JPH09266311A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH09266311A
JPH09266311A JP491897A JP491897A JPH09266311A JP H09266311 A JPH09266311 A JP H09266311A JP 491897 A JP491897 A JP 491897A JP 491897 A JP491897 A JP 491897A JP H09266311 A JPH09266311 A JP H09266311A
Authority
JP
Japan
Prior art keywords
type
region
drift
conductivity
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP491897A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Fujihira
龍彦 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP491897A priority Critical patent/JPH09266311A/en
Publication of JPH09266311A publication Critical patent/JPH09266311A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device which is capable of resisting against high voltage and reducing ON resistance by upgrading the structure of a drift area which is further depleted in an off-state. SOLUTION: A drain/drift area 1980 are arranged to be alternately formed with a strip-like n type division drift path area 1 and a strip-like p type partition area 2 repeatedly on a plane in structure. One end of each n type division drift path area 1 is pn-joined with a p type channel diffusion layer 7 while the other is connected to an n<+> type drain area 9. A p type side end area 2a is provided outside the division drift path 1 on the far most side end of a parallel drift path group 10. Every division drift path area 1 is sandwiched with the p type area 2 (2a) along the side surface. One end of each p type partition area 2 is connected to the p type channel diffusion layer 7 while the other end is pn-joined with an n' type drain area. When it is in an off-state, a deletion end advances into both first conductive division drift paths from both side surfaces of a single line of second conductive partition area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、MOSFET(絶
縁ゲート型電界効果トランジスタ),IGBT(伝導度
変調型トランジスタ),バイポーラトランジスタ,ダイ
オード等に適用可能の高耐圧且つ大電流容量の半導体装
置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a high breakdown voltage and a large current capacity, which is applicable to MOSFET (insulated gate type field effect transistor), IGBT (conductivity modulation type transistor), bipolar transistor, diode and the like. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】一般に半導体素子は片面に電極部を持つ
横型構造と両面に電極部を持つ縦型構造に大別できる。
例えば、図10は横型構造のSOI(silicon on insul
ator)−MOSFETを示す。このSOI−MOSFE
Tの構造はnチャネルMOSFETのオフセット・ゲー
ト構造であり、半導体基体5上の絶縁膜6の上に形成さ
れたp型のチャネル拡散層7と、チャネル拡散層7の上
にゲート絶縁膜10を介して形成されたフィールドプレ
ート付きゲート電極11と、チャネル拡散層7のうちゲ
ート電極11の一端側に形成されたn+ 型のソース領域
8と、ゲート電極11の他端から離間した位置に形成さ
れたn+ 型のドレイン領域9と、ドレイン・ゲート間に
延在するn型低濃度ドレイン領域(ドレイン・ドリフト
領域)90と、この低濃度ドレイン領域90上に形成さ
れた厚い絶縁膜12とを有する。
2. Description of the Related Art Generally, semiconductor devices can be roughly classified into a horizontal structure having an electrode portion on one surface and a vertical structure having an electrode portion on both surfaces.
For example, FIG. 10 shows a horizontal structure SOI (silicon on insul)
ator) -MOSFET. This SOI-MOSFE
The structure of T is an offset gate structure of an n-channel MOSFET, and includes a p-type channel diffusion layer 7 formed on the insulating film 6 on the semiconductor substrate 5, and a gate insulating film 10 on the channel diffusion layer 7. A gate electrode 11 with a field plate formed via the n + -type source region 8 formed on one end side of the gate electrode 11 in the channel diffusion layer 7, and a position separated from the other end of the gate electrode 11. N + type drain region 9, an n type low concentration drain region (drain drift region) 90 extending between the drain and the gate, and a thick insulating film 12 formed on the low concentration drain region 90. Have.

【0003】低濃度ドレイン領域90の部分は、MOS
FETがオン状態のときはキャリアを電界によって流す
ドリフト領域として働き、オフ状態のときは空乏化して
電界強度を緩和し耐圧を高める。低濃度ドレイン領域9
0の不純物濃度を高くすることと、その領域90の電流
経路長を短くすることは、ドリフト抵抗が低くなるので
MOSFETの実質的なオン抵抗(ドレイン−ソース抵
抗)を下げる効果に繋がるものの、逆に、p型のチャネ
ル拡散層7とn型低濃度ドレイン領域90とのpn接合
Jaから進行するドレイン−チャネル間空乏層が広がり
難く、シリコンの最大(臨界)電界強度に早く達するた
め、耐圧(ドレイン−ソース電圧)が低下してしまう。
即ち、オン抵抗(電流容量)と耐圧間にはトレードオフ
関係がある。このトレードオフ関係はIGBT,バイポ
ーラトランジスタ,ダイオード等の半導体素子において
も同様に成立することが知られている。
The lightly doped drain region 90 is a MOS
When the FET is in the ON state, it functions as a drift region in which carriers are caused to flow by an electric field, and when it is in the OFF state, it is depleted to relax the electric field strength and increase the breakdown voltage. Low concentration drain region 9
Increasing the impurity concentration of 0 and shortening the current path length of the region 90 lead to the effect of lowering the substantial on-resistance (drain-source resistance) of the MOSFET because the drift resistance becomes low, but In addition, since the drain-channel depletion layer that progresses from the pn junction Ja of the p-type channel diffusion layer 7 and the n-type low-concentration drain region 90 is difficult to spread and the maximum (critical) electric field strength of silicon is reached quickly, the breakdown voltage ( The drain-source voltage) will decrease.
That is, there is a trade-off relationship between on-resistance (current capacity) and breakdown voltage. It is known that this trade-off relationship is similarly established in semiconductor devices such as IGBTs, bipolar transistors, and diodes.

【0004】図11は横型構造のMOSFETの別の構
造を示す。図11(a)はpチャネルMOSFETであ
り、p- 型半導体層4上に形成されたn型チャネル拡散
層3と、チャネル拡散層3の上にゲート絶縁膜10を介
して形成されたフィールドプレート付きゲート電極11
と、チャネル拡散層3のうちゲート電極11の一端側に
形成されたp+ 型のソース領域18と、ゲート電極11
の他端側真下にウェル端が位置するp型低濃度ドレイン
領域(ドレイン・ドリフト領域)14と、ゲート電極1
1の他端から離間した位置に形成されたp+ 型のドレイ
ン領域19と、p+ 型のソース領域18に隣接するn+
型のコンタクト領域71と、p型低濃度ドレイン14上
に形成された厚い絶縁膜12とを有する。このような構
造においてもウェル状のp型低濃度ドレイン領域14の
電流経路長さと不純物濃度とによりオン抵抗と耐圧がト
レードオフの関係で決定される。
FIG. 11 shows another structure of a lateral MOSFET. FIG. 11A shows a p-channel MOSFET, which includes an n-type channel diffusion layer 3 formed on a p type semiconductor layer 4 and a field plate formed on the channel diffusion layer 3 with a gate insulating film 10 interposed therebetween. With gate electrode 11
A p + type source region 18 formed on one end side of the gate electrode 11 in the channel diffusion layer 3, and the gate electrode 11
Of the p-type low-concentration drain region (drain / drift region) 14 whose well end is located directly below the other end side of the gate electrode 1 and
N + adjacent to the p + type drain region 19 and the p + type source region 18 formed at a position separated from the other end of
Type contact region 71 and the thick insulating film 12 formed on the p-type low concentration drain 14. Even in such a structure, the on-resistance and the breakdown voltage are determined in a trade-off relationship by the current path length and the impurity concentration of the well-type p-type low-concentration drain region 14.

【0005】図11(b)は2重拡散型nチャネルMO
SFETであり、p- 型半導体層4上に形成されたn型
低濃度ドレイン層(ドレイン・ドリフト層)22と、低
濃度ドレイン層22の上にゲート絶縁膜10を介して形
成されたフィールドプレート付きゲート電極11と、低
濃度ドレイン層22のうちゲート電極11の一端側に形
成されたウェル状のp型チャネル拡散領域17と、p型
チャネル拡散領域17内にウェル状に形成されたn+
のソース領域8と、ゲート電極11とこれに離間したn
+ 型ドレイン領域9との間の表面層に形成されたウェル
状のp型トップ層24と、n+ 型のソース領域8に隣接
するp+ 型のコンタクト領域72と、p型トップ層24
上に形成された厚い絶縁膜12とを有する。このような
構造においてもn型低濃度ドレイン層域22の電流経路
長さと不純物濃度とによりオン抵抗と耐圧がトレードオ
フの関係で決定される。
FIG. 11B shows a double diffusion type n channel MO.
An SFET, which is an n-type low-concentration drain layer (drain / drift layer) 22 formed on the p -type semiconductor layer 4, and a field plate formed on the low-concentration drain layer 22 via the gate insulating film 10. Gate electrode 11, a well-shaped p-type channel diffusion region 17 formed at one end side of the gate electrode 11 in the low-concentration drain layer 22, and an n + type well formed in the p-type channel diffusion region 17. -Type source region 8 and gate electrode 11 and n spaced apart therefrom
Well-shaped p-type top layer 24 formed in the surface layer between + type drain region 9, p + type contact region 72 adjacent to n + type source region 8, and p type top layer 24.
And a thick insulating film 12 formed thereover. Even in such a structure, the on-resistance and the breakdown voltage are determined by a trade-off relationship depending on the current path length of the n-type low-concentration drain layer region 22 and the impurity concentration.

【0006】ただし、図11(b)の構造では、n型低
濃度ドレイン層22が下側のp- 型半導体層4と上側の
p型トップ層24とに挟まれているので、MOSFET
のオフ状態のときにはp型チャネル拡散領域17とのp
n接合Jaからだけでは無く、n型低濃度ドレイン層2
2の上下のpn接合Jb,Jbからも空乏層が広がる。
このため、低濃度ドレイン層22が早く空乏化するの
で、高耐圧構造となっている。その分、低濃度ドレイン
層22の不純物濃度を高くでき、オン抵抗の低減により
電流容量の増大を図ることが可能である。
However, in the structure of FIG. 11B, the n-type low-concentration drain layer 22 is sandwiched between the p -type semiconductor layer 4 on the lower side and the p-type top layer 24 on the upper side.
Is off, p with the p-type channel diffusion region 17
Not only from the n-junction Ja but also from the n-type low concentration drain layer 2
The depletion layer also extends from the pn junctions Jb and Jb above and below 2.
Therefore, the low-concentration drain layer 22 is depleted quickly, so that the structure has a high breakdown voltage. As a result, the impurity concentration of the low-concentration drain layer 22 can be increased and the on-resistance can be reduced to increase the current capacity.

【0007】他方、縦型構造の半導体素子としては、例
えば図12に示すトレンチゲート型のnチャネルMOS
FETが知られている。この構造は、裏面電極(図示せ
ず)が導電接触したn+ 型ドレイン層29の上に形成さ
れたn型低濃度ドレイン層39と、低濃度ドレイン層3
9の表面側に堀り込まれたトレンチ溝内にゲート絶縁膜
10を介して埋め込まれたトレンチゲート電極21と、
低濃度ドレイン層39の表層にトレンチゲート電極21
の深さ程度に浅く形成されたp型チャネル拡散層27
と、トレンチゲート電極21の上縁に沿って形成された
+ 型ソース領域18と、ゲート電極21を覆う厚い絶
縁膜12とを有する。なお、単層のn+ 型ドレイン層2
9に代えて、n+ 型上層とp+ 型下層から成る2層構造
とすると、n型のIGBT構造を得ることができる。こ
のような縦型構造においても、低濃度ドレイン層39の
部分は、MOSFETがオン状態のときは縦方向にドリ
フト電流を成すドリフト領域として働き、オフ状態のと
きは空乏化して耐圧を高めるが、やはり、オン抵抗と耐
圧とは低濃度ドレイン層39の厚さと不純物濃度の如何
に支配され、両者間にはトレードオフの関係にある。
On the other hand, as a vertical type semiconductor element, for example, a trench gate type n-channel MOS shown in FIG.
FETs are known. This structure has an n-type low-concentration drain layer 39 formed on an n + -type drain layer 29 in conductive contact with a back surface electrode (not shown), and a low-concentration drain layer 3.
A trench gate electrode 21 buried in a trench groove dug in the surface side of the semiconductor layer 9 via a gate insulating film 10;
The trench gate electrode 21 is formed on the surface layer of the low-concentration drain layer 39.
P-type channel diffusion layer 27 formed as shallow as the depth of
And an n + type source region 18 formed along the upper edge of the trench gate electrode 21, and a thick insulating film 12 covering the gate electrode 21. The single layer n + type drain layer 2
If a two-layer structure including an n + type upper layer and ap + type lower layer is used instead of 9, an n type IGBT structure can be obtained. Also in such a vertical structure, the portion of the low-concentration drain layer 39 functions as a drift region that forms a drift current in the vertical direction when the MOSFET is on, and depletes to increase the breakdown voltage when the MOSFET is off. Again, the on-resistance and the breakdown voltage are governed by the thickness of the low-concentration drain layer 39 and the impurity concentration, and there is a trade-off relationship between the two.

【0008】[0008]

【発明が解決しようとする課題】図13はシリコンのn
チャネルMOSFETの理想耐圧と理想オン抵抗との関
係を示すグラフである。理想耐圧は形状効果によるpn
接合耐圧の低下がないと仮定した。理想オン抵抗は低濃
度ドレイン領域以外の部分の抵抗を無視できるほど小さ
いと仮定した。図13のは図12に示す縦型のnチャ
ネルMOSFETの理想耐圧と理想オン抵抗との関係を
示す。縦型素子はオン時にドリフト電流が流れる方向と
オフ時の逆バイアスによる空乏層が延びて広がる方向と
が同じである。図12の低濃度ドレイン層39のみに着
目すると、オフ時の理想耐圧BVは次式により近似的に
求まる。 BV=Ec 2 ε0 εSiα(2−α)/2qND (1) Ec :Ec (ND ),不純物濃度ND でのシリコンの最
大電界強度 ε0 :真空の誘電率 εSi:シリコンの比誘電率 q:単位電荷 ND :低濃度ドレイン領域の不純物濃度 α:係数 (0<α<1) また、オン時の単位面積当たりの理想オン抵抗は次式に
より近似的に求まる。 R=αW/μqND μ:μ(ND ),不純物濃度ND での電子の移動度 ここで、W=Ec ε0 εSi/qND であるので、Rは、 R=Ec ε0 εSiα/μq2 D 2 (2) となる。(1),(2)式よりqND を消去し、αの最
適値として例えば2/3を用いると、 R=BV2 (27/8Ec 3 ε0 εSiμ) (3) が得られる。ここに、オン抵抗Rは耐圧BVの二乗に比
例するように見えるが、Ec やμがND に依存している
ので、図13のは実際にはBVの2.4 〜2.6 乗程度に
比例している。
FIG. 13 shows n of silicon.
7 is a graph showing the relationship between the ideal breakdown voltage and the ideal on-resistance of a channel MOSFET. The ideal breakdown voltage is pn due to the shape effect
It was assumed that the junction breakdown voltage did not decrease. It is assumed that the ideal on-resistance is so small that the resistance of the portion other than the low-concentration drain region can be ignored. 13 shows the relationship between the ideal breakdown voltage and the ideal on-resistance of the vertical n-channel MOSFET shown in FIG. The vertical element has the same direction in which a drift current flows when turned on and the direction in which a depletion layer extends and spreads due to reverse bias when turned off. Focusing only on the low-concentration drain layer 39 of FIG. 12, the ideal breakdown voltage BV at the time of OFF is approximately obtained by the following equation. BV = E c 2 ε 0 ε Si α (2-α) / 2qN D (1) E c : E c (N D ), maximum electric field strength of silicon at impurity concentration N D ε 0 : Vacuum permittivity ε Si : relative permittivity of silicon q: unit charge N D : impurity concentration in low-concentration drain region α: coefficient (0 <α <1) Further, the ideal on-resistance per unit area at the time of ON is approximately calculated by the following equation. I want it. R = αW / μqN D μ: μ (N D ), electron mobility at impurity concentration N D Here, W = E c ε 0 ε Si / qN D , so R is R = E c ε 0 ε Si α / μq 2 N D 2 (2) (1) is obtained (2) erases the qN D from equation, using the optimal value as for example 2/3 of the α, R = BV 2 (27 / 8E c 3 ε 0 ε Si μ) (3) . Here, the on-resistance R seems to be proportional to the square of the withstand voltage BV, but since E c and μ depend on N D , the value in FIG. 13 is actually proportional to about 2.4 to 2.6 to BV. ing.

