JP2012109599A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2012109599A
JP2012109599A JP2012011583A JP2012011583A JP2012109599A JP 2012109599 A JP2012109599 A JP 2012109599A JP 2012011583 A JP2012011583 A JP 2012011583A JP 2012011583 A JP2012011583 A JP 2012011583A JP 2012109599 A JP2012109599 A JP 2012109599A
Authority
JP
Japan
Prior art keywords
parallel
vertical
region
type region
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012011583A
Other languages
Japanese (ja)
Other versions
JP5652409B2 (en
Inventor
Yasuhiko Onishi
泰彦 大西
Takeyoshi Nishimura
武義 西村
Yasushi Niimura
康 新村
Masanori Inoue
正範 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012011583A priority Critical patent/JP5652409B2/en
Publication of JP2012109599A publication Critical patent/JP2012109599A/en
Application granted granted Critical
Publication of JP5652409B2 publication Critical patent/JP5652409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure

Abstract

PROBLEM TO BE SOLVED: To provide a superjunction semiconductor device improving an avalanche resistance in a device peripheral part to improve an avalanche resistance of the device as a whole.SOLUTION: In a semiconductor device, a drain drift part 22 has a first parallel pn structure constituted of a first n-type region 22a and a first p-type region 22b by bonding alternately and repeatedly at a pitch P1. A surrounding area of the drain drift part 22 is a device peripheral part 30 consisting of a second parallel pn structure. The device peripheral part 30 is constituted of a second n-type region 30a and a second p-type region 30b by bonding alternately and repeatedly at the pitch P1 so as to be continued from the first parallel pn structure. Impurity concentration of the first and second parallel pn structures are substantially the same as each other. A third parallel pn structure formed on a surface region of the device peripheral part 30 is constituted of a third n-type region 34a and a third p-type region 34b having an impurity concentration higher than that of the third n-type region 34a by bonding alternately and repeatedly at a pitch P2 smaller than the pitch P1. An impurity concentration of the third parallel pn structure is lower than those of the first and second parallel pn structures.

Description

この発明は、MOSFET(絶縁ゲート型電界効果トランジスタ)、IGBT(絶縁ゲート型バイポーラトランジスタ)、バイポーラトランジスタ等の能動素子やダイオード等の受動素子に適用可能で高耐圧化と大電流容量化が両立する縦形パワー半導体素子に関する。   The present invention can be applied to active elements such as MOSFETs (insulated gate field effect transistors), IGBTs (insulated gate bipolar transistors), and bipolar transistors, and passive elements such as diodes, and achieves both high breakdown voltage and large current capacity. The present invention relates to a vertical power semiconductor element.

一般に、半導体素子は、電極が片面に形成された横形の素子と、両面に電極を有する縦形の素子に分類される。縦形半導体素子は、オン状態のときにドリフト電流が流れる方向と、オフ状態のときに逆バイアス電圧による空乏層が伸びる方向とが同じである。通常のプレーナ型のnチャネル縦形MOSFETでは、高抵抗のn-ドリフト層の部分は、オン状態のときに、縦方向にドリフト電流を流す領域として働く。従って、このn-ドリフト層の電流経路を短くすれば、ドリフト抵抗が低くなるので、MOSFETの実質的なオン抵抗を下げることができるという効果が得られる。 In general, semiconductor elements are classified into a horizontal element having electrodes formed on one side and a vertical element having electrodes on both sides. In the vertical semiconductor element, the direction in which the drift current flows in the on state is the same as the direction in which the depletion layer due to the reverse bias voltage extends in the off state. In a normal planar type n-channel vertical MOSFET, the portion of the high resistance n drift layer functions as a region through which a drift current flows in the vertical direction when in the on state. Therefore, if the current path of the n drift layer is shortened, the drift resistance is lowered, so that an effect that the substantial on-resistance of the MOSFET can be lowered is obtained.

その一方で、高抵抗のn-ドリフト層の部分は、オフ状態のときには空乏化して耐圧を高める。従って、n-ドリフト層が薄くなると、Pベース領域とn-ドリフト層との間のpn接合から進行するドレイン−ベース間空乏層の広がる幅が狭くなり、シリコンの臨界電界強度に速く達するため、耐圧が低下してしまう。逆に、耐圧の高い半導体素子では、n-ドリフト層が厚いため、オン抵抗が大きくなり、損失が増えてしまう。このように、オン抵抗と耐圧との間には、トレードオフ関係がある。 On the other hand, the portion of the high resistance n drift layer is depleted in the off state to increase the breakdown voltage. Therefore, when the n drift layer is thinned, the width of the drain-base depletion layer that progresses from the pn junction between the P base region and the n drift layer becomes narrow, and the critical electric field strength of silicon is quickly reached. The withstand voltage will decrease. On the other hand, in a semiconductor device with a high breakdown voltage, since the n drift layer is thick, the on-resistance increases and the loss increases. Thus, there is a trade-off relationship between on-resistance and breakdown voltage.

このトレードオフ関係は、IGBTやバイポーラトランジスタやダイオード等の半導体素子においても同様に成立することが知られている。また、このトレードオフ関係は、オン状態のときにドリフト電流が流れる方向と、オフ状態のときの逆バイアスによる空乏層の伸びる方向とが異なる横形半導体素子にも共通である。   This trade-off relationship is also known to hold in semiconductor devices such as IGBTs, bipolar transistors, and diodes. This trade-off relationship is also common to horizontal semiconductor elements in which the direction in which the drift current flows in the on state and the direction in which the depletion layer extends due to the reverse bias in the off state are different.

上述したトレードオフ関係による問題の解決法として、ドリフト層を、不純物濃度を高めたn型ドリフト領域とp型仕切領域とを交互に繰り返し接合した構成の並列pn構造とした超接合半導体素子が公知である(例えば、特許文献1、特許文献2、特許文献3参照。)。このような構造の半導体素子では、並列pn構造の不純物濃度が高くても、オフ状態のときに、空乏層が、並列pn構造の縦方向に伸びる各pn接合から横方向に広がり、ドリフト層全体を空乏化するため、高耐圧化を図ることができる。   As a solution to the above-described problem due to the trade-off relationship, a superjunction semiconductor element having a parallel pn structure in which a drift layer is formed by alternately and repeatedly joining n-type drift regions and p-type partition regions having a high impurity concentration is known. (For example, refer to Patent Document 1, Patent Document 2, and Patent Document 3.) In the semiconductor element having such a structure, even when the impurity concentration of the parallel pn structure is high, the depletion layer extends laterally from each pn junction extending in the vertical direction of the parallel pn structure in the off state, and the entire drift layer Therefore, a high breakdown voltage can be achieved.

一方、半導体素子の高耐圧化を実現するためには、素子周縁部構造が必要である。素子終端構造がないと、ドリフト層の終端で耐圧が低下してしまうため、高耐圧を実現することが困難となる。この問題を解決するための構造として、素子活性部の並列pn構造の外周において、その表面側の領域に、素子活性部の並列pn構造よりもピッチの小さい並列pn構造を配置することが提案されている(例えば、特許文献4、特許文献5参照。)。この提案によれば、素子活性部付近の表面電界が緩和され、高耐圧が保持される。   On the other hand, in order to realize a high breakdown voltage of the semiconductor element, an element peripheral part structure is necessary. Without the element termination structure, the breakdown voltage drops at the end of the drift layer, making it difficult to achieve a high breakdown voltage. As a structure for solving this problem, it has been proposed to arrange a parallel pn structure having a smaller pitch than the parallel pn structure of the element active part in a region on the surface side of the outer periphery of the parallel pn structure of the element active part. (For example, refer to Patent Document 4 and Patent Document 5). According to this proposal, the surface electric field in the vicinity of the element active portion is relaxed and high breakdown voltage is maintained.

また、超接合半導体素子におけるドリフト層のアバランシェ耐量の向上については、アバランシェ降伏時の負性抵抗を改善する構造が提案されている(例えば、特許文献6参照。)。さらに、低抵抗層と並列pn構造との間に、並列pn構造のn型ドリフト領域よりも低い不純物濃度のn-ドリフト層を有する構造が公知である(例えば、特許文献7参照。)。 Further, for improving the avalanche resistance of the drift layer in the super junction semiconductor element, a structure for improving the negative resistance at the time of avalanche breakdown has been proposed (see, for example, Patent Document 6). Further, a structure having an n drift layer having an impurity concentration lower than that of the n-type drift region of the parallel pn structure is known between the low resistance layer and the parallel pn structure (see, for example, Patent Document 7).

図23は従来の縦形MOSFET素子のチップを示す概略部分平面図、図24は図23中のA−A’線に沿って切断した状態を示す縦断面図、図25は図23中のB−B’線に沿って切断した状態を示す縦断面図である。なお、図23ではドレイン・ドリフト部(素子活性部)の1/4を示してある(図1、図7、図10および図12においても同じ)。   FIG. 23 is a schematic partial plan view showing a chip of a conventional vertical MOSFET element, FIG. 24 is a vertical cross-sectional view showing a state cut along the line AA ′ in FIG. 23, and FIG. It is a longitudinal cross-sectional view which shows the state cut | disconnected along B 'line. In FIG. 23, 1/4 of the drain / drift portion (element active portion) is shown (the same applies to FIGS. 1, 7, 10 and 12).

この縦形MOSFETは、裏側のドレイン電極18が導電接触した低抵抗のn+ドレイン層(コンタクト層)11の上に形成された第1の並列pn構造のドレイン・ドリフト部22と、このドレイン・ドリフト部22の表面層に選択的に形成された素子活性部となる高不純物濃度のpベース領域(pウェル)13aと、そのpベース領域13a内の表面側に選択的に形成された高不純物濃度のn+ソース領域14と、基板表面上にゲート絶縁膜15を介して設けられたポリシリコン等のゲート電極層16と、層間絶縁膜19aに開けたコンタクト孔を介してpベース領域13aおよびn+ソース領域14に跨って導電接触するソース電極17とを有している。ウェル状のpベース領域13aの中にn+ソース領域14が浅く形成されており、2重拡散型MOS部を構成している。なお、26はp+コンタクト領域で、また、図示しない部分でゲート電極層16の上に金属膜のゲート電極配線が導電接触している。 This vertical MOSFET includes a drain / drift portion 22 having a first parallel pn structure formed on a low-resistance n + drain layer (contact layer) 11 in which the drain electrode 18 on the back side is in conductive contact, and the drain / drift portion. A high impurity concentration p base region (p well) 13a to be an element active portion selectively formed in the surface layer of the portion 22, and a high impurity concentration selectively formed on the surface side in the p base region 13a N + source region 14, gate electrode layer 16 such as polysilicon provided on the substrate surface via gate insulating film 15, and p base regions 13 a and n via contact holes opened in interlayer insulating film 19 a And a source electrode 17 in conductive contact across the source region 14. An n + source region 14 is shallowly formed in the well-shaped p base region 13a to constitute a double diffusion type MOS portion. Reference numeral 26 denotes a p + contact region, and a gate electrode wiring of a metal film is in conductive contact with the gate electrode layer 16 in a portion not shown.

