistor is turned on.

【0005】このように、素子がどの程度の負荷電流、
負荷インダクタンスまで破壊を起こさないかは、L負荷
耐量と呼ばれており、このL負荷耐量を改善するため
に、従来では図4に示すように、ソース領域14を浅く
形成した構造が提案されている。又、図5に示すように
ベース領域3に不純物濃度の高いP+ベース部13を形
成した構造が提案されている。しかしながら、これらの
対策は、いずれもベース領域3の抵抗を下げる事によっ
て逆起電力がかかった時のベース・ソース間の電圧降下
を小さくし、寄生トランジスタをオンしにくくしようと
するものであるため、逆起電力が大きな場合には充分な
効果を得ることが難しいという問題がある。本発明の目
的は、サージ耐量を改善した縦型電界効果トランジスタ
を提供することにある。
In this way, the load current of the element is
Whether or not the load inductance is destroyed is called L load withstand capability. In order to improve this L load withstand capability, a structure in which the source region 14 is formed shallow as shown in FIG. 4 has been conventionally proposed. There is. Further, as shown in FIG. 5, a structure in which a P + base portion 13 having a high impurity concentration is formed in the base region 3 has been proposed. However, all of these measures are intended to reduce the voltage drop between the base and the source when a counter electromotive force is applied by lowering the resistance of the base region 3 to make it difficult to turn on the parasitic transistor. However, when the back electromotive force is large, it is difficult to obtain a sufficient effect. An object of the present invention is to provide a vertical field effect transistor with improved surge withstand capability.

【0006】[0006]

【課題を解決するための手段】本発明の縦型電界効果ト
ランジスタは、半導体基体に設けたベース領域中の、少
なくともソース領域の下側に高酸素濃度領域を設けてい
る。この高酸素濃度領域は、例えば酸化膜で構成する。
In the vertical field effect transistor of the present invention, a high oxygen concentration region is provided at least below the source region in the base region provided in the semiconductor substrate. This high oxygen concentration region is composed of, for example, an oxide film.

【0007】[0007]

【作用】本発明によれば、高酸素濃度領域によってソー
ス領域、ベース領域、半導体基体からなる寄生トランジ
スタにおけるターンオン電圧が増大され、サージ耐量を
改善する。
According to the present invention, the high oxygen concentration region increases the turn-on voltage in the parasitic transistor composed of the source region, the base region and the semiconductor substrate, and improves the surge withstand capability.

【0008】[0008]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の第1の実施例の縦型電界効果トラン
ジスタの断面図である。 600V耐圧品の場合、2×1018
/cm3 程度にアンチモンをドープしたN+ 型シリコン基
板1に25Ωcm(2×1014/cm3 )程度にリンをドープさ
せた厚さ約65μmのN型エピタキシャル層2をエピタキ
シャル成長させたものを基板として使用する。この基板
に対し、レジストマスク等を用いたイオン注入及び熱拡
散によりウェル領域3を形成する。又、表面に酸化膜を
約1200Å形成後、約6000ÅのボリシリコンをLPCVD
により堆積し、約11Ω/□にリン拡散をした後、フォト
レジスト法により選択エッチングしてゲート酸化膜6及
びゲート電極7を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a vertical field effect transistor according to the first embodiment of the present invention. For 600V withstand voltage, 2 × 10 18
/ Cm 3 of antimony-doped N + type silicon substrate 1 with about 25 μcm (2 × 10 14 / cm 3 ) of phosphorus doped with about 65 μm thick N type epitaxial layer 2 epitaxially grown on the substrate To use as. The well region 3 is formed on this substrate by ion implantation and thermal diffusion using a resist mask or the like. After forming an oxide film on the surface of about 1200Å, about 6000Å poly silicon is LPCVDed.
And then phosphorus is diffused to about 11 Ω / □, and then the gate oxide film 6 and the gate electrode 7 are formed by selective etching by a photoresist method.

