JP3812379B2 - MOS type semiconductor device - Google Patents

MOS type semiconductor device Download PDF

Info

Publication number
JP3812379B2
JP3812379B2 JP2001215678A JP2001215678A JP3812379B2 JP 3812379 B2 JP3812379 B2 JP 3812379B2 JP 2001215678 A JP2001215678 A JP 2001215678A JP 2001215678 A JP2001215678 A JP 2001215678A JP 3812379 B2 JP3812379 B2 JP 3812379B2
Authority
JP
Japan
Prior art keywords
region
type
drift
conductivity type
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001215678A
Other languages
Japanese (ja)
Other versions
JP2002100783A (en
Inventor
龍彦 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2001215678A priority Critical patent/JP3812379B2/en
Publication of JP2002100783A publication Critical patent/JP2002100783A/en
Application granted granted Critical
Publication of JP3812379B2 publication Critical patent/JP3812379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、MOSFET(絶縁ゲート型電界効果トランジスタ),IGBT(伝導度変調型トランジスタ),バイポーラトランジスタ,ダイオード等に適用可能の高耐圧且つ大電流容量の半導体装置に関する。
【0002】
【従来の技術】
一般に半導体素子は片面に電極部を持つ横型構造と両面に電極部を持つ縦型構造に大別できる。例えば、図10は横型構造のSOI(silicon on insulator)−MOSFETを示す。このSOI−MOSFETの構造はnチャネルMOSFETのオフセット・ゲート構造であり、半導体基体5上の絶縁膜6の上に形成されたp型のチャネル拡散層7と、チャネル拡散層7の上にゲート絶縁膜10を介して形成されたフィールドプレート付きゲート電極11と、チャネル拡散層7のうちゲート電極11の一端側に形成されたn型のソース領域8と、ゲート電極11の他端から離間した位置に形成されたn型のドレイン領域9と、ドレイン・ゲート間に延在するn型低濃度ドレイン領域(ドレイン・ドリフト領域)90と、この低濃度ドレイン領域90上に形成された厚い絶縁膜12とを有する。
【0003】
低濃度ドレイン領域90の部分は、MOSFETがオン状態のときはキャリアを電界によって流すドリフト領域として働き、オフ状態のときは空乏化して電界強度を緩和し耐圧を高める。低濃度ドレイン領域90の不純物濃度を高くすることと、その領域90の電流経路長を短くすることは、ドリフト抵抗が低くなるのでMOSFETの実質的なオン抵抗(ドレイン−ソース抵抗)を下げる効果に繋がるものの、逆に、p型のチャネル拡散層7とn型低濃度ドレイン領域90とのpn接合Jaから進行するドレイン−チャネル間空乏層が広がり難く、シリコンの最大(臨界)電界強度に早く達するため、耐圧(ドレイン−ソース電圧)が低下してしまう。即ち、オン抵抗(電流容量)と耐圧間にはトレードオフ関係がある。このトレードオフ関係はIGBT,バイポーラトランジスタ,ダイオード等の半導体素子においても同様に成立することが知られている。
【0004】
図11は横型構造のMOSFETの別の構造を示す。図11(a)はpチャネルMOSFETであり、p型半導体層4上に形成されたn型チャネル拡散層3と、チャネル拡散層3の上にゲート絶縁膜10を介して形成されたフィールドプレート付きゲート電極11と、チャネル拡散層3のうちゲート電極11の一端側に形成されたp型のソース領域18と、ゲート電極11の他端側真下にウェル端が位置するp型低濃度ドレイン領域(ドレイン・ドリフト領域)14と、ゲート電極11の他端から離間した位置に形成されたp型のドレイン領域19と、p型のソース領域18に隣接するn型のコンタクト領域71と、p型低濃度ドレイン14上に形成された厚い絶縁膜12とを有する。このような構造においてもウェル状のp型低濃度ドレイン領域14の電流経路長さと不純物濃度とによりオン抵抗と耐圧がトレードオフの関係で決定される。
【0005】
図11(b)は2重拡散型nチャネルMOSFETであり、p型半導体層4上に形成されたn型低濃度ドレイン層(ドレイン・ドリフト層)22と、低濃度ドレイン層22の上にゲート絶縁膜10を介して形成されたフィールドプレート付きゲート電極11と、低濃度ドレイン層22のうちゲート電極11の一端側に形成されたウェル状のp型チャネル拡散領域17と、p型チャネル拡散領域17内にウェル状に形成されたn型のソース領域8と、ゲート電極11とこれに離間したn型ドレイン領域9との間の表面層に形成されたウェル状のp型トップ層24と、n型のソース領域8に隣接するp型のコンタクト領域72と、p型トップ層24上に形成された厚い絶縁膜12とを有する。このような構造においてもn型低濃度ドレイン層域22の電流経路長さと不純物濃度とによりオン抵抗と耐圧がトレードオフの関係で決定される。
【0006】
ただし、図11(b)の構造では、n型低濃度ドレイン層22が下側のp型半導体層4と上側のp型トップ層24とに挟まれているので、MOSFETのオフ状態のときにはp型チャネル拡散領域17とのpn接合Jaからだけでは無く、n型低濃度ドレイン層22の上下のpn接合Jb,Jbからも空乏層が広がる。このため、低濃度ドレイン層22が早く空乏化するので、高耐圧構造となっている。その分、低濃度ドレイン層22の不純物濃度を高くでき、オン抵抗の低減により電流容量の増大を図ることが可能である。
【0007】
他方、縦型構造の半導体素子としては、例えば図12に示すトレンチゲート型のnチャネルMOSFETが知られている。この構造は、裏面電極(図示せず)が導電接触したn型ドレイン層29の上に形成されたn型低濃度ドレイン層39と、低濃度ドレイン層39の表面側に堀り込まれたトレンチ溝内にゲート絶縁膜10を介して埋め込まれたトレンチゲート電極21と、低濃度ドレイン層39の表層にトレンチゲート電極21の深さ程度に浅く形成されたp型チャネル拡散層27と、トレンチゲート電極21の上縁に沿って形成されたn型ソース領域18と、ゲート電極21を覆う厚い絶縁膜12とを有する。なお、単層のn型ドレイン層29に代えて、n型上層とp型下層から成る2層構造とすると、n型のIGBT構造を得ることができる。このような縦型構造においても、低濃度ドレイン層39の部分は、MOSFETがオン状態のときは縦方向にドリフト電流を成すドリフト領域として働き、オフ状態のときは空乏化して耐圧を高めるが、やはり、オン抵抗と耐圧とは低濃度ドレイン層39の厚さと不純物濃度の如何に支配され、両者間にはトレードオフの関係にある。
【0008】
【発明が解決しようとする課題】
図13はシリコンのnチャネルMOSFETの理想耐圧と理想オン抵抗との関係を示すグラフである。理想耐圧は形状効果によるpn接合耐圧の低下がないと仮定した。理想オン抵抗は低濃度ドレイン領域以外の部分の抵抗を無視できるほど小さいと仮定した。図13の▲1▼は図12に示す縦型のnチャネルMOSFETの理想耐圧と理想オン抵抗との関係を示す。縦型素子はオン時にドリフト電流が流れる方向とオフ時の逆バイアスによる空乏層が延びて広がる方向とが同じである。図12の低濃度ドレイン層39のみに着目すると、オフ時の理想耐圧BVは次式により近似的に求まる。
BV=E εεSiα(2−α)/2qN (1)
:E(N),不純物濃度Nでのシリコンの最大電界強度
ε:真空の誘電率
εSi:シリコンの比誘電率
q:単位電荷
:低濃度ドレイン領域の不純物濃度
α:係数 (0<α<1)
また、オン時の単位面積当たりの理想オン抵抗は次式により近似的に求まる。
R=αW/μqN
μ:μ(N),不純物濃度Nでの電子の移動度
ここで、W=EεεSi/qNであるので、Rは、
R=EεεSiα/μq (2)
となる。(1),(2)式よりqNを消去し、αの最適値として例えば2/3を用いると、
R=BV(27/8E εεSiμ) (3)
が得られる。ここに、オン抵抗Rは耐圧BVの二乗に比例するように見えるが、EやμがNに依存しているので、図13の▲1▼は実際にはBVの2.4〜2.6乗程度に比例している。
【0009】
図13の▲2▼は図11(a)に示す横型のMOSFETの構造をnチャネル型に置き換えたMOSFETの理想耐圧と理想オン抵抗との関係を示す。このnチャネル型のMOSFETにおいて、オン時にドリフト電流の流れる方向は横方向であるのに対し、オフ時に空乏層の延びる方向はウェル端から横方向ではなく実質的にウェル底から縦方向(上方向)の方が早い。縦方向に延びる空乏層で高耐圧を得るには、低濃度ドレイン領域14とチャネル拡散層3とのpn接合面(ウェル底)から低濃度ドレイン層14の表面(ウェル表面)まで空乏化されなければならない。従って、低濃度ドレイン領域14のネットのドーピング量の最大値は、
=EεεSi/q (4)
に制限される。低濃度ドレイン領域14の横方向の長さをLとしたとき、理想耐圧BVは、
BV=ELβ (5)
となる。ただし、βは未知の係数(0<β<1)である。また、単位面積当たりの理想オン抵抗Rは、
R=L/μqS (6)
で近似的に求まる。従って、(5),(6)式からLを消去して(4)式を代入すると、
R=BV/β εεSiμ (7)
【0010】
図13の▲3▼は図11(b)に示す横型の2重拡散型のnチャネルMOSFETの構造の理想耐圧と理想オン抵抗との関係を示す。図11(b)の構造においては、図11(a)の構造にp型トップ層24が設けられており、上下両側から延びる空乏層により低濃度ドレイン層22がピンチ的に早期空乏化する。低濃度ドレイン領域22のネットドーピング量Sは図11(a)のそれに比して2倍程度まで高めることが可能である。
=2EεεSi/q (8)
かかる場合の理想オン抵抗Rと理想耐圧BVとの関係は、
R=BV/2β εεSiμ (9)
となる。
【0011】
図13の▲3▼は▲2▼に比べオン抵抗と耐圧のトレードオフ関係が多少改善されているものの、高々2倍の濃度にまでしか設定することができず、半導体素子の電流容量と耐圧の設計自由度は依然として、低いものとなっている。
【0012】
そこで、上記問題点に鑑み、本発明の第1の課題は、ドリフト領域の構造を改善することにより、オン抵抗と耐圧とのトレードオフ関係を大幅に緩和させて、高耐圧でありながら、オン抵抗の低減化による電流容量の増大が可能の半導体装置を提供することにある。本発明の第2の課題をその半導体装置を量産性良く製造し得る製造方法を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するため、本発明の講じた手段は、例えばMOSFETの低濃度ドレイン領域の如く、オン状態でドリフト電流を流すと共にオフ状態で空乏化するドリフト領域を有する半導体装置において、そのドリフト領域を図1に模式的に示す如く、層状構造,繊維状構造ないし蜂の巣構造等の並行分割構造とすると共に、第1導電型分割ドリフト経路域1の相隣る同士の側面間(境界)に介在してpn接合分離する第2導電型仕切領域2を設けたところにある。
【0014】
即ち、図1(a)に示す如く、ドリフト領域は、少なくとも端部において互いに並列接続する2枚以上のプレート状の第1導電型(例えばn型)分割ドリフト経路域1を持つ層状構造の並行ドリフト経路群(分割ドリフト経路集合体)100と、分割ドリフト経路域1,1間に介在してpn接合分離するプレート状の第2導電型(例えばp型)仕切領域2とを有して成る。複数枚の第2導電型仕切領域2は少なくとも端部において互いに並列接続している。
【0015】
また、図1(b)に示すドリフト領域の構造は繊維状構造であり、筋状の第1導電型(n型)分割ドリフト経路域1と、筋状の第2導電型(p型)仕切領域2とは集合体断面で市松状に配置されている。
【0016】
更に、図1(c)に示す第1導電型(n型)分割ドリフト経路域1は四隅に連結部位1aを有している。
【0017】
図1(a)で良く判るように、並行ドリフト経路群100の最側端(最上端又は最下端)の第1導電型分割ドリフト経路域1の外側に沿ってpn接合分離する第2導電型側端領域2aを設けても良い。
【0018】