ドレイン・ドリフト部22は、素子活性部となる複数ウェルのpベース領域13aの直下部分に概ね相当し、基板の厚み方向に配向する層状縦形の第1のn型領域22aと基板の厚み方向に配向する層状縦形の第1のp型領域22bとを繰り返しピッチP1で基板の沿面方向へ交互に繰り返して接合してなる第1の並列pn構造である。いずれかの第1のn型領域22aは、その上端がpベース領域13aの挾間領域12eに達し、その下端がn+ドレイン層11に接している。挾間領域12eに達する第1のn型領域22aはオン状態では電路領域であるが、その余の第1のn型領域22aは概ね非電路領域となっている。また第1のp型領域22bは、その上端がpベース領域13aのウェル底面に接し、その下端がn+ドレイン層11に接している。 The drain / drift portion 22 substantially corresponds to a portion immediately below the p base region 13a of a plurality of wells serving as an element active portion, and a layered vertical first n-type region 22a oriented in the thickness direction of the substrate and in the thickness direction of the substrate. This is a first parallel pn structure in which the oriented layered vertical first p-type regions 22b are alternately and repeatedly joined in the creeping direction of the substrate at a pitch P1. One of the first n-type regions 22 a has an upper end that reaches the interspace region 12 e of the p base region 13 a and a lower end that is in contact with the n + drain layer 11. The first n-type region 22a reaching the intercostal region 12e is an electric circuit region in the ON state, but the remaining first n-type region 22a is generally a non-electric circuit region. The first p-type region 22 b has an upper end in contact with the well bottom surface of the p base region 13 a and a lower end in contact with the n + drain layer 11.

ドレイン・ドリフト部22の周りは第2の並列pn構造からなる素子周縁部30となっている。素子周縁部30は、ドレイン・ドリフト部22の第1の並列pn構造に連続して繰り返しピッチP1で基板の厚み方向に配向する層状縦形の第2のn型領域30aと基板の厚み方向に配向する層状縦形の第2のp型領域30bを基板の沿面方向に交互に繰り返して接合してなる。第1の並列pn構造と第2の並列pn構造は繰り返しピッチが略同一であり、また不純物濃度とも略同一である。   The periphery of the drain / drift portion 22 is an element peripheral portion 30 having a second parallel pn structure. The element peripheral portion 30 is oriented in the thickness direction of the substrate and the layered vertical second n-type region 30a oriented in the thickness direction of the substrate at a repeated pitch P1 continuously to the first parallel pn structure of the drain / drift portion 22. The layered vertical second p-type regions 30b are joined alternately and repeatedly in the creeping direction of the substrate. The first parallel pn structure and the second parallel pn structure have substantially the same repetition pitch and substantially the same impurity concentration.

素子周縁部30における基板表面側である表層域には、第3の並列pn構造が形成されている。この第3の並列pn構造は層状縦形の第3のn型領域34aと層状縦形の第3のp型領域34bとが繰り返しピッチP2で基板の沿面方向に交互に繰り返し接合してなる。第3の並列pn構造の不純物濃度は第2の並列pn構造の不純物濃度よりも低く、繰り返しピッチP2は繰り返しピッチP1よりも狭くなっている。   A third parallel pn structure is formed in the surface layer region on the substrate surface side in the element peripheral portion 30. This third parallel pn structure is formed by repeatedly joining the layered vertical third n-type region 34a and the layered vertical third p-type region 34b alternately in the creeping direction of the substrate at a repeated pitch P2. The impurity concentration of the third parallel pn structure is lower than the impurity concentration of the second parallel pn structure, and the repetition pitch P2 is narrower than the repetition pitch P1.

第3の並列pn構造の表面には酸化膜(絶縁膜)33が形成されている。この酸化膜33はその膜厚がドレイン・ドリフト部22から素子周縁部30にかけて段階的に厚くなるように形成されている。この酸化膜33の上にはソース電極17から延長されたフィールドプレート電極FPが形成されており、第3の並列pn構造を覆っている。また、素子周縁部30の外側には、n+ドレイン層11に接続するn型チャネルストッパー領域50が形成され、このn型チャネルストッパー領域50の表面側にはストッパー電極51が導電接触している。 An oxide film (insulating film) 33 is formed on the surface of the third parallel pn structure. The oxide film 33 is formed so that its film thickness gradually increases from the drain / drift part 22 to the element peripheral part 30. A field plate electrode FP extended from the source electrode 17 is formed on the oxide film 33 and covers the third parallel pn structure. Further, an n-type channel stopper region 50 connected to the n + drain layer 11 is formed outside the peripheral edge portion 30, and a stopper electrode 51 is in conductive contact with the surface side of the n-type channel stopper region 50. .

米国特許第5216275号明細書US Pat. No. 5,216,275 米国特許第5438215号明細書US Pat. No. 5,438,215 特開平9−266311号公報JP-A-9-266611 特開2003−224273号公報JP 2003-224273 A 特開2004−22716号公報Japanese Patent Laid-Open No. 2004-22716 特開2004−72068号公報JP 2004-72068 A 特開2003−273355号公報JP 2003-273355 A

しかしながら、上記特許文献4では、低オン抵抗化と高耐圧の確保に関しては開示されているものの、アバランシェ耐量(破壊電流)に関しては記載されていない。また、上記特許文献6では、素子周縁部までを含めてアバランシェ降伏時の負性抵抗を改善する構造は開示されていない。素子活性部のアバランシェ耐量が向上したとしても、素子周縁部のアバランシェ耐量が向上しなければ、全体としてアバランシェ耐量を確保し、保証することは困難である。   However, Patent Document 4 discloses a low on-resistance and a high breakdown voltage, but does not describe an avalanche resistance (breakdown current). Moreover, the above-mentioned Patent Document 6 does not disclose a structure for improving the negative resistance at the time of avalanche breakdown including the element peripheral portion. Even if the avalanche resistance of the element active part is improved, it is difficult to ensure and guarantee the avalanche resistance as a whole unless the avalanche resistance of the peripheral part of the element is improved.

本発明者らは、図23〜図25に示す構造の600Vクラスの縦形MOSFET素子について、アバランシェ降伏時における素子周縁部と素子活性部の電流電圧特性のシミュレーションを行った。シミュレーションに用いた並列pn構造の各部の寸法および不純物濃度は次の値をとる。ドレイン・ドリフト部22の厚さ(深さ方向)は44.0μm、第1のn型領域22aおよび第1のp型領域22bの幅は8.0μm(繰り返しピッチP1は16.0μm)、第1のn型領域22aおよび第1のp型領域22bの不純物濃度は2.4×1015cm-3、素子周縁部30の第2の並列pn構造の厚さ(深さ方向)は31.0μm、第2のn型領域30aおよび第2のp型領域30bの幅は8.0μm(繰り返しピッチP1は16.0μm)、第2のn型領域30aおよび第2のp型領域30bの不純物濃度は2.4×1015cm-3、素子周縁部30の第3の並列pn構造の厚さ(深さ方向)は13.0μm、第3のn型領域34aおよび第3のp型領域34bの幅は4.0μm(繰り返しピッチP2は8.0μm)、第3のn型領域34aおよび第3のp型領域34bの不純物濃度は4.8×1014cm-3である。 The inventors of the present invention performed a simulation of the current-voltage characteristics of the peripheral portion of the device and the active portion of the device at the time of avalanche breakdown for the 600V class vertical MOSFET device having the structure shown in FIGS. The dimension and impurity concentration of each part of the parallel pn structure used for the simulation have the following values. The drain / drift portion 22 has a thickness (depth direction) of 44.0 μm, the widths of the first n-type region 22a and the first p-type region 22b are 8.0 μm (repetitive pitch P1 is 16.0 μm), The impurity concentration of the first n-type region 22a and the first p-type region 22b is 2.4 × 10 15 cm −3 , and the thickness (depth direction) of the second parallel pn structure of the element peripheral portion 30 is 31.degree. 0 μm, the width of the second n-type region 30a and the second p-type region 30b is 8.0 μm (repetitive pitch P1 is 16.0 μm), and the impurities of the second n-type region 30a and the second p-type region 30b The concentration is 2.4 × 10 15 cm −3 , the thickness (depth direction) of the third parallel pn structure of the element peripheral portion 30 is 13.0 μm, the third n-type region 34 a and the third p-type region The width of 34b is 4.0 μm (repetition pitch P2 is 8.0 μm), and the third n-type region 4a and the impurity concentration of the third p-type region 34b is 4.8 × 10 14 cm -3.

図26〜図28は、図23のA−A’線に沿う部分でのシミュレーション結果を示す特性図である。このシミュレーションでは、不純物濃度のばらつきを考慮し、各n型領域の不純物濃度Nnを各p型領域の不純物濃度Npに対して−10%(図26)、0%(図27)および+10%(図28)とした。図26〜図28より、いずれの場合も、素子周縁部の電流電圧特性に負性抵抗領域が存在していることがわかる。   26 to 28 are characteristic diagrams showing simulation results in a portion along the line A-A ′ in FIG. 23. In this simulation, the impurity concentration Nn of each n-type region is set to −10% (FIG. 26), 0% (FIG. 27), and + 10% (FIG. 26) with respect to the impurity concentration Np of each p-type region in consideration of the variation in impurity concentration. FIG. 28). From FIG. 26 to FIG. 28, it can be seen that a negative resistance region exists in the current-voltage characteristics at the periphery of the element in any case.

負性抵抗領域に入ると、電流を流す方向に正帰還がかかるため、電流の局所集中が起き、素子を破壊させてしまう。それ故、素子活性部の破壊までに素子活性部で流すことができる電流(アバランシェ耐量)は、素子周縁部の負性抵抗が現われるアバランシェ電圧(ドレイン−ソース間電圧)で制限されることになる。不純物量ばらつきを考慮すると、従来構造の素子では、アバランシェ耐量は50A/cm2程度になってしまう(図28参照)。従って、所定の不純物量ばらつき範囲においてアバランシェ耐量を向上させるためには、素子周縁部の負性抵抗が現われるアバランシェ電圧を素子活性部と同等以上に高める必要がある。あるいは、負性抵抗特性を緩和し、できれば正性抵抗化する必要がある。 When entering the negative resistance region, positive feedback is applied in the direction in which the current flows, so that local concentration of the current occurs and the element is destroyed. Therefore, the current (avalanche resistance) that can flow in the element active part before the element active part is destroyed is limited by the avalanche voltage (drain-source voltage) at which the negative resistance at the peripheral part of the element appears. . In view of the variation in the amount of impurities, the avalanche resistance is about 50 A / cm 2 in the element having the conventional structure (see FIG. 28). Therefore, in order to improve the avalanche resistance in a predetermined impurity amount variation range, it is necessary to increase the avalanche voltage at which the negative resistance at the peripheral portion of the element appears to be equal to or higher than that of the element active portion. Alternatively, it is necessary to relax the negative resistance characteristic and to make the resistance positive if possible.

この発明は、上述した従来技術による問題点を解消するため、並列pn構造であるドリフト部の周りにも素子周縁部として並列pn構造を有し、オン抵抗と耐圧とのトレードオフ関係を大幅に改善することができる超接合半導体素子において、素子周縁部のアバランシェ耐量を改善し、それによって素子全体としてアバランシェ耐量を向上させることができる半導体素子を提供することを目的とする。また、ドリフト部に並列pn構造を有し、オン抵抗と耐圧とのトレードオフ関係を大幅に改善することができる超接合半導体素子において、アバランシェ降伏時の負性抵抗を緩和し、それによって素子全体としてアバランシェ耐量を向上させることができる半導体素子を提供することを目的とする。   The present invention has a parallel pn structure as an element peripheral portion around the drift portion which is a parallel pn structure in order to eliminate the above-described problems caused by the prior art, and greatly improves the trade-off relationship between on-resistance and breakdown voltage. An object of the present invention is to provide a semiconductor device capable of improving the avalanche resistance of the peripheral portion of the element in the superjunction semiconductor element that can be improved, thereby improving the avalanche resistance of the entire element. Further, in a superjunction semiconductor device having a parallel pn structure in the drift portion and capable of greatly improving the trade-off relationship between on-resistance and breakdown voltage, the negative resistance at the time of avalanche breakdown is relaxed, whereby the entire device An object of the present invention is to provide a semiconductor device capable of improving the avalanche resistance.

