JP2003332574A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JP2003332574A JP2003332574A JP2003112991A JP2003112991A JP2003332574A JP 2003332574 A JP2003332574 A JP 2003332574A JP 2003112991 A JP2003112991 A JP 2003112991A JP 2003112991 A JP2003112991 A JP 2003112991A JP 2003332574 A JP2003332574 A JP 2003332574A
- Authority
- JP
- Japan
- Prior art keywords
- type
- region
- drift
- drain
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 48
- 238000005192 partition Methods 0.000 claims description 61
- 239000000758 substrate Substances 0.000 claims description 13
- 238000009792 diffusion process Methods 0.000 abstract description 55
- 230000015556 catabolic process Effects 0.000 abstract description 39
- 108010075750 P-Type Calcium Channels Proteins 0.000 abstract description 33
- 239000010410 layer Substances 0.000 description 119
- 108091006146 Channels Proteins 0.000 description 25
- 239000012535 impurity Substances 0.000 description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 238000005520 cutting process Methods 0.000 description 7
- 230000005684 electric field Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002344 surface layer Substances 0.000 description 7
- 238000005468 ion implantation Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 3
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002109 crystal growth method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 102100031083 Uteroglobin Human genes 0.000 description 1
- 108090000203 Uteroglobin Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000009377 nuclear transmutation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/063—Reduced surface field [RESURF] pn-junction structures
- H01L29/0634—Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、MOSFET(絶
縁ゲート型電界効果トランジスタ),IGBT(伝導度
変調型トランジスタ),バイポーラトランジスタ,ダイ
オード等に適用可能の高耐圧且つ大電流容量の半導体装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a high breakdown voltage and a large current capacity, which is applicable to MOSFET (insulated gate type field effect transistor), IGBT (conductivity modulation type transistor), bipolar transistor, diode and the like.
【0002】[0002]
【従来の技術】一般に半導体素子は片面に電極部を持つ
横型構造と両面に電極部を持つ縦型構造に大別できる。
例えば、図10は横型構造のSOI(silicon
oninsulator)−MOSFETを示す。この
SOI−MOSFETの構造はnチャネルMOSFET
のオフセット・ゲート構造であり、半導体基体5上の絶
縁膜6の上に形成されたp型のチャネル拡散層7と、チ
ャネル拡散層7の上にゲート絶縁膜10を介して形成さ
れたフィールドプレート付きゲート電極11と、チャネ
ル拡散層7のうちゲート電極11の一端側に形成された
n+ 型のソース領域8と、ゲート電極11の他端から離
間した位置に形成されたn+ 型のドレイン領域9と、ド
レイン・ゲート間に延在するn型低濃度ドレイン領域
(ドレイン・ドリフト領域)90と、この低濃度ドレイ
ン領域90上に形成された厚い絶縁膜12とを有する。2. Description of the Related Art Generally, semiconductor devices can be roughly classified into a horizontal structure having an electrode portion on one surface and a vertical structure having an electrode portion on both surfaces.
For example, FIG. 10 shows an SOI (silicon) having a horizontal structure.
oninsulator) -MOSFET. The structure of this SOI-MOSFET is an n-channel MOSFET
P type channel diffusion layer 7 formed on the insulating film 6 on the semiconductor substrate 5, and a field plate formed on the channel diffusion layer 7 with the gate insulating film 10 interposed therebetween. Gate electrode 11, an n + type source region 8 formed on one end side of the gate electrode 11 in the channel diffusion layer 7, and an n + type drain formed at a position separated from the other end of the gate electrode 11. It has a region 9, an n-type low concentration drain region (drain drift region) 90 extending between the drain and the gate, and a thick insulating film 12 formed on the low concentration drain region 90.
【0003】低濃度ドレイン領域90の部分は、MOS
FETがオン状態のときはキャリアを電界によって流す
ドリフト領域として働き、オフ状態のときは空乏化して
電界強度を緩和し耐圧を高める。低濃度ドレイン領域9
0の不純物濃度を高くすることと、その領域90の電流
経路長を短くすることは、ドリフト抵抗が低くなるので
MOSFETの実質的なオン抵抗(ドレイン−ソース抵
抗)を下げる効果に繋がるものの、逆に、p型のチャネ
ル拡散層7とn型低濃度ドレイン領域90とのpn接合
Jaから進行するドレイン−チャネル間空乏層が広がり
難く、シリコンの最大(臨界)電界強度に早く達するた
め、耐圧(ドレイン−ソース電圧)が低下してしまう。
即ち、オン抵抗(電流容量)と耐圧間にはトレードオフ
関係がある。このトレードオフ関係はIGBT,バイポ
ーラトランジスタ,ダイオード等の半導体素子において
も同様に成立することが知られている。The lightly doped drain region 90 is a MOS
When the FET is in the ON state, it functions as a drift region in which carriers are caused to flow by an electric field, and when it is in the OFF state, it is depleted to relax the electric field strength and increase the breakdown voltage. Low concentration drain region 9
Increasing the impurity concentration of 0 and shortening the current path length of the region 90 lead to the effect of lowering the substantial on-resistance (drain-source resistance) of the MOSFET because the drift resistance becomes low, but In addition, since the drain-channel depletion layer that progresses from the pn junction Ja of the p-type channel diffusion layer 7 and the n-type low-concentration drain region 90 is difficult to spread and the maximum (critical) electric field strength of silicon is reached quickly, the breakdown voltage ( The drain-source voltage) will decrease.
That is, there is a trade-off relationship between on-resistance (current capacity) and breakdown voltage. It is known that this trade-off relationship is similarly established in semiconductor devices such as IGBTs, bipolar transistors, and diodes.
【0004】図11は横型構造のMOSFETの別の構
造を示す。図11(a)はpチャネルMOSFETであ
り、p- 型半導体層4上に形成されたn型チャネル拡散
層3と、チャネル拡散層3の上にゲート絶縁膜10を介
して形成されたフィールドプレート付きゲート電極11
と、チャネル拡散層3のうちゲート電極11の一端側に
形成されたp+ 型のソース領域18と、ゲート電極11
の他端側真下にウェル端が位置するp型低濃度ドレイン
領域(ドレイン・ドリフト領域)14と、ゲート電極1
1の他端から離間した位置に形成されたp+ 型のドレイ
ン領域19と、p+ 型のソース領域18に隣接するn+
型のコンタクト領域71と、p型低濃度ドレイン14上
に形成された厚い絶縁膜12とを有する。このような構
造においてもウェル状のp型低濃度ドレイン領域14の
電流経路長さと不純物濃度とによりオン抵抗と耐圧がト
レードオフの関係で決定される。FIG. 11 shows another structure of a lateral MOSFET. FIG. 11A shows a p-channel MOSFET, which includes an n-type channel diffusion layer 3 formed on a p − type semiconductor layer 4 and a field plate formed on the channel diffusion layer 3 with a gate insulating film 10 interposed therebetween. With gate electrode 11
A p + type source region 18 formed on one end side of the gate electrode 11 in the channel diffusion layer 3, and the gate electrode 11
Of the p-type low-concentration drain region (drain / drift region) 14 whose well end is located directly below the other end side of the gate electrode 1 and
N + adjacent to the p + type drain region 19 and the p + type source region 18 formed at a position separated from the other end of
Type contact region 71 and the thick insulating film 12 formed on the p-type low concentration drain 14. Even in such a structure, the on-resistance and the breakdown voltage are determined in a trade-off relationship by the current path length and the impurity concentration of the well-type p-type low-concentration drain region 14.
【0005】図11(b)は2重拡散型nチャネルMO
SFETであり、p- 型半導体層4上に形成されたn型
低濃度ドレイン層(ドレイン・ドリフト層)22と、低
濃度ドレイン層22の上にゲート絶縁膜10を介して形
成されたフィールドプレート付きゲート電極11と、低
濃度ドレイン層22のうちゲート電極11の一端側に形
成されたウェル状のp型チャネル拡散領域17と、p型
チャネル拡散領域17内にウェル状に形成されたn+ 型
のソース領域8と、ゲート電極11とこれに離間したn
+ 型ドレイン領域9との間の表面層に形成されたウェル
状のp型トップ層24と、n+ 型のソース領域8に隣接
するp+ 型のコンタクト領域72と、p型トップ層24
上に形成された厚い絶縁膜12とを有する。このような
構造においてもn型低濃度ドレイン層域22の電流経路
長さと不純物濃度とによりオン抵抗と耐圧がトレードオ
フの関係で決定される。FIG. 11B shows a double diffusion type n channel MO.
An SFET, which is an n-type low-concentration drain layer (drain / drift layer) 22 formed on the p − -type semiconductor layer 4, and a field plate formed on the low-concentration drain layer 22 via the gate insulating film 10. Gate electrode 11, a well-shaped p-type channel diffusion region 17 formed at one end side of the gate electrode 11 in the low-concentration drain layer 22, and an n + type well formed in the p-type channel diffusion region 17. -Type source region 8 and gate electrode 11 and n spaced apart therefrom
Well-shaped p-type top layer 24 formed in the surface layer between + type drain region 9, p + type contact region 72 adjacent to n + type source region 8, and p type top layer 24.
And a thick insulating film 12 formed thereover. Even in such a structure, the on-resistance and the breakdown voltage are determined by a trade-off relationship depending on the current path length of the n-type low-concentration drain layer region 22 and the impurity concentration.
【0006】ただし、図11(b)の構造では、n型低
濃度ドレイン層22が下側のp- 型半導体層4と上側の
p型トップ層24とに挟まれているので、MOSFET
のオフ状態のときにはp型チャネル拡散領域17とのp
n接合Jaからだけでは無く、n型低濃度ドレイン層2
2の上下のpn接合Jb,Jbからも空乏層が広がる。
このため、低濃度ドレイン層22が早く空乏化するの
で、高耐圧構造となっている。その分、低濃度ドレイン
層22の不純物濃度を高くでき、オン抵抗の低減により
電流容量の増大を図ることが可能である。However, in the structure of FIG. 11B, the n-type low-concentration drain layer 22 is sandwiched between the p − -type semiconductor layer 4 on the lower side and the p-type top layer 24 on the upper side.
Is off, p with the p-type channel diffusion region 17
Not only from the n-junction Ja but also from the n-type low concentration drain layer 2
The depletion layer also extends from the pn junctions Jb and Jb above and below 2.
Therefore, the low-concentration drain layer 22 is depleted quickly, so that the structure has a high breakdown voltage. As a result, the impurity concentration of the low-concentration drain layer 22 can be increased and the on-resistance can be reduced to increase the current capacity.
【0007】他方、縦型構造の半導体素子としては、例
えば図12に示すトレンチゲート型のnチャネルMOS
FETが知られている。この構造は、裏面電極(図示せ
ず)が導電接触したn+ 型ドレイン層29の上に形成さ
れたn型低濃度ドレイン層39と、低濃度ドレイン層3
9の表面側に堀り込まれたトレンチ溝内にゲート絶縁膜
10を介して埋め込まれたトレンチゲート電極21と、
低濃度ドレイン層39の表層にトレンチゲート電極21
の深さ程度に浅く形成されたp型チャネル拡散層27
と、トレンチゲート電極21の上縁に沿って形成された
n+ 型ソース領域18と、ゲート電極21を覆う厚い絶
縁膜12とを有する。なお、単層のn+ 型ドレイン層2
9に代えて、n+ 型上層とp+ 型下層から成る2層構造
とすると、n型のIGBT構造を得ることができる。こ
のような縦型構造においても、低濃度ドレイン層39の
部分は、MOSFETがオン状態のときは縦方向にドリ
フト電流を成すドリフト領域として働き、オフ状態のと
きは空乏化して耐圧を高めるが、やはり、オン抵抗と耐
圧とは低濃度ドレイン層39の厚さと不純物濃度の如何
に支配され、両者間にはトレードオフの関係にある。On the other hand, as a vertical type semiconductor element, for example, a trench gate type n-channel MOS shown in FIG.
FETs are known. This structure has an n-type low-concentration drain layer 39 formed on an n + -type drain layer 29 in conductive contact with a back surface electrode (not shown), and a low-concentration drain layer 3.
A trench gate electrode 21 buried in a trench groove dug in the surface side of the semiconductor layer 9 via a gate insulating film 10;
The trench gate electrode 21 is formed on the surface layer of the low-concentration drain layer 39.