【0009】図13のは図11(a)に示す横型のM
OSFETの構造をnチャネル型に置き換えたMOSF
ETの理想耐圧と理想オン抵抗との関係を示す。このn
チャネル型のMOSFETにおいて、オン時にドリフト
電流の流れる方向は横方向であるのに対し、オフ時に空
乏層の延びる方向はウェル端から横方向ではなく実質的
にウェル底から縦方向(上方向)の方が早い。縦方向に
延びる空乏層で高耐圧を得るには、低濃度ドレイン領域
14とチャネル拡散層3とのpn接合面(ウェル底)か
ら低濃度ドレイン層14の表面(ウェル表面)まで空乏
化されなければならない。従って、低濃度ドレイン領域
14のネットのドーピング量の最大値は、 SD =Ec ε0 εSi/q (4) に制限される。低濃度ドレイン領域14の横方向の長さ
をLとしたとき、理想耐圧BVは、 BV=Ec Lβ (5) となる。ただし、βは未知の係数(0<β<1)であ
る。また、単位面積当たりの理想オン抵抗Rは、 R=L2 /μqSD (6) で近似的に求まる。従って、(5),(6)式からLを
消去して(4)式を代入すると、 R=BV2 /β2 c 3 ε0 εSiμ (7) 図13のは図11(b)に示す横型の2重拡散型のn
チャネルMOSFETの構造の理想耐圧と理想オン抵抗
との関係を示す。図11(b)の構造においては、図1
1(a)の構造にp型トップ層24が設けられており、
上下両側から延びる空乏層により低濃度ドレイン層22
がピンチ的に早期空乏化する。低濃度ドレイン領域22
のネットドーピング量SD は図11(a)のそれに比し
て2倍程度まで高めることが可能である。 SD =2Ec ε0 εSi/q (8) かかる場合の理想オン抵抗Rと理想耐圧BVとの関係
は、 R=BV2 /2β2 c 3 ε0 εSiμ (9) となる。
FIG. 13 shows a horizontal M shown in FIG. 11 (a).
MOSF with OSFET structure replaced with n-channel type
The relationship between the ideal breakdown voltage of ET and the ideal on-resistance is shown. This n
In a channel-type MOSFET, a drift current flows in a lateral direction when turned on, whereas a depletion layer extends in a turned-off direction not substantially from a well end but in a vertical direction (upward direction) from a well bottom. It's faster. In order to obtain a high breakdown voltage in the depletion layer extending in the vertical direction, the depletion layer must be depleted from the pn junction surface (well bottom) between the low concentration drain region 14 and the channel diffusion layer 3 to the surface of the low concentration drain layer 14 (well surface). I have to. Therefore, the maximum value of the net doping amount of the lightly doped drain region 14 is limited to S D = E c ε 0 ε Si / q (4). When the horizontal length of the low concentration drain region 14 is L, the ideal breakdown voltage BV is BV = E c Lβ (5). However, β is an unknown coefficient (0 <β <1). Further, the ideal on-resistance R per unit area is approximately obtained by R = L 2 / μqS D (6). Therefore, when L is deleted from the equations (5) and (6) and the equation (4) is substituted, R = BV 2 / β 2 E c 3 ε 0 ε Si μ (7) FIG. ) Horizontal double-diffused n shown in FIG.
The relationship between the ideal breakdown voltage and the ideal on-resistance of the structure of the channel MOSFET is shown. In the structure of FIG. 11B, the structure of FIG.
The p-type top layer 24 is provided in the structure of 1 (a),
The low concentration drain layer 22 is formed by the depletion layers extending from both upper and lower sides.
Will be depleted early in a pinch. Low concentration drain region 22
The net doping amount S D can be increased to about twice as much as that in FIG. S D = 2E c ε 0 ε Si / q (8) In this case, the relationship between the ideal on-resistance R and the ideal breakdown voltage BV is R = BV 2 / 2β 2 E c 3 ε 0 ε Si μ (9) .

【0010】図13のはに比べオン抵抗と耐圧のト
レードオフ関係が多少改善されているものの、高々2倍
の濃度にまでしか設定することができず、半導体素子の
電流容量と耐圧の設計自由度は依然として、低いものと
なっている。
Although the trade-off relationship between the on-resistance and the withstand voltage is slightly improved as compared with that of FIG. 13, the concentration can be set to at most twice and the current capacity and withstand voltage of the semiconductor element can be freely designed. The degree is still low.

【0011】そこで、上記問題点に鑑み、本発明の第1
の課題は、ドリフト領域の構造を改善することにより、
オン抵抗と耐圧とのトレードオフ関係を大幅に緩和させ
て、高耐圧でありながら、オン抵抗の低減化による電流
容量の増大が可能の半導体装置を提供することにある。
本発明の第2の課題をその半導体装置を量産性良く製造
し得る製造方法を提供することにある。
In view of the above problems, the first aspect of the present invention
The challenge is to improve the structure of the drift region,
An object of the present invention is to provide a semiconductor device in which the trade-off relationship between the on-resistance and the withstand voltage is significantly relaxed, and the withstand voltage is high, but the current capacity can be increased by reducing the on-resistance.
A second object of the present invention is to provide a manufacturing method capable of manufacturing the semiconductor device with high mass productivity.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するた
め、本発明の講じた手段は、例えばMOSFETの低濃
度ドレイン領域の如く、オン状態でドリフト電流を流す
と共にオフ状態で空乏化するドリフト領域を有する半導
体装置において、そのドリフト領域を図1に模式的に示
す如く、層状構造,繊維状構造ないし蜂の巣構造等の並
行分割構造とすると共に、第1導電型分割ドリフト経路
域1の相隣る同士の側面間(境界)に介在してpn接合
分離する第2導電型仕切領域2を設けたところにある。
In order to solve the above-mentioned problems, the means taken by the present invention is, for example, a low-concentration drain region of a MOSFET, in which a drift current flows in an on state and is depleted in an off state. In the semiconductor device having the above, the drift region thereof has a parallel division structure such as a layered structure, a fibrous structure or a honeycomb structure as shown schematically in FIG. 1, and is adjacent to the first conductivity type division drift path region 1. The second conductivity type partition region 2 is provided between the side surfaces (borders) of the two to separate the pn junction.

【0013】即ち、図1(a)に示す如く、ドリフト領
域は、少なくとも端部において互いに並列接続する2枚
以上のプレート状の第1導電型(例えばn型)分割ドリ
フト経路域1を持つ層状構造の並行ドリフト経路群(分
割ドリフト経路集合体)100と、分割ドリフト経路域
1,1間に介在してpn接合分離するプレート状の第2
導電型(例えばp型)仕切領域2とを有して成る。複数
枚の第2導電型仕切領域2は少なくとも端部において互
いに並列接続している。
That is, as shown in FIG. 1A, the drift region is a layered structure having two or more plate-shaped first conductivity type (for example, n-type) divided drift route regions 1 which are connected in parallel to each other at least at their ends. A parallel drift path group (divided drift path assembly) 100 having a structure and a plate-shaped second intervening between the divided drift path regions 1 and 1 for separating a pn junction.
And a conductive type (for example, p type) partition region 2. The plurality of second-conductivity-type partition regions 2 are connected in parallel to each other at least at their ends.

【0014】また、図1(b)に示すドリフト領域の構
造は繊維状構造であり、筋状の第1導電型(n型)分割
ドリフト経路域1と、筋状の第2導電型(p型)仕切領
域2とは集合体断面で市松状に配置されている。
The structure of the drift region shown in FIG. 1 (b) is a fibrous structure, and has a striped first conductivity type (n type) divided drift path region 1 and a striped second conductivity type (p). The (type) partition area 2 is arranged in a checkered pattern in the cross section of the assembly.

【0015】更に、図1(c)に示す第1導電型(n
型)分割ドリフト経路域1は四隅に連結部位1aを有し
ている。
Further, as shown in FIG. 1C, the first conductivity type (n
The (type) divided drift path region 1 has connecting portions 1a at four corners.

【0016】図1(a)で良く判るように、並行ドリフ
ト経路群100の最側端(最上端又は最下端)の第1導
電型分割ドリフト経路域1の外側に沿ってpn接合分離
する第2導電型側端領域2aを設けても良い。
As can be seen clearly in FIG. 1A, a pn junction is separated along the outside of the first conductivity type split drift path region 1 at the outermost end (top end or bottom end) of the parallel drift path group 100. The two conductivity type side end region 2a may be provided.

【0017】半導体装置がオン状態のときは、複数の並
列接続した分割ドリフト経路域1,1を介してドリフト
電流が流れるが、他方、オフ状態のときは第1導電型分
割ドリフト経路域1と第2導電型仕切領域2とのpn接
合からそれぞれ空乏層が第1導電型分割ドリフト経路1
内に広がってこれが空乏化される。一筋の第2導電型仕
切領域2の両側面から空乏端が側方へ広がるので空乏化
が非常に早まる。また第2導電型仕切領域2も同時に空
乏化される。このため、半導体装置は高耐圧となり、n
型分割ドリフト経路域1の不純物濃度を高めることが可
能であるので、オン抵抗の低減を実現できる。特に、本
発明では、一筋の第2導電型仕切領域2の両側面から隣
接する第1導電型分割ドリフト経路域1,1の双方へ空
乏端が進入するようになっており、双方へ広がる空乏端
が分割ドリフト経路域1,1へ有効的に作用しているの
で、空乏層形成のための第2導電型仕切領域2の総占有
幅を半減でき、その分、第1導電型分割ドリフト経路域
1の断面積の拡大を図ることができ、従前に比してオン
抵抗が頗る低減する。第2導電型仕切領域2の占有幅は
僅少であることが好ましい。また、第2導電型仕切領域
2の不純物濃度は低い方が望ましい。第1導電型分割ド
リフト経路域1の単位面積当たりの本数(分割数)を増
やすにつれ、オン抵抗と耐圧とのトレードオフ関係を大
幅に緩和できる。
When the semiconductor device is in the ON state, the drift current flows through the plurality of divided drift path regions 1, 1 connected in parallel, while when the semiconductor device is in the OFF state, the drift current flows through the first conductivity type divided drift path region 1. From the pn junction with the second conductivity type partition region 2, the depletion layer is formed as the first conductivity type divided drift path 1 respectively.
It spreads inside and is depleted. Since the depletion edge spreads laterally from both side surfaces of the linear second-conductivity-type partition region 2, depletion becomes very fast. The second conductivity type partition region 2 is also depleted at the same time. Therefore, the semiconductor device has a high breakdown voltage, and n
Since it is possible to increase the impurity concentration in the mold division drift path region 1, it is possible to reduce the on-resistance. In particular, in the present invention, the depletion end is adapted to enter both of the adjacent first conductivity type divided drift path regions 1, 1 from both side surfaces of the second conductivity type partition region 2, and the depletion that spreads to both sides. Since the end effectively acts on the divided drift route regions 1 and 1, the total occupied width of the second conductivity type partition region 2 for forming the depletion layer can be halved, and the first conductivity type divided drift route can be reduced accordingly. The cross-sectional area of the area 1 can be increased, and the on-resistance can be significantly reduced compared to before. The occupying width of the second conductivity type partition region 2 is preferably small. Further, it is desirable that the impurity concentration of the second conductivity type partition region 2 is low. As the number of the first conductivity type divided drift path regions 1 per unit area (the number of divisions) is increased, the trade-off relationship between the on-resistance and the breakdown voltage can be significantly eased.

【0018】本発明において一筋の第1導電型分割ドリ
フト経路域1に関する理想オン抵抗rと理想耐圧BVと
のトレードオフ関係式は、第2導電型仕切領域2の幅を
無限小と仮定すれば、一筋の理想オン抵抗rは(9)式
の理想オン抵抗RのN倍に相当しているので、 r=NR=BV2 /2β2 c 3 ε0 εSiμ (10) であり、並行ドリフト経路群全体の理想オン抵抗Rと理
想耐圧BVの関係は、 R=BV2 /2Nβ2 c 3 ε0 εSiμ (11) となる。従って、ドリフト領域の分割数Nを多ければ多
い程、オン抵抗の頗る低減した半導体装置を実現できる
ことが判る。
In the present invention, the trade-off relational expression between the ideal on-resistance r and the ideal withstand voltage BV for the first split type drift path region 1 of the first conductivity type is that the width of the partition region 2 of the second conductivity type is infinitely small. Since the ideal on-resistance r of one line corresponds to N times the ideal on-resistance R of the equation (9), r = NR = BV 2 / 2β 2 E c 3 ε 0 ε Si μ (10) relationship of the ideal on the whole parallel drift path group resistor R and the ideal breakdown voltage BV becomes R = BV 2 / 2Nβ 2 E c 3 ε 0 ε Si μ (11). Therefore, it is understood that the larger the number of divisions N of the drift region, the more it is possible to realize a semiconductor device with significantly reduced on-resistance.

【0019】SOIや半導体層上に作り込んだ横型半導
体装置のように、半導体層又はその上の絶縁膜の上に形
成され、オン状態で横方向にドリフト電流を流すと共に
オフ状態で空乏化するドリフト領域を有する横型の半導
体装置において、上記ドリフト領域としては、短冊状の
第1導電型分割ドリフト経路域と短冊状の第2導電型仕
切領域とが平面上で交互に繰り返し配列されたストライ
プ状並行構造とすることができる。このような平面上の
ストライプ状のpnの繰り返し構造は1回のフォトリソ
グラフィーで形成可能であるので、製造プロセスの簡易
化により素子の低コスト化も図ることができる。
Like a lateral semiconductor device formed on an SOI or a semiconductor layer, it is formed on a semiconductor layer or an insulating film thereon, and a drift current flows in the lateral direction in the ON state and depletion occurs in the OFF state. In a lateral semiconductor device having a drift region, the drift region has a striped pattern in which strip-shaped first conductivity type divided drift path regions and strip-shaped second conductivity type partition regions are alternately and repeatedly arranged on a plane. It can be a parallel structure. Since such a stripe-shaped repeating structure of pn on a plane can be formed by one-time photolithography, the cost of the device can be reduced by simplifying the manufacturing process.

【0020】また、横型半導体装置におけるドリフト領
域の別の構造としては、層状の第1導電型分割ドリフト
経路域と層状の第2導電型仕切領域とを交互に繰り返し
積み重ねて積層された重畳並行構造とすることができ
る。かかる構造では、MOCVD(有機金属気相分解結
晶成長法)やMBE(分子線結晶成長法)を用いると、
層厚の微細化が可能であるので、オン抵抗と耐圧のトレ
ードオフ関係を大幅に緩和できる。
Another structure of the drift region in the lateral semiconductor device is a superposed parallel structure in which a layered first conductivity type divided drift path region and a layered second conductivity type partition region are alternately stacked repeatedly. Can be In such a structure, when MOCVD (metal organic chemical vapor deposition crystal growth method) or MBE (molecular beam crystal growth method) is used,
Since the layer thickness can be reduced, the trade-off relationship between on-resistance and withstand voltage can be significantly eased.

【0021】なお、重畳並行構造にストライプ状並行構
造を加味した構造でも良い。
A structure in which a striped parallel structure is added to the overlapping parallel structure may be used.

【0022】N=2の場合、並行ドリフト経路群として
は少なくとも2筋の分割ドリフト経路域から成る。本発
明におけるこの最も簡素な横型半導体装置のドリフト領
域としては、第2導電型半導体層上に形成された第1の
第1導電型分割ドリフト経路域と、この第1の第1導電
型分割ドリフト経路域の上に形成されたウェル状の第2
導電型仕切領域と、この第2導電型仕切領域の表層に形
成され、第1の第1導電型分割ドリフト経路に並列接続
した第2の第1導電型分割ドリフト経路域とを有して成
る。第2の第1導電型分割ドリフト経路域が並列に接続
している分、オン抵抗の低減を図ることができる。
When N = 2, the parallel drift path group is composed of at least two split drift path regions. As the drift region of the simplest lateral semiconductor device of the present invention, the first first-conductivity-type split drift path region formed on the second-conductivity-type semiconductor layer and the first first-conductivity-type split drift region are provided. Second well-like formed on the path area
And a second conductivity type partitioning region and a second first conductivity type partitioning drift route region formed in a surface layer of the second conductivity type partitioning region and connected in parallel to the first first conductivity type partitioning drift route. . Since the second first-conductivity-type split drift path regions are connected in parallel, the on-resistance can be reduced.