上述した課題を解決し、目的を達成するため、この発明にかかる半導体素子は、基板の第1主面側に存在して能動または受動で電流を流す素子活性部と、前記基板の第2主面側に存在する第1導電型の低抵抗層と、前記素子活性部と前記低抵抗層との間に介在し、オン状態ではドリフト電流が縦方向に流れるとともにオフ状態では空乏化する縦形ドリフト部と、前記縦形ドリフト部の周りで前記第1主面と前記低抵抗層との間に介在し、オン状態では概ね非電路領域であってオフ状態では空乏化する素子周縁部とを有し、前記縦形ドリフト部は前記基板の厚み方向に配向する第1の縦形第1導電型領域と前記基板の厚み方向に配向する第1の縦形第2導電型領域とが交互に繰り返し接合してなる第1の並列pn構造であるとともに、前記素子周縁部は前記基板の厚み方向に配向する第2の縦形第1導電型領域と前記基板の厚み方向に配向する第2の縦形第2導電型領域とが第1の繰り返しピッチを以って交互に繰り返し接合してなる第2の並列pn構造よりなる第1の部分を有する半導体素子であって、前記素子周縁部は、前記基板の第1主面側である表層域に、第3の縦形第1導電型領域と、該第3の縦形第1導電型領域よりも高い不純物濃度の第3の縦形第2導電型領域とが前記第1の繰り返しピッチよりも狭い第2の繰り返しピッチで交互に繰り返し接合してなる第3の並列pn構造よりなる第2の部分を有することを特徴とする。   In order to solve the above-described problems and achieve the object, a semiconductor element according to the present invention includes an element active portion that is present on the first main surface side of a substrate and allows an active or passive current to flow, and a second main portion of the substrate. A low-resistance layer of the first conductivity type existing on the surface side, and a vertical drift that is interposed between the element active portion and the low-resistance layer, and in which the drift current flows in the vertical direction in the on state and is depleted in the off state And an element peripheral portion that is interposed between the first main surface and the low-resistance layer around the vertical drift portion and is substantially a non-electric path region in the on state and depleted in the off state. The vertical drift portion is formed by alternately and repeatedly joining first vertical first conductivity type regions oriented in the thickness direction of the substrate and first vertical second conductivity type regions oriented in the thickness direction of the substrate. A first parallel pn structure and the element; As for the edge, second vertical first conductivity type regions oriented in the thickness direction of the substrate and second vertical second conductivity type regions oriented in the thickness direction of the substrate are alternately arranged with a first repetition pitch. A semiconductor element having a first portion having a second parallel pn structure that is repeatedly bonded to the substrate, wherein the element peripheral portion has a third vertical shape in a surface layer area on the first main surface side of the substrate. The first conductivity type region and the third vertical second conductivity type region having an impurity concentration higher than that of the third vertical first conductivity type region are alternately arranged at a second repetition pitch narrower than the first repetition pitch. It has the 2nd part which consists of a 3rd parallel pn structure formed by joining repeatedly.

この発明にかかる半導体素子は、上述した発明において、前記第3の縦形第2導電型領域の不純物濃度は、前記第3の縦形第1導電型領域の不純物濃度の120%以上であることを特徴とする。   In the semiconductor element according to the present invention, in the above-described invention, the impurity concentration of the third vertical second conductivity type region is 120% or more of the impurity concentration of the third vertical first conductivity type region. And

この発明にかかる半導体素子は、基板の第1主面側に存在して能動または受動で電流を流す素子活性部と、前記基板の第2主面側に存在する第1導電型の低抵抗層と、前記素子活性部と前記低抵抗層との間に介在し、オン状態ではドリフト電流が縦方向に流れるとともにオフ状態では空乏化する縦形ドリフト部と、前記縦形ドリフト部の周りで前記第1主面と前記低抵抗層との間に介在し、オン状態では概ね非電路領域であってオフ状態では空乏化する素子周縁部とを有し、前記縦形ドリフト部は前記基板の厚み方向に配向する第1の縦形第1導電型領域と前記基板の厚み方向に配向する第1の縦形第2導電型領域とが交互に繰り返し接合してなる第1の並列pn構造であるとともに、前記素子周縁部は前記基板の厚み方向に配向する第2の縦形第1導電型領域と前記基板の厚み方向に配向する第2の縦形第2導電型領域とが第1の繰り返しピッチを以って交互に繰り返し接合してなる第2の並列pn構造よりなる第1の部分を有する半導体素子であって、前記素子周縁部は、前記基板の第1主面側である表層域に、第3の縦形第1導電型領域と、該第3の縦形第1導電型領域よりも広い幅の第3の縦形第2導電型領域とが前記第1の繰り返しピッチよりも狭い第2の繰り返しピッチで交互に繰り返し接合してなる第3の並列pn構造よりなる第2の部分を有することを特徴とする。   The semiconductor element according to the present invention includes an element active portion that is present on the first main surface side of the substrate and allows an active or passive current to flow, and a low resistance layer of the first conductivity type that is present on the second main surface side of the substrate. And a vertical drift portion interposed between the element active portion and the low resistance layer, in which a drift current flows in a vertical direction in an on state and is depleted in an off state, and the first drift around the vertical drift portion. Intervening between the main surface and the low-resistance layer, and having an element peripheral portion that is substantially a non-electric circuit region in the on state and depleted in the off state, and the vertical drift portion is oriented in the thickness direction of the substrate And a first parallel pn structure in which first vertical first conductivity type regions and first vertical second conductivity type regions oriented in the thickness direction of the substrate are alternately and repeatedly joined, and the periphery of the element The second portion is oriented in the thickness direction of the substrate. A first parallel type pn structure in which a first conductive type region and a second vertical second conductive type region oriented in the thickness direction of the substrate are alternately joined at a first repeat pitch. A semiconductor device having a first portion, wherein the peripheral portion of the device has a third vertical first conductivity type region and a third vertical first in the surface layer region on the first main surface side of the substrate. A third parallel pn structure in which third vertical second conductive type regions having a width wider than the conductive type region are alternately and repeatedly joined at a second repeat pitch narrower than the first repeat pitch. It has two parts.

この発明にかかる半導体素子は、上述した発明において、前記第3の縦形第2導電型領域の幅は、前記第3の縦形第1導電型領域の幅の120%以上であることを特徴とする。   In the semiconductor device according to the present invention, the width of the third vertical second conductivity type region is 120% or more of the width of the third vertical first conductivity type region. .

この発明にかかる半導体素子は、上述した発明において、前記第2の部分の不純物濃度は、前記第1の部分の不純物濃度よりも低いことを特徴とする。   In the semiconductor device according to the present invention, the impurity concentration of the second portion is lower than the impurity concentration of the first portion in the above-described invention.

この発明にかかる半導体素子は、基板の第1主面側に存在して能動または受動で電流を流す素子活性部と、前記基板の第2主面側に存在する第1導電型の低抵抗層と、前記素子活性部と前記低抵抗層との間に介在し、オン状態ではドリフト電流が縦方向に流れるとともにオフ状態では空乏化する縦形ドリフト部と、前記縦形ドリフト部の周りで前記第1主面と前記低抵抗層との間に介在し、オン状態では概ね非電路領域であってオフ状態では空乏化する素子周縁部とを有し、前記縦形ドリフト部は前記基板の厚み方向に配向する第1の縦形第1導電型領域と前記基板の厚み方向に配向する第1の縦形第2導電型領域とが交互に繰り返し接合してなる第1の並列pn構造であるとともに、前記素子周縁部は前記基板の厚み方向に配向する第2の縦形第1導電型領域と前記基板の厚み方向に配向する第2の縦形第2導電型領域とが第1の繰り返しピッチを以って交互に繰り返し接合してなる第2の並列pn構造よりなる第1の部分を有する半導体素子であって、前記素子周縁部は、前記基板の第1主面側である表層域に、第3の縦形第1導電型領域と、該第3の縦形第1導電型領域よりも高いキャリア濃度の第3の縦形第2導電型領域とが前記第1の繰り返しピッチよりも狭い第2の繰り返しピッチで交互に繰り返し接合してなる第3の並列pn構造よりなる第2の部分を有することを特徴とする。   The semiconductor element according to the present invention includes an element active portion that is present on the first main surface side of the substrate and allows an active or passive current to flow, and a low resistance layer of the first conductivity type that is present on the second main surface side of the substrate. And a vertical drift portion interposed between the element active portion and the low resistance layer, in which a drift current flows in a vertical direction in an on state and is depleted in an off state, and the first drift around the vertical drift portion. Intervening between the main surface and the low-resistance layer, and having an element peripheral portion that is substantially a non-electric circuit region in the on state and depleted in the off state, and the vertical drift portion is oriented in the thickness direction of the substrate And a first parallel pn structure in which first vertical first conductivity type regions and first vertical second conductivity type regions oriented in the thickness direction of the substrate are alternately and repeatedly joined, and the periphery of the element The second portion is oriented in the thickness direction of the substrate. A first parallel type pn structure in which a first conductive type region and a second vertical second conductive type region oriented in the thickness direction of the substrate are alternately joined at a first repeat pitch. A semiconductor device having a first portion, wherein the peripheral portion of the device has a third vertical first conductivity type region and a third vertical first in the surface layer region on the first main surface side of the substrate. A third parallel pn structure in which third vertical second conductivity type regions having a carrier concentration higher than that of the conductivity type regions are alternately and repeatedly joined at a second repetition pitch narrower than the first repetition pitch. It has the 2nd part, It is characterized by the above-mentioned.

この発明にかかる半導体素子は、上述した発明において、前記第3の縦形第2導電型領域のキャリア濃度は、前記第3の縦形第1導電型領域のキャリア濃度の120%以上であることを特徴とする。   In the semiconductor element according to the present invention, in the above-described invention, the carrier concentration of the third vertical second conductivity type region is 120% or more of the carrier concentration of the third vertical first conductivity type region. And

この発明にかかる半導体素子は、基板の第1主面側に存在して能動または受動で電流を流す素子活性部と、前記基板の第2主面側に存在する第1導電型の低抵抗層と、前記素子活性部と前記低抵抗層との間に介在し、オン状態ではドリフト電流が縦方向に流れるとともにオフ状態では空乏化する縦形ドリフト部と、前記縦形ドリフト部の周りで前記第1主面と前記低抵抗層との間に介在し、オン状態では概ね非電路領域であってオフ状態では空乏化する素子周縁部とを有し、前記縦形ドリフト部は前記基板の厚み方向に配向する第1の縦形第1導電型領域と前記基板の厚み方向に配向する第1の縦形第2導電型領域とが交互に繰り返し接合してなる第1の並列pn構造であるとともに、前記素子周縁部は前記基板の厚み方向に配向する第2の縦形第1導電型領域と前記基板の厚み方向に配向する第2の縦形第2導電型領域とが第1の繰り返しピッチを以って交互に繰り返し接合してなる第2の並列pn構造よりなる第1の部分を有する半導体素子であって、前記素子周縁部は、前記基板の第1主面側である表層域に、第3の縦形第1導電型領域と、該第3の縦形第1導電型領域よりも多いキャリア量の第3の縦形第2導電型領域とが前記第1の繰り返しピッチよりも狭い第2の繰り返しピッチで交互に繰り返し接合してなる第3の並列pn構造よりなる第2の部分を有することを特徴とする。   The semiconductor element according to the present invention includes an element active portion that is present on the first main surface side of the substrate and allows an active or passive current to flow, and a low resistance layer of the first conductivity type that is present on the second main surface side of the substrate. And a vertical drift portion interposed between the element active portion and the low resistance layer, in which a drift current flows in a vertical direction in an on state and is depleted in an off state, and the first drift around the vertical drift portion. Intervening between the main surface and the low-resistance layer, and having an element peripheral portion that is substantially a non-electric circuit region in the on state and depleted in the off state, and the vertical drift portion is oriented in the thickness direction of the substrate And a first parallel pn structure in which first vertical first conductivity type regions and first vertical second conductivity type regions oriented in the thickness direction of the substrate are alternately and repeatedly joined, and the periphery of the element The second portion is oriented in the thickness direction of the substrate. A first parallel type pn structure in which a first conductive type region and a second vertical second conductive type region oriented in the thickness direction of the substrate are alternately joined at a first repeat pitch. A semiconductor device having a first portion, wherein the peripheral portion of the device has a third vertical first conductivity type region and a third vertical first in the surface layer region on the first main surface side of the substrate. A third parallel pn structure in which a third vertical second conductivity type region having a carrier amount larger than that of the conductivity type region is alternately and repeatedly joined at a second repetition pitch narrower than the first repetition pitch. It has the 2nd part, It is characterized by the above-mentioned.