P-type channel diffusion layer 27 formed as shallow as the depth of
And an n + type source region 18 formed along the upper edge of the trench gate electrode 21, and a thick insulating film 12 covering the gate electrode 21. The single layer n + type drain layer 2
If a two-layer structure including an n + type upper layer and ap + type lower layer is used instead of 9, an n type IGBT structure can be obtained. Also in such a vertical structure, the portion of the low-concentration drain layer 39 functions as a drift region that forms a drift current in the vertical direction when the MOSFET is on, and depletes to increase the breakdown voltage when the MOSFET is off. Again, the on-resistance and the breakdown voltage are governed by the thickness of the low-concentration drain layer 39 and the impurity concentration, and there is a trade-off relationship between the two.
【0008】[0008]
【発明が解決しようとする課題】図13はシリコンのn
チャネルMOSFETの理想耐圧と理想オン抵抗との関
係を示すグラフである。理想耐圧は形状効果によるpn
接合耐圧の低下がないと仮定した。理想オン抵抗は低濃
度ドレイン領域以外の部分の抵抗を無視できるほど小さ
いと仮定した。図13のは図12に示す縦型のnチャ
ネルMOSFETの理想耐圧と理想オン抵抗との関係を
示す。縦型素子はオン時にドリフト電流が流れる方向と
オフ時の逆バイアスによる空乏層が延びて広がる方向と
が同じである。図12の低濃度ドレイン層39のみに着
目すると、オフ時の理想耐圧BVは次式により近似的に
求まる。
BV=Ec 2 ε0 εSiα(2−α)/2qND (1)
Ec :Ec (ND ),不純物濃度ND でのシリコンの最
大電界強度
ε0 :真空の誘電率
εSi:シリコンの比誘電率
q:単位電荷
ND :低濃度ドレイン領域の不純物濃度
α:係数 (0<α<1)
また、オン時の単位面積当たりの理想オン抵抗は次式に
より近似的に求まる。
R=αW/μqND
μ:μ(ND ),不純物濃度ND での電子の移動度
ここで、W=Ec ε0 εSi/qND であるので、Rは、
R=Ec ε0 εSiα/μq2 ND 2 (2)
となる。(1),(2)式よりqND を消去し、αの最
適値として例えば2/3を用いると、
R=BV2 (27/8Ec 3 ε0 εSiμ) (3)
が得られる。ここに、オン抵抗Rは耐圧BVの二乗に比
例するように見えるが、Ec やμがND に依存している
ので、図13のは実際にはBVの2.4〜2.6乗程
度に比例している。FIG. 13 shows n of silicon.
7 is a graph showing the relationship between the ideal breakdown voltage and the ideal on-resistance of a channel MOSFET. The ideal breakdown voltage is pn due to the shape effect
It was assumed that the junction breakdown voltage did not decrease. It is assumed that the ideal on-resistance is so small that the resistance of the portion other than the low-concentration drain region can be ignored. 13 shows the relationship between the ideal breakdown voltage and the ideal on-resistance of the vertical n-channel MOSFET shown in FIG. The vertical element has the same direction in which a drift current flows when turned on and the direction in which a depletion layer extends and spreads due to reverse bias when turned off. Focusing only on the low-concentration drain layer 39 of FIG. 12, the ideal breakdown voltage BV at the time of OFF is approximately obtained by the following equation. BV = E c 2 ε 0 ε Si α (2-α) / 2qN D (1) E c : E c (N D ), maximum electric field strength ε 0 of silicon at impurity concentration N D : vacuum permittivity ε Si : relative permittivity of silicon q: unit charge N D : impurity concentration of low concentration drain region α: coefficient (0 <α <1) Further, the ideal ON resistance per unit area at the time of ON is approximately calculated by the following equation. I want it. R = αW / μqN D μ: μ (N D ), mobility of electrons at impurity concentration N D Here, W = E c ε 0 ε Si / qN D , so R is R = E c ε 0 ε Si α / μq 2 N D 2 (2) (1) is obtained (2) erases the qN D from equation, using the optimal value as for example 2/3 of the α, R = BV 2 (27 / 8E c 3 ε 0 ε Si μ) (3) . Here, the on-resistance R seems to be proportional to the square of the withstand voltage BV, but since E c and μ depend on N D , the value of FIG. 13 is actually the 2.4-2.6 power of BV. It is proportional to the degree.
【0009】図13のは図11(a)に示す横型のM
OSFETの構造をnチャネル型に置き換えたMOSF
ETの理想耐圧と理想オン抵抗との関係を示す。このn
チャネル型のMOSFETにおいて、オン時にドリフト
電流の流れる方向は横方向であるのに対し、オフ時に空
乏層の延びる方向はウェル端から横方向ではなく実質的
にウェル底から縦方向(上方向)の方が早い。縦方向に
延びる空乏層で高耐圧を得るには、低濃度ドレイン領域
14とチャネル拡散層3とのpn接合面(ウェル底)か
ら低濃度ドレイン層14の表面(ウェル表面)まで空乏
化されなければならない。従って、低濃度ドレイン領域
14のネットのドーピング量の最大値は、
SD =Ec ε0 εSi/q (4)
に制限される。低濃度ドレイン領域14の横方向の長さ
をLとしたとき、理想耐圧BVは、
BV=Ec Lβ (5)
となる。ただし、βは未知の係数(0<β<1)であ
る。また、単位面積当たりの理想オン抵抗Rは、
R=L2 /μqSD (6)
で近似的に求まる。従って、(5),(6)式からLを
消去して(4)式を代入すると、
R=BV2 /β2 Ec 3 ε0 εSiμ (7)FIG. 13 shows a horizontal M shown in FIG. 11 (a).
MOSF with OSFET structure replaced with n-channel type
The relationship between the ideal breakdown voltage of ET and the ideal on-resistance is shown. This n
In a channel-type MOSFET, a drift current flows in a lateral direction when turned on, whereas a depletion layer extends in a turned-off direction not substantially from a well end but in a vertical direction (upward direction) from a well bottom. It's faster. In order to obtain a high breakdown voltage in the depletion layer extending in the vertical direction, the depletion layer must be depleted from the pn junction surface (well bottom) between the low concentration drain region 14 and the channel diffusion layer 3 to the surface of the low concentration drain layer 14 (well surface). I have to. Therefore, the maximum value of the net doping amount of the lightly doped drain region 14 is limited to S D = E c ε 0 ε Si / q (4). When the horizontal length of the low concentration drain region 14 is L, the ideal breakdown voltage BV is BV = E c Lβ (5). However, β is an unknown coefficient (0 <β <1). Further, the ideal on-resistance R per unit area is approximately obtained by R = L 2 / μqS D (6). Therefore, when L is deleted from the equations (5) and (6) and the equation (4) is substituted, R = BV 2 / β 2 E c 3 ε 0 ε Si μ (7)
【0010】図13のは図11(b)に示す横型の2
重拡散型のnチャネルMOSFETの構造の理想耐圧と
理想オン抵抗との関係を示す。図11(b)の構造にお
いては、図11(a)の構造にp型トップ層24が設け
られており、上下両側から延びる空乏層により低濃度ド
レイン層22がピンチ的に早期空乏化する。低濃度ドレ
イン領域22のネットドーピング量SD は図11(a)
のそれに比して2倍程度まで高めることが可能である。
SD =2Ec ε0 εSi/q (8)
かかる場合の理想オン抵抗Rと理想耐圧BVとの関係
は、
R=BV2 /2β2 Ec 3 ε0 εSiμ (9)
となる。FIG. 13 shows a horizontal type 2 shown in FIG. 11 (b).
The relationship between the ideal breakdown voltage and the ideal ON resistance of the structure of a heavy diffusion type n-channel MOSFET is shown. In the structure of FIG. 11B, the p-type top layer 24 is provided in the structure of FIG. 11A, and the low-concentration drain layer 22 is pinched and early depleted by the depletion layers extending from both upper and lower sides. The net doping amount S D of the low concentration drain region 22 is shown in FIG.
It is possible to increase it up to about twice as much as that. S D = 2E c ε 0 ε Si / q (8) In this case, the relationship between the ideal on-resistance R and the ideal breakdown voltage BV is R = BV 2 / 2β 2 E c 3 ε 0 ε Si μ (9) .
【0011】図13のはに比べオン抵抗と耐圧のト
レードオフ関係が多少改善されているものの、高々2倍
の濃度にまでしか設定することができず、半導体素子の
電流容量と耐圧の設計自由度は依然として、低いものと
なっている。Although the trade-off relationship between the on-state resistance and the withstand voltage is slightly improved as compared with the case of FIG. 13, it is possible to set the concentration to only twice as high as possible, and it is possible to freely design the current capacity and the withstand voltage of the semiconductor element. The degree is still low.
【0012】そこで、上記問題点に鑑み、本発明の課題
は、ドリフト領域の構造を改善することにより、オン抵
抗と耐圧とのトレードオフ関係を大幅に緩和させて、高
耐圧でありながら、オン抵抗の低減化による電流容量の
増大が可能の半導体装置を提供することにある。In view of the above problems, an object of the present invention is to improve the structure of the drift region, thereby greatly relaxing the trade-off relationship between the on-resistance and the withstand voltage, so that the on-state is maintained even though the withstand voltage is high. An object of the present invention is to provide a semiconductor device capable of increasing a current capacity by reducing resistance.
【0013】[0013]
【課題を解決するための手段】上記課題を解決するた
め、本発明の講じた手段は、例えばMOSFETの低濃
度ドレイン領域の如く、オン状態でドリフト電流を流す
と共にオフ状態で空乏化するドリフト領域を有する半導
体装置において、そのドリフト領域を図1に模式的に示
す如く、層状構造,繊維状構造ないし蜂の巣構造等の並
行分割構造とすると共に、第1導電型分割ドリフト経路
域1の相隣る同士の側面間(境界)に介在してpn接合
分離する第2導電型仕切領域2を設けたところにある。In order to solve the above-mentioned problems, the means taken by the present invention is, for example, a low-concentration drain region of a MOSFET, in which a drift current flows in an on state and is depleted in an off state. In the semiconductor device having the above, the drift region thereof has a parallel division structure such as a layered structure, a fibrous structure or a honeycomb structure as shown schematically in FIG. 1, and is adjacent to the first conductivity type division drift path region 1. The second conductivity type partition region 2 is provided between the side surfaces (borders) of the two to separate the pn junction.
【0014】即ち、図1(a)に示す如く、ドリフト領
域は、少なくとも端部において互いに並列接続する2枚
以上のプレート状の第1導電型(例えばn型)分割ドリ
フト経路域1を持つ層状構造の並行ドリフト経路群(分
割ドリフト経路集合体)100と、分割ドリフト経路域
1,1間に介在してpn接合分離するプレート状の第2
導電型(例えばp型)仕切領域2とを有して成る。複数
枚の第2導電型仕切領域2は少なくとも端部において互
いに並列接続している。That is, as shown in FIG. 1A, the drift region is a layered structure having two or more plate-shaped first-conductivity-type (for example, n-type) divided drift route regions 1 which are connected in parallel to each other at least at their ends. A parallel drift path group (divided drift path assembly) 100 having a structure and a plate-shaped second intervening between the divided drift path regions 1 and 1 for separating a pn junction.
And a conductive type (for example, p type) partition region 2. The plurality of second-conductivity-type partition regions 2 are connected in parallel to each other at least at their ends.
【0015】また、図1(b)に示すドリフト領域の構
造は繊維状構造であり、筋状の第1導電型(n型)分割
ドリフト経路域1と、筋状の第2導電型(p型)仕切領
域2とは集合体断面で市松状に配置されている。The structure of the drift region shown in FIG. 1 (b) is a fibrous structure, and has a stripe-shaped first conductivity type (n-type) divided drift path region 1 and a stripe-shaped second conductivity type (p). The (type) partition area 2 is arranged in a checkered pattern in the cross section of the assembly.
【0016】更に、図1(c)に示す第1導電型(n
型)分割ドリフト経路域1は四隅に連結部位1aを有し
ている。Further, as shown in FIG. 1C, the first conductivity type (n
The (type) divided drift path region 1 has connecting portions 1a at four corners.