半導体装置がオン状態のときは、複数の並列接続した分割ドリフト経路域1,1を介してドリフト電流が流れるが、他方、オフ状態のときは第1導電型分割ドリフト経路域1と第2導電型仕切領域2とのpn接合からそれぞれ空乏層が第1導電型分割ドリフト経路1内に広がってこれが空乏化される。一筋の第2導電型仕切領域2の両側面から空乏端が側方へ広がるので空乏化が非常に早まる。また第2導電型仕切領域2も同時に空乏化される。このため、半導体装置は高耐圧となり、n型分割ドリフト経路域1の不純物濃度を高めることが可能であるので、オン抵抗の低減を実現できる。特に、本発明では、一筋の第2導電型仕切領域2の両側面から隣接する第1導電型分割ドリフト経路域1,1の双方へ空乏端が進入するようになっており、双方へ広がる空乏端が分割ドリフト経路域1,1へ有効的に作用しているので、空乏層形成のための第2導電型仕切領域2の総占有幅を半減でき、その分、第1導電型分割ドリフト経路域1の断面積の拡大を図ることができ、従前に比してオン抵抗が頗る低減する。第2導電型仕切領域2の占有幅は僅少であることが好ましい。また、第2導電型仕切領域2の不純物濃度は低い方が望ましい。第1導電型分割ドリフト経路域1の単位面積当たりの本数(分割数)を増やすにつれ、オン抵抗と耐圧とのトレードオフ関係を大幅に緩和できる。
【0019】
本発明において一筋の第1導電型分割ドリフト経路域1に関する理想オン抵抗rと理想耐圧BVとのトレードオフ関係式は、第2導電型仕切領域2の幅を無限小と仮定すれば、一筋の理想オン抵抗rは(9)式の理想オン抵抗RのN倍に相当しているので、
r=NR=BV/2β εεSiμ (10)
であり、並行ドリフト経路群全体の理想オン抵抗Rと理想耐圧BVの関係は、
R=BV/2Nβ εεSiμ (11)
となる。従って、ドリフト領域の分割数Nを多ければ多い程、オン抵抗の頗る低減した半導体装置を実現できることが判る。
【0020】
即ち、本発明は、第2導電型チャネル領域に第1導電型ソース領域を備え、オン状態で横方向にドリフト電流を流すと共にオフ状態で空乏化するドリフト領域を有するMOS型半導体装置において、ドリフト領域は、並列接続した複数の第1導電型分割ドリフト経路域を持つ並行ドリフト経路群と、第1導電型分割ドリフト経路域の相隣る同士の間に介在する第2導電型仕切領域とを有する構造であって、ドリフト領域は半導体層上の絶縁膜と表面側絶縁膜との間に挟まれており、ドリフト領域とチャネル領域とが接していることを特徴とする。斯かる構成により、オン抵抗の低減と共に高耐圧化を図ることができる。
【0021】
ここで、半導体層上の絶縁膜を表面側絶縁膜よりも厚く形成することが望ましい。ドリフト領域としては、層状の第1導電型分割ドリフト経路域と層状の第2導電型仕切領域とを交互に繰り返し積み重ねて積層された重畳並行構造とすることができ、この重畳並行構造が半導体層上の絶縁膜と表面側絶縁膜との間に挟まれている。また、ドリフト領域としては、ストライプ状の第1導電型分割ドリフト経路域とストライプ状の第2導電型仕切領域とを半導体層上の絶縁膜の表面に沿って交互に配置した構造とすることができる。
【0022】
更に、本発明では、並行ドリフト経路群の最外側の第1導電型分割ドリフト経路域の外側に第2導電型側端領域を有して成り、この第2導電型側端領域の長さが第2導電型仕切領域及び第1導電型分割ドリフト経路域の長さ等しく、第2導電型仕切領域と第1導電型分割ドリフト経路域の幅が等しいことを特徴とする。斯かる構成により、オン抵抗の低減と共に高耐圧化を図ることができる。
【0023】
【発明の実施の形態】
次に、本発明の実施形態を添付図面に基づいて説明する。
【0024】
〔実施形態1〕
図2(a)は本発明の実施形態1に係る横型構造のSOI−MOSFETを示す平面図、図2(b)は図2(a)中のA−A′線で切断した状態を示す切断図、図2(c)は図2(a)中のB−B′線で切断した状態を示す切断図である。
【0025】
本例のSOI−MOSFETの構造は、図10に示す構造と同様に、nチャネルMOSFETのオフセット・ゲート構造であり、半導体基体5上の絶縁膜6の上に形成されたp型のチャネル拡散領域7と、チャネル拡散領域7の上にゲート絶縁膜10を介して形成されたフィールドプレート付きゲート電極11と、チャネル拡散領域7のうちゲート電極11の一端側に形成されたn型のソース領域8と、ゲート電極11の他端から離間した位置に形成されたn型のドレイン領域9と、ドレイン・ゲート間に延在するドレイン・ドリフト領域190と、このドレイン・ドリフト領域190上に形成された厚い絶縁膜12とを有する。
【0026】
本例におけるドレイン・ドリフト領域190は、短冊状のn型分割ドリフト経路域1と短冊状のp型仕切領域2とが平面上で交互に繰り返し配列されたストライプ状並行構造となっている。複数のn型分割ドリフト経路域1の一方端はp型のチャネル拡散領域7にpn接合し、それらの他端はn型のドレイン領域9に接続しており、n型のドレイン領域9側から分岐して並列接続のドリフト経路群100を形成している。並行ドリフト経路群100の最側端の分割ドリフト経路域1の外側にはストライプ状のp型側端領域2aが設けられており、すべての分割ドリフト経路域1が側面に沿ってp型半導体領域2(2a)に挟まれている。また、複数のp型仕切領域2の一方端はp型のチャネル拡散領域7に接続し、それらの他端はn型のドレイン領域9にpn接合しており、p型のチャネル拡散領域7側から分岐して並列接続となっている。
【0027】
MOSFETがオン状態のときは、ゲート絶縁膜10直下のチャネル反転層13を介してn型のソース領域8から複数のn型分割ドリフト経路域1にキャリア(電子)が流れ込み、ドレイン・ソース間電圧による電界でドリフト電流が流れる。他方、オフ状態のときはゲート絶縁膜10直下のチャネル反転層13が消失し、ドレイン・ソース間電圧により、n型分割ドリフト経路域1とp型のチャネル拡散領域7とのpn接合Ja,n型分割ドリフト経路域1とp型仕切領域2とのpn接合Jbからそれぞれ空乏層がn型分割ドリフト経路域1内に広がってこれが空乏化される。pn接合Jaからの空乏端はn型分割ドリフト経路域1内の経路長さ方向に広がるが、pn接合Jbからの空乏端eはn型分割ドリフト経路域1内の経路幅方向に広がり、しかも両側面から空乏端が広がるので空乏化が非常に早まる。またp型仕切領域2も同時に空乏化される。このため、電界強度が緩和され、高耐圧となり、その分、n型分割ドリフト経路域1の不純物濃度を高めることが可能であるので、オン抵抗が低減する。特に、本例では、p型仕切領域2の両側面から隣接するn型分割ドリフト経路域1,1の双方へ空乏端eが進入するようになっているので、空乏層形成のためのp型仕切領域2の総占有幅を半減でき、その分、n型分割ドリフト経路域1の断面積の拡大を図ることができ、従前に比してオン抵抗が低減する。n型分割ドリフト経路域1の単位面積当たりの本数(分割数)Nを増やすにつれ、オン抵抗と耐圧とのトレードオフ関係を大幅に緩和できる。2本より3本以上の方が顕著となる。なお、p型仕切領域2の占有幅は僅少であることが好ましい。
【0028】
ここで、理想耐圧BVを例えば100Vと仮定し、n型分割ドリフト経路域1の不純物濃度N=3×1015(cm−3),シリコンの最大電界強度E=3×10(V/cm),電子の移動度μ=1000(cm/V・sec),真空の誘電率ε=8.8×10−12 (C/V・m),シリコンの比誘電率εSi=12,単位電荷q=1.6×10−19 (C)とする。図10に示す低濃度ドレイン領域90では、長さ6.6μm,厚さ1μmのとき、理想オン抵抗Rは9.1(mオーム・cm)である。これに対して本例では、n型分割ドリフト経路域1とp型仕切領域2の幅を例えば10μm,1μm,0.1μmの値として理想オン抵抗Rを計算すると(β=2/3,n型分割ドリフト経路域1とp型仕切領域の長さを5μmと仮定)、
幅10μm,のとき、7.9(mオーム・cm
幅1μm,のとき、0.8(mオーム・cm
幅0.1μm,のとき、0.08(mオーム・cm
となり、幅1μm以下になると劇的な低オン抵抗化が可能である。p型仕切領域2の幅をn型分割ドリフト経路域1の幅よりも僅少にすれば、なおその効果が顕著となる。n型分割ドリフト経路域1とp型仕切領域の幅はフォトリソグラフィとイオン注入により現在0.5μm程度までが量産レベルの限界であるが、微細加工技術の着実な進展により今後更なる幅寸法の縮小化が可能となるので、オン抵抗を顕著に低減できる。
【0029】
特に、本例のドリフト領域の構造は、平面上のストライプ状のpnの繰り返し構造であるため、1回のフォトリソグラフィーで形成可能であるので、製造プロセスの簡易化により素子の低コスト化も図ることができる。
【0030】
〔実施形態2〕
図3(a)は本発明の実施形態2に係る2重拡散型nチャネルMOSFETを示す平面図、図3(b)は図3(a)中のA−A′線で切断した状態を示す切断図、図3(c)は図3(a)中のB−B′線で切断した状態を示す切断図である。
【0031】
本例の2重拡散型nチャネルMOSFETの構造は図11(b)に示す構造を改善したものであり、p型又はn型の半導体層4上に形成されたドレイン・ドリフト領域122と、ドレイン・ドリフト領域122の上にゲート絶縁膜10を介して形成されたフィールドプレート付きゲート電極11と、ドレイン・ドリフト領域122のうちゲート電極11の一端側に形成されたウェル状のp型チャネル拡散領域17と、p型チャネル拡散領域17内にウェル状に形成されたn型のソース領域8と、ゲート電極11に離間したn型ドレイン領域9と、ドレイン・ドリフト領域122上に形成された厚い絶縁膜12とを有する。
【0032】
本例におけるドレイン・ドリフト領域122も、図2に示す実施例1と同様に、短冊状のn型分割ドリフト経路域1と短冊状のp型仕切領域2とが平面上で交互に繰り返し配列されたストライプ状の並行構造となっている。そして、複数のn型分割ドリフト経路域1の一方端はp型のチャネル拡散領域17にpn接合し、それらの他端はn型のドレイン領域9に接続しており、n型のドレイン9側から分岐して並列接続の並行ドリフト経路群100を形成している。並行ドリフト経路群100の最側端の分割ドリフト経路域1の外側にはこれを挟み込むためのp型側端領域2aが設けられており、すべての分割ドリフト経路域1が側面に沿ってp型領域2(2a)に挟まれている。また、複数のp型仕切領域2の一方端はp型のチャネル拡散領域7に接続し、それらの他端はn型のドレイン領域9にpn接合しており、p型のチャネル拡散領域7側から分岐して並列接続となっている。
【0033】
本例においても、オフ状態のときは、pn接合Jbからの空乏端がn型分割ドリフト経路域1内の経路幅方向に広がり、しかも両側面から空乏端が広がるので空乏化が非常に早まる。また同時にp型仕切領域2も空乏化される。このため、実施例1と同様に、高耐圧となり、n型分割ドリフト経路域1の不純物濃度を高めることが可能であるので、オン抵抗の低減を実現できる。
【0034】
ここで、図11(b)に示す従来構造と理想耐圧100Vで比較してみると、図11(b)に示す従来構造ではオン抵抗が約0.5(mオーム・cm)であるのに対して、本例の構造では実施例1と同様に分割ドリフト経路域1とp型仕切領域2の厚さが1μm,幅が0.5μmであるとき、オン抵抗が0.4(mオーム・cm)である。分割ドリフト経路域1とp型仕切領域2の幅を更に僅少化することによりオン抵抗の大幅低減が可能である。なお、分割ドリフト経路域1とp型仕切領域2の厚さを厚くすることで、分割ドリフト経路1の抵抗断面積を大きくしてオン抵抗の低減を図ることができる。例えば10μmにすればオン抵抗は1/10、100μmにすればオン抵抗は1/100にすることができる。このような厚い領域のドーピングのためには、同じ部位に複数の(若しくは連続的に異なる)エネルギーで不純物イオン注入を行えば良い。
【0035】
〔実施形態3〕
図4(a)は本発明の実施形態3に係る横型構造のSOI−MOSFETを示す平面図、図4(b)は図4(a)中のA−A′線で切断した状態を示す切断図、図4(c)は図4(a)中のB−B′線で切断した状態を示す切断図である。
【0036】
本例のSOI−MOSFETの構造は、半導体基体5上の絶縁膜6の上に形成されたp型のチャネル拡散層77と、チャネル拡散層77の側壁上にゲート絶縁膜10を介して形成されたトレンチゲート電極111と、トレンチゲート電極111の上縁に沿って形成されたn型のソース領域88と、トレンチゲート電極111から離間した位置に形成されたn型のドレイン領域99と、ドレイン・ゲート間に延在するドレイン・ドリフト領域290と、このドレイン・ドリフト領域290上に形成された厚い絶縁膜12とを有する。
【0037】
本例におけるドレイン・ドリフト領域290は、実施形態1の場合とは異なり、プレート状のn型分割ドリフト経路域1とプレート状のp型仕切領域2とが交互に繰り返し積み重ねて積層された重畳並行構造となっている。最下位のn型分割ドリフト経路域1の真下にはp型側端領域2aが形成されており、また最上位のn型分割ドリフト経路域1の上にもp型側端領域2aが形成されている。このp型側端領域2aのネットドーピング量は2×1012/cm以下とする。複数のn型分割ドリフト経路域1の一方端はp型のチャネル拡散層77にpn接合し、それらの他端はn型のドレイン領域99に接続しており、n型のドレイン99側から分岐して並列接続の並行ドリフト経路群100を形成している。また、複数のp型仕切領域2の一方端はp型のチャネル拡散層77に接続し、それらの他端はn型のドレイン領域99にpn接合しており、p型のチャネル拡散層77側から分岐して並列接続となっている。