【0023】そして、このような最も簡素な横型半導体
装置の製造方法としては、シリコンのp型半導体層上に
リンをイオン注入して熱拡散により第1のn型分割ドリ
フト経路域を形成した後、この第1のn型分割ドリフト
経路域上に硼素を選択的にイオン注入して熱拡散により
ウェル状のp型仕切領域を形成し、しかる後、熱酸化処
理を施し、シリコン表面でのリンの偏析による高濃度化
と硼素の酸化膜中への偏析による低濃度化を利用して表
層に第2のn型分割ドリフト経路域を形成して成ること
を特徴とする。
As the simplest method of manufacturing the lateral semiconductor device, phosphorus is ion-implanted into the p-type semiconductor layer of silicon and the first n-type split drift path region is formed by thermal diffusion. , Boron is selectively ion-implanted on the first n-type divided drift path region to form a well-shaped p-type partition region by thermal diffusion, and then thermal oxidation treatment is performed to remove phosphorus on the silicon surface. The second n-type split drift path region is formed in the surface layer by utilizing the high concentration due to the segregation of B and the low concentration due to the segregation of boron in the oxide film.

【0024】第2のn型分割ドリフト経路域の上層には
逆導電型層が隣接していないため、第2のn型分割ドリ
フト経路域を空乏化し易くするには薄層であればある程
よい。本発明の製造方法によれば、不純物のドーピング
工程を排除し、熱酸化処理工程だけで第2のn型分割ド
リフト経路域を形成できるので、工程数の削減に寄与
し、実用的な量産化が可能となる。
Since the opposite conductivity type layer is not adjacent to the upper layer of the second n-type split drift path region, a thinner layer is better for facilitating depletion of the second n-type split drift path region. . According to the manufacturing method of the present invention, the impurity doping step can be eliminated and the second n-type split drift path region can be formed only by the thermal oxidation processing step, which contributes to the reduction in the number of steps and practical mass production. Is possible.

【0025】更に、トレンチゲート等を用いた半導体装
置やIGBT等の縦型半導体装置のように、半導体層の
上に形成され、オン状態で縦方向にドリフト電流を流す
と共にオフ状態で空乏化するドリフト領域を有する半導
体装置において、ドリフト領域としては、縦方向に層状
の第1導電型分割ドリフト経路域と縦方向に層状の第2
導電型仕切領域とを交互に繰り返し隣接した横並び並行
構造とすることができる。かかる構造の製造方法では深
い溝を形成するエッチング工程を必要とするが、縦型構
造でもオン抵抗と耐圧のトレードオフ関係を大幅に緩和
できる。
Further, like a semiconductor device using a trench gate or the like, or a vertical semiconductor device such as an IGBT, it is formed on a semiconductor layer and a drift current flows in the vertical direction in the ON state and is depleted in the OFF state. In a semiconductor device having a drift region, the drift region includes a vertically-layered first conductivity type divided drift path region and a vertically-layered second drift type region.
A lateral side-by-side parallel structure can be formed by alternately repeating the conductive type partition regions. The manufacturing method of such a structure requires an etching step for forming a deep groove, but even in the vertical structure, the trade-off relationship between the on-resistance and the withstand voltage can be significantly relaxed.

【0026】[0026]

【発明の実施の形態】次に、本発明の実施形態を添付図
面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings.

【0027】〔実施形態1〕図2(a)は本発明の実施
形態1に係る横型構造のSOI−MOSFETを示す平
面図、図2(b)は図2(a)中のA−A′線で切断し
た状態を示す切断図、図2(c)は図2(a)中のB−
B′線で切断した状態を示す切断図である。
[Embodiment 1] FIG. 2A is a plan view showing an SOI-MOSFET having a lateral structure according to Embodiment 1 of the present invention, and FIG. 2B is AA 'in FIG. 2A. 2C is a sectional view showing a state of being cut by a line, and FIG. 2C is B- in FIG.
It is a cutting diagram which shows the state cut | disconnected by the B'line.

【0028】本例のSOI−MOSFETの構造は、図
10に示す構造と同様に、nチャネルMOSFETのオ
フセット・ゲート構造であり、半導体基体5上の絶縁膜
6の上に形成されたp型のチャネル拡散領域7と、チャ
ネル拡散領域7の上にゲート絶縁膜10を介して形成さ
れたフィールドプレート付きゲート電極11と、チャネ
ル拡散領域7のうちゲート電極11の一端側に形成され
たn+ 型のソース領域8と、ゲート電極11の他端から
離間した位置に形成されたn+ 型のドレイン領域9と、
ドレイン・ゲート間に延在するドレイン・ドリフト領域
190と、このドレイン・ドリフト領域190上に形成
された厚い絶縁膜12とを有する。
Similar to the structure shown in FIG. 10, the structure of the SOI-MOSFET of this example is an offset gate structure of an n-channel MOSFET, and is of a p-type formed on the insulating film 6 on the semiconductor substrate 5. A channel diffusion region 7, a gate electrode 11 with a field plate formed on the channel diffusion region 7 via a gate insulating film 10, and an n + type formed on one end side of the gate electrode 11 in the channel diffusion region 7. Source region 8 and an n + -type drain region 9 formed at a position separated from the other end of the gate electrode 11,
It has a drain drift region 190 extending between the drain and the gate, and a thick insulating film 12 formed on the drain drift region 190.

【0029】本例におけるドレイン・ドリフト領域19
0は、短冊状のn型分割ドリフト経路域1と短冊状のp
型仕切領域2とが平面上で交互に繰り返し配列されたス
トライプ状並行構造となっている。複数のn型分割ドリ
フト経路域1の一方端はp型のチャネル拡散領域7にp
n接合し、それらの他端はn+ 型のドレイン領域9に接
続しており、n+ 型のドレイン領域9側から分岐して並
列接続のドリフト経路群100を形成している。並行ド
リフト経路群100の最側端の分割ドリフト経路域1の
外側にはストライプ状のp型側端領域2aが設けられて
おり、すべての分割ドリフト経路域1が側面に沿ってp
型半導体領域2(2a)に挟まれている。また、複数の
p型仕切領域2の一方端はp型のチャネル拡散領域7に
接続し、それらの他端はn+ 型のドレイン領域9にpn
接合しており、p型のチャネル拡散領域7側から分岐し
て並列接続となっている。
The drain / drift region 19 in this example
0 is a strip-shaped n-type split drift path region 1 and a strip-shaped p.
It has a stripe-shaped parallel structure in which the mold partition regions 2 are alternately and repeatedly arranged on a plane. One end of each of the plurality of n-type divided drift path regions 1 is provided in the p-type channel diffusion region 7 with p.
and n junction, the other ends thereof are formed an n + -type are connected to the drain region 9 of, n + -type drift path group 100 connected in parallel branched from the drain region 9 side. A stripe-shaped p-type side end region 2a is provided outside the divided drift route region 1 at the outermost end of the parallel drift route group 100, and all the divided drift route regions 1 are p along the side surface.
It is sandwiched between the type semiconductor regions 2 (2a). One end of each of the plurality of p-type partition regions 2 is connected to the p-type channel diffusion region 7, and the other end thereof is connected to the n + -type drain region 9 by pn.
They are joined and branched in parallel from the p-type channel diffusion region 7 side.

【0030】MOSFETがオン状態のときは、ゲート
絶縁膜10直下のチャネル反転層13を介してn+ 型の
ソース領域8から複数のn型分割ドリフト経路域1にキ
ャリア(電子)が流れ込み、ドレイン・ソース間電圧に
よる電界でドリフト電流が流れる。他方、オフ状態のと
きはゲート絶縁膜10直下のチャネル反転層13が消失
し、ドレイン・ソース間電圧により、n型分割ドリフト
経路域1とp型のチャネル拡散領域7とのpn接合J
a,n型分割ドリフト経路域1とp型仕切領域2とのp
n接合Jbからそれぞれ空乏層がn型分割ドリフト経路
域1内に広がってこれが空乏化される。pn接合Jaか
らの空乏端はn型分割ドリフト経路域1内の経路長さ方
向に広がるが、pn接合Jbからの空乏端eはn型分割
ドリフト経路域1内の経路幅方向に広がり、しかも両側
面から空乏端が広がるので空乏化が非常に早まる。また
p型仕切領域2も同時に空乏化される。このため、電界
強度が緩和され、高耐圧となり、その分、n型分割ドリ
フト経路域1の不純物濃度を高めることが可能であるの
で、オン抵抗が低減する。特に、本例では、p型仕切領
域2の両側面から隣接するn型分割ドリフト経路域1,
1の双方へ空乏端eが進入するようになっているので、
空乏層形成のためのp型仕切領域2の総占有幅を半減で
き、その分、n型分割ドリフト経路域1の断面積の拡大
を図ることができ、従前に比してオン抵抗が低減する。
n型分割ドリフト経路域1の単位面積当たりの本数(分
割数)Nを増やすにつれ、オン抵抗と耐圧とのトレード
オフ関係を大幅に緩和できる。2本より3本以上の方が
顕著となる。なお、p型仕切領域2の占有幅は僅少であ
ることが好ましい。
When the MOSFET is in the ON state, carriers (electrons) flow from the n + type source region 8 into the plurality of n type divided drift path regions 1 through the channel inversion layer 13 directly below the gate insulating film 10 and the drain.・ Drift current flows due to the electric field due to the voltage between the sources. On the other hand, in the off state, the channel inversion layer 13 immediately below the gate insulating film 10 disappears, and the pn junction J between the n-type split drift route region 1 and the p-type channel diffusion region 7 is caused by the drain-source voltage.
p of a, n-type divided drift path region 1 and p-type partition region 2
A depletion layer spreads from the n-junction Jb into the n-type split drift path region 1 and is depleted. The depletion edge from the pn junction Ja spreads in the path length direction in the n-type split drift path area 1, whereas the depletion edge e from the pn junction Jb spreads in the path width direction in the n-type split drift path area 1. Since the depletion edge spreads from both sides, depletion becomes very fast. The p-type partition region 2 is also depleted at the same time. Therefore, the electric field strength is relaxed and the breakdown voltage becomes high, and the impurity concentration in the n-type split drift path region 1 can be increased correspondingly, so that the on-resistance is reduced. In particular, in this example, the n-type divided drift path regions 1, which are adjacent from both side surfaces of the p-type partition region 2,
Since the depletion edge e enters into both of 1,
The total occupied width of the p-type partition region 2 for forming the depletion layer can be halved, and the cross-sectional area of the n-type divided drift route region 1 can be increased by that amount, and the on-resistance is reduced as compared with the conventional case. .
As the number N (division number) per unit area of the n-type divided drift route region 1 is increased, the trade-off relationship between the on-resistance and the breakdown voltage can be significantly eased. Three or more are more prominent than two. The occupied width of the p-type partition region 2 is preferably small.

【0031】ここで、理想耐圧BVを例えば100 Vと仮
定し、n型分割ドリフト経路域1の不純物濃度ND =3
×1015(cm-3),シリコンの最大電界強度Ec =3×10
5 (V/cm),電子の移動度μ=1000(cm2 /V・sec
),真空の誘電率ε0 =8.8×10-12 (C/V・m),
シリコンの比誘電率εSi=12,単位電荷q=1.6 ×10
-19 (C)とする。図10に示す低濃度ドレイン領域9
0では、長さ6.6 μm,厚さ1μm のとき、理想オン抵抗
Rは9.1 (mオーム・cm2 )である。これに対して本例
では、n型分割ドリフト経路域1とp型仕切領域2の幅
を例えば10μm,1μm,0.1 μm の値として理想オン抵抗
Rを計算すると(β=2/3,n型分割ドリフト経路域
1とp型仕切領域の長さを5μm と仮定)、 幅10μm,のとき、7.9 (mオーム・cm2 ) 幅1μm,のとき、0.8 (mオーム・cm2 ) 幅0.1 μm,のとき、0.08(mオーム・cm2 ) となり、幅1μm 以下になると劇的な低オン抵抗化が可
能である。p型仕切領域2の幅をn型分割ドリフト経路
域1の幅よりも僅少にすれば、なおその効果が顕著とな
る。n型分割ドリフト経路域1とp型仕切領域の幅はフ
ォトリソグラフィとイオン注入により現在0.5 μm 程度
までが量産レベルの限界であるが、微細加工技術の着実
な進展により今後更なる幅寸法の縮小化が可能となるの
で、オン抵抗を顕著に低減できる。
Here, assuming that the ideal breakdown voltage BV is, for example, 100 V, the impurity concentration N D = 3 in the n-type split drift path region 1 is used.
× 10 15 (cm -3 ), maximum electric field strength of silicon E c = 3 × 10
5 (V / cm), electron mobility μ = 1000 (cm 2 / Vsec)
), Dielectric constant in vacuum ε 0 = 8.8 × 10 -12 (C / V · m),
Relative permittivity of silicon ε Si = 12, unit charge q = 1.6 × 10
-19 (C) Low concentration drain region 9 shown in FIG.
At 0, when the length is 6.6 μm and the thickness is 1 μm, the ideal on-resistance R is 9.1 (m ohm · cm 2 ). On the other hand, in this example, when the widths of the n-type split drift path region 1 and the p-type partition region 2 are values of 10 μm, 1 μm, and 0.1 μm, the ideal on-resistance R is calculated (β = 2/3, n-type When the length of the split drift path area 1 and the p-type partition area is 5 μm), and the width is 10 μm, it is 7.9 (m ohm · cm 2 ), and the width is 1 μm, 0.8 (m ohm · cm 2 ) width 0.1 μm ,, it becomes 0.08 (m ohm · cm 2 ), and when the width becomes 1 μm or less, it is possible to dramatically lower the on-resistance. If the width of the p-type partition region 2 is made smaller than the width of the n-type divided drift path region 1, the effect becomes more remarkable. The widths of the n-type split drift path region 1 and the p-type partition region are currently limited to about 0.5 μm by photolithography and ion implantation at the mass production level limit, but due to steady progress in microfabrication technology, the width will be further reduced in the future. Therefore, the on-resistance can be significantly reduced.

【0032】特に、本例のドリフト領域の構造は、平面
上のストライプ状のpnの繰り返し構造であるため、1
回のフォトリソグラフィーで形成可能であるので、製造
プロセスの簡易化により素子の低コスト化も図ることが
できる。
In particular, since the structure of the drift region of this example is a repeating structure of stripe-shaped pn on a plane,
Since it can be formed by one-time photolithography, the cost of the device can be reduced by simplifying the manufacturing process.

【0033】〔実施形態2〕図3(a)は本発明の実施
形態2に係る2重拡散型nチャネルMOSFETを示す
平面図、図3(b)は図3(a)中のA−A′線で切断
した状態を示す切断図、図3(c)は図3(a)中のB
−B′線で切断した状態を示す切断図である。
[Embodiment 2] FIG. 3A is a plan view showing a double diffusion type n-channel MOSFET according to Embodiment 2 of the present invention, and FIG. 3B is an AA line in FIG. 3A. A cutaway view showing a state cut along the line ', FIG. 3C shows B in FIG. 3A.
It is a sectional view showing a state of being cut along line -B '.