【0017】図1(a)で良く判るように、並行ドリフ
ト経路群100の最側端(最上端又は最下端)の第1導
電型分割ドリフト経路域1の外側に沿ってpn接合分離
する第2導電型側端領域2aを設けても良い。As can be seen clearly in FIG. 1A, a pn junction is separated along the outside of the first conductivity type split drift path region 1 at the outermost end (top end or bottom end) of the parallel drift path group 100. The two conductivity type side end region 2a may be provided.
【0018】半導体装置がオン状態のときは、複数の並
列接続した分割ドリフト経路域1,1を介してドリフト
電流が流れるが、他方、オフ状態のときは第1導電型分
割ドリフト経路域1と第2導電型仕切領域2とのpn接
合からそれぞれ空乏層が第1導電型分割ドリフト経路1
内に広がってこれが空乏化される。一筋の第2導電型仕
切領域2の両側面から空乏端が側方へ広がるので空乏化
が非常に早まる。また第2導電型仕切領域2も同時に空
乏化される。このため、半導体装置は高耐圧となり、n
型分割ドリフト経路域1の不純物濃度を高めることが可
能であるので、オン抵抗の低減を実現できる。特に、本
発明では、一筋の第2導電型仕切領域2の両側面から隣
接する第1導電型分割ドリフト経路域1,1の双方へ空
乏端が進入するようになっており、双方へ広がる空乏端
が分割ドリフト経路域1,1へ有効的に作用しているの
で、空乏層形成のための第2導電型仕切領域2の総占有
幅を半減でき、その分、第1導電型分割ドリフト経路域
1の断面積の拡大を図ることができ、従前に比してオン
抵抗が頗る低減する。第2導電型仕切領域2の占有幅は
僅少であることが好ましい。また、第2導電型仕切領域
2の不純物濃度は低い方が望ましい。第1導電型分割ド
リフト経路域1の単位面積当たりの本数(分割数)を増
やすにつれ、オン抵抗と耐圧とのトレードオフ関係を大
幅に緩和できる。When the semiconductor device is in the ON state, the drift current flows through the plurality of divided drift path regions 1 and 1 connected in parallel, while when the semiconductor device is in the OFF state, the drift current flows through the first conductivity type divided drift path region 1. From the pn junction with the second conductivity type partition region 2, the depletion layer is formed as the first conductivity type divided drift path 1 respectively.
It spreads inside and is depleted. Since the depletion edge spreads laterally from both side surfaces of the linear second-conductivity-type partition region 2, depletion becomes very fast. The second conductivity type partition region 2 is also depleted at the same time. Therefore, the semiconductor device has a high breakdown voltage, and n
Since it is possible to increase the impurity concentration in the mold division drift path region 1, it is possible to reduce the on-resistance. In particular, in the present invention, the depletion end is adapted to enter both of the adjacent first conductivity type divided drift path regions 1, 1 from both side surfaces of the second conductivity type partition region 2, and the depletion that spreads to both sides. Since the end effectively acts on the divided drift route regions 1 and 1, the total occupied width of the second conductivity type partition region 2 for forming the depletion layer can be halved, and the first conductivity type divided drift route can be reduced accordingly. The cross-sectional area of the area 1 can be increased, and the on-resistance can be significantly reduced compared to before. The occupying width of the second conductivity type partition region 2 is preferably small. Further, it is desirable that the impurity concentration of the second conductivity type partition region 2 is low. As the number of the first conductivity type divided drift path regions 1 per unit area (the number of divisions) is increased, the trade-off relationship between the on-resistance and the breakdown voltage can be significantly eased.
【0019】本発明において一筋の第1導電型分割ドリ
フト経路域1に関する理想オン抵抗rと理想耐圧BVと
のトレードオフ関係式は、第2導電型仕切領域2の幅を
無限小と仮定すれば、一筋の理想オン抵抗rは(9)式
の理想オン抵抗RのN倍に相当しているので、
r=NR=BV2 /2β2 Ec 3 ε0 εSiμ (10)
であり、並行ドリフト経路群全体の理想オン抵抗Rと理
想耐圧BVの関係は、
R=BV2 /2Nβ2 Ec 3 ε0 εSiμ (11)
となる。従って、ドリフト領域の分割数Nを多ければ多
い程、オン抵抗の頗る低減した半導体装置を実現できる
ことが判る。In the present invention, the trade-off relational expression between the ideal on-resistance r and the ideal breakdown voltage BV for the straight line type first-conductivity-type divided drift path region 1 is that the width of the second-conductivity-type partition region 2 is infinitely small. Since the ideal on-resistance r of one line corresponds to N times the ideal on-resistance R of the equation (9), r = NR = BV 2 / 2β 2 E c 3 ε 0 ε Si μ (10) relationship of the ideal on the whole parallel drift path group resistor R and the ideal breakdown voltage BV becomes R = BV 2 / 2Nβ 2 E c 3 ε 0 ε Si μ (11). Therefore, it is understood that the larger the number of divisions N of the drift region, the more it is possible to realize a semiconductor device with significantly reduced on-resistance.
【0020】即ち、本発明は、オン状態で半導体基板の
平面方向にドリフト電流を流すと共にオフ状態で空乏化
するドリフト領域を有する半導体装置において、ドリフ
ト領域は、並列接続した複数の第1導電型分割ドリフト
経路域を持つ並行ドリフト経路群と、第1導電型分割ド
リフト経路域の相隣る同士の間に介在する第2導電型仕
切領域とを有する構造であって、前記並行ドリフト経路
群はドリフト電流を流す平面方向とは異なる半導体基板
の平面方向に交互に繰り返す構造で、かつそれぞれの幅
が1μm以下であることを特徴とする。斯かる構成によ
り、オン抵抗の低減と共に高耐圧化を図ることができ
る。That is, according to the present invention, in a semiconductor device having a drift region in which a drift current flows in a plane direction of a semiconductor substrate in an on state and is depleted in an off state, the drift region is composed of a plurality of first conductivity types connected in parallel. A structure having a parallel drift route group having a divided drift route region and a second conductivity type partition region interposed between adjacent ones of the first conductivity type divided drift route region, wherein the parallel drift route group is It is characterized in that the structure is alternately repeated in the plane direction of the semiconductor substrate different from the plane direction in which the drift current flows and each width is 1 μm or less. With such a configuration, it is possible to reduce the on-resistance and increase the breakdown voltage.
【0021】また、本発明は、半導体基板表面の第2導
電型チャネル領域に形成された第1導電型ソース領域と
第2導電型チャネル領域上にゲート絶縁膜を介して形成
されたゲート電極とを有し、第2導電型チャネル領域と
半導体基板表面の第1導電型ドレイン領域との間がドリ
フト電流を流す平面方向であることを特徴とする。斯か
る構成により、オン抵抗の低減と共に高耐圧化を図るこ
とができる。Further, according to the present invention, a first conductivity type source region formed in the second conductivity type channel region on the surface of the semiconductor substrate and a gate electrode formed on the second conductivity type channel region via a gate insulating film. And the second conductive type channel region and the first conductive type drain region on the surface of the semiconductor substrate are in a plane direction in which a drift current flows. With such a configuration, it is possible to reduce the on-resistance and increase the breakdown voltage.
【0022】[0022]
【発明の実施の形態】次に、本発明の実施形態を添付図
面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings.
【0023】〔実施形態1〕図2(a)は本発明の実施
形態1に係る横型構造のSOI−MOSFETを示す平
面図、図2(b)は図2(a)中のA−A′線で切断し
た状態を示す切断図、図2(c)は図2(a)中のB−
B′線で切断した状態を示す切断図である。[Embodiment 1] FIG. 2A is a plan view showing an SOI-MOSFET having a lateral structure according to Embodiment 1 of the present invention, and FIG. 2B is AA 'in FIG. 2A. 2C is a sectional view showing a state of being cut by a line, and FIG. 2C is B- in FIG.
It is a cutting diagram which shows the state cut | disconnected by the B'line.
【0024】本例のSOI−MOSFETの構造は、図
10に示す構造と同様に、nチャネルMOSFETのオ
フセット・ゲート構造であり、半導体基体5上の絶縁膜
6の上に形成されたp型のチャネル拡散領域7と、チャ
ネル拡散領域7の上にゲート絶縁膜10を介して形成さ
れたフィールドプレート付きゲート電極11と、チャネ
ル拡散領域7のうちゲート電極11の一端側に形成され
たn+ 型のソース領域8と、ゲート電極11の他端から
離間した位置に形成されたn+ 型のドレイン領域9と、
ドレイン・ゲート間に延在するドレイン・ドリフト領域
190と、このドレイン・ドリフト領域190上に形成
された厚い絶縁膜12とを有する。Similar to the structure shown in FIG. 10, the structure of the SOI-MOSFET of this example is an offset gate structure of an n-channel MOSFET, and is of a p-type formed on the insulating film 6 on the semiconductor substrate 5. A channel diffusion region 7, a gate electrode 11 with a field plate formed on the channel diffusion region 7 via a gate insulating film 10, and an n + type formed on one end side of the gate electrode 11 in the channel diffusion region 7. Source region 8 and an n + -type drain region 9 formed at a position separated from the other end of the gate electrode 11,
It has a drain drift region 190 extending between the drain and the gate, and a thick insulating film 12 formed on the drain drift region 190.
【0025】本例におけるドレイン・ドリフト領域19
0は、短冊状のn型分割ドリフト経路域1と短冊状のp
型仕切領域2とが平面上で交互に繰り返し配列されたス
トライプ状並行構造となっている。複数のn型分割ドリ
フト経路域1の一方端はp型のチャネル拡散領域7にp
n接合し、それらの他端はn+ 型のドレイン領域9に接
続しており、n+ 型のドレイン領域9側から分岐して並
列接続のドリフト経路群100を形成している。並行ド
リフト経路群100の最側端の分割ドリフト経路域1の
外側にはストライプ状のp型側端領域2aが設けられて
おり、すべての分割ドリフト経路域1が側面に沿ってp
型半導体領域2(2a)に挟まれている。また、複数の
p型仕切領域2の一方端はp型のチャネル拡散領域7に
接続し、それらの他端はn+ 型のドレイン領域9にpn
接合しており、p型のチャネル拡散領域7側から分岐し
て並列接続となっている。The drain / drift region 19 in this example
0 is a strip-shaped n-type split drift path region 1 and a strip-shaped p.
It has a stripe-shaped parallel structure in which the mold partition regions 2 are alternately and repeatedly arranged on a plane. One end of each of the plurality of n-type divided drift path regions 1 is provided in the p-type channel diffusion region 7 with p.
and n junction, the other ends thereof are formed an n + -type are connected to the drain region 9 of, n + -type drift path group 100 connected in parallel branched from the drain region 9 side. A stripe-shaped p-type side end region 2a is provided outside the divided drift route region 1 at the outermost end of the parallel drift route group 100, and all the divided drift route regions 1 are p along the side surface.
It is sandwiched between the type semiconductor regions 2 (2a). One end of each of the plurality of p-type partition regions 2 is connected to the p-type channel diffusion region 7, and the other end thereof is connected to the n + -type drain region 9 by pn.
They are joined and branched in parallel from the p-type channel diffusion region 7 side.