【0038】
この層状構造においても、理想オン抵抗は前述の(11)式で与えられ、Nはn型分割ドリフト経路域1の積み重ね枚数である。理想耐圧100Vとしたとき、従来構造(N=1)では、理想オン抵抗R=0.5(mオーム・cm)であるが、本例ではN=10の場合、R=0.05(mオーム・cm)となり、分割数Nに逆比例してオン抵抗が激減する。
【0039】
ところで、図2及び図3に示す実施形態のキーテクノロジーはフォトリソグラフィーとイオン注入であったのに対し、図4に示す本例のキーテクノロジーは、プレート状のn型分割ドリフト経路域1とプレート状のp型仕切領域2とを交互に繰り返し積層するための結晶成長法である。積層数を増やして行くと総厚が厚くなり、また結晶成長に要する時間が長くなるため、不純物の拡散による不純物分布の乱れが無視できなくなる。理想的には、n型分割ドリフト経路域1とp型仕切領域2を可能な限り薄く形成し、不純物分布の乱れが無視できる位の低温で結晶成長させることが好ましい。そのためには、シリコン技術で多用されているエピタキシャル成長法よりも、ガリウム−砒素等の化合物半導体で用いられるMOCVD(有機金属気相分解結晶成長法)やMBE(分子線結晶成長法)が適している。これによれば、層状のn型分割ドリフト経路域1と層状のp型仕切領域2の層厚を微細化でき、オン抵抗の頗る低減が可能となる。
【0040】
なお、本例の場合、n型分割ドリフト経路域1とp型仕切領域2を薄く形成し、不純物濃度を高めると、チャネル反転層13が形成し難くなり、チャネル抵抗が下げ難く、結果としてオン抵抗が下げ難い。これを改善するためには、n型分割ドリフト経路域1とp型仕切領域2のうちゲート絶縁膜10に接する部分を局部的に低濃度領域とすることが有効である。
【0041】
〔実施形態4〕
図5(a)は本発明の実施形態4に係る横型構造のMOSFETを示す平面図、図5(b)は図5(a)中のA−A′線で切断した状態を示す切断図、図5(c)は図5(a)中のB−B′線で切断した状態を示す切断図である。
【0042】
本例のMOSFETの構造は、p型又はn型の半導体層4上に形成されたp型のチャネル拡散層77と、チャネル拡散層77の側壁上にゲート絶縁膜10を介して形成されたトレンチゲート電極111と、トレンチゲート電極111の上縁に沿って形成されたn型のソース領域88と、トレンチゲート電極111から離間した位置に形成されたn型のドレイン領域99と、ドレイン・ゲート間に延在するドレイン・ドリフト領域290と、このドレイン・ドリフト領域290上に形成された厚い絶縁膜12とを有する。
【0043】
本例におけるドレイン・ドリフト領域290は、実施形態3の場合と同様であり、プレート状のn型分割ドリフト経路域1とプレート状のp型仕切領域2とが交互に繰り返し積層された並行構造となっている。最下位のn型分割ドリフト経路域1の真下にはp型側端領域2aが形成されており、また最上位のn型分割ドリフト経路域1の上にもp型側端領域2aが形成されている。このp型側端領域2aのネットドーピング量は2×1012/cm以下とする。複数のn型分割ドリフト経路域1の一方端はp型のチャネル拡散層77にpn接合し、それらの他端はn型のドレイン領域99に接続しており、n型のドレイン99側から分岐して並列接続の並行ドリフト経路群100を形成している。また、複数のp型仕切領域2の一方端はp型のチャネル拡散層77に接続し、それらの他端はn型のドレイン領域99にpn接合しており、p型のチャネル拡散層77側から分岐して並列接続となっている。
【0044】
本例は実施形態3と同様にオン抵抗の低減と高耐圧化を図ることができる。なお、本例と図4に示す実施形態3との関係は、図3に示す実施形態2と図2に示す実施形態1との関係に相当している。図2の実施形態に対する図3の実施形態と同じく、本例はSOIではない点で低コスト化を図ることができる。
【0045】
〔実施形態5〕
図6(a)は本発明の実施形態5に係る横型構造のpチャネルMOSFETを示す断面図であり、図11(a)の改善例に相当している。
【0046】
本例の構造は、p型半導体層4上に形成されたn型チャネル拡散層3と、チャネル拡散層3の上にゲート絶縁膜10を介して形成されたフィールドプレート付きゲート電極11と、チャネル拡散層3のうちゲート電極11の一端側に形成されたp型のソース領域18と、ゲート電極11の他端側真下にウェル端が位置するp型ドレイン・ドリフト領域14と、このp型ドレイン・ドリフト領域14の表層に形成されたn型側端領域2bと、ゲート電極11の他端から離間した位置に形成されたp型のドレイン領域19と、p型のソース領域18に隣接するn型のコンタクト領域71と、p型ドレイン・ドリフト14上に形成された厚い絶縁膜12とを有する。
【0047】
本例の場合、ドレイン領域の分割数は1で、p型ドレイン・ドリフト領域14は断面上では一筋の分割ドレイン経路域1に相当している。このp型ドレイン・ドリフト領域14の上のn型側端領域2bの厚さは空乏化を早めるため薄く形成されている。図11(a)の構造と比べると、本例ではn型側端領域2bが形成されており、p型ドレイン・ドリフト領域14の下側のチャネル拡散層3からの空乏層と上側のn型側端領域2aからの空乏層とで空乏化を促進するようにしている。図11(a)のドレイン・ドリフト領域14のネットドーピング量は1×1012/cm程度であるのに対し、本例では約2×1012/cm程度と2倍になっている。従って、高耐圧化を実現できる分、ドレイン・ドリフト領域14の不純物濃度を高めることができ、低オン抵抗化が可能である。
【0048】
〔実施形態6〕
図6(b)は本発明の実施形態6に係る横型構造のnチャネルMOSFETを示す断面図であり、図11(b)の改善例に相当している。
【0049】
本例は2重拡散型nチャネルMOSFETであり、p型半導体層4(p型側端領域2a)上に形成されたドレイン・ドリフト領域22(第1のn型分割ドリフト経路域1)と、ゲート絶縁膜10を介して形成されたフィールドプレート付きゲート電極11と、ドレイン・ドリフト領域22のうちゲート電極11の一端側に形成されたウェル状のp型チャネル拡散領域17と、p型チャネル拡散領域17内にウェル状に形成されたn型のソース領域8と、ゲート電極11とこれに離間したn型ドレイン領域9との間の表面層に形成されたp型トップ層24(p型仕切領域2)と、p型仕切領域2の表層に形成された第2のn型分割ドリフト経路域1と、n型のソース領域8に隣接するp型のコンタクト領域72と、p型仕切領域2上に形成された厚い絶縁膜12とを有する。
【0050】
下層のドレイン・ドリフト領域22と上層の分割ドリフト経路域1はp型仕切領域2を挟んで並列接続している。図11(b)の構造と比べると、本例ではp型仕切領域2の上に分割ドリフト経路域1を並設した点にある。前述したように、p型仕切領域2から下層のドレイン・ドリフト領域22と上層の分割ドリフト経路域1の双方に空乏層が広がるようになっているため、高耐圧化を図ることができ、その分、オン抵抗を低減させることができる。図11(b)のドリフト領域22のネットドーピング量は2×1012/cm程度であるのに対し、本例では下層のドレイン・ドリフト領域22と上層の分割ドリフト経路域1とのドーピング量を合わせて、約3×1012/cm程度と1.5倍にすることができる。本例の構造によれば、図13中の▲4▼に示す理想耐圧と理想オン抵抗とのトレードオフ関係を得ることができる。明らかに、従来構造に比して理想耐圧と理想オン抵抗のトレードオフ関係を緩和できることが判明した。
【0051】
なお、実施形態5,6の構造を得るための製造方法としては、まず、p型半導体層4へのリンのイオン注入と熱処理(熱拡散)によりn型半導体層3(22)を形成した後、このn型半導体層3(22)表面への選択的な硼素のイオン注入と熱処理(熱拡散)によってp型領域14(24)を形成し、しかる後、熱酸化処理を施し、シリコン表面でのリンの偏析による高濃度化と硼素の酸化膜中への偏析による低濃度化を利用して表層に薄いn型側端領域2b(n型分割ドリフト経路域1)を形成する。n型側端領域2bやn型分割ドリフト経路域1の上層には逆導電型層が隣接していないため、空乏化し易くするには薄層であればある程よい。従って、熱酸化処理工程だけでn型側端領域2b(n型分割ドリフト経路1)を形成できる利益は、工程数の削減に寄与し、量産化を可能とする。
【0052】
実施形態5においては、n型側端領域2bがゲート絶縁膜10とドレイン・ドリフト領域14と隔てているが、これは上記の製造方法を用いているため、シリコン表層に全面的にn型側端領域2bが形成されてしまうからである。しかし、n型側端領域2bが薄ければ、ゲート10直下に形成されるチャネル反転層によってドレイン・ドリフト領域14が導通するので問題は起こらない。
【0053】
〔実施形態7〕
図7(a)は本発明の実施形態7に係る縦型構造のトレンチゲート型のnチャネルMOSFETを示す平面図、図7(b)は図7(a)中のA−A′線に沿って切断した状態を示す切断図、図8(a)は図7(a)中のB−B′線に沿って切断した状態を示す切断図、図8(b)は図7(b)中のC−C′線に沿って切断した状態を示す切断図、図9(a)は図7(a)中のD−D′線に沿って切断した状態を示す切断図、図9(b)は図7(a)中のE−E′線に沿って切断した状態を示す切断図である。
【0054】
本例の構造は、裏面電極(図示せず)が導電接触したn型ドレイン層29と、この上に形成されたドレイン・ドリフト層139と、ドレイン・ドリフト層139の表面側に堀り込まれたトレンチ溝内にゲート絶縁膜10を介して埋め込まれたトレンチゲート電極21と、ドレイン・ドリフト層139の表層にトレンチゲート電極21の深さ程度に浅く形成されたp型チャネル層27と、トレンチゲート電極21の上縁に沿って形成されたn型ソース領域18と、ゲート電極21を覆う厚い絶縁膜12とを有する。なお、単層のn型ドレイン層29に代えて、n型上層とp型下層から成る2層構造又はp型層とすると、n型のIGBT構造を得ることができる。
【0055】
本例におけるドレイン・ドリフト層139は、図8(b)及び図9に示す如く、縦方向にプレート状のn型分割ドリフト経路域1と縦方向にプレート状のp型仕切領域2とが交互に繰り返し隣接した横並び並行構造となっている。複数枚のn型分割ドリフト経路域1の上端はp型のチャネル拡散層27にpn接合し、それらの下端はn型のドレイン層29に接続しており、n型のドレイン層29側から分岐して並列接続の並行ドリフト経路群100を形成している。図示されていないが、並行ドリフト経路群100の最側端の分割ドリフト経路域1の外側にはp型側端領域が設けられており、すべての分割ドリフト経路域1が側面に沿ってp型仕切領域2又はp型側端領域に挟まれている。また、複数のp型仕切領域2の上方端はp型のチャネル拡散層27に接続し、それらの下端はn型のドレイン層29にpn接合しており、p型のチャネル拡散層27側から分岐して並列接続となっている。
【0056】
オフ状態のときはゲート絶縁膜10直下のチャネル反転層13が消失し、ドレイン・ソース間電圧により、n型分割ドリフト経路域1とp型のチャネル拡散層27とのpn接合Ja,n型分割ドリフト経路域1とp型仕切領域2とのpn接合Jbからそれぞれ空乏層がn型分割ドリフト経路域1内に広がってこれが空乏化される。pn接合Jaからの空乏端はn型分割ドリフト経路域1内の経路長さ方向に広がるが、pn接合Jbからの空乏端はn型分割ドリフト経路域1内の経路幅方向に広がり、しかも両側面から空乏端が広がるので空乏化が非常に早まる。またp型仕切領域2も同時に空乏化される。特に、p型仕切領域2の両側面から隣接するn型分割ドリフト経路1,1の双方へ空乏端が進入するようになっているので、空乏層形成のためのp型仕切領域2の総占有幅を半減でき、その分、n型分割ドリフト経路域1の断面積の拡大を図ることができ、従前に比してオン抵抗が低減する。n型分割ドリフト経路1の単位面積当たりの本数(分割数)を増やすにつれ、オン抵抗と耐圧とのトレードオフ関係を大幅に緩和できる。
【0057】
理想耐圧100VのnチャネルMOSFET(図12に示す従来構造)での理想オン抵抗と比較すると、従来構造の場合、図13の▲1▼により、理想オン抵抗R=約0.6(mオーム・cm)であるが、本例の場合は、n型分割ドリフト経路域1とp型仕切領域2の深さ(経路長)を約5μm、β=2/3と仮定し、n型分割ドリフト経路域1とp型仕切領域2の積層方向の厚さを例えば10μm,1μm,0.1μmの値として計算すると、
厚さ10μm,のとき、1.6(mオーム・cm
厚さ1μm,のとき、0.16(mオーム・cm
厚さ0.1μm,のとき、0.016(mオーム・cm
となり、μmオーダでも劇的な低オン抵抗化が可能である。p型仕切領域2の幅をn型分割ドリフト経路域1の幅よりも僅少にすれば、なおその効果が顕著となる。n型分割ドリフト経路域1とp型仕切領域の幅はフォトリソグラフィとイオン注入により現在0.5μm程度までが量産レベルの限界であるが、微細加工技術の着実な進展により今後更なる幅寸法の縮小化が可能となるので、オン抵抗を顕著に低減できる。