【0034】本例の2重拡散型nチャネルMOSFET
の構造は図11(b)に示す構造を改善したものであ
り、p- 型又はn- 型の半導体層4上に形成されたドレ
イン・ドリフト領域122と、ドレイン・ドリフト領域
122の上にゲート絶縁膜10を介して形成されたフィ
ールドプレート付きゲート電極11と、ドレイン・ドリ
フト領域122のうちゲート電極11の一端側に形成さ
れたウェル状のp型チャネル拡散領域17と、p型チャ
ネル拡散領域17内にウェル状に形成されたn+型のソ
ース領域8と、ゲート電極11に離間したn+ 型ドレイ
ン領域9と、ドレイン・ドリフト領域122上に形成さ
れた厚い絶縁膜12とを有する。
Double-diffused n-channel MOSFET of this example
11B is an improvement of the structure shown in FIG. 11B, and includes a drain / drift region 122 formed on the p type or n type semiconductor layer 4 and a gate on the drain / drift region 122. A gate electrode 11 with a field plate formed via an insulating film 10, a well-shaped p-type channel diffusion region 17 formed on one end side of the gate electrode 11 in the drain / drift region 122, and a p-type channel diffusion region. An n + type source region 8 formed in a well shape in 17; an n + type drain region 9 separated from the gate electrode 11; and a thick insulating film 12 formed on the drain / drift region 122.

【0035】本例におけるドレイン・ドリフト領域12
2も、図2に示す実施例1と同様に、短冊状のn型分割
ドリフト経路域1と短冊状のp型仕切領域2とが平面上
で交互に繰り返し配列されたストライプ状の並行構造と
なっている。そして、複数のn型分割ドリフト経路域1
の一方端はp型のチャネル拡散領域17にpn接合し、
それらの他端はn+ 型のドレイン領域9に接続してお
り、n+ 型のドレイン9側から分岐して並列接続の並行
ドリフト経路群100を形成している。並行ドリフト経
路群100の最側端の分割ドリフト経路域1の外側には
これを挟み込むためのp型側端領域2aが設けられてお
り、すべての分割ドリフト経路域1が側面に沿ってp型
領域2(2a)に挟まれている。また、複数のp型仕切
領域2の一方端はp型のチャネル拡散領域7に接続し、
それらの他端はn+ 型のドレイン領域9にpn接合して
おり、p型のチャネル拡散領域7側から分岐して並列接
続となっている。
Drain / drift region 12 in this example
2 also has a striped parallel structure in which strip-shaped n-type divided drift path regions 1 and strip-shaped p-type partition regions 2 are alternately and repeatedly arranged on a plane, as in Example 1 shown in FIG. Has become. And a plurality of n-type split drift path regions 1
One end is pn-junctioned to the p-type channel diffusion region 17,
The other ends thereof are connected to the n + type drain region 9, and branch from the n + type drain 9 side to form a parallel drift path group 100 connected in parallel. A p-type side end region 2a for sandwiching the divided drift route region 1 at the outermost end of the parallel drift route group 100 is provided, and all the divided drift route regions 1 are p-type along the side surface. It is sandwiched between regions 2 (2a). Further, one end of the plurality of p-type partition regions 2 is connected to the p-type channel diffusion region 7,
The other ends thereof are pn-junctioned with the n + type drain region 9 and branched from the side of the p type channel diffusion region 7 to be connected in parallel.

【0036】本例においても、オフ状態のときは、pn
接合Jbからの空乏端がn型分割ドリフト経路域1内の
経路幅方向に広がり、しかも両側面から空乏端が広がる
ので空乏化が非常に早まる。また同時にp型仕切領域2
も空乏化される。このため、実施例1と同様に、高耐圧
となり、n型分割ドリフト経路域1の不純物濃度を高め
ることが可能であるので、オン抵抗の低減を実現でき
る。
Also in the present example, when in the off state, pn
The depletion end from the junction Jb spreads in the path width direction in the n-type split drift path region 1, and further, the depletion ends spread from both side surfaces, so that depletion becomes very fast. At the same time, the p-type partition area 2
Is also depleted. Therefore, similarly to the first embodiment, the breakdown voltage is high and the impurity concentration in the n-type divided drift path region 1 can be increased, so that the on-resistance can be reduced.

【0037】ここで、図11(b)に示す従来構造と理
想耐圧100 Vで比較してみると、図11(b)に示す従
来構造ではオン抵抗が約0.5 (mオーム・cm2 )である
のに対して、本例の構造では実施例1と同様に分割ドリ
フト経路域1とp型仕切領域2の厚さが1μm,幅が0.
5 μmであるとき、オン抵抗が0.4 (mオーム・cm2
である。分割ドリフト経路域1とp型仕切領域2の幅を
更に僅少化することによりオン抵抗の大幅低減が可能で
ある。なお、分割ドリフト経路域1とp型仕切領域2の
厚さを厚くすることで、分割ドリフト経路1の抵抗断面
積を大きくしてオン抵抗の低減を図ることができる。例
えば10μmにすればオン抵抗は1/10、100 μmにすれ
ばオン抵抗は1/100 にすることができる。このような
厚い領域のドーピングのためには、同じ部位に複数の
(若しくは連続的に異なる)エネルギーで不純物イオン
注入を行えば良い。
Here, comparing the conventional structure shown in FIG. 11B with an ideal withstand voltage of 100 V, the conventional structure shown in FIG. 11B has an on-resistance of about 0.5 (m ohm · cm 2 ). On the other hand, in the structure of this example, the thickness of the divided drift path region 1 and the p-type partition region 2 is 1 μm, and the width thereof is 0.
On-resistance is 0.4 (m ohm · cm 2 ) at 5 μm
It is. By further reducing the widths of the divided drift path region 1 and the p-type partition region 2, it is possible to greatly reduce the on-resistance. By increasing the thickness of the divided drift route region 1 and the p-type partition region 2, it is possible to increase the resistance cross-sectional area of the divided drift route 1 and reduce the on-resistance. For example, if it is 10 μm, the on-resistance can be 1/10, and if it is 100 μm, the on-resistance can be 1/100. In order to dope such a thick region, impurity ion implantation may be performed at the same site with a plurality of (or continuously different) energies.

【0038】〔実施形態3〕図4(a)は本発明の実施
形態3に係る横型構造のSOI−MOSFETを示す平
面図、図4(b)は図4(a)中のA−A′線で切断し
た状態を示す切断図、図4(c)は図4(a)中のB−
B′線で切断した状態を示す切断図である。
[Third Embodiment] FIG. 4A is a plan view showing an SOI-MOSFET having a lateral structure according to a third embodiment of the present invention, and FIG. 4B is a sectional view taken along the line AA 'in FIG. 4A. FIG. 4C is a cross-sectional view showing a state of being cut by a line, and B- in FIG.
It is a cutting diagram which shows the state cut | disconnected by the B'line.

【0039】本例のSOI−MOSFETの構造は、半
導体基体5上の絶縁膜6の上に形成されたp型のチャネ
ル拡散層77と、チャネル拡散層77の側壁上にゲート
絶縁膜10を介して形成されたトレンチゲート電極11
1と、トレンチゲート電極111の上縁に沿って形成さ
れたn+ 型のソース領域88と、トレンチゲート電極1
11から離間した位置に形成されたn+ 型のドレイン領
域99と、ドレイン・ゲート間に延在するドレイン・ド
リフト領域290と、このドレイン・ドリフト領域29
0上に形成された厚い絶縁膜12とを有する。
In the structure of the SOI-MOSFET of this example, the p-type channel diffusion layer 77 formed on the insulating film 6 on the semiconductor substrate 5 and the gate insulating film 10 on the side wall of the channel diffusion layer 77 are interposed. Formed trench gate electrode 11
1, an n + type source region 88 formed along the upper edge of the trench gate electrode 111, and the trench gate electrode 1
11, an n + type drain region 99 formed at a position separated from 11, a drain drift region 290 extending between the drain and the gate, and the drain drift region 29.
0, and a thick insulating film 12 formed on the surface.

【0040】本例におけるドレイン・ドリフト領域29
0は、実施形態1の場合とは異なり、プレート状のn型
分割ドリフト経路域1とプレート状のp型仕切領域2と
が交互に繰り返し積み重ねて積層された重畳並行構造と
なっている。最下位のn型分割ドリフト経路域1の真下
にはp型側端領域2aが形成されており、また最上位の
n型分割ドリフト経路域1の上にもp型側端領域2aが
形成されている。このp型側端領域2aのネットドーピ
ング量は2×1012/cm2 以下とする。複数のn型分割ド
リフト経路域1の一方端はp型のチャネル拡散層77に
pn接合し、それらの他端はn+ 型のドレイン領域99
に接続しており、n+ 型のドレイン99側から分岐して
並列接続の並行ドリフト経路群100を形成している。
また、複数のp型仕切領域2の一方端はp型のチャネル
拡散層77に接続し、それらの他端はn+ 型のドレイン
領域99にpn接合しており、p型のチャネル拡散層7
7側から分岐して並列接続となっている。
Drain / drift region 29 in this example
Different from the case of the first embodiment, 0 has a superposition parallel structure in which a plate-shaped n-type divided drift path region 1 and a plate-shaped p-type partition region 2 are alternately repeatedly stacked and laminated. A p-type side end region 2a is formed immediately below the lowest n-type split drift route region 1, and a p-type side end region 2a is also formed on the highest n-type split drift route region 1. ing. The net doping amount of the p-type side end region 2a is set to 2 × 10 12 / cm 2 or less. One end of each of the plurality of n-type divided drift path regions 1 is pn-junctioned with the p-type channel diffusion layer 77, and the other end thereof is an n + -type drain region 99.
And a parallel drift path group 100 connected in parallel is formed by branching from the n + -type drain 99 side.
Further, one end of each of the plurality of p-type partition regions 2 is connected to the p-type channel diffusion layer 77, and the other end thereof is pn-junctioned to the n + -type drain region 99.
It is branched from 7 side and connected in parallel.

【0041】この層状構造においても、理想オン抵抗は
前述の(11)式で与えられ、Nはn型分割ドリフト経
路域1の積み重ね枚数である。理想耐圧100 Vとしたと
き、従来構造(N=1)では、理想オン抵抗R=0.5
(mオーム・cm2 )であるが、本例ではN=10の場合、
R=0.05(mオーム・cm2 )となり、分割数Nに逆比例
してオン抵抗が激減する。
Also in this layered structure, the ideal on-resistance is given by the above equation (11), and N is the number of stacked n-type divided drift path regions 1. When the ideal breakdown voltage is 100 V, the conventional structure (N = 1) has an ideal on-resistance R = 0.5.
(M ohm · cm 2 ), but in this example when N = 10,
R = 0.05 (m ohm · cm 2 ), and the on-resistance is dramatically reduced in inverse proportion to the division number N.

【0042】ところで、図2及び図3に示す実施形態の
キーテクノロジーはフォトリソグラフィーとイオン注入
であったのに対し、図4に示す本例のキーテクノロジー
は、プレート状のn型分割ドリフト経路域1とプレート
状のp型仕切領域2とを交互に繰り返し積層するための
結晶成長法である。積層数を増やして行くと総厚が厚く
なり、また結晶成長に要する時間が長くなるため、不純
物の拡散による不純物分布の乱れが無視できなくなる。
理想的には、n型分割ドリフト経路域1とp型仕切領域
2を可能な限り薄く形成し、不純物分布の乱れが無視で
きる位の低温で結晶成長させることが好ましい。そのた
めには、シリコン技術で多用されているエピタキシャル
成長法よりも、ガリウム−砒素等の化合物半導体で用い
られるMOCVD(有機金属気相分解結晶成長法)やM
BE(分子線結晶成長法)が適している。これによれ
ば、層状のn型分割ドリフト経路域1と層状のp型仕切
領域2の層厚を微細化でき、オン抵抗の頗る低減が可能
となる。
By the way, while the key technologies of the embodiments shown in FIGS. 2 and 3 are photolithography and ion implantation, the key technology of the present example shown in FIG. 4 is a plate-shaped n-type divided drift path region. 1 and a plate-like p-type partition region 2 are alternately and repeatedly laminated. As the number of stacked layers is increased, the total thickness becomes thicker and the time required for crystal growth becomes longer, so that the disorder of the impurity distribution due to the diffusion of impurities cannot be ignored.
Ideally, it is preferable that the n-type split drift path region 1 and the p-type partition region 2 are formed as thin as possible, and the crystal is grown at a low temperature at which the disorder of the impurity distribution can be ignored. For that purpose, MOCVD (Metal Organic Chemical Vapor Decomposition Crystal Growth Method) and M used in compound semiconductors such as gallium-arsenic are used rather than the epitaxial growth method which is widely used in silicon technology.
BE (molecular beam crystal growth method) is suitable. According to this, the layer thickness of the layered n-type divided drift path region 1 and the layered p-type partition region 2 can be made fine, and the on-resistance can be significantly reduced.

【0043】なお、本例の場合、n型分割ドリフト経路
域1とp型仕切領域2を薄く形成し、不純物濃度を高め
ると、チャネル反転層13が形成し難くなり、チャネル
抵抗が下げ難く、結果としてオン抵抗が下げ難い。これ
を改善するためには、n型分割ドリフト経路域1とp型
仕切領域2のうちゲート絶縁膜10に接する部分を局部
的に低濃度領域とすることが有効である。
In this example, if the n-type split drift path region 1 and the p-type partition region 2 are thinly formed and the impurity concentration is increased, it becomes difficult to form the channel inversion layer 13 and it is difficult to reduce the channel resistance. As a result, it is difficult to reduce the on-resistance. In order to improve this, it is effective to locally make a portion of the n-type divided drift route region 1 and the p-type partition region 2 in contact with the gate insulating film 10 into a low concentration region.

【0044】〔実施形態4〕図5(a)は本発明の実施
形態4に係る横型構造のMOSFETを示す平面図、図
5(b)は図5(a)中のA−A′線で切断した状態を
示す切断図、図5(c)は図5(a)中のB−B′線で
切断した状態を示す切断図である。
[Fourth Embodiment] FIG. 5A is a plan view showing a lateral structure MOSFET according to a fourth embodiment of the present invention, and FIG. 5B is a line AA 'in FIG. 5A. FIG. 5C is a sectional view showing a state of being cut, and FIG. 5C is a sectional view showing a state of being cut along the line BB ′ in FIG.

【0045】本例のMOSFETの構造は、p- 型又は
- 型の半導体層4上に形成されたp型のチャネル拡散
層77と、チャネル拡散層77の側壁上にゲート絶縁膜
10を介して形成されたトレンチゲート電極111と、
トレンチゲート電極111の上縁に沿って形成されたn
+ 型のソース領域88と、トレンチゲート電極111か
ら離間した位置に形成されたn+ 型のドレイン領域99
と、ドレイン・ゲート間に延在するドレイン・ドリフト
領域290と、このドレイン・ドリフト領域290上に
形成された厚い絶縁膜12とを有する。
In the structure of the MOSFET of this example, the p-type channel diffusion layer 77 formed on the p type or n type semiconductor layer 4 and the gate insulating film 10 on the side wall of the channel diffusion layer 77 are interposed. A trench gate electrode 111 formed by
N formed along the upper edge of the trench gate electrode 111
A + type source region 88 and an n + type drain region 99 formed at a position separated from the trench gate electrode 111.
A drain drift region 290 extending between the drain and the gate, and the thick insulating film 12 formed on the drain drift region 290.

【0046】本例におけるドレイン・ドリフト領域29
0は、実施形態3の場合と同様であり、プレート状のn
型分割ドリフト経路域1とプレート状のp型仕切領域2
とが交互に繰り返し積層された並行構造となっている。
最下位のn型分割ドリフト経路域1の真下にはp型側端
領域2aが形成されており、また最上位のn型分割ドリ
フト経路域1の上にもp型側端領域2aが形成されてい
る。このp型側端領域2aのネットドーピング量は2×
1012/cm2 以下とする。複数のn型分割ドリフト経路域
1の一方端はp型のチャネル拡散層77にpn接合し、
それらの他端はn+ 型のドレイン領域99に接続してお
り、n+ 型のドレイン99側から分岐して並列接続の並
行ドリフト経路群100を形成している。また、複数の
p型仕切領域2の一方端はp型のチャネル拡散層77に
接続し、それらの他端はn+ 型のドレイン領域99にp
n接合しており、p型のチャネル拡散層77側から分岐
して並列接続となっている。
Drain / drift region 29 in this example
0 is the same as in the third embodiment, and the plate-shaped n
Mold division drift path area 1 and plate-shaped p-type partition area 2
It has a parallel structure in which and are repeatedly stacked alternately.
A p-type side end region 2a is formed immediately below the lowest n-type split drift route region 1, and a p-type side end region 2a is also formed on the highest n-type split drift route region 1. ing. The net doping amount of the p-type side end region 2a is 2 ×
10 12 / cm 2 or less. One end of each of the plurality of n-type divided drift path regions 1 is pn-junctioned with the p-type channel diffusion layer 77,
The other ends thereof are connected to the n + type drain region 99, and branch from the n + type drain 99 side to form a parallel drift path group 100 of parallel connection. Further, one end of the plurality of p-type partition regions 2 is connected to the p-type channel diffusion layer 77, and the other end thereof is connected to the n + -type drain region 99.
The n-junction is formed and branched from the side of the p-type channel diffusion layer 77 and connected in parallel.