【0026】MOSFETがオン状態のときは、ゲート
絶縁膜10直下のチャネル反転層13を介してn+ 型の
ソース領域8から複数のn型分割ドリフト経路域1にキ
ャリア(電子)が流れ込み、ドレイン・ソース間電圧に
よる電界でドリフト電流が流れる。他方、オフ状態のと
きはゲート絶縁膜10直下のチャネル反転層13が消失
し、ドレイン・ソース間電圧により、n型分割ドリフト
経路域1とp型のチャネル拡散領域7とのpn接合J
a,n型分割ドリフト経路域1とp型仕切領域2とのp
n接合Jbからそれぞれ空乏層がn型分割ドリフト経路
域1内に広がってこれが空乏化される。pn接合Jaか
らの空乏端はn型分割ドリフト経路域1内の経路長さ方
向に広がるが、pn接合Jbからの空乏端eはn型分割
ドリフト経路域1内の経路幅方向に広がり、しかも両側
面から空乏端が広がるので空乏化が非常に早まる。また
p型仕切領域2も同時に空乏化される。このため、電界
強度が緩和され、高耐圧となり、その分、n型分割ドリ
フト経路域1の不純物濃度を高めることが可能であるの
で、オン抵抗が低減する。特に、本例では、p型仕切領
域2の両側面から隣接するn型分割ドリフト経路域1,
1の双方へ空乏端eが進入するようになっているので、
空乏層形成のためのp型仕切領域2の総占有幅を半減で
き、その分、n型分割ドリフト経路域1の断面積の拡大
を図ることができ、従前に比してオン抵抗が低減する。
n型分割ドリフト経路域1の単位面積当たりの本数(分
割数)Nを増やすにつれ、オン抵抗と耐圧とのトレード
オフ関係を大幅に緩和できる。2本より3本以上の方が
顕著となる。なお、p型仕切領域2の占有幅は僅少であ
ることが好ましい。When the MOSFET is on, carriers (electrons) flow from the n + type source region 8 into the plurality of n type divided drift route regions 1 through the channel inversion layer 13 immediately below the gate insulating film 10 and the drain.・ Drift current flows due to the electric field due to the voltage between the sources. On the other hand, in the off state, the channel inversion layer 13 immediately below the gate insulating film 10 disappears, and the pn junction J between the n-type split drift route region 1 and the p-type channel diffusion region 7 is caused by the drain-source voltage.
p of a, n-type divided drift path region 1 and p-type partition region 2
A depletion layer spreads from the n-junction Jb into the n-type split drift path region 1 and is depleted. The depletion edge from the pn junction Ja spreads in the path length direction in the n-type split drift path area 1, whereas the depletion edge e from the pn junction Jb spreads in the path width direction in the n-type split drift path area 1. Since the depletion edge spreads from both sides, depletion becomes very fast. The p-type partition region 2 is also depleted at the same time. Therefore, the electric field strength is relaxed and the breakdown voltage becomes high, and the impurity concentration in the n-type split drift path region 1 can be increased correspondingly, so that the on-resistance is reduced. In particular, in this example, the n-type divided drift path regions 1, which are adjacent from both side surfaces of the p-type partition region 2,
Since the depletion edge e enters into both of 1,
The total occupied width of the p-type partition region 2 for forming the depletion layer can be halved, and the cross-sectional area of the n-type divided drift route region 1 can be increased by that amount, and the on-resistance is reduced as compared with the conventional case. .
As the number N (division number) per unit area of the n-type divided drift route region 1 is increased, the trade-off relationship between the on-resistance and the breakdown voltage can be significantly eased. Three or more are more prominent than two. The occupied width of the p-type partition region 2 is preferably small.
【0027】ここで、理想耐圧BVを例えば100Vと
仮定し、n型分割ドリフト経路域1の不純物濃度ND =
3×1015(cm-3),シリコンの最大電界強度Ec =
3×105 (V/cm),電子の移動度μ=1000
(cm2 /V・sec),真空の誘電率ε0 =8.8×
10-12 (C/V・m),シリコンの比誘電率εSi=1
2,単位電荷q=1.6×10-19 (C)とする。図1
0に示す低濃度ドレイン領域90では、長さ6.6μ
m,厚さ1μmのとき、理想オン抵抗Rは9.1(mオ
ーム・cm2 )である。これに対して本例では、n型分
割ドリフト経路域1とp型仕切領域2の幅を例えば10
μm,1μm,0.1μmの値として理想オン抵抗Rを
計算すると(β=2/3,n型分割ドリフト経路域1と
p型仕切領域の長さを5μmと仮定)、幅10μm,の
とき、7.9(mオーム・cm2 )幅1μm,のとき、
0.8(mオーム・cm2 )幅0.1μm,のとき、
0.08(mオーム・cm2 )となり、幅1μm以下に
なると劇的な低オン抵抗化が可能である。p型仕切領域
2の幅をn型分割ドリフト経路域1の幅よりも僅少にす
れば、なおその効果が顕著となる。n型分割ドリフト経
路域1とp型仕切領域の幅はフォトリソグラフィとイオ
ン注入により現在0.5μm程度までが量産レベルの限
界であるが、微細加工技術の着実な進展により今後更な
る幅寸法の縮小化が可能となるので、オン抵抗を顕著に
低減できる。Here, assuming that the ideal breakdown voltage BV is 100 V, for example, the impurity concentration N D of the n-type split drift path region 1 is N D =
3 × 10 15 (cm −3 ), the maximum electric field strength of silicon E c =
3 × 10 5 (V / cm), electron mobility μ = 1000
(Cm 2 / V · sec), vacuum permittivity ε 0 = 8.8 ×
10 −12 (C / V · m), relative permittivity of silicon ε Si = 1
2, unit charge q = 1.6 × 10 −19 (C). Figure 1
In the low-concentration drain region 90 shown in 0, the length is 6.6 μm.
When the thickness is m and the thickness is 1 μm, the ideal on-resistance R is 9.1 (m ohm · cm 2 ). On the other hand, in this example, the widths of the n-type divided drift path region 1 and the p-type partition region 2 are set to, for example, 10
When the ideal on-resistance R is calculated as values of μm, 1 μm, and 0.1 μm (β = 2/3, assuming that the length of the n-type split drift path region 1 and the p-type partition region is 5 μm), the width is 10 μm , 7.9 (m ohm · cm 2 ) width 1 μm,
When 0.8 (m ohm · cm 2 ) width 0.1 μm,
It becomes 0.08 (m ohm · cm 2 ), and when the width becomes 1 μm or less, a dramatic reduction in on-resistance can be achieved. If the width of the p-type partition region 2 is made smaller than the width of the n-type divided drift path region 1, the effect becomes more remarkable. The width of the n-type split drift path region 1 and the p-type partition region is currently limited to about 0.5 μm due to photolithography and ion implantation at the mass production level limit, but due to steady progress in microfabrication technology, further width dimension will be increased in the future. Since the size can be reduced, the on-resistance can be significantly reduced.
【0028】特に、本例のドリフト領域の構造は、平面
上のストライプ状のpnの繰り返し構造であるため、1
回のフォトリソグラフィーで形成可能であるので、製造
プロセスの簡易化により素子の低コスト化も図ることが
できる。In particular, the structure of the drift region of this example is a repeating structure of pn stripes on a plane, and therefore 1
Since it can be formed by one-time photolithography, the cost of the device can be reduced by simplifying the manufacturing process.
【0029】〔実施形態2〕図3(a)は本発明の実施
形態2に係る2重拡散型nチャネルMOSFETを示す
平面図、図3(b)は図3(a)中のA−A′線で切断
した状態を示す切断図、図3(c)は図3(a)中のB
−B′線で切断した状態を示す切断図である。[Embodiment 2] FIG. 3A is a plan view showing a double diffusion type n-channel MOSFET according to Embodiment 2 of the present invention, and FIG. 3B is an AA line in FIG. 3A. A cutaway view showing a state cut along the line ', FIG. 3C shows B in FIG. 3A.
It is a sectional view showing a state of being cut along line -B '.
【0030】本例の2重拡散型nチャネルMOSFET
の構造は図11(b)に示す構造を改善したものであ
り、p- 型又はn- 型の半導体層4上に形成されたドレ
イン・ドリフト領域122と、ドレイン・ドリフト領域
122の上にゲート絶縁膜10を介して形成されたフィ
ールドプレート付きゲート電極11と、ドレイン・ドリ
フト領域122のうちゲート電極11の一端側に形成さ
れたウェル状のp型チャネル拡散領域17と、p型チャ
ネル拡散領域17内にウェル状に形成されたn+型のソ
ース領域8と、ゲート電極11に離間したn+ 型ドレイ
ン領域9と、ドレイン・ドリフト領域122上に形成さ
れた厚い絶縁膜12とを有する。Double-diffused n-channel MOSFET of this example
11B is an improvement of the structure shown in FIG. 11B, and includes a drain / drift region 122 formed on the p − type or n − type semiconductor layer 4 and a gate on the drain / drift region 122. A gate electrode 11 with a field plate formed via an insulating film 10, a well-shaped p-type channel diffusion region 17 formed on one end side of the gate electrode 11 in the drain / drift region 122, and a p-type channel diffusion region. An n + type source region 8 formed in a well shape in 17; an n + type drain region 9 separated from the gate electrode 11; and a thick insulating film 12 formed on the drain / drift region 122.
【0031】本例におけるドレイン・ドリフト領域12
2も、図2に示す実施例1と同様に、短冊状のn型分割
ドリフト経路域1と短冊状のp型仕切領域2とが平面上
で交互に繰り返し配列されたストライプ状の並行構造と
なっている。そして、複数のn型分割ドリフト経路域1
の一方端はp型のチャネル拡散領域17にpn接合し、
それらの他端はn+ 型のドレイン領域9に接続してお
り、n+ 型のドレイン9側から分岐して並列接続の並行
ドリフト経路群100を形成している。並行ドリフト経
路群100の最側端の分割ドリフト経路域1の外側には
これを挟み込むためのp型側端領域2aが設けられてお
り、すべての分割ドリフト経路域1が側面に沿ってp型
領域2(2a)に挟まれている。また、複数のp型仕切
領域2の一方端はp型のチャネル拡散領域7に接続し、
それらの他端はn+ 型のドレイン領域9にpn接合して
おり、p型のチャネル拡散領域7側から分岐して並列接
続となっている。The drain / drift region 12 in this example
2 also has a striped parallel structure in which strip-shaped n-type divided drift path regions 1 and strip-shaped p-type partition regions 2 are alternately and repeatedly arranged on a plane, as in Example 1 shown in FIG. Has become. And a plurality of n-type split drift path regions 1
One end is pn-junctioned to the p-type channel diffusion region 17,
The other ends thereof are connected to the n + type drain region 9, and branch from the n + type drain 9 side to form a parallel drift path group 100 connected in parallel. A p-type side end region 2a for sandwiching the divided drift route region 1 at the outermost end of the parallel drift route group 100 is provided, and all the divided drift route regions 1 are p-type along the side surface. It is sandwiched between regions 2 (2a). Further, one end of the plurality of p-type partition regions 2 is connected to the p-type channel diffusion region 7,
The other ends thereof are pn-junctioned with the n + type drain region 9 and branched from the side of the p type channel diffusion region 7 to be connected in parallel.
【0032】本例においても、オフ状態のときは、pn
接合Jbからの空乏端がn型分割ドリフト経路域1内の
経路幅方向に広がり、しかも両側面から空乏端が広がる
ので空乏化が非常に早まる。また同時にp型仕切領域2
も空乏化される。このため、実施例1と同様に、高耐圧
となり、n型分割ドリフト経路域1の不純物濃度を高め
ることが可能であるので、オン抵抗の低減を実現でき
る。Also in the present example, when in the off state, pn
The depletion end from the junction Jb spreads in the path width direction in the n-type split drift path region 1, and further, the depletion ends spread from both side surfaces, so that depletion becomes very fast. At the same time, the p-type partition area 2
Is also depleted. Therefore, similarly to the first embodiment, the breakdown voltage is high and the impurity concentration in the n-type divided drift path region 1 can be increased, so that the on-resistance can be reduced.
【0033】ここで、図11(b)に示す従来構造と理
想耐圧100Vで比較してみると、図11(b)に示す
従来構造ではオン抵抗が約0.5(mオーム・cm2 )
であるのに対して、本例の構造では実施例1と同様に分
割ドリフト経路域1とp型仕切領域2の厚さが1μm,
幅が0.5μmであるとき、オン抵抗が0.4(mオー
ム・cm2 )である。分割ドリフト経路域1とp型仕切
領域2の幅を更に僅少化することによりオン抵抗の大幅
低減が可能である。なお、分割ドリフト経路域1とp型
仕切領域2の厚さを厚くすることで、分割ドリフト経路
1の抵抗断面積を大きくしてオン抵抗の低減を図ること
ができる。例えば10μmにすればオン抵抗は1/1
0、100μmにすればオン抵抗は1/100にするこ
とができる。このような厚い領域のドーピングのために
は、同じ部位に複数の(若しくは連続的に異なる)エネ
ルギーで不純物イオン注入を行えば良い。Here, comparing the conventional structure shown in FIG. 11B with an ideal withstand voltage of 100 V, the ON resistance of the conventional structure shown in FIG. 11B is about 0.5 (m ohm · cm 2 ).
On the other hand, in the structure of this example, the thickness of the split drift path region 1 and the p-type partition region 2 is 1 μm, as in the first embodiment.