この発明にかかる半導体素子は、上述した発明において、前記第3の縦形第2導電型領域のキャリア量は、前記第3の縦形第1導電型領域のキャリア量の120%以上であることを特徴とする。   In the semiconductor device according to the present invention, in the above-described invention, the carrier amount of the third vertical second conductivity type region is 120% or more of the carrier amount of the third vertical first conductivity type region. And

上述した発明によれば、第2の部分にチャージインバランス領域が設けられるので、アバランシェ降伏時の負性抵抗が現われるアバランシェ電圧が高められ、素子活性部において流すことができるアバランシェ電流が向上する。従って、アバランシェ破壊電流(耐量)を高めることができる。また、上述した発明によれば、第3の並列pn構造の不純物量またはキャリア量のインバランスが20%以上になるので、不純物量またはキャリア量のばらつきに対するアバランシェ耐量のばらつきを低減することができる。また、上述した発明によれば、第2の部分の不純物濃度が低いほど素子活性部付近の表面電界が緩和されるので、容易に高耐圧化を図ることができる。   According to the above-described invention, since the charge imbalance region is provided in the second portion, the avalanche voltage at which the negative resistance at the time of avalanche breakdown appears is increased, and the avalanche current that can flow in the element active portion is improved. Therefore, the avalanche breakdown current (withstand capability) can be increased. Further, according to the above-described invention, the imbalance of the impurity amount or the carrier amount of the third parallel pn structure becomes 20% or more, so that the variation in the avalanche resistance against the variation in the impurity amount or the carrier amount can be reduced. . Further, according to the above-described invention, the lower the impurity concentration of the second portion, the more the surface electric field in the vicinity of the element active portion is relaxed, so that a high breakdown voltage can be easily achieved.

この発明にかかる半導体素子は、基板の第1主面側に存在して能動または受動で電流を流す素子活性部と、前記基板の第2主面側に存在する第1導電型の低抵抗層と、前記素子活性部と前記低抵抗層との間に介在し、オン状態ではドリフト電流が縦方向に流れるとともにオフ状態では空乏化する縦形ドリフト部と、前記縦形ドリフト部の周りで前記第1主面と前記低抵抗層との間に介在し、オン状態では概ね非電路領域であってオフ状態では空乏化する素子周縁部とを有し、前記縦形ドリフト部は前記基板の厚み方向に配向する第1の縦形第1導電型領域と前記基板の厚み方向に配向する第1の縦形第2導電型領域とが交互に繰り返し接合してなる第1の並列pn構造であるとともに、前記素子周縁部は前記基板の厚み方向に配向する第2の縦形第1導電型領域と前記基板の厚み方向に配向する第2の縦形第2導電型領域とが第1の繰り返しピッチを以って交互に繰り返し接合してなる第2の並列pn構造よりなる第1の部分を有する半導体素子であって、前記素子周縁部は、前記基板の第1主面側である表層域に、第1の繰り返しピッチよりも広い第2導電型領域よりなる第2の部分を有することを特徴とする。   The semiconductor element according to the present invention includes an element active portion that is present on the first main surface side of the substrate and allows an active or passive current to flow, and a low resistance layer of the first conductivity type that is present on the second main surface side of the substrate. And a vertical drift portion interposed between the element active portion and the low resistance layer, in which a drift current flows in a vertical direction in an on state and is depleted in an off state, and the first drift around the vertical drift portion. Intervening between the main surface and the low-resistance layer, and having an element peripheral portion that is substantially a non-electric circuit region in the on state and depleted in the off state, and the vertical drift portion is oriented in the thickness direction of the substrate And a first parallel pn structure in which first vertical first conductivity type regions and first vertical second conductivity type regions oriented in the thickness direction of the substrate are alternately and repeatedly joined, and the periphery of the element The second portion is oriented in the thickness direction of the substrate. A first parallel type pn structure in which a first conductive type region and a second vertical second conductive type region oriented in the thickness direction of the substrate are alternately joined at a first repeat pitch. A semiconductor element having a first portion, wherein the peripheral edge of the element is formed in a surface layer region on the first main surface side of the substrate, and a second conductivity type region wider than the first repetition pitch. It has a part.

この発明にかかる半導体素子は、上述した発明において、前記第2の部分の不純物濃度は、前記第2の縦形第2導電型領域の不純物濃度よりも低いことを特徴とする。この発明によれば、アバランシェ降伏時の負性抵抗が現われるアバランシェ電圧が高められ、素子活性部において流すことができるアバランシェ電流が向上する。従って、アバランシェ破壊電流(耐量)を高めることができる。   In the semiconductor device according to the present invention, the impurity concentration of the second portion is lower than the impurity concentration of the second vertical second conductivity type region in the above-described invention. According to the present invention, the avalanche voltage at which the negative resistance at the time of avalanche breakdown appears is increased, and the avalanche current that can flow in the element active portion is improved. Therefore, the avalanche breakdown current (withstand capability) can be increased.

この発明にかかる半導体素子は、上述した発明において、前記第2の部分は、第1導電型の不純物と第2導電型の不純物からなることを特徴とする。   The semiconductor element according to the present invention is characterized in that, in the above-described invention, the second portion is composed of a first conductivity type impurity and a second conductivity type impurity.

この発明にかかる半導体素子は、上述した発明において、前記第2の部分の一部は、前記素子活性部に設けられた第2導電型領域の端部の下側に配置されていることを特徴とする。   The semiconductor element according to the present invention is characterized in that, in the above-described invention, a part of the second portion is disposed below an end portion of the second conductivity type region provided in the element active portion. And

この発明にかかる半導体素子は、上述した発明において、前記第2の部分の厚さは、前記第1の部分と前記第2の部分を足した厚さの50%以下であることを特徴とする。この発明によれば、耐圧の低下を抑えることができる。チャージインバランスに対する耐圧の低下分は、ピッチの変わり目となる接続部が厚いほど大きくなるので、第1の部分が、第1の部分と第2の部分を足した厚さの50%よりも厚いのが望ましい。また、第1の並列pn構造と第2の並列pn構造が同じ第1のピッチで連続した構成にすれば、ピッチの変わり目となる接続部がないので、この部分での耐圧低下を回避することができる。   The semiconductor element according to the present invention is characterized in that, in the above-described invention, the thickness of the second portion is 50% or less of the total thickness of the first portion and the second portion. . According to the present invention, it is possible to suppress a decrease in breakdown voltage. Since the decrease in the breakdown voltage with respect to the charge imbalance increases as the connecting portion that becomes the pitch change is thicker, the first portion is thicker than 50% of the total thickness of the first portion and the second portion. Is desirable. In addition, if the first parallel pn structure and the second parallel pn structure are configured to be continuous at the same first pitch, there is no connection portion that becomes a change in pitch, so that a decrease in breakdown voltage in this portion is avoided. Can do.

この発明にかかる半導体素子は、上述した発明において、前記第1の部分と前記第2の部分の外周に、第1導電型のチャネルストッパー領域を有することを特徴とする。   The semiconductor element according to the present invention is characterized in that, in the above-described invention, a first-conductivity-type channel stopper region is provided on the outer periphery of the first portion and the second portion.

この発明にかかる半導体素子は、上述した発明において、前記チャネルストッパー領域は、前記低抵抗層に接続していることを特徴とする。この発明によれば、耐圧を安定化させることができる。   The semiconductor element according to the present invention is characterized in that, in the above-described invention, the channel stopper region is connected to the low resistance layer. According to the present invention, the breakdown voltage can be stabilized.

この発明にかかる半導体素子は、上述した発明において、前記第2の部分は、絶縁膜で覆われていることを特徴とする。   The semiconductor element according to the present invention is characterized in that, in the above-described invention, the second portion is covered with an insulating film.

この発明にかかる半導体素子は、上述した発明において、前記第2の部分の一部は、前記絶縁膜を介してフィールドプレート電極で覆われていることを特徴とする。この発明によれば、フィールドプレート電極の下の絶縁膜で分担する電圧分が、ピッチの変わり目となる接続部でのチャージインバランスにより生じる耐圧低下分を補償するため、容易に耐圧を確保することができる。   The semiconductor device according to the present invention is characterized in that, in the above-described invention, a part of the second portion is covered with a field plate electrode through the insulating film. According to the present invention, the voltage shared by the insulating film under the field plate electrode compensates for the withstand voltage drop caused by the charge imbalance at the connection portion where the pitch changes, so that the withstand voltage can be easily secured. Can do.

この発明にかかる半導体素子は、基板の第1主面側に存在して能動または受動で電流を流す素子活性部と、前記基板の第2主面側に存在する第1導電型の低抵抗層と、前記素子活性部と前記低抵抗層との間に介在し、オン状態ではドリフト電流が縦方向に流れるとともにオフ状態では空乏化する縦形ドリフト部と、前記基板の第1主面側に設けられた複数の第2導電型ベース領域とを有し、前記縦形ドリフト部が、前記基板の厚み方向に配向する縦形第1導電型領域と前記基板の厚み方向に配向する第1の縦形第2導電型領域とが交互に繰り返し接合してなる並列pn構造をなす半導体素子であって、複数の前記第2導電型ベース領域のうちの最も外側に設けられた第2導電型ベース領域では、相対的に不純物濃度が低い第1の部分と相対的に不純物濃度が高い第2の部分が設けられているとともに、前記第1の部分の、前記第2の部分よりも外側の部分が絶縁膜により覆われており、前記第1の部分の、前記第2の部分よりも外側で前記絶縁膜により覆われた部分の幅は、前記並列pn構造の繰り返しピッチよりも広いことを特徴とする。   The semiconductor element according to the present invention includes an element active portion that is present on the first main surface side of the substrate and allows an active or passive current to flow, and a low resistance layer of the first conductivity type that is present on the second main surface side of the substrate. And a vertical drift portion interposed between the element active portion and the low resistance layer, in which a drift current flows in the vertical direction in the on state and is depleted in the off state, and provided on the first main surface side of the substrate A plurality of second conductivity type base regions, wherein the vertical drift portion is oriented in the thickness direction of the substrate and the first vertical second orientation oriented in the thickness direction of the substrate. A semiconductor element having a parallel pn structure in which conductive type regions are alternately and repeatedly joined, and in the second conductive type base region provided on the outermost side among the plurality of second conductive type base regions, Relative to the first part having a low impurity concentration A second portion having a high impurity concentration is provided, and a portion of the first portion outside the second portion is covered with an insulating film, and the first portion includes the first portion. The width of the portion covered with the insulating film outside the portion 2 is wider than the repetitive pitch of the parallel pn structure.

この発明にかかる半導体素子は、上述した発明において、最も外側に設けられた前記第2導電型ベース領域では、前記第1の部分の、前記第2の部分よりも外側で前記絶縁膜により覆われた部分の抵抗値が2Ω以上であることを特徴とする。   In the semiconductor element according to the present invention, in the above-described invention, in the second conductivity type base region provided on the outermost side, the first portion is covered with the insulating film outside the second portion. The resistance value of the part is 2Ω or more.