【0047】本例は実施形態3と同様にオン抵抗の低減
と高耐圧化を図ることができる。なお、本例と図4に示
す実施形態3との関係は、図3に示す実施形態2と図2
に示す実施形態1との関係に相当している。図2の実施
形態に対する図3の実施形態と同じく、本例はSOIで
はない点で低コスト化を図ることができる。
As in the third embodiment, this example can reduce the on-resistance and increase the breakdown voltage. The relationship between this example and the third embodiment shown in FIG. 4 is the same as that of the second embodiment shown in FIG.
This corresponds to the relationship with the first embodiment shown in FIG. Similar to the embodiment of FIG. 3 with respect to the embodiment of FIG. 2, the cost can be reduced in this example because it is not SOI.

【0048】〔実施形態5〕図6(a)は本発明の実施
形態5に係る横型構造のpチャネルMOSFETを示す
断面図であり、図11(a)の改善例に相当している。
[Embodiment 5] FIG. 6A is a sectional view showing a p-channel MOSFET having a lateral structure according to Embodiment 5 of the present invention, and corresponds to an improved example of FIG. 11A.

【0049】本例の構造は、p- 型半導体層4上に形成
されたn型チャネル拡散層3と、チャネル拡散層3の上
にゲート絶縁膜10を介して形成されたフィールドプレ
ート付きゲート電極11と、チャネル拡散層3のうちゲ
ート電極11の一端側に形成されたp+ 型のソース領域
18と、ゲート電極11の他端側真下にウェル端が位置
するp型ドレイン・ドリフト領域14と、このp型ドレ
イン・ドリフト領域14の表層に形成されたn型側端領
域2bと、ゲート電極11の他端から離間した位置に形
成されたp+ 型のドレイン領域19と、p+ 型のソース
領域18に隣接するn+ 型のコンタクト領域71と、p
型ドレイン・ドリフト14上に形成された厚い絶縁膜1
2とを有する。
The structure of this example is such that the n-type channel diffusion layer 3 formed on the p type semiconductor layer 4 and the gate electrode with the field plate formed on the channel diffusion layer 3 via the gate insulating film 10. 11, a p + type source region 18 formed on one end side of the gate electrode 11 in the channel diffusion layer 3, and a p-type drain drift region 14 whose well end is located directly below the other end side of the gate electrode 11. an n-type-side end region 2b formed on the surface layer of the p-type drain drift region 14, and p + -type drain region 19 formed at a position spaced from the other end of the gate electrode 11, p + -type An n + type contact region 71 adjacent to the source region 18 and p
Thick insulating film 1 formed on the mold drain drift 14
And 2.

【0050】本例の場合、ドレイン領域の分割数は1
で、p型ドレイン・ドリフト領域14は断面上では一筋
の分割ドレイン経路域1に相当している。このp型ドレ
イン・ドリフト領域14の上のn型側端領域2bの厚さ
は空乏化を早めるため薄く形成されている。図11
(a)の構造と比べると、本例ではn型側端領域2bが
形成されており、p型ドレイン・ドリフト領域14の下
側のチャネル拡散層3からの空乏層と上側のn型側端領
域2aからの空乏層とで空乏化を促進するようにしてい
る。図11(a)のドレイン・ドリフト領域14のネッ
トドーピング量は1×1012/cm2 程度であるのに対
し、本例では約2×1012/cm2 程度と2倍になってい
る。従って、高耐圧化を実現できる分、ドレイン・ドリ
フト領域14の不純物濃度を高めることができ、低オン
抵抗化が可能である。
In this example, the number of divisions of the drain region is 1.
Thus, the p-type drain / drift region 14 corresponds to a linear divided drain path region 1 in cross section. The thickness of the n-type side end region 2b above the p-type drain / drift region 14 is formed thin in order to accelerate depletion. FIG.
Compared to the structure of (a), in this example, the n-type side end region 2b is formed, and the depletion layer from the channel diffusion layer 3 below the p-type drain / drift region 14 and the upper n-type side end are formed. The depletion layer from the region 2a promotes depletion. The net doping amount of the drain / drift region 14 in FIG. 11A is about 1 × 10 12 / cm 2 , whereas it is about 2 × 10 12 / cm 2 in this example, which is double. Therefore, the impurity concentration of the drain / drift region 14 can be increased as much as the high breakdown voltage can be realized, and the low on-resistance can be achieved.

【0051】〔実施形態6〕図6(b)は本発明の実施
形態6に係る横型構造のnチャネルMOSFETを示す
断面図であり、図11(b)の改善例に相当している。
[Sixth Embodiment] FIG. 6B is a sectional view showing an n-channel MOSFET having a lateral structure according to a sixth embodiment of the present invention, and corresponds to an improved example of FIG. 11B.

【0052】本例は2重拡散型nチャネルMOSFET
であり、p- 型半導体層4(p型側端領域2a)上に形
成されたドレイン・ドリフト領域22(第1のn型分割
ドリフト経路域1)と、ゲート絶縁膜10を介して形成
されたフィールドプレート付きゲート電極11と、ドレ
イン・ドリフト領域22のうちゲート電極11の一端側
に形成されたウェル状のp型チャネル拡散領域17と、
p型チャネル拡散領域17内にウェル状に形成されたn
+ 型のソース領域8と、ゲート電極11とこれに離間し
たn+ 型ドレイン領域9との間の表面層に形成されたp
型トップ層24(p型仕切領域2)と、p型仕切領域2
の表層に形成された第2のn型分割ドリフト経路域1
と、n+ 型のソース領域8に隣接するp+ 型のコンタク
ト領域72と、p型仕切領域2上に形成された厚い絶縁
膜12とを有する。
This example is a double diffusion type n-channel MOSFET.
And the drain / drift region 22 (first n-type divided drift route region 1) formed on the p type semiconductor layer 4 (p-type side end region 2 a) and the gate insulating film 10. A gate electrode 11 with a field plate, a well-shaped p-type channel diffusion region 17 formed on one end side of the gate electrode 11 in the drain / drift region 22,
n formed in a well shape in the p-type channel diffusion region 17
P formed on the surface layer between the + type source region 8 and the gate electrode 11 and the n + type drain region 9 separated from the gate electrode 11.
Mold top layer 24 (p-type partition region 2) and p-type partition region 2
Second n-type split drift path region 1 formed on the surface layer of
And a p + type contact region 72 adjacent to the n + type source region 8 and a thick insulating film 12 formed on the p type partition region 2.

【0053】下層のドレイン・ドリフト領域22と上層
の分割ドリフト経路域1はp型仕切領域2を挟んで並列
接続している。図11(b)の構造と比べると、本例で
はp型仕切領域2の上に分割ドリフト経路域1を並設し
た点にある。前述したように、p型仕切領域2から下層
のドレイン・ドリフト領域22と上層の分割ドリフト経
路域1の双方に空乏層が広がるようになっているため、
高耐圧化を図ることができ、その分、オン抵抗を低減さ
せることができる。図11(b)のドリフト領域22の
ネットドーピング量は2×1012/cm2 程度であるのに
対し、本例では下層のドレイン・ドリフト領域22と上
層の分割ドリフト経路域1とのドーピング量を合わせ
て、約3×1012/cm2 程度と1.5 倍にすることができ
る。本例の構造によれば、図13中のに示す理想耐圧
と理想オン抵抗とのトレードオフ関係を得ることができ
る。明らかに、従来構造に比して理想耐圧と理想オン抵
抗のトレードオフ関係を緩和できることが判明した。
The drain / drift region 22 in the lower layer and the divided drift path region 1 in the upper layer are connected in parallel with the p-type partition region 2 interposed therebetween. Compared to the structure of FIG. 11B, in this example, the divided drift path region 1 is provided in parallel on the p-type partition region 2. As described above, since the depletion layer spreads from the p-type partition region 2 to both the drain / drift region 22 in the lower layer and the divided drift path region 1 in the upper layer,
A high breakdown voltage can be achieved, and the ON resistance can be reduced accordingly. While the net doping amount of the drift region 22 in FIG. 11B is about 2 × 10 12 / cm 2, the doping amount of the drain / drift region 22 in the lower layer and the divided drift path region 1 in the upper layer is set in this example. Can be increased by a factor of 1.5, which is about 3 × 10 12 / cm 2 . According to the structure of this example, it is possible to obtain the trade-off relationship between the ideal breakdown voltage and the ideal on-resistance shown in FIG. Obviously, it was found that the trade-off relationship between the ideal breakdown voltage and the ideal on-resistance can be relaxed compared to the conventional structure.

【0054】なお、実施形態5,6の構造を得るための
製造方法としては、まず、p- 型半導体層4へのリンの
イオン注入と熱処理(熱拡散)によりn型半導体層3
(22)を形成した後、このn型半導体層3(22)表
面への選択的な硼素のイオン注入と熱処理(熱拡散)に
よってp型領域14(24)を形成し、しかる後、熱酸
化処理を施し、シリコン表面でのリンの偏析による高濃
度化と硼素の酸化膜中への偏析による低濃度化を利用し
て表層に薄いn型側端領域2b(n型分割ドリフト経路
域1)を形成する。n型側端領域2bやn型分割ドリフ
ト経路域1の上層には逆導電型層が隣接していないた
め、空乏化し易くするには薄層であればある程よい。従
って、熱酸化処理工程だけでn型側端領域2b(n型分
割ドリフト経路1)を形成できる利益は、工程数の削減
に寄与し、量産化を可能とする。
As a manufacturing method for obtaining the structures of the fifth and sixth embodiments, first, the n-type semiconductor layer 3 is formed by ion implantation of phosphorus into the p -- type semiconductor layer 4 and heat treatment (thermal diffusion).
After forming (22), a p-type region 14 (24) is formed by selective ion implantation of boron and heat treatment (thermal diffusion) on the surface of the n-type semiconductor layer 3 (22), and then thermal oxidation is performed. A thin n-type side edge region 2b (n-type split drift path region 1) is formed on the surface layer by applying a high concentration by segregation of phosphorus on the silicon surface and a low concentration by boron segregation in the oxide film after the treatment. To form. Since the opposite conductivity type layer is not adjacent to the upper layer of the n-type side end region 2b or the n-type split drift path region 1, a thin layer is preferable to facilitate depletion. Therefore, the advantage that the n-type side end region 2b (n-type divided drift path 1) can be formed only by the thermal oxidation treatment step contributes to the reduction of the number of steps and enables mass production.

【0055】実施形態5においては、n型側端領域2b
がゲート絶縁膜10とドレイン・ドリフト領域14と隔
てているが、これは上記の製造方法を用いているため、
シリコン表層に全面的にn型側端領域2bが形成されて
しまうからである。しかし、n型側端領域2bが薄けれ
ば、ゲート10直下に形成されるチャネル反転層によっ
てドレイン・ドリフト領域14が導通するので問題は起
こらない。
In the fifth embodiment, the n-type side end region 2b is formed.
Is separated from the gate insulating film 10 and the drain / drift region 14 by using the above manufacturing method.
This is because the n-type side end region 2b is entirely formed on the silicon surface layer. However, if the n-type side end region 2b is thin, no problem occurs because the drain / drift region 14 becomes conductive due to the channel inversion layer formed immediately below the gate 10.

【0056】〔実施形態7〕図7(a)は本発明の実施
形態7に係る縦型構造のトレンチゲート型のnチャネル
MOSFETを示す平面図、図7(b)は図7(a)中
のA−A′線に沿って切断した状態を示す切断図、図8
(a)は図7(a)中のB−B′線に沿って切断した状
態を示す切断図、図8(b)は図7(b)中のC−C′
線に沿って切断した状態を示す切断図、図9(a)は図
7(a)中のD−D′線に沿って切断した状態を示す切
断図、図9(b)は図7(a)中のE−E′線に沿って
切断した状態を示す切断図である。
[Seventh Embodiment] FIG. 7A is a plan view showing a trench gate type n-channel MOSFET having a vertical structure according to a seventh embodiment of the present invention, and FIG. 7B is the same as FIG. 7A. 8 is a sectional view showing a state of being cut along the line AA ′ in FIG.
7A is a sectional view showing a state of being cut along the line BB ′ in FIG. 7A, and FIG. 8B is CC ′ in FIG. 7B.
9A is a sectional view showing a state of being cut along the line, FIG. 9A is a sectional view showing a state of being cut along the line D-D ′ in FIG. 7A, and FIG. It is a cutting diagram which shows the state cut | disconnected along the EE 'line in a).

【0057】本例の構造は、裏面電極(図示せず)が導
電接触したn+ 型ドレイン層29と、この上に形成され
たドレイン・ドリフト層139と、ドレイン・ドリフト
層139の表面側に堀り込まれたトレンチ溝内にゲート
絶縁膜10を介して埋め込まれたトレンチゲート電極2
1と、ドレイン・ドリフト層139の表層にトレンチゲ
ート電極21の深さ程度に浅く形成されたp型チャネル
層27と、トレンチゲート電極21の上縁に沿って形成
されたn+ 型ソース領域18と、ゲート電極21を覆う
厚い絶縁膜12とを有する。なお、単層のn+ 型ドレイ
ン層29に代えて、n+ 型上層とp+ 型下層から成る2
層構造又はp型層とすると、n型のIGBT構造を得る
ことができる。
In the structure of this example, an n + type drain layer 29 having a back surface electrode (not shown) in conductive contact, a drain / drift layer 139 formed thereon, and a surface side of the drain / drift layer 139 are provided. Trench gate electrode 2 embedded in a trench groove dug in via a gate insulating film 10.
1, the p-type channel layer 27 formed shallowly to the surface of the drain / drift layer 139 to the depth of the trench gate electrode 21, and the n + type source region 18 formed along the upper edge of the trench gate electrode 21. And a thick insulating film 12 that covers the gate electrode 21. Instead of the single-layer n + -type drain layer 29, an n + -type upper layer and a p + -type lower layer 2
With a layered structure or a p-type layer, an n-type IGBT structure can be obtained.

【0058】本例におけるドレイン・ドリフト層139
は、図8(b)及び図9に示す如く、縦方向にプレート
状のn型分割ドリフト経路域1と縦方向にプレート状の
p型仕切領域2とが交互に繰り返し隣接した横並び並行
構造となっている。複数枚のn型分割ドリフト経路域1
の上端はp型のチャネル拡散層27にpn接合し、それ
らの下端はn+ 型のドレイン層29に接続しており、n
+ 型のドレイン層29側から分岐して並列接続の並行ド
リフト経路群100を形成している。図示されていない
が、並行ドリフト経路群100の最側端の分割ドリフト
経路域1の外側にはp型側端領域が設けられており、す
べての分割ドリフト経路域1が側面に沿ってp型仕切領
域2又はp型側端領域に挟まれている。また、複数のp
型仕切領域2の上方端はp型のチャネル拡散層27に接
続し、それらの下端はn+ 型のドレイン層29にpn接
合しており、p型のチャネル拡散層27側から分岐して
並列接続となっている。
Drain / drift layer 139 in this example
As shown in FIGS. 8B and 9, is a horizontal side-by-side parallel structure in which plate-shaped n-type divided drift path regions 1 in the vertical direction and plate-shaped p-type partition regions 2 in the vertical direction are alternately and repeatedly adjacent to each other. Has become. Multiple n-type split drift path regions 1
Has a pn-junction with the p-type channel diffusion layer 27, and their lower ends are connected with the n + -type drain layer 29.
A parallel drift path group 100 of parallel connection is formed by branching from the + type drain layer 29 side. Although not shown, a p-type side end region is provided outside the divided drift route region 1 at the outermost end of the parallel drift route group 100, and all the divided drift route regions 1 are p-type along the side surface. It is sandwiched between the partition region 2 or the p-type side end region. Also, multiple p
The upper end of the mold partition region 2 is connected to the p-type channel diffusion layer 27, and the lower end thereof is pn-junctioned to the n + -type drain layer 29. It is connected.