When the width is 0.5 μm, the on-resistance is 0.4 (m ohm · cm 2 ). By further reducing the widths of the divided drift path region 1 and the p-type partition region 2, it is possible to greatly reduce the on-resistance. By increasing the thickness of the divided drift route region 1 and the p-type partition region 2, it is possible to increase the resistance cross-sectional area of the divided drift route 1 and reduce the on-resistance. For example, if it is 10 μm, the on-resistance is 1/1
The on-resistance can be reduced to 1/100 by setting the thickness to 0 or 100 μm. In order to dope such a thick region, impurity ion implantation may be performed at the same site with a plurality of (or continuously different) energies.
【0034】〔実施形態3〕図4(a)は本発明の実施
形態3に係る横型構造のSOI−MOSFETを示す平
面図、図4(b)は図4(a)中のA−A′線で切断し
た状態を示す切断図、図4(c)は図4(a)中のB−
B′線で切断した状態を示す切断図である。[Third Embodiment] FIG. 4A is a plan view showing a lateral structure SOI-MOSFET according to a third embodiment of the present invention, and FIG. 4B is a sectional view taken along line AA ′ in FIG. 4A. FIG. 4C is a cross-sectional view showing a state of being cut by a line, and B- in FIG.
It is a cutting diagram which shows the state cut | disconnected by the B'line.
【0035】本例のSOI−MOSFETの構造は、半
導体基体5上の絶縁膜6の上に形成されたp型のチャネ
ル拡散層77と、チャネル拡散層77の側壁上にゲート
絶縁膜10を介して形成されたトレンチゲート電極11
1と、トレンチゲート電極111の上縁に沿って形成さ
れたn+ 型のソース領域88と、トレンチゲート電極1
11から離間した位置に形成されたn+ 型のドレイン領
域99と、ドレイン・ゲート間に延在するドレイン・ド
リフト領域290と、このドレイン・ドリフト領域29
0上に形成された厚い絶縁膜12とを有する。In the structure of the SOI-MOSFET of this example, the p-type channel diffusion layer 77 formed on the insulating film 6 on the semiconductor substrate 5 and the gate insulating film 10 on the side wall of the channel diffusion layer 77 are interposed. Formed trench gate electrode 11
1, an n + type source region 88 formed along the upper edge of the trench gate electrode 111, and the trench gate electrode 1
11, an n + type drain region 99 formed at a position separated from 11, a drain drift region 290 extending between the drain and the gate, and the drain drift region 29.
0, and a thick insulating film 12 formed on the surface.
【0036】本例におけるドレイン・ドリフト領域29
0は、実施形態1の場合とは異なり、プレート状のn型
分割ドリフト経路域1とプレート状のp型仕切領域2と
が交互に繰り返し積み重ねて積層された重畳並行構造と
なっている。最下位のn型分割ドリフト経路域1の真下
にはp型側端領域2aが形成されており、また最上位の
n型分割ドリフト経路域1の上にもp型側端領域2aが
形成されている。このp型側端領域2aのネットドーピ
ング量は2×1012/cm2 以下とする。複数のn型分
割ドリフト経路域1の一方端はp型のチャネル拡散層7
7にpn接合し、それらの他端はn+ 型のドレイン領域
99に接続しており、n+ 型のドレイン99側から分岐
して並列接続の並行ドリフト経路群100を形成してい
る。また、複数のp型仕切領域2の一方端はp型のチャ
ネル拡散層77に接続し、それらの他端はn+ 型のドレ
イン領域99にpn接合しており、p型のチャネル拡散
層77側から分岐して並列接続となっている。Drain / drift region 29 in this example
Different from the case of the first embodiment, 0 has a superposition parallel structure in which a plate-shaped n-type divided drift path region 1 and a plate-shaped p-type partition region 2 are alternately repeatedly stacked and laminated. A p-type side end region 2a is formed immediately below the lowest n-type split drift route region 1, and a p-type side end region 2a is also formed on the highest n-type split drift route region 1. ing. The net doping amount of the p-type side end region 2a is set to 2 × 10 12 / cm 2 or less. One end of each of the plurality of n-type divided drift path regions 1 is a p-type channel diffusion layer 7
7 are pn-junctioned, the other ends of which are connected to the n + -type drain region 99, and branch from the n + -type drain 99 side to form a parallel-connected parallel drift path group 100. One end of each of the plurality of p-type partition regions 2 is connected to the p-type channel diffusion layer 77, and the other end thereof is pn-junctioned to the n + -type drain region 99. It is branched from the side and connected in parallel.
【0037】この層状構造においても、理想オン抵抗は
前述の(11)式で与えられ、Nはn型分割ドリフト経
路域1の積み重ね枚数である。理想耐圧100Vとした
とき、従来構造(N=1)では、理想オン抵抗R=0.
5(mオーム・cm2 )であるが、本例ではN=10の
場合、R=0.05(mオーム・cm2 )となり、分割
数Nに逆比例してオン抵抗が激減する。Also in this layered structure, the ideal on-resistance is given by the above equation (11), and N is the number of stacked n-type divided drift path regions 1. When the ideal breakdown voltage is 100 V, in the conventional structure (N = 1), the ideal on-resistance R = 0.
Although it is 5 (m ohm · cm 2 ), in this example, when N = 10, R = 0.05 (m ohm · cm 2 ), and the on-resistance is drastically reduced in inverse proportion to the division number N.
【0038】ところで、図2及び図3に示す実施形態の
キーテクノロジーはフォトリソグラフィーとイオン注入
であったのに対し、図4に示す本例のキーテクノロジー
は、プレート状のn型分割ドリフト経路域1とプレート
状のp型仕切領域2とを交互に繰り返し積層するための
結晶成長法である。積層数を増やして行くと総厚が厚く
なり、また結晶成長に要する時間が長くなるため、不純
物の拡散による不純物分布の乱れが無視できなくなる。
理想的には、n型分割ドリフト経路域1とp型仕切領域
2を可能な限り薄く形成し、不純物分布の乱れが無視で
きる位の低温で結晶成長させることが好ましい。そのた
めには、シリコン技術で多用されているエピタキシャル
成長法よりも、ガリウム−砒素等の化合物半導体で用い
られるMOCVD(有機金属気相分解結晶成長法)やM
BE(分子線結晶成長法)が適している。これによれ
ば、層状のn型分割ドリフト経路域1と層状のp型仕切
領域2の層厚を微細化でき、オン抵抗の頗る低減が可能
となる。By the way, while the key technologies of the embodiments shown in FIGS. 2 and 3 are photolithography and ion implantation, the key technology of the present embodiment shown in FIG. 4 is a plate-shaped n-type divided drift path region. 1 and a plate-like p-type partition region 2 are alternately and repeatedly laminated. As the number of stacked layers is increased, the total thickness becomes thicker and the time required for crystal growth becomes longer, so that the disorder of the impurity distribution due to the diffusion of impurities cannot be ignored.
Ideally, it is preferable that the n-type split drift path region 1 and the p-type partition region 2 are formed as thin as possible, and the crystal is grown at a low temperature at which the disorder of the impurity distribution can be ignored. For that purpose, MOCVD (Metal Organic Chemical Vapor Decomposition Crystal Growth Method) and M used in compound semiconductors such as gallium-arsenic are used rather than the epitaxial growth method which is widely used in silicon technology.
BE (molecular beam crystal growth method) is suitable. According to this, the layer thickness of the layered n-type divided drift path region 1 and the layered p-type partition region 2 can be made fine, and the on-resistance can be significantly reduced.
【0039】なお、本例の場合、n型分割ドリフト経路
域1とp型仕切領域2を薄く形成し、不純物濃度を高め
ると、チャネル反転層13が形成し難くなり、チャネル
抵抗が下げ難く、結果としてオン抵抗が下げ難い。これ
を改善するためには、n型分割ドリフト経路域1とp型
仕切領域2のうちゲート絶縁膜10に接する部分を局部
的に低濃度領域とすることが有効である。In this example, if the n-type split drift path region 1 and the p-type partition region 2 are thinly formed to increase the impurity concentration, it becomes difficult to form the channel inversion layer 13 and it is difficult to lower the channel resistance. As a result, it is difficult to reduce the on-resistance. In order to improve this, it is effective to locally make a portion of the n-type divided drift route region 1 and the p-type partition region 2 in contact with the gate insulating film 10 into a low concentration region.
【0040】〔実施形態4〕図5(a)は本発明の実施
形態4に係る横型構造のMOSFETを示す平面図、図
5(b)は図5(a)中のA−A′線で切断した状態を
示す切断図、図5(c)は図5(a)中のB−B′線で
切断した状態を示す切断図である。[Fourth Embodiment] FIG. 5A is a plan view showing a lateral structure MOSFET according to a fourth embodiment of the present invention, and FIG. 5B is a line AA ′ in FIG. 5A. FIG. 5C is a sectional view showing a state of being cut, and FIG. 5C is a sectional view showing a state of being cut along the line BB ′ in FIG.
【0041】本例のMOSFETの構造は、p- 型又は
n- 型の半導体層4上に形成されたp型のチャネル拡散
層77と、チャネル拡散層77の側壁上にゲート絶縁膜
10を介して形成されたトレンチゲート電極111と、
トレンチゲート電極111の上縁に沿って形成されたn
+ 型のソース領域88と、トレンチゲート電極111か
ら離間した位置に形成されたn+ 型のドレイン領域99
と、ドレイン・ゲート間に延在するドレイン・ドリフト
領域290と、このドレイン・ドリフト領域290上に
形成された厚い絶縁膜12とを有する。In the structure of the MOSFET of this example, the p-type channel diffusion layer 77 formed on the p - type or n - type semiconductor layer 4 and the gate insulating film 10 on the side wall of the channel diffusion layer 77 are interposed. A trench gate electrode 111 formed by
N formed along the upper edge of the trench gate electrode 111
A + type source region 88 and an n + type drain region 99 formed at a position separated from the trench gate electrode 111.
A drain drift region 290 extending between the drain and the gate, and the thick insulating film 12 formed on the drain drift region 290.
【0042】本例におけるドレイン・ドリフト領域29
0は、実施形態3の場合と同様であり、プレート状のn
型分割ドリフト経路域1とプレート状のp型仕切領域2
とが交互に繰り返し積層された並行構造となっている。
最下位のn型分割ドリフト経路域1の真下にはp型側端
領域2aが形成されており、また最上位のn型分割ドリ
フト経路域1の上にもp型側端領域2aが形成されてい
る。このp型側端領域2aのネットドーピング量は2×
1012/cm2 以下とする。複数のn型分割ドリフト経
路域1の一方端はp型のチャネル拡散層77にpn接合
し、それらの他端はn+ 型のドレイン領域99に接続し
ており、n+ 型のドレイン99側から分岐して並列接続
の並行ドリフト経路群100を形成している。また、複
数のp型仕切領域2の一方端はp型のチャネル拡散層7
7に接続し、それらの他端はn+型のドレイン領域99
にpn接合しており、p型のチャネル拡散層77側から
分岐して並列接続となっている。Drain / drift region 29 in this example
0 is the same as in the third embodiment, and the plate-shaped n
Mold division drift path area 1 and plate-shaped p-type partition area 2
It has a parallel structure in which and are repeatedly stacked alternately.
A p-type side end region 2a is formed immediately below the lowest n-type split drift route region 1, and a p-type side end region 2a is also formed on the highest n-type split drift route region 1. ing. The net doping amount of the p-type side end region 2a is 2 ×
It is 10 12 / cm 2 or less. One end of each of the plurality of n-type divided drift path regions 1 is pn-junctioned with the p-type channel diffusion layer 77, and the other end thereof is connected to the n + -type drain region 99, and the n + -type drain 99 side To form a parallel drift path group 100 connected in parallel. Further, one end of each of the plurality of p-type partition regions 2 has a p-type channel diffusion layer 7
7 and the other ends thereof are n + type drain regions 99.
And a pn junction is formed, and branches from the side of the p-type channel diffusion layer 77 are connected in parallel.
【0043】本例は実施形態3と同様にオン抵抗の低減
と高耐圧化を図ることができる。なお、本例と図4に示
す実施形態3との関係は、図3に示す実施形態2と図2
に示す実施形態1との関係に相当している。図2の実施
形態に対する図3の実施形態と同じく、本例はSOIで
はない点で低コスト化を図ることができる。As in the third embodiment, this example can reduce the on-resistance and increase the breakdown voltage. The relationship between this example and the third embodiment shown in FIG. 4 is the same as that of the second embodiment shown in FIG.