【0009】更に、ゲート電極7をマスクにイオン注入
及び熱拡散を行ってベース領域4を形成する。同様に、
ゲート電極7をマスクにして酸素をイオン注入し、かつ
熱処理を行って前記ベース領域4の底面に近い領域に酸
化膜11を形成する。又、ソース領域5をレジストマス
クを用いたイオン注入および熱拡散により形成する。そ
の後、層間膜8をCVDにより成長させ、フォトレジス
ト法により、コンタクトホールを形成する。更に、スパ
ッタ法により厚さ 3.5μmのアルミニウムを形成し、こ
れを選択エッチングしてソース電極9とする。
Further, ion implantation and thermal diffusion are performed using the gate electrode 7 as a mask to form the base region 4. Similarly,
Oxygen is ion-implanted using the gate electrode 7 as a mask, and heat treatment is performed to form an oxide film 11 in a region near the bottom surface of the base region 4. Further, the source region 5 is formed by ion implantation and thermal diffusion using a resist mask. After that, the interlayer film 8 is grown by CVD and a contact hole is formed by a photoresist method. Further, aluminum having a thickness of 3.5 μm is formed by the sputtering method, and this is selectively etched to form the source electrode 9.

【0010】この構成によれば、ソース領域5の下側に
高い酸素濃度の領域である酸化膜11が形成されている
ため、ソース領域5、ベース領域4、エピタキシャル層
2からなる寄生トランジスタが形成され難くなり、又形
成された場合でも寄生トランジスタのベース電流を遮断
してそのターンオン電圧を極めて高いものとする。この
ため、寄生トランジスタがオンされなくなり、ソース・
ドレイン間に過大な電流が流れなくなり、縦型電界効果
トランジスタのサージ耐量が向上されることになる。
尚、この例の場合、基板の表面からソース領域5の底面
までの距離は約 0.8μm、ベース領域4の底面までは
4.5μm、ウェル領域の底面までは7μmであり、この
場合酸素のイオン注入は、エネルギー50KeVドーズ量は
1×1013〜1×1016の範囲で良い効果が得られる。
According to this structure, since the oxide film 11 which is a high oxygen concentration region is formed below the source region 5, a parasitic transistor including the source region 5, the base region 4 and the epitaxial layer 2 is formed. If it is formed, the base current of the parasitic transistor is cut off to make the turn-on voltage extremely high. Therefore, the parasitic transistor is not turned on and the source
Excessive current does not flow between the drains, and the surge resistance of the vertical field effect transistor is improved.
In this example, the distance from the surface of the substrate to the bottom of the source region 5 is about 0.8 μm, and the distance to the bottom of the base region 4 is
The thickness is 4.5 μm and 7 μm to the bottom of the well region. In this case, oxygen ion implantation has a good effect when the energy dose is 50 KeV and the dose range is 1 × 10 13 to 1 × 10 16 .

【0011】又、この実施例の場合、酸化膜11を形成
する工程において、ベース領域4を形成する時と同様に
ゲート電極7をイオン注入のマスクとして利用している
ため、新たにフォトリソグラフィー工程を導入する必要
がない。又、寄生トランジスタとして最も寄与の大きい
ソース領域5の下部に酸化膜11を形成し、チャネル部
には形成していないので、電界効果トランジスタの特性
を劣化させることはない。
Further, in the case of this embodiment, the gate electrode 7 is used as a mask for ion implantation in the step of forming the oxide film 11 as in the case of forming the base region 4, so that a new photolithography step is performed. Need not be introduced. Further, since the oxide film 11 is formed below the source region 5 that makes the largest contribution as a parasitic transistor and is not formed in the channel portion, the characteristics of the field effect transistor are not deteriorated.