【0059】オフ状態のときはゲート絶縁膜10直下の
チャネル反転層13が消失し、ドレイン・ソース間電圧
により、n型分割ドリフト経路域1とp型のチャネル拡
散層27とのpn接合Ja,n型分割ドリフト経路域1
とp型仕切領域2とのpn接合Jbからそれぞれ空乏層
がn型分割ドリフト経路域1内に広がってこれが空乏化
される。pn接合Jaからの空乏端はn型分割ドリフト
経路域1内の経路長さ方向に広がるが、pn接合Jbか
らの空乏端はn型分割ドリフト経路域1内の経路幅方向
に広がり、しかも両側面から空乏端が広がるので空乏化
が非常に早まる。またp型仕切領域2も同時に空乏化さ
れる。特に、p型仕切領域2の両側面から隣接するn型
分割ドリフト経路1,1の双方へ空乏端が進入するよう
になっているので、空乏層形成のためのp型仕切領域2
の総占有幅を半減でき、その分、n型分割ドリフト経路
域1の断面積の拡大を図ることができ、従前に比してオ
ン抵抗が低減する。n型分割ドリフト経路1の単位面積
当たりの本数(分割数)を増やすにつれ、オン抵抗と耐
圧とのトレードオフ関係を大幅に緩和できる。
In the off state, the channel inversion layer 13 immediately below the gate insulating film 10 disappears, and the pn junction Ja between the n-type split drift route region 1 and the p-type channel diffusion layer 27 is caused by the drain-source voltage. n-type split drift path region 1
A depletion layer spreads from the pn junction Jb between the p-type partition region 2 and the p-type partition region 2 into the n-type split drift path region 1 and is depleted. The depletion edge from the pn junction Ja spreads in the path length direction in the n-type split drift path area 1, while the depletion edge from the pn junction Jb spreads in the path width direction in the n-type split drift path area 1 and on both sides. Since the depletion edge spreads from the surface, depletion becomes very fast. The p-type partition region 2 is also depleted at the same time. In particular, since the depletion edge enters from both side surfaces of the p-type partition region 2 to both of the adjacent n-type split drift paths 1 and 1, the p-type partition region 2 for forming the depletion layer is formed.
Can be halved, and the cross-sectional area of the n-type divided drift route region 1 can be increased correspondingly, and the on-resistance is reduced as compared with the conventional case. As the number of n-type divided drift paths 1 per unit area (the number of divisions) is increased, the trade-off relationship between the on-resistance and the breakdown voltage can be significantly eased.

【0060】理想耐圧100 VのnチャネルMOSFET
(図12に示す従来構造)での理想オン抵抗と比較する
と、従来構造の場合、図13のにより、理想オン抵抗
R=約0.6 (mオーム・cm2 )であるが、本例の場合
は、n型分割ドリフト経路域1とp型仕切領域2の深さ
(経路長)を約5μm 、β=2/3と仮定し、n型分割
ドリフト経路域1とp型仕切領域2の積層方向の厚さを
例えば10μm,1μm,0.1μm の値として計算すると、 厚さ10μm,のとき、1.6 (mオーム・cm2 ) 厚さ1μm,のとき、0.16(mオーム・cm2 ) 厚さ0.1 μm,のとき、0.016 (mオーム・cm2 ) となり、μm オーダでも劇的な低オン抵抗化が可能であ
る。p型仕切領域2の幅をn型分割ドリフト経路域1の
幅よりも僅少にすれば、なおその効果が顕著となる。n
型分割ドリフト経路域1とp型仕切領域の幅はフォトリ
ソグラフィとイオン注入により現在0.5 μm 程度までが
量産レベルの限界であるが、微細加工技術の着実な進展
により今後更なる幅寸法の縮小化が可能となるので、オ
ン抵抗を顕著に低減できる。
N-channel MOSFET with ideal breakdown voltage of 100 V
Compared with the ideal on-resistance in the conventional structure shown in FIG. 12, in the case of the conventional structure, the ideal on-resistance R is about 0.6 (m ohm · cm 2 ) according to FIG. 13, but in the case of this example, Assuming that the depth (path length) of the n-type split drift route region 1 and the p-type partition region 2 is about 5 μm and β = 2/3, the stacking direction of the n-type split drift route region 1 and the p-type partition region 2 is assumed. For example, when the thickness of 10 μm, 1 μm, and 0.1 μm is calculated, it is 1.6 (m ohm · cm 2 ) when the thickness is 10 μm, and 0.16 (m ohm · cm 2 ) is 0.1 when the thickness is 1 μm. When it is μm, it becomes 0.016 (m ohm · cm 2 ), and it is possible to dramatically lower the on-resistance even in the μm order. If the width of the p-type partition region 2 is made smaller than the width of the n-type divided drift path region 1, the effect becomes more remarkable. n
The width of the mold division drift path region 1 and the p-type partition region is currently limited to about 0.5 μm due to photolithography and ion implantation at the mass production level limit, but due to steady progress in microfabrication technology, the width will be further reduced in the future. Therefore, the on-resistance can be remarkably reduced.

【0061】本例のように、縦方向に配列したn型分割
ドリフト経路域1とp型仕切領域2の繰り返し構造は、
横型半導体構造の場合に比して製法上難しい面もある
が、例えば、ドレイン層29の上にエピタキシャル成長
によりn型層を形成した後、そのn型層をストライプ状
に間隔を空けてエッチング除去し、そのエッチング溝を
p型のエピタキシャル成長によリ埋め、不要部分を研磨
除去する方法を採用することができる。また、中性子線
や飛程の大きい高エネルギー粒子の選択的打ち込みとこ
れによる核変換を利用して選択的に逆導電型領域を深く
形成する方法も考えられる。
As in this example, the repeating structure of the n-type divided drift path region 1 and the p-type partition region 2 arranged vertically is
Although it is difficult in terms of manufacturing method compared to the case of a lateral semiconductor structure, for example, after forming an n-type layer by epitaxial growth on the drain layer 29, the n-type layer is removed by etching in stripes. It is possible to adopt a method of filling the etching groove with p-type epitaxial growth and polishing and removing the unnecessary portion. Further, a method of selectively forming a deep region of the opposite conductivity type by selectively implanting neutron rays or high-energy particles with a large range and transmutation resulting therefrom is also conceivable.

【0062】なお、本発明に係る構造は、MOSFET
のドレイン・ドリフト領域に限らず、オン時にドリフト
領域となり、オフ時に空乏化領域となる半導体領域に適
用でき、IGBT,バイポラーラトランジスタ,ダイオ
ード,JFET、サイリスタ,MESFET,HEMT
等の殆ど総ての半導体素子に適用可能である。また、導
電型は逆導電型に適宜変更できる。また、図1では並行
分割ドリフト群として層状、繊維状、網状又は蜂の巣状
を示してあるが、これに限らず、他の繰り返し形状を採
用可能である。
The structure according to the present invention is a MOSFET.
The present invention can be applied to not only the drain / drift region, but also a semiconductor region that becomes a drift region when turned on and becomes a depletion region when turned off, such as an IGBT, a bipolar transistor, a diode, a JFET, a thyristor, a MESFET, and a HEMT.
Etc. can be applied to almost all semiconductor devices. Further, the conductivity type can be appropriately changed to the opposite conductivity type. Further, in FIG. 1, a layered shape, a fibrous shape, a net shape, or a honeycomb shape is shown as the parallel division drift group, but the present invention is not limited to this, and other repeating shapes can be adopted.

【0063】[0063]

【発明の効果】以上説明したように、本発明は、オン状
態でドリフト電流を流すと共にオフ状態で空乏化する第
1導電型のドリフト領域を並行分割構造とすると共に、
第1導電型分割ドリフト経路域の相隣る同士の側面間
(境界)に介在してpn接合分離する第2導電型仕切領
域を設けたことを特徴としている。従って、次の効果を
奏する。
As described above, according to the present invention, the drift region of the first conductivity type, in which the drift current flows in the ON state and is depleted in the OFF state, has the parallel division structure.
It is characterized in that a second conductivity type partition region is provided between adjacent side surfaces (boundary) of the first conductivity type divided drift path region to separate the pn junction. Therefore, the following effects are obtained.

【0064】 一筋の第2導電型仕切領域の両側面か
ら隣接する双方の第1導電型分割ドリフト経路へ空乏端
がそれぞれ進入するようになっており、双方へ広がる空
乏端が双方の並列の分割ドリフト経路へ有効的に作用し
ているので、空乏層形成のための第2導電型仕切領域2
の総占有幅を半減でき、その分、第1導電型分割ドリフ
ト経路域の断面積の拡大を図ることができ、従前に比し
てオン抵抗が頗る低減する。第1導電型分割ドリフト経
路1の単位面積当たりの本数(分割数)を増やすにつ
れ、オン抵抗と耐圧とのトレードオフ関係を大幅に緩和
できる。
The depletion ends are adapted to enter the adjacent first conductivity type division drift paths from both side surfaces of the one second conductivity type partition region, respectively, and the depletion ends extending to both sides are divided in parallel. Since it effectively acts on the drift path, the second conductivity type partition region 2 for forming the depletion layer is formed.
Can be halved, and the cross-sectional area of the first-conductivity-type split drift path region can be increased by that amount, and the on-resistance can be significantly reduced compared to the past. As the number of the first conductivity type divided drift paths 1 per unit area (the number of divisions) is increased, the trade-off relationship between the on-resistance and the breakdown voltage can be significantly eased.

【0065】 横型半導体装置におけるドリフト領域
としては、短冊状の第1導電型分割ドリフト経路域と短
冊状の第2導電型仕切領域とが平面上で交互に繰り返し
配列されたストライプ状並行構造とすることができる。
平面上のストライプ状のpnの繰り返し構造は1回のフ
ォトリソグラフィーで形成可能であるので、製造プロセ
スの簡易化により半導体装置の低コスト化も図ることが
できる。
The drift region in the lateral semiconductor device has a striped parallel structure in which strip-shaped first-conductivity-type divided drift path regions and strip-shaped second-conductivity-type partition regions are alternately and repeatedly arranged on a plane. be able to.
Since the striped pn repeating structure on the plane can be formed by one-time photolithography, the cost of the semiconductor device can be reduced by simplifying the manufacturing process.

【0066】 横型半導体装置におけるドリフト領域
の別の構造としては、層状の第1導電型分割ドリフト経
路域と層状の第2導電型仕切領域とを交互に繰り返し積
み重ねて積層された重畳並行構造とすることができる。
かかる構造では、MOCVDやMBEを用いると、層厚
の微細化が可能であるので、オン抵抗と耐圧のトレード
オフ関係を大幅に緩和できる。
As another structure of the drift region in the lateral semiconductor device, a layered first conductivity type divided drift path region and a layered second conductivity type partition region are alternately and repeatedly stacked to be stacked in parallel. be able to.
In such a structure, when MOCVD or MBE is used, the layer thickness can be made finer, so that the trade-off relationship between the on-resistance and the breakdown voltage can be significantly relaxed.

【0067】 横型半導体装置における最も簡素なド
リフト構造としては、第2導電型半導体層上に形成され
た第1の第1導電型分割ドリフト経路域と、この第1の
第1導電型分割ドリフト経路域の上に形成されたウェル
状の第2導電型仕切領域と、この第2導電型仕切領域の
表層に形成され、第1の第1導電型分割ドリフト経路に
並列接続した第2の第1導電型分割ドリフト経路域とを
有して成る構造を採用できるが、第2の第1導電型分割
ドリフト経路域が並列に接続している分、オン抵抗の低
減を図ることができる。この構造においては、第2の第
1導電型型分割ドリフト経路域の上層には逆導電型層が
隣接していないため、空乏化し易くするには薄層であれ
ばある程よい。
The simplest drift structure in the lateral semiconductor device is as follows: the first first-conductivity-type split drift path region formed on the second-conductivity-type semiconductor layer, and the first first-conductivity-type split drift path. A well-shaped second conductivity type partition region formed on the region and a second first conductivity type partition region formed in the surface layer of the second conductivity type partition region and connected in parallel to the first first conductivity type split drift path. Although a structure having a conductivity type divided drift route region can be adopted, the on resistance can be reduced because the second first conductivity type divided drift route region is connected in parallel. In this structure, since the reverse conductivity type layer is not adjacent to the upper layer of the second first conductivity type split drift path region, a thinner layer is better for facilitating depletion.

【0068】 そして、本発明の製造方法によれば、
熱酸化処理工程だけで第2のn型分割ドリフト経路域を
形成できるので、工程数の削減に寄与し、実用的な量産
化が可能となる。
Then, according to the manufacturing method of the present invention,
Since the second n-type split drift path region can be formed only by the thermal oxidation process, it contributes to the reduction of the number of processes and enables practical mass production.

【0069】 縦型半導体装置のドリフト領域として
は、縦方向に層状の第1導電型分割ドリフト経路域と縦
方向に層状の第2導電型仕切領域とを交互に繰り返し隣
接した横並び並行構造とすることができる。かかる構造
の製造方法では深い溝を形成するエンチング工程を必要
とするが、縦型構造でもオン抵抗と耐圧のトレードオフ
関係を大幅に緩和できる。
As the drift region of the vertical semiconductor device, a laterally arranged parallel structure in which the first conductivity type divided drift path regions which are vertically layered and the second conductivity type partition regions which are vertically layered are alternately and repeatedly adjacent to each other is used. be able to. The manufacturing method of such a structure requires an enching process for forming a deep groove, but even in the vertical structure, the trade-off relationship between the on-resistance and the withstand voltage can be significantly relaxed.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)乃至(c)は本発明に係る半導体装置に
おけるドリフト領域の構造をそれぞれ示す模式図であ
る。
1A to 1C are schematic views showing the structure of a drift region in a semiconductor device according to the present invention.

【図2】(a)は本発明の実施形態1に係る横型構造の
SOI−MOSFETを示す平面図、(b)は(a)中
のA−A′線で切断した状態を示す切断図、(c)は
(a)中のB−B′線で切断した状態を示す切断図であ
る。
2A is a plan view showing an SOI-MOSFET having a lateral structure according to Embodiment 1 of the present invention, FIG. 2B is a sectional view showing a state cut along the line AA ′ in FIG. (C) is a sectional view showing a state of cutting along the line BB ′ in (a).

【図3】(a)は本発明の実施形態2に係る2重拡散型
nチャネルMOSFETを示す平面図、(b)は(a)
中のA−A′線で切断した状態を示す切断図、(c)は
(a)中のB−B′線で切断した状態を示す切断図であ
る。
3A is a plan view showing a double diffusion type n-channel MOSFET according to a second embodiment of the present invention, and FIG. 3B is a plan view of FIG.
FIG. 3C is a sectional view showing a state cut along the line AA ′ in FIG. 6C, and FIG. 7C is a sectional view showing a state cut along the line BB ′ in FIG.

【図4】(a)は本発明の実施形態3に係る横型構造の
SOI−MOSFETを示す平面図、(b)は(a)中
のA−A′線で切断した状態を示す切断図、(c)は
(a)中のB−B′線で切断した状態を示す切断図であ
る。
4A is a plan view showing an SOI-MOSFET having a lateral structure according to a third embodiment of the present invention, FIG. 4B is a sectional view showing a state cut along line AA ′ in FIG. (C) is a sectional view showing a state of cutting along the line BB ′ in (a).

【図5】(a)は本発明の実施形態例4に係る横型構造
のMOSFETを示す平面図、(b)は(a)中のA−
A′線で切断した状態を示す切断図、(c)は(a)中
のB−B′線で切断した状態を示す切断図である。
5A is a plan view showing a lateral structure MOSFET according to a fourth embodiment of the present invention, and FIG. 5B is a view showing A- in FIG.
A sectional view showing a state cut along the line A ', and (c) is a sectional view showing a state cut along the line BB' in (a).