This corresponds to the relationship with the first embodiment shown in FIG. Similar to the embodiment of FIG. 3 with respect to the embodiment of FIG. 2, the cost can be reduced in this example because it is not SOI.
【0044】〔実施形態5〕図6(a)は本発明の実施
形態5に係る横型構造のpチャネルMOSFETを示す
断面図であり、図11(a)の改善例に相当している。[Fifth Embodiment] FIG. 6A is a cross-sectional view showing a p-channel MOSFET having a lateral structure according to a fifth embodiment of the present invention, and corresponds to an improved example of FIG. 11A.
【0045】本例の構造は、p- 型半導体層4上に形成
されたn型チャネル拡散層3と、チャネル拡散層3の上
にゲート絶縁膜10を介して形成されたフィールドプレ
ート付きゲート電極11と、チャネル拡散層3のうちゲ
ート電極11の一端側に形成されたp+ 型のソース領域
18と、ゲート電極11の他端側真下にウェル端が位置
するp型ドレイン・ドリフト領域14と、このp型ドレ
イン・ドリフト領域14の表層に形成されたn型側端領
域2bと、ゲート電極11の他端から離間した位置に形
成されたp+ 型のドレイン領域19と、p+ 型のソース
領域18に隣接するn+ 型のコンタクト領域71と、p
型ドレイン・ドリフト14上に形成された厚い絶縁膜1
2とを有する。The structure of this example is such that the n-type channel diffusion layer 3 formed on the p − type semiconductor layer 4 and the gate electrode with the field plate formed on the channel diffusion layer 3 via the gate insulating film 10. 11, a p + type source region 18 formed on one end side of the gate electrode 11 in the channel diffusion layer 3, and a p-type drain drift region 14 whose well end is located directly below the other end side of the gate electrode 11. an n-type-side end region 2b formed on the surface layer of the p-type drain drift region 14, and p + -type drain region 19 formed at a position spaced from the other end of the gate electrode 11, p + -type An n + type contact region 71 adjacent to the source region 18 and p
Thick insulating film 1 formed on the mold drain drift 14
2 and.
【0046】本例の場合、ドレイン領域の分割数は1
で、p型ドレイン・ドリフト領域14は断面上では一筋
の分割ドレイン経路域1に相当している。このp型ドレ
イン・ドリフト領域14の上のn型側端領域2bの厚さ
は空乏化を早めるため薄く形成されている。図11
(a)の構造と比べると、本例ではn型側端領域2bが
形成されており、p型ドレイン・ドリフト領域14の下
側のチャネル拡散層3からの空乏層と上側のn型側端領
域2aからの空乏層とで空乏化を促進するようにしてい
る。図11(a)のドレイン・ドリフト領域14のネッ
トドーピング量は1×1012/cm2 程度であるのに対
し、本例では約2×1012/cm2 程度と2倍になって
いる。従って、高耐圧化を実現できる分、ドレイン・ド
リフト領域14の不純物濃度を高めることができ、低オ
ン抵抗化が可能である。In this example, the number of divisions of the drain region is 1.
Thus, the p-type drain / drift region 14 corresponds to a linear divided drain path region 1 in cross section. The thickness of the n-type side end region 2b above the p-type drain / drift region 14 is formed thin in order to accelerate depletion. Figure 11
Compared to the structure of (a), in this example, the n-type side end region 2b is formed, and the depletion layer from the channel diffusion layer 3 below the p-type drain / drift region 14 and the upper n-type side end are formed. The depletion layer from the region 2a promotes depletion. The net doping amount of the drain / drift region 14 in FIG. 11A is about 1 × 10 12 / cm 2 , whereas it is about 2 × 10 12 / cm 2 in this example, which is double. Therefore, the impurity concentration of the drain / drift region 14 can be increased as much as the high breakdown voltage can be realized, and the low on-resistance can be achieved.
【0047】〔実施形態6〕図6(b)は本発明の実施
形態6に係る横型構造のnチャネルMOSFETを示す
断面図であり、図11(b)の改善例に相当している。[Sixth Embodiment] FIG. 6B is a sectional view showing an n-channel MOSFET having a lateral structure according to a sixth embodiment of the present invention, and corresponds to an improved example of FIG. 11B.
【0048】本例は2重拡散型nチャネルMOSFET
であり、p- 型半導体層4(p型側端領域2a)上に形
成されたドレイン・ドリフト領域22(第1のn型分割
ドリフト経路域1)と、ゲート絶縁膜10を介して形成
されたフィールドプレート付きゲート電極11と、ドレ
イン・ドリフト領域22のうちゲート電極11の一端側
に形成されたウェル状のp型チャネル拡散領域17と、
p型チャネル拡散領域17内にウェル状に形成されたn
+ 型のソース領域8と、ゲート電極11とこれに離間し
たn+ 型ドレイン領域9との間の表面層に形成されたp
型トップ層24(p型仕切領域2)と、p型仕切領域2
の表層に形成された第2のn型分割ドリフト経路域1
と、n+ 型のソース領域8に隣接するp+ 型のコンタク
ト領域72と、p型仕切領域2上に形成された厚い絶縁
膜12とを有する。This example is a double diffusion type n-channel MOSFET.
And the drain / drift region 22 (first n-type divided drift route region 1) formed on the p − type semiconductor layer 4 (p-type side end region 2 a) and the gate insulating film 10. A gate electrode 11 with a field plate, a well-shaped p-type channel diffusion region 17 formed on one end side of the gate electrode 11 in the drain / drift region 22,
n formed in a well shape in the p-type channel diffusion region 17
P formed on the surface layer between the + type source region 8 and the gate electrode 11 and the n + type drain region 9 separated from the gate electrode 11.
Mold top layer 24 (p-type partition region 2) and p-type partition region 2
Second n-type split drift path region 1 formed on the surface layer of
And a p + type contact region 72 adjacent to the n + type source region 8 and a thick insulating film 12 formed on the p type partition region 2.
【0049】下層のドレイン・ドリフト領域22と上層
の分割ドリフト経路域1はp型仕切領域2を挟んで並列
接続している。図11(b)の構造と比べると、本例で
はp型仕切領域2の上に分割ドリフト経路域1を並設し
た点にある。前述したように、p型仕切領域2から下層
のドレイン・ドリフト領域22と上層の分割ドリフト経
路域1の双方に空乏層が広がるようになっているため、
高耐圧化を図ることができ、その分、オン抵抗を低減さ
せることができる。図11(b)のドリフト領域22の
ネットドーピング量は2×1012/cm2 程度であるの
に対し、本例では下層のドレイン・ドリフト領域22と
上層の分割ドリフト経路域1とのドーピング量を合わせ
て、約3×1012/cm2 程度と1.5倍にすることが
できる。本例の構造によれば、図13中のに示す理想
耐圧と理想オン抵抗とのトレードオフ関係を得ることが
できる。明らかに、従来構造に比して理想耐圧と理想オ
ン抵抗のトレードオフ関係を緩和できることが判明し
た。The lower drain / drift region 22 and the upper divided drift route region 1 are connected in parallel with the p-type partition region 2 interposed therebetween. Compared to the structure of FIG. 11B, in this example, the divided drift path region 1 is provided in parallel on the p-type partition region 2. As described above, since the depletion layer spreads from the p-type partition region 2 to both the drain / drift region 22 in the lower layer and the divided drift path region 1 in the upper layer,
A high breakdown voltage can be achieved, and the ON resistance can be reduced accordingly. While the net doping amount of the drift region 22 in FIG. 11B is about 2 × 10 12 / cm 2, the doping amount of the drain / drift region 22 in the lower layer and the divided drift path region 1 in the upper layer in this example. Can be multiplied by 1.5, which is about 3 × 10 12 / cm 2 . According to the structure of this example, it is possible to obtain the trade-off relationship between the ideal breakdown voltage and the ideal on-resistance shown in FIG. Obviously, it was found that the trade-off relationship between the ideal breakdown voltage and the ideal on-resistance can be relaxed compared to the conventional structure.
【0050】なお、実施形態5,6の構造を得るための
製造方法としては、まず、p- 型半導体層4へのリンの
イオン注入と熱処理(熱拡散)によりn型半導体層3
(22)を形成した後、このn型半導体層3(22)表
面への選択的な硼素のイオン注入と熱処理(熱拡散)に
よってp型領域14(24)を形成し、しかる後、熱酸
化処理を施し、シリコン表面でのリンの偏析による高濃
度化と硼素の酸化膜中への偏析による低濃度化を利用し
て表層に薄いn型側端領域2b(n型分割ドリフト経路
域1)を形成する。n型側端領域2bやn型分割ドリフ
ト経路域1の上層には逆導電型層が隣接していないた
め、空乏化し易くするには薄層であればある程よい。従
って、熱酸化処理工程だけでn型側端領域2b(n型分
割ドリフト経路1)を形成できる利益は、工程数の削減
に寄与し、量産化を可能とする。As a manufacturing method for obtaining the structures of the fifth and sixth embodiments, first, the n type semiconductor layer 3 is formed by ion implantation of phosphorus into the p − type semiconductor layer 4 and heat treatment (thermal diffusion).
After forming (22), a p-type region 14 (24) is formed by selective ion implantation of boron and heat treatment (thermal diffusion) on the surface of the n-type semiconductor layer 3 (22), and then thermal oxidation is performed. A thin n-type side edge region 2b (n-type split drift path region 1) is formed on the surface layer by applying a high concentration by segregation of phosphorus on the silicon surface and a low concentration by boron segregation in the oxide film after the treatment. To form. Since the opposite conductivity type layer is not adjacent to the upper layer of the n-type side end region 2b or the n-type split drift path region 1, a thin layer is preferable to facilitate depletion. Therefore, the advantage that the n-type side end region 2b (n-type divided drift path 1) can be formed only by the thermal oxidation treatment step contributes to the reduction of the number of steps and enables mass production.
【0051】実施形態5においては、n型側端領域2b
がゲート絶縁膜10とドレイン・ドリフト領域14と隔
てているが、これは上記の製造方法を用いているため、
シリコン表層に全面的にn型側端領域2bが形成されて
しまうからである。しかし、n型側端領域2bが薄けれ
ば、ゲート10直下に形成されるチャネル反転層によっ
てドレイン・ドリフト領域14が導通するので問題は起
こらない。In the fifth embodiment, the n-type side end region 2b is formed.
Is separated from the gate insulating film 10 and the drain / drift region 14 by using the above manufacturing method.
This is because the n-type side end region 2b is entirely formed on the silicon surface layer. However, if the n-type side end region 2b is thin, no problem occurs because the drain / drift region 14 becomes conductive due to the channel inversion layer formed immediately below the gate 10.
【0052】〔実施形態7〕図7(a)は本発明の実施
形態7に係る縦型構造のトレンチゲート型のnチャネル
MOSFETを示す平面図、図7(b)は図7(a)中
のA−A′線に沿って切断した状態を示す切断図、図8
(a)は図7(a)中のB−B′線に沿って切断した状
態を示す切断図、図8(b)は図7(b)中のC−C′
線に沿って切断した状態を示す切断図、図9(a)は図
7(a)中のD−D′線に沿って切断した状態を示す切
断図、図9(b)は図7(a)中のE−E′線に沿って
切断した状態を示す切断図である。[Seventh Embodiment] FIG. 7A is a plan view showing a trench gate type n-channel MOSFET having a vertical structure according to a seventh embodiment of the present invention. FIG. 7B is a plan view of FIG. 7A. 8 is a sectional view showing a state of being cut along the line AA ′ in FIG.
7A is a sectional view showing a state of being cut along the line BB ′ in FIG. 7A, and FIG. 8B is CC ′ in FIG. 7B.
9A is a sectional view showing a state of being cut along the line, FIG. 9A is a sectional view showing a state of being cut along the line D-D ′ in FIG. 7A, and FIG. It is a cutting diagram which shows the state cut | disconnected along the EE 'line in a).