上述した発明によれば、素子周縁部で発生したアバランシェ電流は、最も外側に設けられた第2導電型ベース領域を通ってソース領域へ流れる。従って、アバランシェ電流の電流経路となる第2導電型ベース領域の抵抗成分によって、アバランシェ降伏時の負性抵抗が緩和される。   According to the above-described invention, the avalanche current generated at the periphery of the element flows to the source region through the second conductivity type base region provided on the outermost side. Therefore, the negative resistance at the time of avalanche breakdown is relieved by the resistance component of the second conductivity type base region serving as a current path of the avalanche current.

この発明にかかる半導体素子は、上述した発明において、前記縦形ドリフト部の周りで前記第1主面と前記低抵抗層との間に介在し、オン状態では概ね非電路領域であってオフ状態では空乏化する素子周縁部をさらに有し、該素子周縁部は、前記基板の厚み方向に配向する縦形第1導電型領域と前記基板の厚み方向に配向する縦形第2導電型領域とが交互に繰り返し接合してなる並列pn構造をなし、該素子周縁部の並列pn構造の少なくとも一部では、前記第1主面側の部分における繰り返しピッチが前記縦形ドリフト部の並列pn構造の繰り返しピッチよりも狭いことを特徴とする。   In the semiconductor device according to the present invention, in the above-described invention, the semiconductor element is interposed between the first main surface and the low-resistance layer around the vertical drift portion. The device peripheral portion further has a depleted device peripheral portion, and the device peripheral portion alternately includes a vertical first conductivity type region oriented in the thickness direction of the substrate and a vertical second conductivity type region oriented in the thickness direction of the substrate. A parallel pn structure formed by repetitive bonding is formed, and in at least a part of the parallel pn structure at the periphery of the element, the repetition pitch in the portion on the first main surface side is larger than the repetition pitch of the parallel pn structure in the vertical drift portion. It is characterized by being narrow.

この発明にかかる半導体素子は、上述した発明において、前記素子周縁部の並列pn構造の、繰り返しピッチが前記縦形ドリフト部の並列pn構造の繰り返しピッチよりも狭い部分の一部は、最も外側に設けられた前記第2導電型ベース領域の下側に配置されていることを特徴とする。この発明によれば、最も外側に設けられた第2導電型ベース領域のコーナー部の電界が緩和される。また、空乏層が広がりやすくなる。従って、高耐圧化が図れる。   In the semiconductor element according to the present invention, in the above-described invention, a part of a portion of the parallel pn structure at the peripheral portion of the element having a repetition pitch smaller than the repetition pitch of the parallel pn structure of the vertical drift portion is provided on the outermost side. The second conductive type base region is disposed below the formed second conductive type base region. According to the present invention, the electric field at the corner portion of the second conductivity type base region provided on the outermost side is relaxed. In addition, the depletion layer tends to spread. Therefore, a high breakdown voltage can be achieved.

この発明にかかる半導体素子は、上述した発明において、前記素子周縁部の並列pn構造の、繰り返しピッチが前記縦形ドリフト部の並列pn構造の繰り返しピッチよりも狭い部分と前記低抵抗層との間に、前記基板の厚み方向に配向する縦形第1導電型領域と前記基板の厚み方向に配向する縦形第2導電型領域とが、前記縦形ドリフト部の並列pn構造の繰り返しピッチと同じ繰り返しピッチで交互に繰り返し接合してなる並列pn構造が設けられていることを特徴とする。この発明によれば、縦形ドリフト部の並列pn構造と素子周縁部の並列pn構造との間にピッチの変わり目となる接続部がないので、この部分における耐圧の低下を回避することができる。   In the semiconductor device according to the present invention, in the above-described invention, between the low resistance layer and the portion of the parallel pn structure at the periphery of the device, the repetition pitch is narrower than the repetition pitch of the parallel pn structure of the vertical drift portion. The vertical first conductivity type regions oriented in the thickness direction of the substrate and the vertical second conductivity type regions oriented in the thickness direction of the substrate alternate with the same repeat pitch as the repeat pitch of the parallel pn structure of the vertical drift portion. It is characterized in that a parallel pn structure formed by repetitively bonding is provided. According to the present invention, since there is no connection portion that changes the pitch between the parallel pn structure of the vertical drift portion and the parallel pn structure of the element peripheral portion, it is possible to avoid a decrease in breakdown voltage in this portion.

本発明にかかる半導体素子によれば、アバランシェ降伏時の負性抵抗が現われるアバランシェ電圧を高めることができる。あるいは、アバランシェ降伏時に素子周縁部に現われる負性抵抗特性を緩和することができる。従って、素子活性部において流すことができるアバランシェ電流が大きくなるので、アバランシェ破壊電流(耐量)を向上させることができる。また、並列pn構造の不純物量ばらつきに対して、アバランシェ耐量ばらつきを小さくすることができる。従って、アバランシェ耐量の高い超接合半導体素子が得られるという効果を奏する。   According to the semiconductor device of the present invention, it is possible to increase the avalanche voltage at which the negative resistance at the time of avalanche breakdown appears. Alternatively, the negative resistance characteristic that appears at the periphery of the element at the time of avalanche breakdown can be relaxed. Accordingly, since the avalanche current that can be flown in the element active portion is increased, the avalanche breakdown current (withstand capability) can be improved. In addition, the avalanche resistance variation can be reduced with respect to the impurity amount variation of the parallel pn structure. Therefore, there is an effect that a superjunction semiconductor element having a high avalanche resistance can be obtained.

本発明の実施の形態1にかかる縦形MOSFET素子のチップを示す概略部分平面図である。1 is a schematic partial plan view showing a chip of a vertical MOSFET element according to a first exemplary embodiment of the present invention. 図1中のA−A’線に沿って切断した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state cut | disconnected along the A-A 'line | wire in FIG. 図1中のB−B’線に沿って切断した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state cut | disconnected along the B-B 'line | wire in FIG. 図1中のA−A’線に沿う部分でのアバランシェ降伏時における電流電圧特性のシミュレーション結果を示す特性図である。It is a characteristic view which shows the simulation result of the current-voltage characteristic at the time of avalanche breakdown in the part along the A-A 'line in FIG. 図1中のA−A’線に沿う部分でのアバランシェ降伏時における電流電圧特性のシミュレーション結果を示す特性図である。It is a characteristic view which shows the simulation result of the current-voltage characteristic at the time of avalanche breakdown in the part along the A-A 'line in FIG. 図1中のA−A’線に沿う部分でのアバランシェ降伏時における電流電圧特性のシミュレーション結果を示す特性図である。It is a characteristic view which shows the simulation result of the current-voltage characteristic at the time of avalanche breakdown in the part along the A-A 'line in FIG. 本発明の実施の形態2にかかる縦形MOSFET素子のチップを示す概略部分平面図である。It is a general | schematic fragmentary top view which shows the chip | tip of the vertical MOSFET element concerning Embodiment 2 of this invention. 図7中のA−A’線に沿って切断した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state cut | disconnected along the A-A 'line | wire in FIG. 図7中のB−B’線に沿って切断した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state cut | disconnected along the B-B 'line | wire in FIG. 本発明の実施の形態3にかかる縦形MOSFET素子のチップを示す概略部分平面図である。It is a general | schematic fragmentary top view which shows the chip | tip of the vertical MOSFET element concerning Embodiment 3 of this invention. 図10中のA−A’線に沿って切断した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state cut | disconnected along the A-A 'line | wire in FIG. 本発明の実施の形態4にかかる縦形MOSFET素子のチップを示す概略部分平面図である。It is a general | schematic fragmentary top view which shows the chip | tip of the vertical MOSFET element concerning Embodiment 4 of this invention. 図12中のA−A’線に沿って切断した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state cut | disconnected along the A-A 'line | wire in FIG. 図12中のA−A’線に沿う部分でのアバランシェ降伏時における電流電圧特性のシミュレーション結果を示す特性図である。FIG. 13 is a characteristic diagram showing a simulation result of current-voltage characteristics at the time of avalanche breakdown at a portion along the line A-A ′ in FIG. 12. 図12中のA−A’線に沿う部分でのアバランシェ降伏時における電流電圧特性のシミュレーション結果を示す特性図である。FIG. 13 is a characteristic diagram showing a simulation result of current-voltage characteristics at the time of avalanche breakdown at a portion along the line A-A ′ in FIG. 12. 図12中のA−A’線に沿う部分でのアバランシェ降伏時における電流電圧特性のシミュレーション結果を示す特性図である。FIG. 13 is a characteristic diagram showing a simulation result of current-voltage characteristics at the time of avalanche breakdown at a portion along the line A-A ′ in FIG. 12. 本発明の実施の形態5にかかる縦形MOSFET素子の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the vertical MOSFET element concerning Embodiment 5 of this invention. 図17に示す部分でのアバランシェ降伏時における電流電圧特性のシミュレーション結果を示す特性図である。It is a characteristic view which shows the simulation result of the current-voltage characteristic at the time of avalanche breakdown in the part shown in FIG. 図17に示す部分でのアバランシェ降伏時における電流電圧特性のシミュレーション結果を示す特性図である。It is a characteristic view which shows the simulation result of the current-voltage characteristic at the time of avalanche breakdown in the part shown in FIG. 図17に示す部分でのアバランシェ降伏時における電流電圧特性のシミュレーション結果を示す特性図である。It is a characteristic view which shows the simulation result of the current-voltage characteristic at the time of avalanche breakdown in the part shown in FIG. 本発明の実施の形態6にかかる縦形MOSFET素子の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the vertical MOSFET element concerning Embodiment 6 of this invention. 本発明の実施の形態7にかかる縦形MOSFET素子の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the vertical MOSFET element concerning Embodiment 7 of this invention. 従来の縦形MOSFET素子のチップを示す概略部分平面図である。It is a general | schematic fragmentary top view which shows the chip | tip of the conventional vertical MOSFET element. 図23中のA−A’線に沿って切断した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state cut | disconnected along the A-A 'line | wire in FIG. 図23中のB−B’線に沿って切断した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state cut | disconnected along the B-B 'line | wire in FIG. 図23中のA−A’線に沿う部分でのアバランシェ降伏時における電流電圧特性のシミュレーション結果を示す特性図である。FIG. 24 is a characteristic diagram showing a simulation result of current-voltage characteristics at the time of avalanche breakdown at a portion along the line A-A ′ in FIG. 23. 図23中のA−A’線に沿う部分でのアバランシェ降伏時における電流電圧特性のシミュレーション結果を示す特性図である。FIG. 24 is a characteristic diagram showing a simulation result of current-voltage characteristics at the time of avalanche breakdown at a portion along the line A-A ′ in FIG. 23. 図23中のA−A’線に沿う部分でのアバランシェ降伏時における電流電圧特性のシミュレーション結果を示す特性図である。FIG. 24 is a characteristic diagram showing a simulation result of current-voltage characteristics at the time of avalanche breakdown at a portion along the line A-A ′ in FIG. 23.

以下に添付図面を参照して、この発明にかかる半導体素子の好適な実施の形態を詳細に説明する。以下でnまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付した「+」および「-」はそれぞれ比較的高不純物濃度または比較的低不純物濃度であることを意味している。すべての実施の形態において第1導電型にnを、第2導電型にpを選んでいるが、これが逆の場合であってもよい。なお、すべての添付図面において同様の構成には同一の符号を付し、重複する説明を省略する。 Exemplary embodiments of a semiconductor device according to the present invention will be explained below in detail with reference to the accompanying drawings. In the following layers and regions where n or p is named, it means that electrons or holes are majority carriers, respectively. Further, “ + ” and “ ” attached to n and p mean a relatively high impurity concentration or a relatively low impurity concentration, respectively. In all the embodiments, n is selected for the first conductivity type and p is selected for the second conductivity type, but this may be reversed. Note that the same reference numerals are given to the same components in all the attached drawings, and redundant description is omitted.