【0012】図2は本発明の第2の実施例の縦型電界効
果トランジスタの断面図である。この実施例では、第1
実施例と同様にベース領域4を形成した後に、レジスト
マスクを用いて酸素をイオン注入し、ベース領域4内の
ソース領域5相当領域に高酸素濃度領域12を形成して
いる。しかる後、イオン注入、熱拡散によりソース領域
5を形成している。この実施例においても、高酸素濃度
領域12をソース領域5の下側に形成したことで、寄生
トランジスタのターンオン電圧を増大させてそのオン動
作を抑制する。これにより、縦型電界効果トランジスタ
のサージ耐量を改善することができる。又、この実施例
では、ソース・ドレイン間がダイオード動作する際の主
たる電流経路であるバックゲート部10とPウェル部3
の間は高酸素濃度領域を設けていないので、ダイオード
動作の特性に影響を与えないという利点がある。
FIG. 2 is a sectional view of a vertical field effect transistor according to the second embodiment of the present invention. In this embodiment, the first
After forming the base region 4 as in the embodiment, oxygen is ion-implanted using the resist mask to form the high oxygen concentration region 12 in the region corresponding to the source region 5 in the base region 4. Then, the source region 5 is formed by ion implantation and thermal diffusion. Also in this embodiment, since the high oxygen concentration region 12 is formed below the source region 5, the turn-on voltage of the parasitic transistor is increased to suppress its on-operation. As a result, the surge withstand capability of the vertical field effect transistor can be improved. Further, in this embodiment, the back gate section 10 and the P well section 3 which are main current paths when the diode operates between the source and the drain.
Since a high oxygen concentration region is not provided between the two, there is an advantage that it does not affect the characteristics of diode operation.

【0013】[0013]

【発明の効果】以上説明したように本発明は、ベース領
域の中のソース領域の下側に酸化膜等の高酸素濃度領域
を形成しているので、ドレイン・ソース間に負荷からの
逆起電力がかかった時に高酸素濃度領域によって寄生ト
ランジスタのベース電流を遮断し、寄生トランジスタを
ターンオンし難くすることができ、縦型電界効果トラン
ジスタのサージ耐量を改善することができるという効果
がある。又、ソース領域の下側にのみ高酸素濃度領域を
形成することで、本来の電界効果トランジスタとしての
特性にほとんど影響を与えることはない。
As described above, according to the present invention, since a high oxygen concentration region such as an oxide film is formed below the source region in the base region, a back electromotive force from the load is generated between the drain and the source. The high oxygen concentration region cuts off the base current of the parasitic transistor when power is applied, making it difficult to turn on the parasitic transistor and improving the surge withstand capability of the vertical field effect transistor. Further, by forming the high oxygen concentration region only under the source region, the characteristics of the original field effect transistor are hardly affected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の縦型電界効果トランジスタの第1実施
例の断面図である。
FIG. 1 is a sectional view of a first embodiment of a vertical field effect transistor of the present invention.

【図2】本発明の第2実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】従来の縦型電界効果トランジスタの断面図であ
る。
FIG. 3 is a cross-sectional view of a conventional vertical field effect transistor.

【図4】サージ耐量を改善した従来の縦型電界効果トラ
ンジスタの一例の断面図である。
FIG. 4 is a cross-sectional view of an example of a conventional vertical field effect transistor with improved surge withstand capability.

【図5】サージ耐量を改善した従来の縦型電界効果トラ
ンジスタの他の例の断面図である。
FIG. 5 is a sectional view of another example of a conventional vertical field effect transistor with improved surge withstand capability.

【符号の説明】[Explanation of symbols]

1 基板(ドレイン領域) 2 エピタキシャル層 3 ウェル領域 4 ベース領域 5 ソース領域 7 ゲート電極 9 ソース電極 11 酸化膜 12 高酸素濃度領域 1 substrate (drain region) 2 epitaxial layer 3 well region 4 base region 5 source region 7 gate electrode 9 source electrode 11 oxide film 12 high oxygen concentration region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基体にベース領域を有し、このベ
ース領域にソース領域を有する縦型電界効果トランジス
タにおいて、前記ベース領域中の少なくともソース領域
の下側に高酸素濃度領域を有することを特徴とする縦型
電界効果トランジスタ。
1. A vertical field effect transistor having a base region in a semiconductor body and a source region in the base region, wherein a high oxygen concentration region is provided at least below the source region in the base region. Vertical field effect transistor.
【請求項2】 高酸素濃度領域が酸化膜である請求項1
の縦型電界効果トランジスタ。
2. The high oxygen concentration region is an oxide film.
Vertical field effect transistor.
JP3240316A 1991-08-28 1991-08-28 Vertical field-effect transistor Expired - Lifetime JP3063278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3240316A JP3063278B2 (en) 1991-08-28 1991-08-28 Vertical field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3240316A JP3063278B2 (en) 1991-08-28 1991-08-28 Vertical field-effect transistor