【図6】(a)は本発明の実施形態5に係る横型構造の
pチャネルMOSFETを示す断面図、(b)は本発明
の実施形態6に係る横型構造のnチャネルMOSFET
を示す断面図である。
6A is a sectional view showing a p-channel MOSFET having a lateral structure according to Embodiment 5 of the present invention, and FIG. 6B is an n-channel MOSFET having a lateral structure according to Embodiment 6 of the present invention.
FIG.

【図7】(a)は本発明の実施形態例7に係る縦型構造
のトレンチゲート型のnチャネルMOSFETを示す平
面図、(b)は(a)中のA−A′線に沿って切断した
状態を示す切断図である。
7A is a plan view showing a trench gate type n-channel MOSFET having a vertical structure according to a seventh embodiment of the present invention, and FIG. 7B is a view taken along line AA ′ in FIG. It is a cutting diagram which shows the state cut.

【図8】(a)は図7(a)中のB−B′線に沿って切
断した状態を示す切断図、(b)は図7(b)中のC−
C′線に沿って切断した状態を示す切断図である。
8A is a sectional view showing a state of being cut along the line BB ′ in FIG. 7A, and FIG. 8B is a sectional view taken along line C- in FIG. 7B.
It is a sectional view showing the state where it was cut along the line C '.

【図9】(a)は図7(a)中のD−D′線に沿って切
断した状態を示す切断図、(b)は図7(a)中のE−
E′線に沿って切断した状態を示す切断図である。
9A is a sectional view showing a state of being cut along the line D-D 'in FIG. 7A, and FIG. 9B is a sectional view taken along line E- in FIG. 7A.
It is a sectional view showing the state cut along line E '.

【図10】(a)は従来の横型構造のSOI−MOSF
ETを示す平面図、(b)はその断面図である。
FIG. 10A is a conventional lateral structure SOI-MOSF.
The top view which shows ET, (b) is the sectional drawing.

【図11】(a)は従来の横型構造のMOSFETの別
の構造を示す断面図、(b)は従来の2重拡散型nチャ
ネルMOSFETの構造を示す断面図である。
11A is a sectional view showing another structure of a conventional lateral MOSFET, and FIG. 11B is a sectional view showing a structure of a conventional double-diffused n-channel MOSFET.

【図12】従来のトレンチゲート型のnチャネルMOS
FETを示す断面図である。
FIG. 12 is a conventional trench gate type n-channel MOS.
It is sectional drawing which shows FET.

【図13】各種のシリコンnチャネルMOSFETの理
想耐圧と理想オン抵抗とのトレードオフ関係を示すグラ
フである。
FIG. 13 is a graph showing a trade-off relationship between ideal breakdown voltage and ideal on-resistance of various silicon n-channel MOSFETs.

【符号の説明】[Explanation of symbols]

1…n型分割ドリフト経路域 1a…連結部位 2…p型仕切領域 2a…p型側端領域 3…n型チャネル拡散層 4…p- 型半導体層 5…半導体基体 6…絶縁膜 7…p型チャネル拡散層 8…n+ 型ソース領域 9…n+ 型ドレイン領域 10…ゲート絶縁膜 11…フィールドプレート付きゲート電極 12…厚い絶縁膜 13…チャネル反転層 14…p型低濃度領域 17…p型チャネル拡散領域 18,28…p+ 型ソース領域 19…p+ 型ドレイン領域 21…トレンチゲート電極 22…n型低濃度ドレイン層 24…p型トップ層 27…p型チャネル層 29…n+ 型ドレイン層 39…n型低濃度ドレイン層 71…n+ 型コンタクト領域 72…p+ 型コンタクト領域 77…p型チャネル拡散層 88…n+ 型ソース領域 90…n型低濃度ドレイン領域(ドレイン・ドリフト領
域) 99…p型ドレイン領域 100…並行ドリフト経路群 111…トレンチゲート電極 90,122,139,290…ドレイン・ドリフト領
域 e…空乏端 Ja,Jb…pn接合。
DESCRIPTION OF SYMBOLS 1 ... n-type division | segmentation drift path area 1a ... connection part 2 ... p-type partition area 2a ... p-type side edge area 3 ... n-type channel diffusion layer 4 ... p - type semiconductor layer 5 ... semiconductor base 6 ... insulating film 7 ... p type channel diffusion layer 8 ... n + -type source region 9 ... n + -type drain region 10 ... gate insulating film 11 ... field plate with gate electrode 12 ... thick insulating film 13 ... channel inversion layer 14 ... p-type low-concentration region 17 ... p Type channel diffusion region 18, 28 ... p + type source region 19 ... p + type drain region 21 ... trench gate electrode 22 ... n type low concentration drain layer 24 ... p type top layer 27 ... p type channel layer 29 ... n + type drain layer 39 ... n-type low-concentration drain layer 71 ... n + -type contact region 72 ... p + -type contact region 77 ... p-type channel diffusion layer 88 ... n + -type source region 90 ... n-type lightly doped drain territory (Drain-drift region) 99 ... p-type drain region 100 ... parallel drift path group 111 ... trench gate electrode 90,122,139,290 ... drain drift region e ... depletion end Ja, Jb ... pn junction.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 9447−4M H01L 29/78 653C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location 9447-4M H01L 29/78 653C

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 オン状態でドリフト電流を流すと共にオ
フ状態で空乏化するドリフト領域を有する半導体装置に
おいて、前記ドリフト領域は、並列接続した複数の第1
導電型分割ドリフト経路域を持つ並行ドリフト経路群
と、前記第1導電型分割ドリフト経路域の相隣る同士の
側面間に介在してpn接合分離する第2導電型仕切領域
とを有して成ることを特徴とする半導体装置。
1. A semiconductor device having a drift region in which a drift current flows in an on-state and is depleted in an off-state, wherein the drift region comprises a plurality of first regions connected in parallel.
A parallel drift path group having a conductivity type divided drift path region, and a second conductivity type partition region interposed between adjacent side surfaces of the first conductivity type divided drift path region to separate a pn junction. A semiconductor device characterized by being formed.
【請求項2】 請求項1に記載の半導体装置において、
前記並行ドリフト経路群の最側端の第1導電型分割ドリ
フト経路域の外側に沿ってpn接合分離する第2導電型
側端領域を有して成ることを特徴とする半導体装置。
2. The semiconductor device according to claim 1, wherein
A semiconductor device having a second-conductivity-type-side end region separated by a pn junction along the outside of the first-conductivity-type divided drift-path region at the outermost end of the parallel drift route group.
【請求項3】 半導体層又はその上の絶縁膜の上に形成
されており、オン状態で横方向にドリフト電流を流すと
共にオフ状態で空乏化するドリフト領域を有する半導体
装置において、前記ドリフト領域は、短冊状の第1導電
型分割ドリフト経路域と短冊状の第2導電型仕切領域と
が平面上で交互に繰り返し配列されたストライプ状並行
構造であることを特徴とする半導体装置。
3. A semiconductor device having a drift region which is formed on a semiconductor layer or an insulating film on the semiconductor layer and in which a drift current flows in a lateral direction in an on state and is depleted in an off state, wherein the drift region is A semiconductor device having a striped parallel structure in which strip-shaped first-conductivity-type divided drift path regions and strip-shaped second-conductivity-type partition regions are alternately and repeatedly arranged on a plane.
【請求項4】 半導体層又はその上の絶縁膜の上に形成
されており、オン状態で横方向にドリフト電流を流すと
共にオフ状態で空乏化するドリフト領域を有する半導体
装置において、前記ドリフト領域は、層状の第1導電型
分割ドリフト経路域と層状の第2導電型仕切領域とを交
互に繰り返し積み重ねて積層された重畳並行構造である
ことを特徴とする半導体装置。
4. A semiconductor device having a drift region which is formed on a semiconductor layer or an insulating film thereover and which causes a drift current to flow laterally in an on state and is depleted in an off state. A semiconductor device having a superposed parallel structure in which a layered first-conductivity-type divided drift path region and a layered second-conductivity-type partition region are alternately repeatedly stacked and stacked.
【請求項5】 第2導電型半導体層上に形成されてお
り、オン状態で横方向にドリフト電流を流すと共にオフ
状態で空乏化するドリフト領域を有する半導体装置にお
いて、前記ドリフト領域は、前記第2導電型半導体層上
に形成された第1の第1導電型分割ドリフト経路域と、
この第1の第1導電型分割ドリフト経路域の上に形成さ
れたウェル状の第2導電型仕切領域と、この第2導電型
仕切領域の表層に形成され、第1の第1導電型分割ドリ
フト経路に並列接続した第2の第1導電型分割ドリフト
経路域とを有して成ることを特徴とする半導体装置。
5. A semiconductor device having a drift region formed on a second conductive type semiconductor layer, wherein a drift current flows in a lateral direction in an on state and is depleted in an off state, wherein the drift region is the first region. A first first-conductivity-type split drift path region formed on the second-conductivity-type semiconductor layer;
A well-shaped second conductivity type partition region formed on the first first conductivity type partition drift path region and a surface layer of the second conductivity type partition region, the first first conductivity type partition region being formed. A semiconductor device having a second first conductivity type split drift path region connected in parallel to the drift path.
【請求項6】 請求項5に規定する半導体装置の製造方
法において、シリコンのp型半導体層上にリンをイオン
注入して熱拡散により第1のn型分割ドリフト経路域を
形成した後、この第1のn型分割ドリフト経路域上に硼
素を選択的にイオン注入して熱拡散によりウェル状のp
型仕切領域を形成し、しかる後、熱酸化処理を施し、シ
リコン表面でのリンの偏析による高濃度化と硼素の酸化
膜中への偏析による低濃度化を利用して表層に第2のn
型分割ドリフト経路域を形成して成ることを特徴とする
半導体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 5, wherein after ion-implanting phosphorus into the p-type semiconductor layer of silicon to form the first n-type split drift path region by thermal diffusion, Boron is selectively ion-implanted on the first n-type divided drift path region and a well-shaped p is formed by thermal diffusion.
A mold partition region is formed, and thereafter, thermal oxidation treatment is performed to utilize a second concentration on the surface layer by utilizing a high concentration due to the segregation of phosphorus on the silicon surface and a low concentration due to the segregation of boron into the oxide film.
A method of manufacturing a semiconductor device, comprising forming a mold division drift path region.
【請求項7】 半導体層の上に形成されており、オン状
態で縦方向にドリフト電流を流すと共にオフ状態で空乏
化するドリフト領域を有する半導体装置において、前記
ドリフト領域は、縦方向に層状の第1導電型分割ドリフ
ト経路域と縦方向に層状の第2導電型仕切領域とを交互
に繰り返し隣接した横並び並行構造であることを特徴と
する半導体装置。
7. A semiconductor device having a drift region formed on a semiconductor layer, wherein a drift current flows in a vertical direction in an on state and is depleted in an off state, and the drift region has a layered structure in a vertical direction. 1. A semiconductor device having a side-by-side parallel structure in which a first-conductivity-type divided drift path region and a vertically-layered second-conductivity-type partition region are alternately and repeatedly adjacent to each other.
JP491897A 1996-01-22 1997-01-14 Semiconductor device and its manufacture Pending JPH09266311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP491897A JPH09266311A (en) 1996-01-22 1997-01-14 Semiconductor device and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-7935 1996-01-22
JP793596 1996-01-22
JP491897A JPH09266311A (en) 1996-01-22 1997-01-14 Semiconductor device and its manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001109071A Division JP3825987B2 (en) 1996-01-22 2001-04-06 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH09266311A true JPH09266311A (en) 1997-10-07

Family

ID=26338776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP491897A Pending JPH09266311A (en) 1996-01-22 1997-01-14 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH09266311A (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210823A (en) * 2000-01-21 2001-08-03 Denso Corp Semiconductor device
US6297534B1 (en) 1998-10-07 2001-10-02 Kabushiki Kaisha Toshiba Power semiconductor device
JP2001308324A (en) * 2000-04-27 2001-11-02 Fuji Electric Co Ltd Lateral hyper-junction semiconductor element
JP2002026320A (en) * 2000-07-12 2002-01-25 Fuji Electric Co Ltd Bidirectional super-junction semiconductor element and manufacturing method thereof
US6353252B1 (en) 1999-07-29 2002-03-05 Kabushiki Kaisha Toshiba High breakdown voltage semiconductor device having trenched film connected to electrodes
US6521954B1 (en) 2001-12-21 2003-02-18 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method thereof
JP2003152179A (en) * 2001-09-07 2003-05-23 Power Integrations Inc High-voltage lateral transistor having multilayered expanded drain structure
JP2003523089A (en) * 2000-02-11 2003-07-29 フェアチャイルド セミコンダクター コーポレーション MOS gate device with alternating conductive zones
US6621132B2 (en) 2000-09-05 2003-09-16 Fuji Electric Co., Ltds. Semiconductor device
US6639260B2 (en) 2000-12-18 2003-10-28 Denso Corporation Semiconductor device having a vertical semiconductor element
US6683347B1 (en) 1998-07-24 2004-01-27 Fuji Electric Co., Ltd. Semiconductor device with alternating conductivity type layer and method of manufacturing the same
KR100422393B1 (en) * 2002-01-17 2004-03-11 한국전자통신연구원 EDMOS device with the structure of lattice type drift region and method of manufacturing the same
JP2004312037A (en) * 2001-09-07 2004-11-04 Power Integrations Inc Method of manufacturing high-voltage transistor having multilayered extended drain structure
JP2005026711A (en) * 2001-01-24 2005-01-27 Power Integrations Inc High-voltage transistor having buried conductive layer
JP2005123624A (en) * 2003-10-17 2005-05-12 Agere Systems Inc Metal oxide semiconductor device having improved performance and reliability
US6936892B2 (en) 1998-07-24 2005-08-30 Fuji Electric Co., Ltd. Semiconductor device with alternating conductivity type layer and method of manufacturing the same
JP2006100862A (en) * 1998-11-12 2006-04-13 Fuji Electric Device Technology Co Ltd Super-junction semiconductor element
US7029977B2 (en) 2003-03-07 2006-04-18 Fuji Electric Holdings Co., Ltd. Fabrication method of semiconductor wafer
JP2006222444A (en) * 2006-03-27 2006-08-24 Toshiba Corp Manufacturing method of semiconductor device
US7115958B2 (en) 2001-10-29 2006-10-03 Power Integrations, Inc. Lateral power MOSFET for high switching speeds
JP2006303543A (en) * 1999-05-21 2006-11-02 Kansai Electric Power Co Inc:The Semiconductor device
KR100649328B1 (en) * 1997-11-10 2007-03-02 페어차일드 세미컨덕터 코포레이션 High voltage mosfet structure
JP2007081448A (en) * 2006-12-25 2007-03-29 Fuji Electric Device Technology Co Ltd Super-junction semiconductor element
JP2007096344A (en) * 1998-11-11 2007-04-12 Fuji Electric Device Technology Co Ltd Method for manufacturing superjunction semiconductor element
KR100707529B1 (en) * 1998-12-07 2007-04-12 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Lateral thin-film silicon-on-insulator soi device having multiple zones in the drift region
US7224022B2 (en) 2001-09-19 2007-05-29 Kabushiki Kaisha Toshiba Vertical type semiconductor device and method of manufacturing the same
DE10205345B4 (en) * 2001-02-09 2007-09-06 Fuji Electric Co., Ltd., Kawasaki Semiconductor device
US7355257B2 (en) 2005-03-08 2008-04-08 Fuji Electric Holdings Co., Ltd. Semiconductor superjunction device
DE10112463B4 (en) * 2000-03-17 2008-04-10 Fuji Electric Co., Ltd., Kawasaki SJ semiconductor component
JP2008159601A (en) * 2005-11-28 2008-07-10 Fuji Electric Device Technology Co Ltd Semiconductor device and manufacturing method thereof
DE10041344B4 (en) * 1999-08-23 2008-09-04 Fuji Electric Co., Ltd., Kawasaki SJ semiconductor device
DE102008023349A1 (en) 2007-05-17 2008-11-20 Denso Corp., Kariya-shi Semiconductor device
DE10000754B4 (en) * 1999-01-11 2009-04-16 Fuji Electric Co., Ltd., Kawasaki Semiconductor component and method for its production
US7535059B2 (en) 2005-11-28 2009-05-19 Fuji Electric Holdings Co., Ltd. Semiconductor device and manufacturing method of the semiconductor device
JP2009135547A (en) * 2002-05-02 2009-06-18 Power Integrations Inc Method of fabricating high-voltage transistor
DE19954351B4 (en) * 1998-11-12 2009-06-25 Fuji Electric Co., Ltd., Kawasaki Semiconductor device
US7569875B2 (en) 2006-03-14 2009-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor device and a method for producing the same
JP2009543353A (en) * 2006-06-29 2009-12-03 フェアチャイルド・セミコンダクター・コーポレーション Lateral trench gate FET with direct source-drain current path
JP2009295684A (en) * 2008-06-03 2009-12-17 National Institute Of Advanced Industrial & Technology Semiconductor bidirectional switching device
DE10211688B4 (en) * 2001-03-15 2010-01-07 Fuji Electric Co., Ltd., Kawasaki Semiconductor device
JP2010034579A (en) * 2001-09-07 2010-02-12 Power Integrations Inc High-voltage vertical transistor with multilayered extended drain structure
US7932559B2 (en) * 2007-09-28 2011-04-26 Fuji Electric Systems Co., Ltd. Semiconductor device
DE10106006B4 (en) * 2000-02-09 2011-06-16 Fuji Electric Systems Co., Ltd. SJ semiconductor device and method of making the same
WO2011093473A1 (en) 2010-01-29 2011-08-04 富士電機システムズ株式会社 Semiconductor device
US8097501B2 (en) 2009-02-05 2012-01-17 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor device
JP2012109599A (en) * 2004-08-04 2012-06-07 Fuji Electric Co Ltd Semiconductor device
WO2013081089A1 (en) * 2011-11-30 2013-06-06 ローム株式会社 Semiconductor device
JP2014078649A (en) * 2012-10-12 2014-05-01 Mitsubishi Electric Corp Lateral high breakdown voltage transistor and manufacturing method of the same
DE102006062821B4 (en) * 2005-09-29 2014-07-03 Denso Corporation Method for manufacturing a semiconductor device
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
JP2014220381A (en) * 2013-05-08 2014-11-20 トヨタ自動車株式会社 Semiconductor device
US8928077B2 (en) 2007-09-21 2015-01-06 Fairchild Semiconductor Corporation Superjunction structures for power devices
US9123561B2 (en) 2011-10-21 2015-09-01 Fuji Electric Co., Ltd. Superjunction semiconductor device
US9142664B2 (en) 2013-01-16 2015-09-22 Fuji Electric Co., Ltd. Semiconductor device
US9431481B2 (en) 2008-09-19 2016-08-30 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US9437727B2 (en) 2013-01-16 2016-09-06 Fuji Electric Co., Ltd. Semiconductor element including active region, low resistance layer and vertical drift portion
US9577087B2 (en) 2009-07-31 2017-02-21 Fui Electric Co., Ltd. Semiconductor apparatus
US9653595B2 (en) 2012-07-19 2017-05-16 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device fabrication method
US10026807B2 (en) 2016-05-16 2018-07-17 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US10276654B2 (en) 2014-07-04 2019-04-30 Fuji Electric Co., Ltd. Semiconductor device with parallel PN structures
US10325988B2 (en) 2013-12-13 2019-06-18 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped field plates
WO2023037981A1 (en) * 2021-09-08 2023-03-16 ▲櫛▼田知義 Insulated gate semiconductor device