実施の形態1.
図1は本発明の実施の形態1にかかる縦形MOSFET素子のチップを示す概略部分平面図、図2は図1中のA−A’線に沿って切断した状態を示す縦断面図、図3は図1中のB−B’線に沿って切断した状態を示す縦断面図である。実施の形態1の縦形MOSFETは、第3のp型領域34b,34ba,34bbの不純物濃度が第3のn型領域34a,34aa,34abの不純物濃度よりも高くなっていることを除いて、図23〜図25に示す従来の構成と同じである。
Embodiment 1 FIG.
1 is a schematic partial plan view showing a chip of a vertical MOSFET device according to a first embodiment of the present invention, FIG. 2 is a vertical cross-sectional view showing a state cut along line AA ′ in FIG. 1, and FIG. FIG. 2 is a longitudinal sectional view showing a state cut along line BB ′ in FIG. 1. The vertical MOSFET according to the first embodiment is different from the first embodiment except that the impurity concentration of the third p-type regions 34b, 34ba, 34bb is higher than the impurity concentration of the third n-type regions 34a, 34aa, 34ab. It is the same as the conventional structure shown in FIGS.

図1に示すように、実施の形態1では、第1の並列pn構造、第2の並列pn構造および第3の並列pn構造は平面的にストライプ状で互いに平行配置となっている。第3の並列pn構造においては、第3のn型領域34a,34aa,34abと第3のp型領域34b,34ba,34bbの幅は概ね同じである。また、図2に示すように、第2の並列pn構造が第1の並列pn構造と連続しているため、ピッチが不連続になるピッチの変わり目の部分が存在しない。そして、チャージインバランスに対する耐圧の低下を抑制するため、第3の並列pn構造の厚さは、第2の並列pn構造と第3の並列pn構造とを足した厚さの50%以下であるとよい。   As shown in FIG. 1, in the first embodiment, the first parallel pn structure, the second parallel pn structure, and the third parallel pn structure are planarly striped and arranged in parallel to each other. In the third parallel pn structure, the widths of the third n-type regions 34a, 34aa, 34ab and the third p-type regions 34b, 34ba, 34bb are substantially the same. Further, as shown in FIG. 2, since the second parallel pn structure is continuous with the first parallel pn structure, there is no pitch change portion where the pitch becomes discontinuous. In order to suppress a decrease in withstand voltage against charge imbalance, the thickness of the third parallel pn structure is 50% or less of the total thickness of the second parallel pn structure and the third parallel pn structure. Good.

また、第3の並列pn構造のうち、第1の並列pn構造に平行に隣接する第3のp型領域34baおよび第3のn型領域34aaの内側部分は、pベース領域13aの底部にまで潜り込んで形成されている。同様に、図3に示すように、第3の並列pn構造のうち、第1の並列pn構造の第1のn型領域22aおよび第1のp型領域22bの端面に突き当たる層状縦形の第3のp型領域34bbおよび層状縦形の第3のn型領域34abの内側部分は、pベース領域13aの底部にまで潜り込んで形成されている。   Further, in the third parallel pn structure, the inner portions of the third p-type region 34ba and the third n-type region 34aa adjacent to the first parallel pn structure in parallel to the bottom of the p base region 13a. It is formed by sneaking in. Similarly, as shown in FIG. 3, among the third parallel pn structures, the layered vertical third that hits the end faces of the first n-type region 22 a and the first p-type region 22 b of the first parallel pn structure. The inner portions of the p-type region 34bb and the layered vertical third n-type region 34ab are formed so as to penetrate into the bottom of the p base region 13a.

特に限定しないが、例えば実施の形態1の縦形MOSFETが耐圧600Vクラスである場合には、各部の寸法および不純物濃度は次の値をとる。ドレイン・ドリフト部22の厚さ(深さ方向)は44.0μm、第1のn型領域22aおよび第1のp型領域22bの幅は8.0μm(繰り返しピッチP1は16.0μm)、第1のn型領域22aおよび第1のp型領域22bの不純物濃度は2.4×1015cm-3である。素子周縁部30の第2の並列pn構造の厚さ(深さ方向)は31.0μm、第2のn型領域30aおよび第2のp型領域30bの幅は8.0μm(繰り返しピッチP1は16.0μm)、第2のn型領域30aおよび第2のp型領域30bの不純物濃度は2.4×1015cm-3である。 Although not particularly limited, for example, when the vertical MOSFET of the first embodiment has a withstand voltage of 600 V class, the dimensions and impurity concentration of each part take the following values. The drain / drift portion 22 has a thickness (depth direction) of 44.0 μm, the widths of the first n-type region 22a and the first p-type region 22b are 8.0 μm (repetitive pitch P1 is 16.0 μm), The impurity concentration of one n-type region 22a and the first p-type region 22b is 2.4 × 10 15 cm −3 . The thickness (depth direction) of the second parallel pn structure of the element peripheral portion 30 is 31.0 μm, and the widths of the second n-type region 30a and the second p-type region 30b are 8.0 μm (repetitive pitch P1 is 16.0 μm), the impurity concentration of the second n-type region 30a and the second p-type region 30b is 2.4 × 10 15 cm −3 .

素子周縁部30の第3の並列pn構造の厚さ(深さ方向)は13.0μm、第3のn型領域34a,34aa,34abおよび第3のp型領域34b,34ba,34bbの幅は4.0μm(繰り返しピッチP2は8.0μm)である。第3のn型領域34a,34aa,34abの不純物濃度は4.8×1014cm-3、第3のp型領域34b,34ba,34bbの不純物濃度は7.2×1014cm-3である。 The thickness (depth direction) of the third parallel pn structure of the element peripheral portion 30 is 13.0 μm, and the widths of the third n-type regions 34a, 34aa, 34ab and the third p-type regions 34b, 34ba, 34bb are 4.0 μm (repetitive pitch P2 is 8.0 μm). The impurity concentration of the third n-type regions 34a, 34aa, 34ab is 4.8 × 10 14 cm −3 , and the impurity concentration of the third p-type regions 34b, 34ba, 34bb is 7.2 × 10 14 cm −3 . is there.

pベース領域13aの拡散深さは3.0μm、その表面不純物濃度は3.0×1017cm-3、n+ソース領域14の拡散深さは1.0μm、その表面不純物濃度は3.0×1020cm-3、表面ドリフト領域である挾間領域12eの拡散深さは2.5μm、その表面不純物濃度は2.0×1016cm-3、n+ドレイン層11の厚さは300μm、その不純物濃度は2.0×1018cm-3、n型チャネルストッパー領域50の幅は30.0μm、その不純物濃度は6.0×1015cm-3である。 The p base region 13a has a diffusion depth of 3.0 μm, its surface impurity concentration is 3.0 × 10 17 cm −3 , the n + source region 14 has a diffusion depth of 1.0 μm, and its surface impurity concentration is 3.0 μm. × 10 20 cm −3 , the diffusion depth of the interspace region 12e which is a surface drift region is 2.5 μm, the surface impurity concentration is 2.0 × 10 16 cm −3 , and the thickness of the n + drain layer 11 is 300 μm, The impurity concentration is 2.0 × 10 18 cm −3 , the width of the n-type channel stopper region 50 is 30.0 μm, and the impurity concentration is 6.0 × 10 15 cm −3 .

ここで、上記並列pn構造の不純物濃度(不純物量)は、正確にはキャリア濃度(キャリア量)を意味する。不純物濃度が高くてもキャリア濃度が低ければ、十分なアバランシェ耐量の向上効果は得られない。一般に、十分な活性化を行った領域では不純物濃度とキャリア濃度は同等とみなせる。同様に、十分な活性化を行った領域では不純物量とキャリア量は同等とみなせる。従って、本明細書においては、便宜上、不純物濃度にはキャリア濃度が含まれるものとし、また不純物量にはキャリア量が含まれるものとする。   Here, the impurity concentration (impurity amount) of the parallel pn structure means the carrier concentration (carrier amount). Even if the impurity concentration is high, if the carrier concentration is low, a sufficient avalanche resistance improvement effect cannot be obtained. In general, the impurity concentration and the carrier concentration can be regarded as equivalent in a region where sufficient activation has been performed. Similarly, the impurity amount and the carrier amount can be regarded as being equal in a region where sufficient activation has been performed. Therefore, in this specification, for convenience, the impurity concentration includes the carrier concentration, and the impurity amount includes the carrier amount.

次に、アバランシェ降伏時に負性抵抗が発生する原理について説明する。ドレインとソース・ゲート間に電圧が印加され、pベース領域13aのコーナー部が臨界電界に到達すると、アバランシェ降伏が起こり、アバランシェ電流が流れ始める。アバランシェ電流が増えていくと、アバランシェによって発生するキャリアも増え、正孔および電子はそれぞれ素子の表面側および裏面側に蓄積され、電界の再分布を引き起こす。このとき、正孔は、高電界領域をpベース領域13aのコーナー部からpベース領域13aの底に移行するように、電界の再分布を引き起こす。それによって、アバランシェ電圧としては縦方向の電界分布と空乏層の積が現われることになる。   Next, the principle that negative resistance is generated at the time of avalanche breakdown will be described. When a voltage is applied between the drain and source / gate and the corner portion of the p base region 13a reaches a critical electric field, avalanche breakdown occurs and an avalanche current starts to flow. As the avalanche current increases, the number of carriers generated by the avalanche also increases, and holes and electrons are accumulated on the front side and the back side of the device, respectively, causing redistribution of the electric field. At this time, the holes cause electric field redistribution so that the high electric field region moves from the corner of the p base region 13a to the bottom of the p base region 13a. As a result, a product of a vertical electric field distribution and a depletion layer appears as an avalanche voltage.

さらにアバランシェ電流が流れ、アバランシェによって発生する可動キャリアが増えると、縦方向電界はさらに下に凸の電界分布となり、アバランシェ電圧が低下することになる。つまり、負性抵抗が現われることになる。従って、アバランシェ耐量を高める、すなわち負性抵抗が現われるアバランシェ電圧を高めるためには、素子周縁部30において、pベース領域13aの下の第3の並列pn構造と第2の並列pn構造からなる構造を、アバランシェ電流が流れたときに表面側の電界が緩和されるような構造とすればよいことになる。   Further, when the avalanche current flows and the number of movable carriers generated by the avalanche increases, the vertical electric field has a further downward electric field distribution, and the avalanche voltage decreases. That is, negative resistance appears. Therefore, in order to increase the avalanche resistance, that is, to increase the avalanche voltage at which negative resistance appears, a structure composed of the third parallel pn structure and the second parallel pn structure under the p base region 13a in the element peripheral portion 30. Therefore, the structure may be such that the electric field on the surface side is relaxed when an avalanche current flows.

そこで、実施の形態1では、pベース領域13aの下に配置される第3の並列pn構造において、第3のp型領域34baの不純物濃度を第3のn型領域34aaの不純物濃度よりも高くし、表面側の電界を緩和する構造としている。具体的には、第3のp型領域34b,34ba,34bbの不純物濃度を第3のn型領域34a,34aa,34abの不純物濃度の150%としている。なお、十分な電界緩和効果を得るためには、第3のp型領域34b,34ba,34bbの不純物濃度を第3のn型領域34a,34aa,34abの不純物濃度の120%以上とすることが望ましい。   Therefore, in the first embodiment, in the third parallel pn structure arranged under the p base region 13a, the impurity concentration of the third p-type region 34ba is higher than the impurity concentration of the third n-type region 34aa. Thus, the electric field on the surface side is relaxed. Specifically, the impurity concentration of the third p-type regions 34b, 34ba, 34bb is set to 150% of the impurity concentration of the third n-type regions 34a, 34aa, 34ab. In order to obtain a sufficient electric field relaxation effect, the impurity concentration of the third p-type regions 34b, 34ba, 34bb should be 120% or more of the impurity concentration of the third n-type regions 34a, 34aa, 34ab. desirable.