【0058】
本例のように、縦方向に配列したn型分割ドリフト経路域1とp型仕切領域2の繰り返し構造は、横型半導体構造の場合に比して製法上難しい面もあるが、例えば、ドレイン層29の上にエピタキシャル成長によりn型層を形成した後、そのn型層をストライプ状に間隔を空けてエッチング除去し、そのエッチング溝をp型のエピタキシャル成長により埋め、不要部分を研磨除去する方法を採用することができる。また、中性子線や飛程の大きい高エネルギー粒子の選択的打ち込みとこれによる核変換を利用して選択的に逆導電型領域を深く形成する方法も考えられる。
【0059】
なお、本発明に係る構造は、MOSFETのドレイン・ドリフト領域に限らず、オン時にドリフト領域となり、オフ時に空乏化領域となる半導体領域に適用でき、IGBT,バイポラーラトランジスタ,ダイオード,JFET、サイリスタ,MESFET,HEMT等の殆ど総ての半導体素子に適用可能である。また、導電型は逆導電型に適宜変更できる。また、図1では並行分割ドリフト群として層状、繊維状、網状又は蜂の巣状を示してあるが、これに限らず、他の繰り返し形状を採用可能である。
【0060】
【発明の効果】
以上説明したように、本発明におけるドリフト領域は、並列接続した複数の第1導電型分割ドリフト経路域を持つ並行ドリフト経路群と、第1導電型分割ドリフト経路域の相隣る同士の間に介在する第2導電型仕切領域とを有する構造であって、ドリフト領域は半導体層上の絶縁膜と表面側絶縁膜との間に挟まれており、ドリフト領域と第2導電型チャネル領域とが接していることを特徴とする。斯かる構成により、オン抵抗の低減と共に高耐圧化を図ることができる。
【0061】
更に、本発明では、並行ドリフト経路群の最外側の第1導電型分割ドリフト経路域の外側に第2導電型側端領域を有して成り、この第2導電型側端領域の長さが第2導電型仕切領域及び第1導電型分割ドリフト経路域の長さ等しく、第2導電型仕切領域と第1導電型分割ドリフト経路域の幅が等しいことを特徴とする。斯かる構成により、オン抵抗の低減と共に高耐圧化を図ることができる。
【図面の簡単な説明】
【図1】(a)乃至(c)は本発明に係る半導体装置におけるドリフト領域の構造をそれぞれ示す模式図である。
【図2】(a)は本発明の実施形態1に係る横型構造のSOI−MOSFETを示す平面図、(b)は(a)中のA−A′線で切断した状態を示す切断図、(c)は(a)中のB−B′線で切断した状態を示す切断図である。
【図3】(a)は本発明の実施形態2に係る2重拡散型nチャネルMOSFETを示す平面図、(b)は(a)中のA−A′線で切断した状態を示す切断図、(c)は(a)中のB−B′線で切断した状態を示す切断図である。
【図4】(a)は本発明の実施形態3に係る横型構造のSOI−MOSFETを示す平面図、(b)は(a)中のA−A′線で切断した状態を示す切断図、(c)は(a)中のB−B′線で切断した状態を示す切断図である。
【図5】(a)は本発明の実施形態例4に係る横型構造のMOSFETを示す平面図、(b)は(a)中のA−A′線で切断した状態を示す切断図、(c)は(a)中のB−B′線で切断した状態を示す切断図である。
【図6】(a)は本発明の実施形態5に係る横型構造のpチャネルMOSFETを示す断面図、(b)は本発明の実施形態6に係る横型構造のnチャネルMOSFETを示す断面図である。
【図7】(a)は本発明の実施形態例7に係る縦型構造のトレンチゲート型のnチャネルMOSFETを示す平面図、(b)は(a)中のA−A′線に沿って切断した状態を示す切断図である。
【図8】(a)は図7(a)中のB−B′線に沿って切断した状態を示す切断図、(b)は図7(b)中のC−C′線に沿って切断した状態を示す切断図である。
【図9】(a)は図7(a)中のD−D′線に沿って切断した状態を示す切断図、(b)は図7(a)中のE−E′線に沿って切断した状態を示す切断図である。
【図10】(a)は従来の横型構造のSOI−MOSFETを示す平面図、(b)はその断面図である。
【図11】(a)は従来の横型構造のMOSFETの別の構造を示す断面図、(b)は従来の2重拡散型nチャネルMOSFETの構造を示す断面図である。
【図12】従来のトレンチゲート型のnチャネルMOSFETを示す断面図である。
【図13】各種のシリコンnチャネルMOSFETの理想耐圧と理想オン抵抗とのトレードオフ関係を示すグラフである。
【符号の説明】
1…n型分割ドリフト経路域
1a…連結部位
2…p型仕切領域
2a…p型側端領域
3…n型チャネル拡散層
4…p型半導体層
5…半導体基体
6…絶縁膜
7…p型チャネル拡散層
8…n型ソース領域
9…n型ドレイン領域
10…ゲート絶縁膜
11…フィールドプレート付きゲート電極
12…厚い絶縁膜
13…チャネル反転層
14…p型低濃度領域
17…p型チャネル拡散領域
18,28…p型ソース領域
19…p型ドレイン領域
21…トレンチゲート電極
22…n型低濃度ドレイン層
24…p型トップ層
27…p型チャネル層
29…n型ドレイン層
39…n型低濃度ドレイン層
71…n型コンタクト領域
72…p型コンタクト領域
77…p型チャネル拡散層
88…n型ソース領域
90…n型低濃度ドレイン領域(ドレイン・ドリフト領域)
99…p型ドレイン領域
100…並行ドリフト経路群
111…トレンチゲート電極
90,122,139,290…ドレイン・ドリフト領域
e…空乏端
Ja,Jb…pn接合。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device having a high withstand voltage and a large current capacity that can be applied to MOSFET (insulated gate field effect transistor), IGBT (conductivity modulation transistor), bipolar transistor, diode and the like.
[0002]
[Prior art]
In general, semiconductor elements can be broadly classified into a horizontal structure having electrode portions on one side and a vertical structure having electrode portions on both sides. For example, FIG. 10 shows an SOI (Silicon on Insulator) -MOSFET having a lateral structure. This SOI-MOSFET structure is an n-channel MOSFET offset gate structure. A p-type channel diffusion layer 7 formed on the insulating film 6 on the semiconductor substrate 5 and a gate insulation on the channel diffusion layer 7. The gate electrode 11 with a field plate formed through the film 10 and the n formed on one end side of the gate electrode 11 in the channel diffusion layer 7+N formed in a position spaced from the other end of the source region 8 of the mold and the gate electrode 11+Type drain region 9, n-type low concentration drain region (drain / drift region) 90 extending between the drain and gate, and thick insulating film 12 formed on this low concentration drain region 90.
[0003]
The portion of the lightly doped drain region 90 functions as a drift region in which carriers are caused to flow by an electric field when the MOSFET is in an on state, and is depleted when the MOSFET is in an off state to relax the electric field strength and increase the breakdown voltage. Increasing the impurity concentration of the low-concentration drain region 90 and shortening the current path length of the region 90 have the effect of lowering the substantial on-resistance (drain-source resistance) of the MOSFET because the drift resistance decreases. Although connected, conversely, the drain-channel depletion layer proceeding from the pn junction Ja of the p-type channel diffusion layer 7 and the n-type low-concentration drain region 90 hardly spreads, and reaches the maximum (critical) electric field strength of silicon quickly. Therefore, the breakdown voltage (drain-source voltage) is lowered. That is, there is a trade-off relationship between on-resistance (current capacity) and breakdown voltage. This trade-off relationship is also known to hold in semiconductor devices such as IGBTs, bipolar transistors, and diodes.
[0004]
FIG. 11 shows another structure of a lateral structure MOSFET. FIG. 11A shows a p-channel MOSFET, pN-type channel diffusion layer 3 formed on type semiconductor layer 4, gate electrode 11 with a field plate formed on channel diffusion layer 3 via gate insulating film 10, and gate electrode of channel diffusion layer 3 P formed on one end of 11+Type source region 18, p-type low-concentration drain region (drain / drift region) 14 in which the well end is located directly under the other end side of gate electrode 11, and a position separated from the other end of gate electrode 11. p+Type drain region 19 and p+N adjacent to the source region 18 of the mold+Type contact region 71 and thick insulating film 12 formed on p-type low concentration drain 14. Even in such a structure, the ON resistance and the breakdown voltage are determined in a trade-off relationship by the current path length and the impurity concentration of the well-shaped p-type low concentration drain region 14.