【0053】本例の構造は、裏面電極(図示せず)が導
電接触したn+ 型ドレイン層29と、この上に形成され
たドレイン・ドリフト層139と、ドレイン・ドリフト
層139の表面側に堀り込まれたトレンチ溝内にゲート
絶縁膜10を介して埋め込まれたトレンチゲート電極2
1と、ドレイン・ドリフト層139の表層にトレンチゲ
ート電極21の深さ程度に浅く形成されたp型チャネル
層27と、トレンチゲート電極21の上縁に沿って形成
されたn+ 型ソース領域18と、ゲート電極21を覆う
厚い絶縁膜12とを有する。なお、単層のn+ 型ドレイ
ン層29に代えて、n+ 型上層とp+ 型下層から成る2
層構造又はp型層とすると、n型のIGBT構造を得る
ことができる。In the structure of this example, an n + type drain layer 29 having a back surface electrode (not shown) in conductive contact, a drain / drift layer 139 formed thereon, and a surface side of the drain / drift layer 139 are provided. Trench gate electrode 2 embedded in a trench groove dug in via a gate insulating film 10.
1, the p-type channel layer 27 formed shallowly to the surface of the drain / drift layer 139 to the depth of the trench gate electrode 21, and the n + type source region 18 formed along the upper edge of the trench gate electrode 21. And a thick insulating film 12 that covers the gate electrode 21. Instead of the single-layer n + -type drain layer 29, an n + -type upper layer and a p + -type lower layer 2
With a layered structure or a p-type layer, an n-type IGBT structure can be obtained.
【0054】本例におけるドレイン・ドリフト層139
は、図8(b)及び図9に示す如く、縦方向にプレート
状のn型分割ドリフト経路域1と縦方向にプレート状の
p型仕切領域2とが交互に繰り返し隣接した横並び並行
構造となっている。複数枚のn型分割ドリフト経路域1
の上端はp型のチャネル拡散層27にpn接合し、それ
らの下端はn+ 型のドレイン層29に接続しており、n
+ 型のドレイン層29側から分岐して並列接続の並行ド
リフト経路群100を形成している。図示されていない
が、並行ドリフト経路群100の最側端の分割ドリフト
経路域1の外側にはp型側端領域が設けられており、す
べての分割ドリフト経路域1が側面に沿ってp型仕切領
域2又はp型側端領域に挟まれている。また、複数のp
型仕切領域2の上方端はp型のチャネル拡散層27に接
続し、それらの下端はn+ 型のドレイン層29にpn接
合しており、p型のチャネル拡散層27側から分岐して
並列接続となっている。Drain / drift layer 139 in this example
As shown in FIGS. 8B and 9, is a horizontal side-by-side parallel structure in which plate-shaped n-type divided drift path regions 1 in the vertical direction and plate-shaped p-type partition regions 2 in the vertical direction are alternately and repeatedly adjacent to each other. Has become. Multiple n-type split drift path regions 1
Has a pn-junction with the p-type channel diffusion layer 27, and their lower ends are connected with the n + -type drain layer 29.
A parallel drift path group 100 of parallel connection is formed by branching from the + type drain layer 29 side. Although not shown, a p-type side end region is provided outside the divided drift route region 1 at the outermost end of the parallel drift route group 100, and all the divided drift route regions 1 are p-type along the side surface. It is sandwiched between the partition region 2 or the p-type side end region. Also, multiple p
The upper end of the mold partition region 2 is connected to the p-type channel diffusion layer 27, and the lower end thereof is pn-junctioned to the n + -type drain layer 29. It is connected.
【0055】オフ状態のときはゲート絶縁膜10直下の
チャネル反転層13が消失し、ドレイン・ソース間電圧
により、n型分割ドリフト経路域1とp型のチャネル拡
散層27とのpn接合Ja,n型分割ドリフト経路域1
とp型仕切領域2とのpn接合Jbからそれぞれ空乏層
がn型分割ドリフト経路域1内に広がってこれが空乏化
される。pn接合Jaからの空乏端はn型分割ドリフト
経路域1内の経路長さ方向に広がるが、pn接合Jbか
らの空乏端はn型分割ドリフト経路域1内の経路幅方向
に広がり、しかも両側面から空乏端が広がるので空乏化
が非常に早まる。またp型仕切領域2も同時に空乏化さ
れる。特に、p型仕切領域2の両側面から隣接するn型
分割ドリフト経路1,1の双方へ空乏端が進入するよう
になっているので、空乏層形成のためのp型仕切領域2
の総占有幅を半減でき、その分、n型分割ドリフト経路
域1の断面積の拡大を図ることができ、従前に比してオ
ン抵抗が低減する。n型分割ドリフト経路1の単位面積
当たりの本数(分割数)を増やすにつれ、オン抵抗と耐
圧とのトレードオフ関係を大幅に緩和できる。In the off state, the channel inversion layer 13 immediately below the gate insulating film 10 disappears, and the pn junction Ja between the n-type split drift path region 1 and the p-type channel diffusion layer 27 is caused by the drain-source voltage. n-type split drift path region 1
A depletion layer spreads from the pn junction Jb between the p-type partition region 2 and the p-type partition region 2 into the n-type split drift path region 1 and is depleted. The depletion edge from the pn junction Ja spreads in the path length direction in the n-type split drift path area 1, while the depletion edge from the pn junction Jb spreads in the path width direction in the n-type split drift path area 1 and on both sides. Since the depletion edge spreads from the surface, depletion becomes very fast. The p-type partition region 2 is also depleted at the same time. In particular, since the depletion edge enters from both side surfaces of the p-type partition region 2 to both of the adjacent n-type split drift paths 1 and 1, the p-type partition region 2 for forming the depletion layer is formed.
Can be halved, and the cross-sectional area of the n-type divided drift route region 1 can be increased correspondingly, and the on-resistance is reduced as compared with the conventional case. As the number of n-type divided drift paths 1 per unit area (the number of divisions) is increased, the trade-off relationship between the on-resistance and the breakdown voltage can be significantly eased.
【0056】理想耐圧100VのnチャネルMOSFE
T(図12に示す従来構造)での理想オン抵抗と比較す
ると、従来構造の場合、図13のにより、理想オン抵
抗R=約0.6(mオーム・cm2 )であるが、本例の
場合は、n型分割ドリフト経路域1とp型仕切領域2の
深さ(経路長)を約5μm、β=2/3と仮定し、n型
分割ドリフト経路域1とp型仕切領域2の積層方向の厚
さを例えば10μm,1μm,0.1μmの値として計
算すると、
厚さ10μm,のとき、1.6(mオーム・cm2 )
厚さ1μm,のとき、0.16(mオーム・cm2 )
厚さ0.1μm,のとき、0.016(mオーム・cm
2 )
となり、μmオーダでも劇的な低オン抵抗化が可能であ
る。p型仕切領域2の幅をn型分割ドリフト経路域1の
幅よりも僅少にすれば、なおその効果が顕著となる。n
型分割ドリフト経路域1とp型仕切領域の幅はフォトリ
ソグラフィとイオン注入により現在0.5μm 程度ま
でが量産レベルの限界であるが、微細加工技術の着実な
進展により今後更なる幅寸法の縮小化が可能となるの
で、オン抵抗を顕著に低減できる。N-channel MOSFET with ideal withstand voltage of 100V
Compared with the ideal on-resistance in T (conventional structure shown in FIG. 12), in the case of the conventional structure, the ideal on-resistance R = about 0.6 (m ohm · cm 2 ) is obtained according to FIG. In this case, assuming that the depth (path length) of the n-type split drift route region 1 and the p-type partition region 2 is about 5 μm and β = 2/3, the n-type split drift route region 1 and the p-type partition region 2 are assumed. When the thickness in the stacking direction is calculated as values of 10 μm, 1 μm, and 0.1 μm, for example, when the thickness is 10 μm, 1.6 (m ohm · cm 2 ) and when the thickness is 1 μm, 0.16 (m Ohm · cm 2 ) 0.016 (m ohm · cm) when the thickness is 0.1 μm
2 ), and it is possible to dramatically reduce the on-resistance even in the μm order. If the width of the p-type partition region 2 is made smaller than the width of the n-type divided drift path region 1, the effect becomes more remarkable. n
The width of the mold division drift path region 1 and the p-type partition region is currently limited to about 0.5 μm due to photolithography and ion implantation at the mass production level limit, but due to steady progress in microfabrication technology, the width will be further reduced in the future. Therefore, the on-resistance can be significantly reduced.
【0057】本例のように、縦方向に配列したn型分割
ドリフト経路域1とp型仕切領域2の繰り返し構造は、
横型半導体構造の場合に比して製法上難しい面もある
が、例えば、ドレイン層29の上にエピタキシャル成長
によりn型層を形成した後、そのn型層をストライプ状
に間隔を空けてエッチング除去し、そのエッチング溝を
p型のエピタキシャル成長により埋め、不要部分を研磨
除去する方法を採用することができる。また、中性子線
や飛程の大きい高エネルギー粒子の選択的打ち込みとこ
れによる核変換を利用して選択的に逆導電型領域を深く
形成する方法も考えられる。As in this example, the repeating structure of the n-type divided drift path region 1 and the p-type partition region 2 arranged vertically is
Although it is difficult in terms of manufacturing method compared to the case of a lateral semiconductor structure, for example, after forming an n-type layer by epitaxial growth on the drain layer 29, the n-type layer is removed by etching in stripes. It is possible to adopt a method of filling the etching groove with p-type epitaxial growth and polishing and removing an unnecessary portion. Further, a method of selectively forming a deep region of the opposite conductivity type by selectively implanting neutron rays or high-energy particles with a large range and transmutation resulting therefrom is also conceivable.
【0058】なお、本発明に係る構造は、MOSFET
のドレイン・ドリフト領域に限らずオン時にドリフト領
域となり、オフ時に空乏化領域となる半導体領域に適用
でき、IGBT,バイポラーラトランジスタ,ダイオー
ド,JFET、サイリスタ,MESFET,HEMT等
の殆ど総ての半導体素子に適用可能である。また、導電
型は逆導電型に適宜変更できる。また、図1では並行分
割ドリフト群として層状、繊維状、網状又は蜂の巣状を
示してあるが、これに限らず、他の繰り返し形状を採用
可能である。The structure according to the present invention is a MOSFET.
Can be applied to not only the drain / drift region but also a semiconductor region that becomes a depletion region when turned on and becomes a depletion region when turned off, and almost all semiconductor devices such as IGBT, bipolar transistor, diode, JFET, thyristor, MESFET, HEMT. Is applicable to. Further, the conductivity type can be appropriately changed to the opposite conductivity type. Further, in FIG. 1, a layered shape, a fibrous shape, a net shape, or a honeycomb shape is shown as the parallel division drift group, but the present invention is not limited to this, and other repeating shapes can be adopted.
【0059】[0059]
【発明の効果】以上説明したように、本発明におけるド
リフト領域は、並列接続した複数の第1導電型分割ドリ
フト経路域を持つ並行ドリフト経路群と、第1導電型分
割ドリフト経路域の相隣る同士の間に介在する第2導電
型仕切領域とを有し、並行ドリフト経路群はドリフト電
流を流す平面方向とは異なる半導体基板の平面方向に交
互に繰り返す構造で、かつそれぞれの幅が1μm以下で
あることを特徴とする。斯かる構成により、オン抵抗の
低減と共に高耐圧化を図ることができる。As described above, the drift region in the present invention includes the parallel drift route group having a plurality of first conductivity type divided drift route regions connected in parallel and the first conductivity type divided drift route region adjacent to each other. And a second conductivity type partition region interposed between the parallel drift paths, and the parallel drift path groups are alternately repeated in the plane direction of the semiconductor substrate different from the plane direction in which the drift current flows, and each width is 1 μm. It is characterized by the following. With such a configuration, it is possible to reduce the on-resistance and increase the breakdown voltage.
【図1】(a)乃至(c)は本発明に係る半導体装置に
おけるドリフト領域の構造をそれぞれ示す模式図であ
る。1A to 1C are schematic views showing the structure of a drift region in a semiconductor device according to the present invention.
【図2】(a)は本発明の実施形態1に係る横型構造の
SOI−MOSFETを示す平面図、(b)は(a)中
のA−A′線で切断した状態を示す切断図、(c)は
(a)中のB−B′線で切断した状態を示す切断図であ
る。2A is a plan view showing an SOI-MOSFET having a lateral structure according to Embodiment 1 of the present invention, FIG. 2B is a sectional view showing a state cut along the line AA ′ in FIG. (C) is a sectional view showing a state of cutting along the line BB ′ in (a).