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649328B1 (en) * 1997-11-10 2007-03-02 페어차일드 세미컨덕터 코포레이션 High voltage mosfet structure
US6936892B2 (en) 1998-07-24 2005-08-30 Fuji Electric Co., Ltd. Semiconductor device with alternating conductivity type layer and method of manufacturing the same
US6683347B1 (en) 1998-07-24 2004-01-27 Fuji Electric Co., Ltd. Semiconductor device with alternating conductivity type layer and method of manufacturing the same
US6297534B1 (en) 1998-10-07 2001-10-02 Kabushiki Kaisha Toshiba Power semiconductor device
JP2007096344A (en) * 1998-11-11 2007-04-12 Fuji Electric Device Technology Co Ltd Method for manufacturing superjunction semiconductor element
JP2006100862A (en) * 1998-11-12 2006-04-13 Fuji Electric Device Technology Co Ltd Super-junction semiconductor element
DE19954351B4 (en) * 1998-11-12 2009-06-25 Fuji Electric Co., Ltd., Kawasaki Semiconductor device
KR100707529B1 (en) * 1998-12-07 2007-04-12 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Lateral thin-film silicon-on-insulator soi device having multiple zones in the drift region
DE10000754B4 (en) * 1999-01-11 2009-04-16 Fuji Electric Co., Ltd., Kawasaki Semiconductor component and method for its production
JP2006303543A (en) * 1999-05-21 2006-11-02 Kansai Electric Power Co Inc:The Semiconductor device
US6353252B1 (en) 1999-07-29 2002-03-05 Kabushiki Kaisha Toshiba High breakdown voltage semiconductor device having trenched film connected to electrodes
DE10041344B4 (en) * 1999-08-23 2008-09-04 Fuji Electric Co., Ltd., Kawasaki SJ semiconductor device
JP2001210823A (en) * 2000-01-21 2001-08-03 Denso Corp Semiconductor device
DE10106006B4 (en) * 2000-02-09 2011-06-16 Fuji Electric Systems Co., Ltd. SJ semiconductor device and method of making the same
JP2003523089A (en) * 2000-02-11 2003-07-29 フェアチャイルド セミコンダクター コーポレーション MOS gate device with alternating conductive zones
DE10112463B4 (en) * 2000-03-17 2008-04-10 Fuji Electric Co., Ltd., Kawasaki SJ semiconductor component
DE10120030B4 (en) * 2000-04-27 2007-09-06 Fuji Electric Co., Ltd., Kawasaki Lateralhalbleiterbauelement
JP2001308324A (en) * 2000-04-27 2001-11-02 Fuji Electric Co Ltd Lateral hyper-junction semiconductor element
JP2002026320A (en) * 2000-07-12 2002-01-25 Fuji Electric Co Ltd Bidirectional super-junction semiconductor element and manufacturing method thereof
US6621132B2 (en) 2000-09-05 2003-09-16 Fuji Electric Co., Ltds. Semiconductor device
US6982459B2 (en) 2000-12-18 2006-01-03 Denso Corporation Semiconductor device having a vertical type semiconductor element
US6639260B2 (en) 2000-12-18 2003-10-28 Denso Corporation Semiconductor device having a vertical semiconductor element
JP4512460B2 (en) * 2001-01-24 2010-07-28 パワー インテグレーションズ、インコーポレイテッド Method for manufacturing high voltage transistor with buried conductive layer
JP2010103557A (en) * 2001-01-24 2010-05-06 Power Integrations Inc High-voltage transistor with buried conduction layer
JP2005026710A (en) * 2001-01-24 2005-01-27 Power Integrations Inc High-voltage transistor having buried conductive layer
JP2005026711A (en) * 2001-01-24 2005-01-27 Power Integrations Inc High-voltage transistor having buried conductive layer
JP2006019759A (en) * 2001-01-24 2006-01-19 Power Integrations Inc High-voltage transistor having buried conductive layer
JP4512534B2 (en) * 2001-01-24 2010-07-28 パワー インテグレーションズ、インコーポレイテッド High voltage transistor with embedded conductive layer
JP4512459B2 (en) * 2001-01-24 2010-07-28 パワー インテグレーションズ、インコーポレイテッド High voltage transistor with embedded conductive layer
JP4663028B2 (en) * 2001-01-24 2011-03-30 パワー インテグレーションズ、インコーポレイテッド Method for manufacturing a high voltage transistor with a buried conductive layer
DE10205345B4 (en) * 2001-02-09 2007-09-06 Fuji Electric Co., Ltd., Kawasaki Semiconductor device
DE10205345B9 (en) * 2001-02-09 2007-12-20 Fuji Electric Co., Ltd., Kawasaki Semiconductor device
DE10211688B4 (en) * 2001-03-15 2010-01-07 Fuji Electric Co., Ltd., Kawasaki Semiconductor device
JP2004297085A (en) * 2001-09-07 2004-10-21 Power Integrations Inc High-voltage lateral transistor with multilayered extended drain structure
JP2003152179A (en) * 2001-09-07 2003-05-23 Power Integrations Inc High-voltage lateral transistor having multilayered expanded drain structure
JP2004312037A (en) * 2001-09-07 2004-11-04 Power Integrations Inc Method of manufacturing high-voltage transistor having multilayered extended drain structure
JP2010034579A (en) * 2001-09-07 2010-02-12 Power Integrations Inc High-voltage vertical transistor with multilayered extended drain structure
US7224022B2 (en) 2001-09-19 2007-05-29 Kabushiki Kaisha Toshiba Vertical type semiconductor device and method of manufacturing the same
US7115958B2 (en) 2001-10-29 2006-10-03 Power Integrations, Inc. Lateral power MOSFET for high switching speeds
US6521954B1 (en) 2001-12-21 2003-02-18 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method thereof
KR100422393B1 (en) * 2002-01-17 2004-03-11 한국전자통신연구원 EDMOS device with the structure of lattice type drift region and method of manufacturing the same
JP2009135547A (en) * 2002-05-02 2009-06-18 Power Integrations Inc Method of fabricating high-voltage transistor
DE102004010676B4 (en) * 2003-03-07 2009-04-16 Fuji Electric Holdings Co., Ltd. Method for producing a semiconductor wafer
US7029977B2 (en) 2003-03-07 2006-04-18 Fuji Electric Holdings Co., Ltd. Fabrication method of semiconductor wafer
JP2005123624A (en) * 2003-10-17 2005-05-12 Agere Systems Inc Metal oxide semiconductor device having improved performance and reliability
JP2012109599A (en) * 2004-08-04 2012-06-07 Fuji Electric Co Ltd Semiconductor device
US7355257B2 (en) 2005-03-08 2008-04-08 Fuji Electric Holdings Co., Ltd. Semiconductor superjunction device
DE102006062821B4 (en) * 2005-09-29 2014-07-03 Denso Corporation Method for manufacturing a semiconductor device
US8138542B2 (en) 2005-11-28 2012-03-20 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of the semiconductor device
US7535059B2 (en) 2005-11-28 2009-05-19 Fuji Electric Holdings Co., Ltd. Semiconductor device and manufacturing method of the semiconductor device
JP2008159601A (en) * 2005-11-28 2008-07-10 Fuji Electric Device Technology Co Ltd Semiconductor device and manufacturing method thereof
US7569875B2 (en) 2006-03-14 2009-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor device and a method for producing the same
JP2006222444A (en) * 2006-03-27 2006-08-24 Toshiba Corp Manufacturing method of semiconductor device
JP4580886B2 (en) * 2006-03-27 2010-11-17 株式会社東芝 Manufacturing method of semiconductor device
JP2009543353A (en) * 2006-06-29 2009-12-03 フェアチャイルド・セミコンダクター・コーポレーション Lateral trench gate FET with direct source-drain current path
KR101375887B1 (en) * 2006-06-29 2014-03-18 페어차일드 세미컨덕터 코포레이션 Lateral trench gate fet with direct source-drain current path
JP4710822B2 (en) * 2006-12-25 2011-06-29 富士電機システムズ株式会社 Super junction semiconductor device
JP2007081448A (en) * 2006-12-25 2007-03-29 Fuji Electric Device Technology Co Ltd Super-junction semiconductor element
DE102008023349A1 (en) 2007-05-17 2008-11-20 Denso Corp., Kariya-shi Semiconductor device
DE102008023349B4 (en) 2007-05-17 2018-07-26 Denso Corporation Semiconductor device
US9595596B2 (en) 2007-09-21 2017-03-14 Fairchild Semiconductor Corporation Superjunction structures for power devices
US8928077B2 (en) 2007-09-21 2015-01-06 Fairchild Semiconductor Corporation Superjunction structures for power devices
US7932559B2 (en) * 2007-09-28 2011-04-26 Fuji Electric Systems Co., Ltd. Semiconductor device
US8779504B2 (en) 2007-09-28 2014-07-15 Fuji Electric Co., Ltd. Semiconductor device
US8299522B2 (en) 2007-09-28 2012-10-30 Fuji Electric Co., Ltd. Semiconductor device
JP2009295684A (en) * 2008-06-03 2009-12-17 National Institute Of Advanced Industrial & Technology Semiconductor bidirectional switching device
US9431481B2 (en) 2008-09-19 2016-08-30 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8097501B2 (en) 2009-02-05 2012-01-17 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor device
US9577087B2 (en) 2009-07-31 2017-02-21 Fui Electric Co., Ltd. Semiconductor apparatus
US9087893B2 (en) 2010-01-29 2015-07-21 Fuji Electric Co., Ltd. Superjunction semiconductor device with reduced switching loss
WO2011093473A1 (en) 2010-01-29 2011-08-04 富士電機システムズ株式会社 Semiconductor device
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US9123561B2 (en) 2011-10-21 2015-09-01 Fuji Electric Co., Ltd. Superjunction semiconductor device
JP2013115385A (en) * 2011-11-30 2013-06-10 Rohm Co Ltd Semiconductor device
US10553713B2 (en) 2011-11-30 2020-02-04 Rohm Co., Ltd. Semiconductor device
WO2013081089A1 (en) * 2011-11-30 2013-06-06 ローム株式会社 Semiconductor device
US9496384B2 (en) 2011-11-30 2016-11-15 Rohm Co., Ltd. Semiconductor device
US9653595B2 (en) 2012-07-19 2017-05-16 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device fabrication method
JP2014078649A (en) * 2012-10-12 2014-05-01 Mitsubishi Electric Corp Lateral high breakdown voltage transistor and manufacturing method of the same
KR101440389B1 (en) * 2012-10-12 2014-09-15 미쓰비시덴키 가부시키가이샤 Lateral high-voltage transistor and method for manufacturing the same
US9437727B2 (en) 2013-01-16 2016-09-06 Fuji Electric Co., Ltd. Semiconductor element including active region, low resistance layer and vertical drift portion
US9142664B2 (en) 2013-01-16 2015-09-22 Fuji Electric Co., Ltd. Semiconductor device
JP2014220381A (en) * 2013-05-08 2014-11-20 トヨタ自動車株式会社 Semiconductor device
US10325988B2 (en) 2013-12-13 2019-06-18 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped field plates
US10276654B2 (en) 2014-07-04 2019-04-30 Fuji Electric Co., Ltd. Semiconductor device with parallel PN structures
US10026807B2 (en) 2016-05-16 2018-07-17 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US10381436B2 (en) 2016-05-16 2019-08-13 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
WO2023037981A1 (en) * 2021-09-08 2023-03-16 ▲櫛▼田知義 Insulated gate semiconductor device

Similar Documents

Publication Publication Date Title
JPH09266311A (en) Semiconductor device and its manufacture
US6724040B2 (en) Semiconductor device
US6627948B1 (en) Vertical layer type semiconductor device
US6614089B2 (en) Field effect transistor
JP3641547B2 (en) Semiconductor device including lateral MOS element
US6621132B2 (en) Semiconductor device
JP7180402B2 (en) semiconductor equipment
US6475864B1 (en) Method of manufacturing a super-junction semiconductor device with an conductivity type layer
US8076723B2 (en) Method of fabricating a deep trench insulated gate bipolar transistor
JP3395473B2 (en) Horizontal trench MISFET and manufacturing method thereof
JP2004327598A (en) Semiconductor device and its manufacturing method
US20100155831A1 (en) Deep trench insulated gate bipolar transistor
WO2012017227A1 (en) Semiconductor device
EP0872894A2 (en) Static induction semiconductor device, and driving method and drive circuit thereof
KR100910798B1 (en) High voltage trench insulated gate bipolar transistor with trench having impurity injection layer and Method for manufacturing the same
JP3825987B2 (en) Semiconductor device
JP3452054B2 (en) MOSFET
JP3812379B2 (en) MOS type semiconductor device
JP2006279064A (en) Method of manufacturing semiconductor device
JP2003332574A (en) Semiconductor device
JP2001168345A (en) Semiconductor device and its manufacturing method
GB2355588A (en) A vertical field effect transistor having a drift region
JP2000124448A (en) Vertical semiconductor device
JPH0846183A (en) Mos transistor and manufacture thereof