[0005]
FIG. 11B shows a double diffusion n-channel MOSFET, pAn n-type low concentration drain layer (drain / drift layer) 22 formed on the type semiconductor layer 4, a gate electrode 11 with a field plate formed on the low concentration drain layer 22 via the gate insulating film 10, A well-shaped p-type channel diffusion region 17 formed on one end side of the gate electrode 11 in the low-concentration drain layer 22, and an n-type formed in the p-type channel diffusion region 17 in a well shape+Type source region 8, gate electrode 11 and n spaced apart from it+A well-shaped p-type top layer 24 formed on the surface layer between the n-type drain region 9 and n+P adjacent to the source region 8 of the mold+And a thick insulating film 12 formed on the p-type top layer 24. Even in such a structure, the ON resistance and the breakdown voltage are determined in a trade-off relationship by the current path length of the n-type low concentration drain layer region 22 and the impurity concentration.
[0006]
However, in the structure of FIG. 11B, the n-type low concentration drain layer 22 has a lower pSince the p-type top layer 24 is sandwiched between the p-type semiconductor layer 4 and the p-type top layer 24, the n-type low-concentration drain layer 22 is not only from the pn junction Ja with the p-type channel diffusion region 17 when the MOSFET is off. A depletion layer also spreads from the upper and lower pn junctions Jb and Jb. For this reason, since the low concentration drain layer 22 is depleted quickly, it has a high breakdown voltage structure. Accordingly, the impurity concentration of the low-concentration drain layer 22 can be increased, and the current capacity can be increased by reducing the on-resistance.
[0007]
On the other hand, for example, a trench gate type n-channel MOSFET shown in FIG. 12 is known as a vertical semiconductor device. In this structure, the back electrode (not shown) is in conductive contact.+N-type low-concentration drain layer 39 formed on type drain layer 29, and a trench gate electrode embedded in trench groove dug in the surface side of low-concentration drain layer 39 via gate insulating film 10 21, a p-type channel diffusion layer 27 formed on the surface layer of the lightly doped drain layer 39 as shallow as the depth of the trench gate electrode 21, and an n formed along the upper edge of the trench gate electrode 21+A type source region 18 and a thick insulating film 12 covering the gate electrode 21 are provided. In addition, single layer n+In place of the type drain layer 29, n+Mold upper layer and p+An n-type IGBT structure can be obtained when the two-layer structure is formed of a mold lower layer. Even in such a vertical structure, the portion of the low concentration drain layer 39 functions as a drift region that forms a drift current in the vertical direction when the MOSFET is in the on state, and is depleted and increases the breakdown voltage in the off state. Again, the on-resistance and breakdown voltage are governed by the thickness and impurity concentration of the low-concentration drain layer 39, and there is a trade-off relationship between the two.
[0008]
[Problems to be solved by the invention]
FIG. 13 is a graph showing the relationship between the ideal breakdown voltage and ideal on-resistance of a silicon n-channel MOSFET. It was assumed that the ideal breakdown voltage does not decrease the pn junction breakdown voltage due to the shape effect. It was assumed that the ideal on-resistance is so small that the resistance of the portion other than the low-concentration drain region can be ignored. (1) in FIG. 13 shows the relationship between the ideal breakdown voltage and the ideal on-resistance of the vertical n-channel MOSFET shown in FIG. In the vertical element, the direction in which the drift current flows when turned on is the same as the direction in which the depletion layer extends and spreads due to the reverse bias when turned off. Focusing only on the low-concentration drain layer 39 in FIG. 12, the ideal breakdown voltage BV at the OFF time is approximately obtained by the following equation.
BV = Ec 2ε0εSiα (2-α) / 2qND          (1)
Ec: Ec(ND), Impurity concentration NDMaximum field strength of silicon at
ε0: Dielectric constant of vacuum
εSi: Dielectric constant of silicon
q: Unit charge
ND: Impurity concentration in low concentration drain region
α: coefficient (0 <α <1)
Also, the ideal on-resistance per unit area at the time of on is approximately obtained by the following equation.
R = αW / μqND
μ: μ (ND), Impurity concentration NDMobility of electrons
Where W = Ecε0εSi/ QNDSo R is
R = Ecε0εSiα / μq2ND 2                    (2)
It becomes. QN from equations (1) and (2)DAnd using 2/3 as the optimal value of α,
R = BV2(27 / 8Ec 3ε0εSiμ) (3)
Is obtained. Here, the on-resistance R appears to be proportional to the square of the breakdown voltage BV, but EcAnd μ is NDTherefore, (1) in FIG. 13 is actually proportional to about 2.4 to 2.6 of BV.
[0009]
(2) in FIG. 13 shows the relationship between the ideal breakdown voltage and the ideal on-resistance of a MOSFET in which the structure of the lateral MOSFET shown in FIG. In this n-channel MOSFET, the flow direction of the drift current at the time of on is lateral, whereas the direction of the depletion layer extending at the time of off is not the lateral direction from the well end but the vertical direction from the well bottom (upward direction). ) Is faster. In order to obtain a high breakdown voltage with a depletion layer extending in the vertical direction, depletion from the pn junction surface (well bottom) between the low concentration drain region 14 and the channel diffusion layer 3 to the surface of the low concentration drain layer 14 (well surface) must be performed. I must. Therefore, the maximum value of the net doping amount of the lightly doped drain region 14 is
SD= Ecε0εSi/ Q (4)
Limited to When the lateral length of the low-concentration drain region 14 is L, the ideal breakdown voltage BV is
BV = EcLβ (5)
It becomes. However, β is an unknown coefficient (0 <β <1). The ideal on-resistance R per unit area is
R = L2/ ΜqSD                                  (6)
Can be obtained approximately. Therefore, if L is deleted from the expressions (5) and (6) and the expression (4) is substituted,
R = BV2/ Β2Ec 3ε0εSiμ (7)
[0010]
(3) in FIG. 13 shows the relationship between the ideal breakdown voltage and the ideal on-resistance of the structure of the lateral double diffusion n-channel MOSFET shown in FIG. In the structure of FIG. 11B, the p-type top layer 24 is provided in the structure of FIG. 11A, and the low concentration drain layer 22 is quickly depleted in a pinch manner by the depletion layers extending from the upper and lower sides. Net doping amount S of lightly doped drain region 22DCan be increased up to about twice that of FIG.
SD= 2Ecε0εSi/ Q (8)
In this case, the relationship between the ideal on-resistance R and the ideal breakdown voltage BV is
R = BV2/ 2β2Ec 3ε0εSiμ (9)
It becomes.
[0011]
Although (3) in FIG. 13 has a slightly improved trade-off relationship between on-resistance and withstand voltage compared to (2), it can only be set to twice as high as the current capacity and withstand voltage of the semiconductor element. The degree of design freedom is still low.
[0012]
In view of the above problems, the first problem of the present invention is to improve the structure of the drift region, thereby greatly reducing the trade-off relationship between the on-resistance and the withstand voltage, while maintaining a high withstand voltage. An object of the present invention is to provide a semiconductor device capable of increasing current capacity by reducing resistance. A second object of the present invention is to provide a manufacturing method capable of manufacturing the semiconductor device with high productivity.
[0013]
[Means for Solving the Problems]
In order to solve the above-described problem, the means taken by the present invention is to provide a drift region in a semiconductor device having a drift region that flows a drift current in an on state and depletes in an off state, such as a low concentration drain region of a MOSFET. As shown schematically in FIG. 1, a parallel split structure such as a layered structure, a fibrous structure, or a honeycomb structure is used, and is interposed between adjacent side surfaces (boundaries) of the first conductivity type split drift path region 1. Then, the second conductivity type partition region 2 for separating the pn junction is provided.
[0014]
That is, as shown in FIG. 1A, the drift region is a parallel layered structure having two or more plate-like first conductivity type (for example, n-type) divided drift path regions 1 connected in parallel to each other at least at the end portions. It has a drift path group (divided drift path aggregate) 100 and a plate-like second conductivity type (for example, p-type) partition area 2 that is interposed between the divided drift path areas 1 and 1 and separates a pn junction. . The plurality of second conductivity type partition regions 2 are connected in parallel to each other at least at the end portions.
[0015]
Further, the structure of the drift region shown in FIG. 1B is a fibrous structure, and the first conductive type (n-type) segmented drift path region 1 and the second conductive type (p-type) partition are formed. The region 2 is arranged in a checkered pattern in the cross section of the assembly.
[0016]
Furthermore, the 1st conductivity type (n-type) division | segmentation drift path | route area | region 1 shown in FIG.1 (c) has the connection part 1a in the four corners.
[0017]
As can be clearly seen in FIG. 1A, the second conductivity type that separates the pn junction along the outside of the first conductivity type split drift path region 1 at the outermost end (uppermost end or lowermost end) of the parallel drift path group 100. The side end region 2a may be provided.
[0018]
When the semiconductor device is in the on state, a drift current flows through the plurality of parallel-connected divided drift path regions 1 and 1. On the other hand, when the semiconductor device is in the off state, the first conductivity type divided drift path region 1 and the second conductivity Each depletion layer extends from the pn junction with the mold partition region 2 into the first conductivity type split drift path 1 and is depleted. Since the depletion ends spread laterally from both side surfaces of the single second conductivity type partition region 2, depletion is extremely accelerated. The second conductivity type partition region 2 is also depleted at the same time. For this reason, the semiconductor device has a high breakdown voltage, and the impurity concentration of the n-type divided drift path region 1 can be increased, so that the on-resistance can be reduced. In particular, in the present invention, the depletion ends enter both the adjacent first conductivity type divided drift path regions 1 and 1 from both side surfaces of the single second conductivity type partition region 2, and the depletion spreading to both sides is achieved. Since the end effectively acts on the divided drift path regions 1 and 1, the total occupied width of the second conductivity type partition region 2 for forming the depletion layer can be halved. The cross-sectional area of the region 1 can be increased, and the on-resistance is reduced as compared with the prior art. The occupied width of the second conductivity type partition region 2 is preferably small. The impurity concentration of the second conductivity type partition region 2 is preferably low. As the number (division number) per unit area of the first conductivity type divided drift path region 1 is increased, the trade-off relationship between the on-resistance and the withstand voltage can be greatly relaxed.
[0019]
In the present invention, the trade-off relational expression between the ideal on-resistance r and the ideal withstand voltage BV for the first conductivity type divided drift path region 1 is as follows: if the width of the second conductivity type partition region 2 is assumed to be infinitesimal, Since the ideal on-resistance r corresponds to N times the ideal on-resistance R in equation (9),
r = NR = BV2/ 2β2Ec 3ε0εSiμ (10)
The relationship between the ideal on-resistance R and the ideal breakdown voltage BV of the entire parallel drift path group is
R = BV2/ 2Nβ2Ec 3ε0εSiμ (11)
It becomes. Therefore, it can be seen that the larger the number of divisions N of the drift region, the more a semiconductor device with a reduced on-resistance can be realized.
[0020]
  That is, the present inventionA first conductivity type source region in the second conductivity type channel region;A drift region that flows laterally in the on state and depletes in the off stateMOS typeIn the semiconductor device, the drift region has a second conductivity interposed between a parallel drift path group having a plurality of first conductivity type divided drift path regions connected in parallel and adjacent first conductivity type divided drift path regions. The drift region is sandwiched between the insulating film on the semiconductor layer and the surface-side insulating film.The drift region and the channel region are in contactIt is characterized by being. With such a configuration, it is possible to reduce the on-resistance and increase the breakdown voltage.
[0021]
Here, it is desirable to form the insulating film on the semiconductor layer thicker than the surface-side insulating film. The drift region can be a superimposed parallel structure in which a layered first conductivity type divided drift path region and a layered second conductivity type partition region are alternately and repeatedly stacked, and this superimposed parallel structure is a semiconductor layer. It is sandwiched between the upper insulating film and the surface-side insulating film. The drift region may have a structure in which stripe-shaped first conductivity type divided drift path regions and stripe-shaped second conductivity type partition regions are alternately arranged along the surface of the insulating film on the semiconductor layer. it can.