次に、本発明者らが、図1〜図3に示す構造の600Vクラスの縦形MOSFET素子について、アバランシェ降伏時における素子周縁部と素子活性部の電流電圧特性のシミュレーションを行った結果を、図4〜図6に示す。なお、シミュレーションに用いた並列pn構造の各部の寸法および不純物濃度は、実施の形態1において先に述べた値とする。また、従来同様、不純物濃度のばらつきを考慮し、各n型領域の不純物濃度Nnを各p型領域の不純物濃度Npに対して−10%(図4)、0%(図5)および+10%(図6)としてシミュレーションを行った。   Next, for the 600V class vertical MOSFET device having the structure shown in FIG. 1 to FIG. 3, the present inventors performed a simulation of the current-voltage characteristics of the device peripheral portion and the device active portion at the time of avalanche breakdown. 4 to 6. Note that the dimensions and impurity concentrations of each part of the parallel pn structure used in the simulation are the values described in the first embodiment. As in the prior art, the impurity concentration Nn of each n-type region is set to −10% (FIG. 4), 0% (FIG. 5), and + 10% with respect to the impurity concentration Np of each p-type region in consideration of variations in impurity concentration. Simulation was performed as (FIG. 6).

図4〜図6を図26〜図28(従来例)と比較すると、いずれの場合も、従来構造に対して素子周縁部30の負性抵抗が現われるアバランシェ電圧が高く、素子活性部で流すことができるアバランシェ電流が大きくなっているので、アバランシェ耐量を向上させることができる。また、n型領域の不純物濃度が±10%変動しても、250A/cm2以上のアバランシェ耐量が得られる(図6参照)。さらに、第3のp型領域34bがガードリングとしても機能するので、容易に耐圧を確保することができる。図1のy方向、すなわち並列pn構造のストライプに平行な方向については、第3の並列pn構造が、pベース領域13aとn型チャネルストッパー領域50とに挟まれているため、耐圧の低下はほとんどない。 When comparing FIGS. 4 to 6 with FIGS. 26 to 28 (conventional example), in any case, the avalanche voltage at which the negative resistance of the element peripheral portion 30 appears is higher than that of the conventional structure, and it flows in the element active portion. Since the avalanche current that can be increased is increased, the avalanche resistance can be improved. Even if the impurity concentration of the n-type region varies by ± 10%, an avalanche resistance of 250 A / cm 2 or more can be obtained (see FIG. 6). Furthermore, since the third p-type region 34b also functions as a guard ring, the breakdown voltage can be easily ensured. In the y direction in FIG. 1, that is, in the direction parallel to the stripe of the parallel pn structure, the third parallel pn structure is sandwiched between the p base region 13a and the n-type channel stopper region 50, so rare.

また、第3の並列pn構造の不純物濃度が第2の並列pn構造の不純物濃度よりも低いことにより、素子活性部付近の表面電界が緩和されるので、容易に高耐圧化を図ることができる。さらに、第1の並列pn構造と第2の並列pn構造との間にピッチの変わり目となる接続部がなく、また第3の並列pn構造が薄いので、この部分における耐圧の低下を回避することができる。また、n型チャネルストッパー領域50が設けられていることによって、耐圧を安定化させることができる。また、フィールドプレート電極FPが設けられていることによって、フィールドプレート電極FPの下の酸化膜33で分担する電圧分が、ピッチの変わり目となる接続部でのチャージインバランスにより生じる耐圧低下分を補償するため、容易に耐圧を確保することができる。   Further, since the surface concentration in the vicinity of the element active portion is relaxed because the impurity concentration of the third parallel pn structure is lower than the impurity concentration of the second parallel pn structure, a high breakdown voltage can be easily achieved. . Furthermore, since there is no connection portion that changes the pitch between the first parallel pn structure and the second parallel pn structure, and the third parallel pn structure is thin, a reduction in breakdown voltage in this portion is avoided. Can do. In addition, the breakdown voltage can be stabilized by providing the n-type channel stopper region 50. In addition, since the field plate electrode FP is provided, the voltage shared by the oxide film 33 under the field plate electrode FP compensates for the breakdown voltage drop caused by the charge imbalance at the connection portion where the pitch changes. Therefore, the breakdown voltage can be easily secured.

実施の形態2.
図7は本発明の実施の形態2にかかる縦形MOSFET素子のチップを示す概略部分平面図、図8は図7中のA−A’線に沿って切断した状態を示す縦断面図、図9は図7中のB−B’線に沿って切断した状態を示す縦断面図である。実施の形態2の縦形MOSFETは、実施の形態1の変形例であり、実施の形態1と異なる点は、以下の通りである。すなわち、第3のn型領域34aと第3のp型領域34bの不純物濃度が同じであり、かつ第3のp型領域34bの幅Wpが第3のn型領域34aの幅Wnよりも広い。例えば、第3のn型領域34aおよび第3のp型領域34bの不純物濃度は、4.8×1014cm-3であり、第3のp型領域34bの幅Wpは、第3のn型領域34aの幅Wnの120%以上である。
Embodiment 2. FIG.
FIG. 7 is a schematic partial plan view showing a chip of a vertical MOSFET device according to the second exemplary embodiment of the present invention. FIG. 8 is a vertical cross-sectional view showing a state cut along the line AA ′ in FIG. FIG. 8 is a longitudinal sectional view showing a state cut along the line BB ′ in FIG. 7. The vertical MOSFET according to the second embodiment is a modification of the first embodiment, and is different from the first embodiment as follows. That is, the impurity concentration of the third n-type region 34a and the third p-type region 34b is the same, and the width Wp of the third p-type region 34b is wider than the width Wn of the third n-type region 34a. . For example, the impurity concentration of the third n-type region 34a and the third p-type region 34b is 4.8 × 10 14 cm −3 , and the width Wp of the third p-type region 34b is the third n-type region 34b. It is 120% or more of the width Wn of the mold region 34a.

また、素子周縁部30の表層部にある第3の並列pn構造における繰り返しピッチの方向がドレイン・ドリフト部22の第1の並列pn構造における繰り返しピッチの方向に対して直交している。繰り返しピッチP2が狭い第3の並列pn構造の厚さが第1の並列pn構造の厚さよりも十分薄ければ、第3の並列pn構造は第1の並列pn構造に対して直交していても平行であっても構わない。   Further, the direction of the repetition pitch in the third parallel pn structure in the surface layer portion of the element peripheral portion 30 is orthogonal to the direction of the repetition pitch in the first parallel pn structure of the drain / drift portion 22. If the thickness of the third parallel pn structure with a small repetition pitch P2 is sufficiently thinner than the thickness of the first parallel pn structure, the third parallel pn structure is orthogonal to the first parallel pn structure. May also be parallel.

実施の形態2では、第3のp型領域34bの幅Wpを広げることによってチャージインバランスを達成しているので、実施の形態1と同様の効果が得られる。加えて、第3のp型領域34bの不純物量を制御する際に、第3のp型領域34bの不純物濃度を制御するよりも第3のp型領域34bの幅を制御する方が容易であるので、実施の形態2の方が実施の形態1よりも量産性が高いという効果が得られる。さらに、第3の並列pn構造と第1の並列pn構造とが交差していることにより、設計の自由度が高くなるという利点がある。   In the second embodiment, since the charge imbalance is achieved by increasing the width Wp of the third p-type region 34b, the same effect as in the first embodiment can be obtained. In addition, when controlling the impurity amount of the third p-type region 34b, it is easier to control the width of the third p-type region 34b than to control the impurity concentration of the third p-type region 34b. Therefore, the effect that the productivity of the second embodiment is higher than that of the first embodiment is obtained. Furthermore, since the third parallel pn structure and the first parallel pn structure intersect, there is an advantage that the degree of freedom in design is increased.

実施の形態3.
図10は本発明の実施の形態3にかかる縦形MOSFET素子のチップを示す概略部分平面図、図11は図10中のA−A’線に沿って切断した状態を示す縦断面図である。実施の形態3の縦形MOSFETは、実施の形態2の変形例であり、実施の形態2と異なる点は、以下の通りである。すなわち、第1〜第3の並列pn構造におけるp型領域22b’,30b’,34b’およびn型領域22a’,30a’,34a’は縦形層状ではあるが、平面的にはストライプ状ではなく、p型領域22b’,30b’,34b’が平面的に六方格子点状にあり、その残余部分がn型領域22a’,30a’,34a’となっている。逆に、n型領域が六方格子点状にあり、その残余部分がp型領域となっていてもよい。
Embodiment 3 FIG.
FIG. 10 is a schematic partial plan view showing a chip of a vertical MOSFET device according to the third exemplary embodiment of the present invention, and FIG. 11 is a vertical cross-sectional view showing a state cut along the line AA ′ in FIG. The vertical MOSFET of the third embodiment is a modification of the second embodiment, and is different from the second embodiment as follows. That is, the p-type regions 22b ′, 30b ′, 34b ′ and the n-type regions 22a ′, 30a ′, 34a ′ in the first to third parallel pn structures are vertically layered, but are not striped in plan view. The p-type regions 22b ′, 30b ′, and 34b ′ are in the form of hexagonal lattice points in plan, and the remaining portions are n-type regions 22a ′, 30a ′, and 34a ′. Conversely, the n-type region may be in the form of hexagonal lattice points, and the remaining portion may be a p-type region.

また、第3の並列pn構造において第3のp型領域34b’の不純物量が第3のn型領域34a’の不純物量よりも多くなっていれば、第1〜第3の並列pn構造の平面的な形状は、六方格子に限らず、三方格子や四方格子等の多角形格子でもよい。さらに、第1〜第3の並列pn構造のうち、いずれかの並列pn構造が平面的に格子点状であり、その他の並列pn構造が平面的にストライプ状であってもよい。なお、本例の場合も、第3の並列pn構造のうち、第3のn型領域34aa’および第3のp型領域34ba’は、pベース領域13aの底部にまで潜り込んで形成されている。   Further, in the third parallel pn structure, if the impurity amount of the third p-type region 34b ′ is larger than the impurity amount of the third n-type region 34a ′, the first to third parallel pn structures. The planar shape is not limited to a hexagonal lattice, and may be a polygonal lattice such as a trigonal lattice or a tetragonal lattice. Furthermore, among the first to third parallel pn structures, any of the parallel pn structures may have a lattice point shape in a plane, and the other parallel pn structures may have a stripe shape in a plane. Also in this example, in the third parallel pn structure, the third n-type region 34aa ′ and the third p-type region 34ba ′ are formed so as to penetrate into the bottom of the p base region 13a. .

また、実施の形態3では、図11に示すように、第1および第2の並列pn構造とn+ドレイン層11との間にn型バッファー領域61が設けられている。なお、n型バッファー領域61がなくてもよい。実施の形態3によれば、並列pn構造の平面的な形状に関係なく、またn型バッファー領域61の有無に関係なく、アバランシェ降伏時の負性抵抗に入る電圧値を高めることができるので、アバランシェ耐量を向上させることができる。 In the third embodiment, as shown in FIG. 11, an n-type buffer region 61 is provided between the first and second parallel pn structures and the n + drain layer 11. Note that the n-type buffer region 61 may not be provided. According to the third embodiment, the voltage value entering the negative resistance at the time of avalanche breakdown can be increased regardless of the planar shape of the parallel pn structure and regardless of the presence or absence of the n-type buffer region 61. Avalanche resistance can be improved.