Publications (2)

Publication Number Publication Date
JPH0555594A true JPH0555594A (en) 1993-03-05
JP3063278B2 JP3063278B2 (en) 2000-07-12

Family

ID=17057656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3240316A Expired - Lifetime JP3063278B2 (en) 1991-08-28 1991-08-28 Vertical field-effect transistor

Country Status (1)

Country Link
JP (1) JP3063278B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750351A2 (en) * 1995-06-19 1996-12-27 Siemens Aktiengesellschaft MOS semiconductor device with improved m-characteristics
EP0768717A2 (en) * 1995-10-13 1997-04-16 Asea Brown Boveri Ag Power semiconductor device
JPH09153609A (en) * 1995-11-29 1997-06-10 Nec Yamagata Ltd Vertical insulated gate field-effect transistor
JP2007042826A (en) * 2005-08-03 2007-02-15 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
DE102008042170A1 (en) 2007-10-05 2009-04-09 Denso Corporation, Kariya The silicon carbide semiconductor device
US20180114836A1 (en) * 2016-10-21 2018-04-26 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US10655204B2 (en) 2015-05-26 2020-05-19 Posco Hot press formed article having good anti-delamination, and preparation method for same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750351A2 (en) * 1995-06-19 1996-12-27 Siemens Aktiengesellschaft MOS semiconductor device with improved m-characteristics
EP0750351A3 (en) * 1995-06-19 1997-02-05 Siemens Ag
EP0768717A2 (en) * 1995-10-13 1997-04-16 Asea Brown Boveri Ag Power semiconductor device
EP0768717A3 (en) * 1995-10-13 1998-01-28 Asea Brown Boveri Ag Power semiconductor device
JPH09153609A (en) * 1995-11-29 1997-06-10 Nec Yamagata Ltd Vertical insulated gate field-effect transistor
JP2007042826A (en) * 2005-08-03 2007-02-15 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
DE102008042170A1 (en) 2007-10-05 2009-04-09 Denso Corporation, Kariya The silicon carbide semiconductor device
US7808003B2 (en) 2007-10-05 2010-10-05 Denso Corporation Silicon carbide semiconductor device
US10655204B2 (en) 2015-05-26 2020-05-19 Posco Hot press formed article having good anti-delamination, and preparation method for same
US20180114836A1 (en) * 2016-10-21 2018-04-26 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US10319820B2 (en) 2016-10-21 2019-06-11 Fuji Electric Co., Ltd. Semiconductor device having silicon carbide layer provided on silicon carbide substrate

Also Published As

Publication number Publication date
JP3063278B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
JP3431467B2 (en) High voltage semiconductor device
KR100423249B1 (en) Horizontal type semiconductor device
US6121633A (en) Latch-up free power MOS-bipolar transistor
KR920005513B1 (en) Semiconductor device having a structure which makes parasitic transistor hard to operate and its manufacturing method
JPH0671079B2 (en) Bidirectionally conductive monolithic integrated semiconductor device and manufacturing method thereof
JPH0467343B2 (en)
JPS6359545B2 (en)
US5879967A (en) Methods forming power semiconductor devices having latch-up inhibiting regions
JPS60253275A (en) High density v-groove mos control thyristor, insulated gate type transistor and mosfet as well as method of producing same
JPH0864811A (en) Power device integrated structure
JPH0778990A (en) High breakdown voltage semiconductor device
JPH06244430A (en) Semiconductor device
JP2633145B2 (en) Semiconductor laterally insulated gate bipolar transistor device
JPH0555594A (en) Vertical field-effect transistor
JPH0786580A (en) High-voltage semiconductor device
JPH07101737B2 (en) Method for manufacturing semiconductor device
JP2700025B2 (en) Bipolar vertical MOSFET
JPH09148566A (en) Mos type semiconductor element
JPH09153609A (en) Vertical insulated gate field-effect transistor
JPH1050721A (en) Bipolar transistor and manufacture thereof
JPH1174517A (en) Semiconductor device
JPH0283982A (en) Field effect transistor
JP2988047B2 (en) Semiconductor device
JP2003332577A (en) Semiconductor device and its manufacturing method
JPH06163909A (en) Vertical field effect transistor