[0022]
  Further, in the present invention, the second conductivity type side end region is formed outside the outermost first conductivity type divided drift path region of the parallel drift path group, and the length of the second conductivity type side end region is increased.SagaSecond conductivity type partition areaAnd first conductivity type split drift path areaLength ofWhenEqualIn addition, the widths of the second conductivity type partition region and the first conductivity type split drift path region are equal.It is characterized byThe ThisWith this configuration, it is possible to reduce the on-resistance and increase the breakdown voltage.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
[0024]
Embodiment 1
2A is a plan view showing the SOI-MOSFET having a lateral structure according to the first embodiment of the present invention, and FIG. 2B is a cut showing a state cut along the line AA ′ in FIG. 2A. FIG. 2 and FIG. 2C are sectional views showing a state cut along the line BB 'in FIG.
[0025]
The structure of the SOI-MOSFET of this example is an offset gate structure of an n-channel MOSFET, similar to the structure shown in FIG. 10, and a p-type channel diffusion region formed on the insulating film 6 on the semiconductor substrate 5. 7, a gate electrode 11 with a field plate formed on the channel diffusion region 7 via the gate insulating film 10, and an n formed on one end side of the gate electrode 11 in the channel diffusion region 7+N formed in a position spaced from the other end of the source region 8 of the mold and the gate electrode 11+It has a drain region 9 of a type, a drain / drift region 190 extending between the drain and gate, and a thick insulating film 12 formed on the drain / drift region 190.
[0026]
The drain / drift region 190 in this example has a striped parallel structure in which strip-shaped n-type divided drift path regions 1 and strip-shaped p-type partition regions 2 are alternately and repeatedly arranged on a plane. One end of the plurality of n-type divided drift path regions 1 is pn-junction to the p-type channel diffusion region 7, and the other end thereof is n+Connected to the drain region 9 of the type, n+A drift path group 100 connected in parallel is formed by branching from the drain region 9 side of the mold. A stripe-shaped p-type side end region 2a is provided outside the split drift path region 1 at the outermost end of the parallel drift path group 100, and all the split drift path regions 1 are p-type semiconductor regions along the side surfaces. 2 (2a). One end of the plurality of p-type partition regions 2 is connected to the p-type channel diffusion region 7, and the other end thereof is n+The p-type drain region 9 is pn-junctioned and branched from the p-type channel diffusion region 7 side to be connected in parallel.
[0027]
When the MOSFET is in the on state, n is passed through the channel inversion layer 13 immediately below the gate insulating film 10.+Carriers (electrons) flow from the source region 8 into the plurality of n-type divided drift path regions 1, and a drift current flows due to an electric field generated by the drain-source voltage. On the other hand, in the off state, the channel inversion layer 13 immediately below the gate insulating film 10 disappears, and the pn junctions Ja, n between the n-type divided drift path region 1 and the p-type channel diffusion region 7 are caused by the drain-source voltage. A depletion layer extends from the pn junction Jb between the type division drift path region 1 and the p type partition region 2 into the n type division drift path region 1 and is depleted. The depletion end from the pn junction Ja extends in the path length direction in the n-type split drift path region 1, while the depletion end e from the pn junction Jb extends in the path width direction in the n-type split drift path region 1, and Since the depletion edge spreads from both sides, depletion becomes very fast. The p-type partition region 2 is also depleted at the same time. For this reason, the electric field strength is relaxed and the withstand voltage is increased, and accordingly, the impurity concentration of the n-type divided drift path region 1 can be increased, so that the on-resistance is reduced. In particular, in this example, since the depletion end e enters both the adjacent n-type divided drift path regions 1 and 1 from both side surfaces of the p-type partition region 2, the p-type for forming the depletion layer is formed. The total occupied width of the partition region 2 can be halved, and accordingly, the cross-sectional area of the n-type divided drift path region 1 can be increased, and the on-resistance is reduced as compared with the prior art. As the number (number of divisions) N per unit area of the n-type divided drift path region 1 is increased, the trade-off relationship between the on-resistance and the breakdown voltage can be greatly relaxed. Three or more are more prominent than two. Note that the occupied width of the p-type partition region 2 is preferably small.
[0028]
Here, assuming that the ideal breakdown voltage BV is, for example, 100 V, the impurity concentration N of the n-type divided drift path region 1D= 3 × 1015(Cm-3), Maximum electric field strength E of siliconc= 3 × 105(V / cm), electron mobility μ = 1000 (cm2/ V · sec), vacuum dielectric constant ε0= 8.8 × 10-12(C / V · m), relative dielectric constant ε of siliconSi= 12, unit charge q = 1.6 x 10-19(C). In the lightly doped drain region 90 shown in FIG. 10, when the length is 6.6 μm and the thickness is 1 μm, the ideal on-resistance R is 9.1 (m ohm · cm2). In contrast, in this example, when the ideal on-resistance R is calculated by setting the widths of the n-type divided drift path region 1 and the p-type partition region 2 to values of, for example, 10 μm, 1 μm, and 0.1 μm (β = 2/3, n The length of the mold-dividing drift path region 1 and the p-type partition region is assumed to be 5 μm),
When the width is 10 μm, 7.9 (m ohm · cm2)
When the width is 1 μm, 0.8 (m ohm · cm2)
When the width is 0.1 μm, 0.08 (m ohm · cm2)
Thus, when the width is 1 μm or less, a dramatic reduction in on-resistance is possible. If the width of the p-type partition region 2 is made smaller than the width of the n-type divided drift path region 1, the effect will be remarkable. The width of the n-type divided drift path region 1 and the p-type partition region is currently limited to about 0.5 μm by photolithography and ion implantation. However, with the steady progress of micromachining technology, the width dimension will be further increased in the future. Since downsizing is possible, the on-resistance can be significantly reduced.
[0029]
In particular, since the structure of the drift region in this example is a repetitive structure of striped pn on a plane, it can be formed by one photolithography, so that the cost of the device can be reduced by simplifying the manufacturing process. be able to.
[0030]
[Embodiment 2]
3A is a plan view showing a double diffusion n-channel MOSFET according to Embodiment 2 of the present invention, and FIG. 3B shows a state cut along the line AA ′ in FIG. 3A. FIG. 3C is a sectional view showing a state cut along the line BB ′ in FIG.
[0031]
The double-diffused n-channel MOSFET structure of this example is an improvement of the structure shown in FIG.Type or nA drain / drift region 122 formed on the type semiconductor layer 4, a gate electrode 11 with a field plate formed on the drain / drift region 122 via the gate insulating film 10, and the drain / drift region 122. A well-shaped p-type channel diffusion region 17 formed on one end of the gate electrode 11 and an n-type formed in the p-type channel diffusion region 17 in a well shape+Type source region 8 and n spaced apart from gate electrode 11+And a thick insulating film 12 formed on the drain / drift region 122.
[0032]
In the drain / drift region 122 in this example, similarly to the first embodiment shown in FIG. 2, strip-shaped n-type divided drift path regions 1 and strip-shaped p-type partition regions 2 are alternately arranged on a plane. Striped parallel structure. One end of the plurality of n-type divided drift path regions 1 is pn-junction to the p-type channel diffusion region 17, and the other end thereof is n+Connected to the drain region 9 of the type, n+A parallel drift path group 100 connected in parallel is formed by branching from the drain 9 side of the mold. A p-type side end region 2a is provided outside the split drift path region 1 at the outermost end of the parallel drift path group 100, and all the split drift path regions 1 are p-type along the side surface. It is sandwiched between regions 2 (2a). One end of the plurality of p-type partition regions 2 is connected to the p-type channel diffusion region 7, and the other end thereof is n+The p-type drain region 9 is pn-junctioned and branched from the p-type channel diffusion region 7 side to be connected in parallel.
[0033]
Also in this example, in the off state, the depletion end from the pn junction Jb spreads in the path width direction in the n-type split drift path region 1 and the depletion end spreads from both sides, so that depletion is very quick. At the same time, the p-type partition region 2 is also depleted. For this reason, as in the first embodiment, the withstand voltage is increased, and the impurity concentration in the n-type divided drift path region 1 can be increased, so that the on-resistance can be reduced.
[0034]
Here, comparing the conventional structure shown in FIG. 11B with an ideal breakdown voltage of 100 V, the conventional structure shown in FIG. 11B has an on-resistance of about 0.5 (mΩ · cm).2On the other hand, in the structure of this example, when the divided drift path region 1 and the p-type partition region 2 have a thickness of 1 μm and a width of 0.5 μm, the on-resistance is 0. 4 (m ohm · cm2). By further reducing the widths of the divided drift path region 1 and the p-type partition region 2, the on-resistance can be greatly reduced. In addition, by increasing the thickness of the divided drift path region 1 and the p-type partition region 2, the resistance cross-sectional area of the divided drift path 1 can be increased and the on-resistance can be reduced. For example, if it is 10 μm, the on-resistance can be reduced to 1/10, and if it is set to 100 μm, the on-resistance can be reduced to 1/100. In order to dope such a thick region, impurity ions may be implanted into the same portion with a plurality of (or continuously different) energies.
[0035]
[Embodiment 3]
4A is a plan view showing a lateral-structure SOI-MOSFET according to Embodiment 3 of the present invention, and FIG. 4B is a cross-sectional view taken along the line AA ′ in FIG. 4A. FIG. 4 and FIG. 4C are cut views showing a state cut along the line BB ′ in FIG.
[0036]
The SOI-MOSFET structure of this example is formed by a p-type channel diffusion layer 77 formed on the insulating film 6 on the semiconductor substrate 5 and a gate insulating film 10 on the side wall of the channel diffusion layer 77. Trench gate electrode 111 and n formed along the upper edge of trench gate electrode 111+N type source region 88 and n formed at a position separated from trench gate electrode 111+A drain region 99 of a type, a drain / drift region 290 extending between the drain and gate, and a thick insulating film 12 formed on the drain / drift region 290 are provided.
[0037]
Unlike the case of the first embodiment, the drain / drift region 290 in this example is a superposed parallel structure in which plate-shaped n-type divided drift path regions 1 and plate-shaped p-type partition regions 2 are alternately and repeatedly stacked. It has a structure. A p-type side end region 2a is formed immediately below the lowest n-type divided drift path region 1, and a p-type side end region 2a is also formed on the uppermost n-type divided drift route region 1. ing. The net doping amount of this p-type side end region 2a is 2 × 10.12/ Cm2The following. One ends of the plurality of n-type divided drift path regions 1 are pn-junction to the p-type channel diffusion layer 77, and the other ends thereof are n+Connected to the drain region 99 of the mold, n+A parallel drift path group 100 connected in parallel is formed by branching from the drain 99 side of the mold. One end of the plurality of p-type partition regions 2 is connected to the p-type channel diffusion layer 77, and the other end thereof is n+A pn junction is connected to the drain region 99 of the type, and is branched from the p-type channel diffusion layer 77 side and connected in parallel.
[0038]
Also in this layered structure, the ideal on-resistance is given by the above equation (11), and N is the number of stacked n-type divided drift path regions 1. When the ideal breakdown voltage is 100 V, in the conventional structure (N = 1), the ideal on-resistance R = 0.5 (m ohm · cm2In this example, when N = 10, R = 0.05 (m ohm · cm2), And the on-resistance drastically decreases in inverse proportion to the division number N.
[0039]
By the way, the key technology of the embodiment shown in FIGS. 2 and 3 is photolithography and ion implantation, whereas the key technology of this example shown in FIG. Crystal growth method for alternately and repeatedly laminating the p-type partition regions 2 in the form of a ring. As the number of stacked layers is increased, the total thickness increases and the time required for crystal growth increases, so that the disturbance of impurity distribution due to impurity diffusion cannot be ignored. Ideally, it is preferable that the n-type divided drift path region 1 and the p-type partition region 2 are formed as thin as possible and the crystal is grown at a low temperature at which the disturbance of the impurity distribution can be ignored. For this purpose, MOCVD (metal organic vapor phase decomposition crystal growth method) and MBE (molecular beam crystal growth method) used in compound semiconductors such as gallium-arsenic are more suitable than the epitaxial growth method frequently used in silicon technology. . According to this, the layer thickness of the layered n-type divided drift path region 1 and the layered p-type partition region 2 can be miniaturized, and the on-resistance can be greatly reduced.