【図3】(a)は本発明の実施形態2に係る2重拡散型
nチャネルMOSFETを示す平面図、(b)は(a)
中のA−A′線で切断した状態を示す切断図、(c)は
(a)中のB−B′線で切断した状態を示す切断図であ
る。3A is a plan view showing a double diffusion type n-channel MOSFET according to a second embodiment of the present invention, and FIG. 3B is a plan view of FIG.
FIG. 3C is a sectional view showing a state cut along the line AA ′ in FIG. 6C, and FIG. 7C is a sectional view showing a state cut along the line BB ′ in FIG.
【図4】(a)は本発明の実施形態3に係る横型構造の
SOI−MOSFETを示す平面図、(b)は(a)中
のA−A′線で切断した状態を示す切断図、(c)は
(a)中のB−B′線で切断した状態を示す切断図であ
る。4A is a plan view showing an SOI-MOSFET having a lateral structure according to a third embodiment of the present invention, FIG. 4B is a sectional view showing a state cut along line AA ′ in FIG. (C) is a sectional view showing a state of cutting along the line BB ′ in (a).
【図5】(a)は本発明の実施形態例4に係る横型構造
のMOSFETを示す平面図、(b)は(a)中のA−
A′線で切断した状態を示す切断図、(c)は(a)中
のB−B′線で切断した状態を示す切断図である。5A is a plan view showing a lateral structure MOSFET according to a fourth embodiment of the present invention, and FIG. 5B is a view showing A- in FIG.
A sectional view showing a state cut along the line A ', and (c) is a sectional view showing a state cut along the line BB' in (a).
【図6】(a)は本発明の実施形態5に係る横型構造の
pチャネルMOSFETを示す断面図、(b)は本発明
の実施形態6に係る横型構造のnチャネルMOSFET
を示す断面図である。6A is a sectional view showing a p-channel MOSFET having a lateral structure according to Embodiment 5 of the present invention, and FIG. 6B is an n-channel MOSFET having a lateral structure according to Embodiment 6 of the present invention.
FIG.
【図7】(a)は本発明の実施形態例7に係る縦型構造
のトレンチゲート型のnチャネルMOSFETを示す平
面図、(b)は(a)中のA−A′線に沿って切断した
状態を示す切断図である。7A is a plan view showing a trench gate type n-channel MOSFET having a vertical structure according to a seventh embodiment of the present invention, and FIG. 7B is a view taken along line AA ′ in FIG. It is a cutting diagram which shows the state cut.
【図8】(a)は図7(a)中のB−B′線に沿って切
断した状態を示す切断図、(b)は図7(b)中のC−
C′線に沿って切断した状態を示す切断図である。8A is a sectional view showing a state of being cut along the line BB ′ in FIG. 7A, and FIG. 8B is a sectional view taken along line C- in FIG. 7B.
It is a cutting diagram showing the state cut along the line C '.
【図9】(a)は図7(a)中のD−D′線に沿って切
断した状態を示す切断図、(b)は図7(a)中のE−
E′線に沿って切断した状態を示す切断図である。9A is a sectional view showing a state of being cut along the line D-D 'in FIG. 7A, and FIG. 9B is a sectional view taken along line E- in FIG. 7A.
It is a sectional view showing the state cut along line E '.
【図10】(a)は従来の横型構造のSOI−MOSF
ETを示す平面図、(b)はその断面図である。FIG. 10A is a conventional lateral structure SOI-MOSF.
The top view which shows ET, (b) is the sectional drawing.
【図11】(a)は従来の横型構造のMOSFETの別
の構造を示す断面図、(b)は従来の2重拡散型nチャ
ネルMOSFETの構造を示す断面図である。11A is a sectional view showing another structure of a conventional lateral MOSFET, and FIG. 11B is a sectional view showing a structure of a conventional double-diffused n-channel MOSFET.
【図12】従来のトレンチゲート型のnチャネルMOS
FETを示す断面図である。FIG. 12 is a conventional trench gate type n-channel MOS.
It is sectional drawing which shows FET.
【図13】各種のシリコンnチャネルMOSFETの理
想耐圧と理想オン抵抗とのトレードオフ関係を示すグラ
フである。FIG. 13 is a graph showing a trade-off relationship between ideal breakdown voltage and ideal on-resistance of various silicon n-channel MOSFETs.
1…n型分割ドリフト経路域
1a…連結部位
2…p型仕切領域
2a…p型側端領域
3…n型チャネル拡散層
4…p- 型半導体層
5…半導体基体
6…絶縁膜
7…p型チャネル拡散層
8…n+ 型ソース領域
9…n+ 型ドレイン領域
10…ゲート絶縁膜
11…フィールドプレート付きゲート電極
12…厚い絶縁膜
13…チャネル反転層
14…p型低濃度領域
17…p型チャネル拡散領域
18,28…p+ 型ソース領域
19…p+ 型ドレイン領域
21…トレンチゲート電極
22…n型低濃度ドレイン層
24…p型トップ層
27…p型チャネル層
29…n+ 型ドレイン層
39…n型低濃度ドレイン層
71…n+ 型コンタクト領域
72…p+ 型コンタクト領域
77…p型チャネル拡散層
88…n+ 型ソース領域
90…n型低濃度ドレイン領域(ドレイン・ドリフト領
域)
99…p型ドレイン領域
100…並行ドリフト経路群
111…トレンチゲート電極
90,122,139,290…ドレイン・ドリフト領
域
e…空乏端
Ja,Jb…pn接合。DESCRIPTION OF SYMBOLS 1 ... n-type division | segmentation drift path area 1a ... connection part 2 ... p-type partition area 2a ... p-type side edge area 3 ... n-type channel diffusion layer 4 ... p - type semiconductor layer 5 ... semiconductor base 6 ... insulating film 7 ... p type channel diffusion layer 8 ... n + -type source region 9 ... n + -type drain region 10 ... gate insulating film 11 ... field plate with gate electrode 12 ... thick insulating film 13 ... channel inversion layer 14 ... p-type low-concentration region 17 ... p Type channel diffusion regions 18, 28 ... P + type source region 19 ... p + type drain region 21 ... trench gate electrode 22 ... n type low concentration drain layer 24 ... p type top layer 27 ... p type channel layer 29 ... n + type drain layer 39 ... n-type low-concentration drain layer 71 ... n + -type contact region 72 ... p + -type contact region 77 ... p-type channel diffusion layer 88 ... n + -type source region 90 ... n-type lightly doped drain region (drain-drift Region) 99 ... p-type drain region 100 ... parallel drift path group 111 ... trench gate electrode 90,122,139,290 ... drain drift region e ... depletion end Ja, Jb ... pn junction.
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 29/06 301 H01L 29/78 301D 29/786 301X 29/861 618E 617K 616T 29/91 D Fターム(参考) 5F110 AA13 AA30 CC10 DD05 DD13 EE22 GG02 GG12 GG19 GG30 GG42 GG44 HJ04 HM02 HM12 HM14 5F140 AA25 AA30 AC01 AC21 AC36 BA01 BD18 BF01 BF42 BF43 BF44 BH12 BH13 BH14 BH18 BH30 BH41 BH47 BK13 BK20 CD09 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 29/06 301 H01L 29/78 301D 29/786 301X 29/861 618E 617K 616T 29/91 DF Term (reference) 5F110 AA13 AA30 CC10 DD05 DD13 EE22 GG02 GG12 GG19 GG30 GG42 GG44 HJ04 HM02 HM12 HM14 5F140 AA25 AA30 AC01 AC21 AC36 BA01 BD18 BF01 BF42 BF43 BF44 BH12 BH13 BH14 BH18 BH30 BH41 BH47 B47
Claims (2)
ト電流を流すと共にオフ状態で空乏化するドリフト領域
を半導体基板に有する半導体装置において、前記ドリフ
ト領域は、並列接続した複数の第1導電型分割ドリフト
経路域を持つ並行ドリフト経路群と、前記第1導電型分
割ドリフト経路域の相隣る同士の間に介在する第2導電
型仕切領域とを有する構造であって、前記並行ドリフト
経路群は前記ドリフト電流を流す平面方向とは異なる半
導体基板の平面方向に交互に繰り返す構造で、かつそれ
ぞれの幅が1μm以下であることを特徴とする半導体装
置。1. A semiconductor device having a drift region in a semiconductor substrate in which a drift current flows in a plane direction of a semiconductor substrate in an on state and is depleted in an off state, wherein the drift region comprises a plurality of first conductivity types connected in parallel. A structure having a parallel drift route group having a divided drift route region and a second conductivity type partition region interposed between adjacent ones of the first conductivity type divided drift route region, wherein the parallel drift route group is provided. Is a structure in which the drift current is alternately repeated in a plane direction of the semiconductor substrate different from the plane direction in which the drift current flows, and each width is 1 μm or less.
に形成された第1導電型ソース領域と前記第2導電型チ
ャネル領域上にゲート絶縁膜を介して形成されたゲート
電極とを有し、前記第2導電型チャネル領域と半導体基
板表面の第1導電型ドレイン領域との間がドリフト電流
を流す平面方向であることを特徴とする請求項1記載の
半導体装置。2. A first conductivity type source region formed in a second conductivity type channel region on a surface of a semiconductor substrate, and a gate electrode formed on the second conductivity type channel region with a gate insulating film interposed therebetween. 2. The semiconductor device according to claim 1, wherein a space between the second conductivity type channel region and the first conductivity type drain region on the surface of the semiconductor substrate is a plane direction in which a drift current flows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003112991A JP2003332574A (en) | 1996-01-22 | 2003-04-17 | Semiconductor device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-7935 | 1996-01-22 | ||
JP793596 | 1996-01-22 | ||
JP2003112991A JP2003332574A (en) | 1996-01-22 | 2003-04-17 | Semiconductor device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001215677A Division JP3452054B2 (en) | 1996-01-22 | 2001-07-16 | MOSFET |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006154337A Division JP2006279064A (en) | 1996-01-22 | 2006-06-02 | Method of manufacturing semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003332574A true JP2003332574A (en) | 2003-11-21 |
Family
ID=29713493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003112991A Pending JP2003332574A (en) | 1996-01-22 | 2003-04-17 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003332574A (en) |
-
2003
- 2003-04-17 JP JP2003112991A patent/JP2003332574A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09266311A (en) | Semiconductor device and its manufacture | |
US6724040B2 (en) | Semiconductor device | |
US6627948B1 (en) | Vertical layer type semiconductor device | |
US6621132B2 (en) | Semiconductor device | |
US6475864B1 (en) | Method of manufacturing a super-junction semiconductor device with an conductivity type layer | |
JP7180402B2 (en) | semiconductor equipment | |
US6576935B2 (en) | Bidirectional semiconductor device and method of manufacturing the same | |
JP3641547B2 (en) | Semiconductor device including lateral MOS element | |
EP2362423B1 (en) | Vertical power semiconductor device | |
US6849880B1 (en) | Power semiconductor device | |
JP3534084B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2004327598A (en) | Semiconductor device and its manufacturing method | |
CN111512448B (en) | Semiconductor device with a semiconductor device having a plurality of semiconductor chips | |
US7470960B1 (en) | High-voltage power semiconductor device with body regions of alternating conductivity and decreasing thickness | |
JP3792734B2 (en) | High voltage semiconductor element | |
JP3825987B2 (en) | Semiconductor device | |
JP3452054B2 (en) | MOSFET | |
JP2006279064A (en) | Method of manufacturing semiconductor device | |
JP3812379B2 (en) | MOS type semiconductor device | |
JPH0992826A (en) | Semiconductor device and its simulation method | |
JP2003332574A (en) | Semiconductor device | |
GB2355588A (en) | A vertical field effect transistor having a drift region |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Effective date: 20060703 Free format text: JAPANESE INTERMEDIATE CODE: A7422 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060704 |
|
A131 | Notification of reasons for refusal |
Effective date: 20061003 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20061128 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070125 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070409 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Effective date: 20070427 Free format text: JAPANESE INTERMEDIATE CODE: A912 |
|
RD02 | Notification of acceptance of power of attorney |
Effective date: 20081216 Free format text: JAPANESE INTERMEDIATE CODE: A7422 |
|
RD04 | Notification of resignation of power of attorney |
Effective date: 20090219 Free format text: JAPANESE INTERMEDIATE CODE: A7424 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20091112 |