[0040]
In the case of this example, if the n-type divided drift path region 1 and the p-type partition region 2 are formed thin and the impurity concentration is increased, the channel inversion layer 13 is difficult to form, and the channel resistance is difficult to lower, resulting in the on-state. Resistance is difficult to lower. In order to improve this, it is effective to make a portion of the n-type divided drift path region 1 and the p-type partition region 2 in contact with the gate insulating film 10 locally a low concentration region.
[0041]
[Embodiment 4]
FIG. 5A is a plan view showing a lateral MOSFET according to Embodiment 4 of the present invention, and FIG. 5B is a sectional view showing a state cut along the line AA ′ in FIG. 5A. FIG. 5C is a cross-sectional view showing a state cut along the line BB ′ in FIG.
[0042]
The MOSFET structure of this example is pType or nP-type channel diffusion layer 77 formed on type semiconductor layer 4, trench gate electrode 111 formed on the side wall of channel diffusion layer 77 via gate insulating film 10, and upper edge of trench gate electrode 111 N formed along+N type source region 88 and n formed at a position separated from trench gate electrode 111+A drain region 99 of a type, a drain / drift region 290 extending between the drain and gate, and a thick insulating film 12 formed on the drain / drift region 290 are provided.
[0043]
The drain / drift region 290 in this example is the same as in the third embodiment, and has a parallel structure in which plate-shaped n-type divided drift path regions 1 and plate-shaped p-type partition regions 2 are alternately and repeatedly stacked. It has become. A p-type side end region 2a is formed immediately below the lowest n-type divided drift path region 1, and a p-type side end region 2a is also formed on the uppermost n-type divided drift route region 1. ing. The net doping amount of this p-type side end region 2a is 2 × 10.12/ Cm2The following. One end of the plurality of n-type divided drift path regions 1 is pn-junction to the p-type channel diffusion layer 77, and the other end thereof is n+Connected to the drain region 99 of the mold, n+A parallel drift path group 100 connected in parallel is formed by branching from the drain 99 side of the mold. One end of the plurality of p-type partition regions 2 is connected to the p-type channel diffusion layer 77, and the other end thereof is n+A pn junction is connected to the drain region 99 of the type, and is branched from the p-type channel diffusion layer 77 side and connected in parallel.
[0044]
In this example, the on-resistance can be reduced and the breakdown voltage can be increased as in the third embodiment. The relationship between this example and the third embodiment shown in FIG. 4 corresponds to the relationship between the second embodiment shown in FIG. 3 and the first embodiment shown in FIG. Similar to the embodiment of FIG. 3 with respect to the embodiment of FIG. 2, this example can reduce the cost because it is not SOI.
[0045]
[Embodiment 5]
FIG. 6A is a cross-sectional view showing a lateral p-channel MOSFET according to Embodiment 5 of the present invention, and corresponds to an improved example of FIG.
[0046]
The structure of this example is pN-type channel diffusion layer 3 formed on type semiconductor layer 4, gate electrode 11 with a field plate formed on channel diffusion layer 3 via gate insulating film 10, and gate electrode of channel diffusion layer 3 P formed on one end of 11+Type source region 18, p-type drain / drift region 14 in which the well end is located directly under the other end of gate electrode 11, and n-type side end region 2 b formed in the surface layer of p-type drain / drift region 14 And p formed at a position separated from the other end of the gate electrode 11+Type drain region 19 and p+N adjacent to the source region 18 of the mold+Type contact region 71 and thick insulating film 12 formed on p-type drain drift 14.
[0047]
In the case of this example, the number of divisions of the drain region is 1, and the p-type drain / drift region 14 corresponds to a single divided drain path region 1 on the cross section. The thickness of the n-type side end region 2b on the p-type drain / drift region 14 is made thin in order to accelerate depletion. Compared with the structure of FIG. 11A, in this example, the n-type side end region 2b is formed, and the depletion layer from the channel diffusion layer 3 below the p-type drain / drift region 14 and the n-type side region on the upper side are formed. Depletion is promoted by the depletion layer from the side end region 2a. The net doping amount of the drain / drift region 14 in FIG.12/ Cm2On the other hand, in this example, about 2 × 1012/ Cm2Doubled with the degree. Accordingly, the impurity concentration of the drain / drift region 14 can be increased by the amount that can achieve a high breakdown voltage, and a low on-resistance can be achieved.
[0048]
[Embodiment 6]
FIG. 6B is a cross-sectional view showing an n-channel MOSFET having a lateral structure according to Embodiment 6 of the present invention, and corresponds to an improved example of FIG.
[0049]
This example is a double-diffused n-channel MOSFET, pDrain / drift region 22 (first n-type split drift path region 1) formed on the p-type semiconductor layer 4 (p-type side end region 2a) and a gate with a field plate formed via the gate insulating film 10 The electrode 11, a well-shaped p-type channel diffusion region 17 formed on one end side of the gate electrode 11 in the drain / drift region 22, and an n-type formed in the p-type channel diffusion region 17 in a well shape+Type source region 8, gate electrode 11 and n spaced apart from it+A p-type top layer 24 (p-type partition region 2) formed in the surface layer between the p-type partition region 2 and a second n-type split drift path region 1 formed in the surface layer of the p-type partition region 2; , N+P adjacent to the source region 8 of the mold+And a thick insulating film 12 formed on the p-type partition region 2.
[0050]
The lower drain / drift region 22 and the upper divided drift path region 1 are connected in parallel with the p-type partition region 2 interposed therebetween. Compared with the structure of FIG. 11B, in this example, the divided drift path region 1 is arranged in parallel on the p-type partition region 2. As described above, since the depletion layer extends from the p-type partition region 2 to both the lower drain / drift region 22 and the upper divided drift path region 1, a high breakdown voltage can be achieved. Therefore, the on-resistance can be reduced. The net doping amount of the drift region 22 in FIG.12/ Cm2On the other hand, in this example, the doping amount of the lower drain / drift region 22 and the upper divided drift path region 1 is about 3 × 1012/ Cm2The degree can be 1.5 times. According to the structure of this example, the trade-off relationship between the ideal breakdown voltage and the ideal on-resistance indicated by (4) in FIG. 13 can be obtained. Obviously, it was found that the trade-off relationship between the ideal breakdown voltage and the ideal on-resistance can be relaxed compared to the conventional structure.
[0051]
As a manufacturing method for obtaining the structures of Embodiments 5 and 6, first, pAfter n-type semiconductor layer 3 (22) is formed by phosphorus ion implantation and heat treatment (thermal diffusion) into type semiconductor layer 4, selective boron ion implantation into the surface of n-type semiconductor layer 3 (22) is performed. The p-type region 14 (24) is formed by heat treatment (thermal diffusion), and then subjected to thermal oxidation treatment to increase the concentration by segregation of phosphorus on the silicon surface and decrease the concentration by segregation of boron into the oxide film. Is used to form a thin n-type side end region 2b (n-type split drift path region 1) on the surface layer. Since the reverse conductivity type layer is not adjacent to the upper layer of the n-type side end region 2b or the n-type split drift path region 1, a thinner layer is better for easy depletion. Therefore, the advantage that the n-type side end region 2b (n-type split drift path 1) can be formed only by the thermal oxidation treatment process contributes to the reduction of the number of processes and enables mass production.
[0052]
In the fifth embodiment, the n-type side end region 2b is separated from the gate insulating film 10 and the drain / drift region 14, but since this uses the above manufacturing method, the n-type side is entirely formed on the silicon surface layer. This is because the end region 2b is formed. However, if the n-type side end region 2b is thin, there is no problem because the drain / drift region 14 is conducted by the channel inversion layer formed immediately below the gate 10.
[0053]
[Embodiment 7]
7A is a plan view showing a trench gate type n-channel MOSFET of a vertical structure according to Embodiment 7 of the present invention, and FIG. 7B is along the line AA ′ in FIG. 7A. FIG. 8A is a cross-sectional view showing a state cut along the line BB ′ in FIG. 7A, and FIG. 8B is a cross-sectional view in FIG. 7B. FIG. 9A is a sectional view showing a state cut along the line CC ′, FIG. 9A is a sectional view showing a state cut along the line DD ′ in FIG. 7A, and FIG. ) Is a cutaway view showing a state cut along the line EE ′ in FIG.
[0054]
The structure of this example is such that the back electrode (not shown) is in conductive contact.+Type drain layer 29, a drain / drift layer 139 formed thereon, and a trench gate electrode embedded through a gate insulating film 10 in a trench groove dug into the surface side of the drain / drift layer 139 21, a p-type channel layer 27 formed on the surface of the drain / drift layer 139 as shallow as the depth of the trench gate electrode 21, and n formed along the upper edge of the trench gate electrode 21+A type source region 18 and a thick insulating film 12 covering the gate electrode 21 are provided. In addition, single layer n+In place of the type drain layer 29, n+Mold upper layer and p+An n-type IGBT structure can be obtained by using a two-layer structure or a p-type layer composed of a mold lower layer.
[0055]
As shown in FIGS. 8B and 9, the drain / drift layer 139 in this example has alternating plate-shaped n-type divided drift path regions 1 in the vertical direction and plate-shaped p-type partition regions 2 in the vertical direction. It is a side-by-side parallel structure that is adjacent to each other repeatedly. The upper ends of the plurality of n-type divided drift path regions 1 are pn-junction to the p-type channel diffusion layer 27, and the lower ends thereof are n+Connected to the drain layer 29 of the type, n+A parallel drift path group 100 connected in parallel is branched from the drain layer 29 side of the mold. Although not illustrated, a p-type side end region is provided outside the split drift path region 1 at the outermost end of the parallel drift path group 100, and all the split drift path regions 1 are p-type along the side surface. It is sandwiched between the partition region 2 or the p-type side end region. The upper ends of the plurality of p-type partition regions 2 are connected to the p-type channel diffusion layer 27, and the lower ends thereof are n+The p-type drain layer 29 is pn-junctioned and branched in parallel from the p-type channel diffusion layer 27 side.
[0056]
In the off state, the channel inversion layer 13 immediately below the gate insulating film 10 disappears, and the pn junction Ja, n-type split between the n-type split drift path region 1 and the p-type channel diffusion layer 27 is caused by the drain-source voltage. A depletion layer extends from the pn junction Jb between the drift path region 1 and the p-type partition region 2 into the n-type split drift path region 1 and is depleted. The depletion end from the pn junction Ja extends in the path length direction in the n-type split drift path region 1, while the depletion end from the pn junction Jb extends in the path width direction in the n-type split drift path region 1 Since the depletion edge spreads from the surface, depletion becomes very fast. The p-type partition region 2 is also depleted at the same time. In particular, since the depletion ends enter both the adjacent n-type divided drift paths 1 and 1 from both side surfaces of the p-type partition region 2, the total occupation of the p-type partition region 2 for forming the depletion layer The width can be halved, and the cross-sectional area of the n-type divided drift path region 1 can be increased correspondingly, and the on-resistance is reduced as compared with the prior art. As the number of n-type divided drift paths 1 per unit area (number of divisions) is increased, the trade-off relationship between on-resistance and breakdown voltage can be greatly relaxed.
[0057]
Compared with the ideal on-resistance in the n-channel MOSFET having the ideal withstand voltage of 100 V (conventional structure shown in FIG. 12), in the conventional structure, the ideal on-resistance R = approximately 0.6 (mohm · cm2However, in this example, assuming that the depth (path length) of the n-type divided drift path region 1 and the p-type partition region 2 is about 5 μm and β = 2/3, When the thickness in the stacking direction of 1 and the p-type partition region 2 is calculated as, for example, 10 μm, 1 μm, and 0.1 μm,
When the thickness is 10 μm, 1.6 (m ohm · cm2)
When the thickness is 1 μm, 0.16 (m ohm · cm2)
When the thickness is 0.1 μm, 0.016 (m ohm · cm2)
Therefore, dramatic reduction in on-resistance is possible even in the order of μm. If the width of the p-type partition region 2 is made smaller than the width of the n-type divided drift path region 1, the effect will be remarkable. The width of the n-type divided drift path region 1 and the p-type partition region is currently limited to about 0.5 μm by photolithography and ion implantation. However, with the steady progress of micromachining technology, the width dimension will be further increased in the future. Since downsizing is possible, the on-resistance can be significantly reduced.
[0058]
As in this example, the repeating structure of the n-type divided drift path region 1 and the p-type partition region 2 arranged in the vertical direction is difficult in terms of manufacturing as compared with the case of a horizontal semiconductor structure. After the n-type layer is formed on the layer 29 by epitaxial growth, the n-type layer is removed by etching in a striped manner, the etching groove is filled by p-type epitaxial growth, and unnecessary portions are removed by polishing. can do. Another possible method is to selectively form deep reverse conductivity regions using selective implantation of neutron beams or high-energy particles having a large range and the resulting nuclear transmutation.
[0059]
The structure according to the present invention can be applied not only to the drain / drift region of a MOSFET, but also to a semiconductor region that becomes a drift region when turned on and becomes a depletion region when turned off, and is an IGBT, bipolar transistor, diode, JFET, thyristor, The present invention can be applied to almost all semiconductor elements such as MESFET and HEMT. Further, the conductivity type can be appropriately changed to a reverse conductivity type. Further, in FIG. 1, the parallel division drift group is shown in a layer shape, a fiber shape, a net shape, or a honeycomb shape, but is not limited thereto, and other repeated shapes can be adopted.
[0060]
【The invention's effect】
  As described above, the drift region in the present invention is between a parallel drift route group having a plurality of first conductivity type divided drift route regions connected in parallel and adjacent ones of the first conductivity type divided drift route regions. The drift region is sandwiched between the insulating film on the semiconductor layer and the surface-side insulating film.The drift region and the second conductivity type channel region are in contact with each other.It is characterized by being. With such a configuration, it is possible to reduce the on-resistance and increase the breakdown voltage.
[0061]
  Further, in the present invention, the second conductivity type side end region is formed outside the outermost first conductivity type divided drift path region of the parallel drift path group, and the length of the second conductivity type side end region is increased.SagaSecond conductivity type partition areaAnd first conductivity type split drift path areaLength ofWhenEqualIn addition, the widths of the second conductivity type partition region and the first conductivity type split drift path region are equal.It is characterized byThe ThisWith this configuration, it is possible to reduce the on-resistance and increase the breakdown voltage.
[Brief description of the drawings]
FIGS. 1A to 1C are schematic views showing structures of drift regions in a semiconductor device according to the present invention.
2A is a plan view showing an SOI-MOSFET having a lateral structure according to Embodiment 1 of the present invention, and FIG. 2B is a sectional view showing a state cut along the line AA ′ in FIG. (C) is a cutaway view showing a state cut along the line BB ′ in (a).
3A is a plan view showing a double-diffused n-channel MOSFET according to Embodiment 2 of the present invention, and FIG. 3B is a cut-away view showing a state cut along line AA ′ in FIG. (C) is a cutaway view showing a state cut along line BB ′ in (a).
4A is a plan view showing an SOI-MOSFET having a lateral structure according to Embodiment 3 of the present invention, and FIG. 4B is a sectional view showing a state cut along the line AA ′ in FIG. (C) is a cutaway view showing a state cut along the line BB ′ in (a).
5A is a plan view showing a lateral structure MOSFET according to Embodiment 4 of the present invention, FIG. 5B is a sectional view showing a state cut along the line AA ′ in FIG. (c) is a cutaway view showing a state cut along the line BB ′ in (a).
6A is a cross-sectional view showing a lateral p-channel MOSFET according to Embodiment 5 of the present invention, and FIG. 6B is a cross-sectional view showing a lateral n-channel MOSFET according to Embodiment 6 of the present invention. is there.
7A is a plan view showing a trench-gate n-channel MOSFET having a vertical structure according to Embodiment 7 of the present invention, and FIG. 7B is taken along line AA ′ in FIG. 7A. It is a cutaway figure which shows the state cut | disconnected.
8A is a cross-sectional view showing a state cut along line BB ′ in FIG. 7A, and FIG. 8B is taken along line CC ′ in FIG. 7B. It is a sectional view showing the state where it cut.
9A is a cross-sectional view showing a state cut along a line DD ′ in FIG. 7A, and FIG. 9B is a cross-sectional view taken along a line EE ′ in FIG. It is a sectional view showing the state where it cut.
10A is a plan view showing a conventional SOI-MOSFET having a lateral structure, and FIG. 10B is a cross-sectional view thereof.
11A is a cross-sectional view showing another structure of a conventional lateral structure MOSFET, and FIG. 11B is a cross-sectional view showing the structure of a conventional double-diffused n-channel MOSFET.
FIG. 12 is a cross-sectional view showing a conventional trench gate type n-channel MOSFET.
FIG. 13 is a graph showing a trade-off relationship between ideal breakdown voltage and ideal on-resistance of various silicon n-channel MOSFETs.
[Explanation of symbols]
1 ... n-type split drift path area
1a: Connection site
2 ... p-type partition region
2a ... p-type side edge region
3 ... n-type channel diffusion layer
4 ... pType semiconductor layer
5 ... Semiconductor substrate
6 ... Insulating film
7 ... p-type channel diffusion layer
8 ... n+Type source area
9 ... n+Type drain region
10 ... Gate insulating film
11 ... Gate electrode with field plate
12 ... Thick insulating film
13 ... Channel inversion layer
14 ... p-type low concentration region
17 ... p-type channel diffusion region
18, 28 ... p+Type source area
19 ... p+Type drain region
21 ... Trench gate electrode
22 ... n-type low concentration drain layer
24 ... p-type top layer
27 ... p-type channel layer
29 ... n+Type drain layer
39 ... n-type low concentration drain layer
71 ... n+Type contact area
72 ... p+Type contact area
77 ... p-type channel diffusion layer
88 ... n+Type source area
90 ... n-type low concentration drain region (drain / drift region)
99 ... p-type drain region
100: Parallel drift path group
111 ... Trench gate electrode
90, 122, 139, 290 ... Drain drift region
e ... depletion end
Ja, Jb ... pn junction.

Claims (5)

第2導電型チャネル領域に第1導電型ソース領域を備え、オン状態で横方向にドリフト電流を流すと共にオフ状態で空乏化するドリフト領域を有するMOS型半導体装置において、前記ドリフト領域は、並列接続した複数の第1導電型分割ドリフト経路域を持つ並行ドリフト経路群と、前記第1導電型分割ドリフト経路域の相隣る同士の間に介在する第2導電型仕切領域とを有する構造であって、前記ドリフト領域は半導体層上の絶縁膜と表面側絶縁膜との間に挟まれており、前記ドリフト領域と前記第2導電型チャネル領域とが接していることを特徴とするMOS型半導体装置。 In a MOS type semiconductor device having a first conductivity type source region in a second conductivity type channel region and having a drift region in which a drift current flows in a lateral direction in an on state and is depleted in an off state, the drift region is connected in parallel A parallel drift path group having a plurality of first conductivity type split drift path areas and a second conductivity type partition area interposed between adjacent ones of the first conductivity type split drift path areas. Te, the drift region is sandwiched between the insulating film and the surface-side insulating film on the semiconductor layer, MOS-type semiconductor, wherein the drift region and the second conductivity type channel region is in contact apparatus. 請求項1において、前記半導体層上の絶縁膜が前記表面側絶縁膜よりも厚く形成されていることを特徴とするMOS型半導体装置。2. The MOS semiconductor device according to claim 1, wherein the insulating film on the semiconductor layer is formed thicker than the surface-side insulating film. 請求項1又は請求項2において、前記ドリフト領域は、層状の前記第1導電型分割ドリフト経路域と層状の前記第2導電型仕切領域とを交互に繰り返し積み重ねて積層された重畳並行構造であって、この重畳並行構造は前記半導体層上の絶縁膜と表面側絶縁膜との間に挟まれていることを特徴とするMOS型半導体装置。The drift region according to claim 1 or 2, wherein the drift region has a stacked parallel structure in which the layered first conductivity type divided drift path region and the layered second conductivity type partition region are alternately and repeatedly stacked. Te, the superimposed parallel structure MOS type semiconductor device characterized by being sandwiched between the insulating film and the surface-side insulating film on the semiconductor layer. 請求項1又は請求項2において、前記ドリフト領域は、ストライプ状の前記第1導電型分割ドリフト経路域とストライプ状の前記第2導電型仕切領域とを前記半導体層上の絶縁膜の表面に沿って交互に配置した構造であることを特徴とするMOS型半導体装置。3. The drift region according to claim 1, wherein the drift region extends along the surface of the insulating film on the semiconductor layer between the stripe-shaped first conductivity type divided drift path region and the stripe-shaped second conductivity type partition region. A MOS type semiconductor device characterized in that the structure is alternately arranged. 請求項1乃至請求項4のいずれか一項において、前記並行ドリフト経路群の最外側の前記第1導電型分割ドリフト経路域の外側に第2導電型側端領域を有して成り、この第2導電型側端領域の長さが第2導電型仕切領域及び第1導電型分割ドリフト経路域の長さ等しく、第2導電型仕切領域と第1導電型分割ドリフト経路域の幅が等しいことを特徴とするMOS型半導体装置。5. The method according to claim 1, further comprising a second conductivity type side end region outside the first conductivity type split drift path region, which is the outermost side of the parallel drift path group. 2 long conductive type side end region Saga second conductivity type partition region and the first conductivity type drift regions rather equal to the length, the second conductivity type partition region and the first conductivity type drift regions of width MOS type semiconductor devices characterized by equality .
JP2001215678A 1996-01-22 2001-07-16 MOS type semiconductor device Expired - Lifetime JP3812379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001215678A JP3812379B2 (en) 1996-01-22 2001-07-16 MOS type semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-7935 1996-01-22
JP793596 1996-01-22
JP2001215678A JP3812379B2 (en) 1996-01-22 2001-07-16 MOS type semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001109071A Division JP3825987B2 (en) 1996-01-22 2001-04-06 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2002100783A JP2002100783A (en) 2002-04-05
JP3812379B2 true JP3812379B2 (en) 2006-08-23

Family

ID=26342334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001215678A Expired - Lifetime JP3812379B2 (en) 1996-01-22 2001-07-16 MOS type semiconductor device

Country Status (1)

Country Link
JP (1) JP3812379B2 (en)

Also Published As

Publication number Publication date
JP2002100783A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
US6724040B2 (en) Semiconductor device
US6627948B1 (en) Vertical layer type semiconductor device
US6621132B2 (en) Semiconductor device
JPH09266311A (en) Semiconductor device and its manufacture
US6475864B1 (en) Method of manufacturing a super-junction semiconductor device with an conductivity type layer
US10529848B2 (en) Insulated-gate semiconductor device and method of manufacturing the same
JP7180402B2 (en) semiconductor equipment
JP3641547B2 (en) Semiconductor device including lateral MOS element
US6683347B1 (en) Semiconductor device with alternating conductivity type layer and method of manufacturing the same
US7253476B2 (en) Semiconductor device with alternating conductivity type layer and method of manufacturing the same
US6787872B2 (en) Lateral conduction superjunction semiconductor device
US20090273031A1 (en) Semiconductor device
JP5687582B2 (en) Semiconductor device and manufacturing method thereof
JP2000349288A (en) Vertical mosfet
US7470960B1 (en) High-voltage power semiconductor device with body regions of alternating conductivity and decreasing thickness
JP3825987B2 (en) Semiconductor device
JP3812379B2 (en) MOS type semiconductor device
JP2006279064A (en) Method of manufacturing semiconductor device
JP3452054B2 (en) MOSFET
JP2003332574A (en) Semiconductor device
JP2022136715A (en) insulated gate semiconductor device
GB2355586A (en) A MOSFET having a gate electrode extending over a drift region of alternating conductivity type

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term