実施の形態4.
図12は本発明の実施の形態4にかかる縦形MOSFET素子のチップを示す概略部分平面図、図13は図12中のA−A’線に沿って切断した状態を示す縦断面図である。実施の形態4の縦形MOSFETは、素子周縁部30の基板表面側の表層域に、第3の並列pn構造の代わりに、不純物濃度の低いp型領域34dが配置されている。このp型領域34dの一部は、実施の形態1と同様に、酸化膜33を介して、pベース領域13aに接続するフィールドプレート電極FPに覆われている。
Embodiment 4 FIG.
FIG. 12 is a schematic partial plan view showing a chip of a vertical MOSFET device according to the fourth exemplary embodiment of the present invention, and FIG. 13 is a vertical cross-sectional view showing a state cut along line AA ′ in FIG. In the vertical MOSFET of the fourth embodiment, a p-type region 34d having a low impurity concentration is disposed in the surface layer region on the substrate surface side of the element peripheral portion 30 instead of the third parallel pn structure. A part of the p-type region 34d is covered with the field plate electrode FP connected to the p base region 13a via the oxide film 33, as in the first embodiment.

実施の形態4では、p型領域34dにおいて表面電界の緩和を図っている。p型領域34dの不純物濃度については、ソース、ドレイン、ゲート間に電圧が印加されたときに、p型領域34dが空乏化するような不純物濃度でなければ耐圧の低下を招くため、第2のp型領域30bの不純物濃度よりも低いことが望ましい。例えば、p型領域34dの不純物濃度は4.8×1014cm-3である。その他の寸法や濃度等は、実施の形態1と同じである。また、抵抗の高いp型領域34dは、n型不純物とp型不純物との双方をドープしたものとなる。n型不純物とp型不純物は相互に補償するため、概ね同量ドープされた領域は高抵抗領域として作用する。従って、p型不純物の量をn型不純物よりも多くすることによって、抵抗の高いp型領域を容易に形成することができる。さらには、抵抗の高いp型領域の不純物濃度は各不純物量あるいは各不純物が導入される領域の幅で容易に制御できるので、量産性よく製造することが可能となる。 In the fourth embodiment, the surface electric field is relaxed in the p-type region 34d. Regarding the impurity concentration of the p-type region 34d, since the breakdown voltage is lowered unless the impurity concentration is such that the p-type region 34d is depleted when a voltage is applied between the source, drain, and gate, It is desirable that the impurity concentration is lower than that of the p-type region 30b. For example, the impurity concentration of the p-type region 34d is 4.8 × 10 14 cm −3 . Other dimensions, concentrations, and the like are the same as those in the first embodiment. The p-type region 34d having a high resistance is doped with both n-type impurities and p-type impurities. Since the n-type impurity and the p-type impurity compensate each other, the region doped with almost the same amount acts as a high resistance region. Therefore, a p-type region having high resistance can be easily formed by increasing the amount of the p-type impurity compared to the n-type impurity. Furthermore, since the impurity concentration of the p-type region having high resistance can be easily controlled by the amount of each impurity or the width of the region into which each impurity is introduced, it is possible to manufacture with high productivity.

次に、本発明者らが、図12および図13に示す構造の600Vクラスの縦形MOSFET素子について、アバランシェ降伏時における素子周縁部と素子活性部の電流電圧特性のシミュレーションを行った結果を、図14〜図16に示す。なお、シミュレーションに用いた並列pn構造の各部の寸法および不純物濃度は、p型領域34dの不純物濃度を4.8×1014cm-3とした以外は、実施の形態1において述べた値と同じである。また、実施の形態1と同様に、不純物濃度のばらつきを考慮し、各n型領域の不純物濃度Nnを各p型領域の不純物濃度Npに対して−10%(図14)、0%(図15)および+10%(図16)としてシミュレーションを行った。 Next, for the 600V class vertical MOSFET device having the structure shown in FIG. 12 and FIG. 13, the present inventors performed a simulation of the current-voltage characteristics of the device peripheral portion and the device active portion at the time of avalanche breakdown. 14 to FIG. The dimensions and impurity concentrations of the respective parts of the parallel pn structure used in the simulation are the same as those described in the first embodiment except that the impurity concentration of the p-type region 34d is 4.8 × 10 14 cm −3. It is. As in the first embodiment, the impurity concentration Nn of each n-type region is set to −10% (FIG. 14) and 0% (FIG. 14) with respect to the impurity concentration Np of each p-type region in consideration of the variation in impurity concentration. 15) and + 10% (FIG. 16).

図14〜図16を図26〜図28(従来例)と比較すると、いずれの場合も、従来構造に対して素子周縁部30の負性抵抗が現われるアバランシェ電圧が高く、素子活性部で流すことができるアバランシェ電流が大きくなっているので、アバランシェ耐量を向上させることができる。また、n型領域の不純物濃度が±10%変動しても、340A/cm2以上のアバランシェ耐量が得られる(図15参照)。 Comparing FIGS. 14 to 16 with FIGS. 26 to 28 (conventional example), in any case, the avalanche voltage at which the negative resistance of the element peripheral portion 30 appears is higher than that of the conventional structure, and it flows in the element active part. Since the avalanche current that can be increased is increased, the avalanche resistance can be improved. Further, even if the impurity concentration in the n-type region varies by ± 10%, an avalanche resistance of 340 A / cm 2 or more can be obtained (see FIG. 15).

実施の形態5.
図17は本発明の実施の形態5にかかる縦形MOSFET素子のチップを切断した状態を示す縦断面図である。この縦断面は、実施の形態5にかかる縦形MOSFET素子のチップを、例えば図1中のA−A’線に相当する切断線に沿って切断したときの切断面に相当する。
Embodiment 5 FIG.
FIG. 17 is a longitudinal sectional view showing a state in which a chip of a vertical MOSFET element according to the fifth embodiment of the present invention is cut. This vertical cross section corresponds to a cut surface when the chip of the vertical MOSFET element according to the fifth embodiment is cut along a cutting line corresponding to the AA ′ line in FIG. 1, for example.

実施の形態5の縦形MOSFETは、最も外側のpベース領域(以下、最外周pベース領域とする)13bにおいて、ソース電極17に接触するp+コンタクト領域26よりも外側で、かつ酸化膜33により覆われた部分の幅Wbが、第1のn型領域22aと第1のp型領域22bよりなる第1の並列pn構造の繰り返しピッチP1よりも広くなっていることを除いて、図24に示す従来の構成と同じである。最外周pベース領域13bにおいて、p+コンタクト領域26は、相対的に不純物濃度が高い第2の部分に相当し、それ以外のp領域は、相対的に不純物濃度が低い第1の部分に相当する。 In the vertical MOSFET of the fifth embodiment, the outermost p base region (hereinafter referred to as the outermost peripheral p base region) 13 b is outside the p + contact region 26 that contacts the source electrode 17 and is formed by the oxide film 33. Except for the fact that the width Wb of the covered portion is wider than the repetition pitch P1 of the first parallel pn structure consisting of the first n-type region 22a and the first p-type region 22b, FIG. This is the same as the conventional configuration shown. In the outermost peripheral p base region 13b, the p + contact region 26 corresponds to a second portion having a relatively high impurity concentration, and the other p regions correspond to a first portion having a relatively low impurity concentration. To do.

図17に示すように、実施の形態5では、実施の形態1と同様に、第2のn型領域30aと第2のp型領域30bよりなる第2の並列pn構造が第1の並列pn構造と連続しており、ピッチが不連続になるピッチの変わり目の部分が存在しない。それによって、チャージインバランスによる耐圧の低下が緩和されている。   As shown in FIG. 17, in the fifth embodiment, as in the first embodiment, the second parallel pn structure including the second n-type region 30a and the second p-type region 30b is the first parallel pn. The structure is continuous and there is no pitch transition where the pitch becomes discontinuous. As a result, a decrease in breakdown voltage due to charge imbalance is alleviated.

特に限定しないが、例えば実施の形態5の縦形MOSFETが耐圧600Vクラスである場合には、各部の寸法および不純物濃度は次の値をとる。ドレイン・ドリフト部22の厚さ(深さ方向)は44.0μm、第1のn型領域22aおよび第1のp型領域22bの幅は8.0μm(繰り返しピッチP1は16.0μm)、第1のn型領域22aおよび第1のp型領域22bの不純物濃度は2.4×1015cm-3である。 Although not particularly limited, for example, when the vertical MOSFET of the fifth embodiment has a withstand voltage of 600 V class, the size and impurity concentration of each part take the following values. The drain / drift portion 22 has a thickness (depth direction) of 44.0 μm, the widths of the first n-type region 22a and the first p-type region 22b are 8.0 μm (repetitive pitch P1 is 16.0 μm), The impurity concentration of one n-type region 22a and the first p-type region 22b is 2.4 × 10 15 cm −3 .

素子周縁部30の第2の並列pn構造の厚さ(深さ方向)は31.0μm、第2のn型領域30aおよび第2のp型領域30bの幅は8.0μm(繰り返しピッチP1は16.0μm)、第2のn型領域30aおよび第2のp型領域30bの不純物濃度は2.4×1015cm-3である。素子周縁部30の第3の並列pn構造の厚さ(深さ方向)は13.0μm、第3のn型領域34aおよび第3のp型領域34bの幅は4.0μm(繰り返しピッチP2は8.0μm)である。第3のn型領域34aおよび第3のp型領域34bの不純物濃度は4.8×1014cm-3である。 The thickness (depth direction) of the second parallel pn structure of the element peripheral portion 30 is 31.0 μm, and the widths of the second n-type region 30a and the second p-type region 30b are 8.0 μm (repetitive pitch P1 is 16.0 μm), the impurity concentration of the second n-type region 30a and the second p-type region 30b is 2.4 × 10 15 cm −3 . The thickness (depth direction) of the third parallel pn structure of the element peripheral portion 30 is 13.0 μm, and the widths of the third n-type region 34a and the third p-type region 34b are 4.0 μm (repetitive pitch P2 is 8.0 μm). The impurity concentration of the third n-type region 34a and the third p-type region 34b is 4.8 × 10 14 cm −3 .

pベース領域13aの拡散深さおよび表面不純物濃度はそれぞれ3.0μmおよび1.0×1017cm-3、p+コンタクト領域26の拡散深さおよび表面不純物濃度はそれぞれ1.0μmおよび4.0×1019cm-3である。n+ソース領域14の拡散深さおよび表面不純物濃度はそれぞれ1.0μmおよび3.0×1020cm-3、表面ドリフト領域となる挾間領域12eの拡散深さおよび表面不純物濃度はそれぞれ2.5μmおよび2.0×1016cm-3である。 The diffusion depth and surface impurity concentration of the p base region 13a are 3.0 μm and 1.0 × 10 17 cm −3 , respectively, and the diffusion depth and surface impurity concentration of the p + contact region 26 are 1.0 μm and 4.0 respectively. × 10 19 cm -3 . The diffusion depth and the surface impurity concentration of the n + source region 14 are 1.0 μm and 3.0 × 10 20 cm −3 , respectively, and the diffusion depth and the surface impurity concentration of the interspace region 12e serving as the surface drift region are 2.5 μm, respectively. And 2.0 × 10 16 cm −3 .

+ドレイン層11の厚さおよび不純物濃度はそれぞれ300μmおよび2.0×1018cm-3、n型チャネルストッパー領域50の幅および不純物濃度はそれぞれ30.0μmおよび6.0×1015cm-3である。最外周pベース領域13bにおいて、その拡散深さ、p+コンタクト領域26よりも外側で酸化膜33に覆われた部分の幅Wb、および表面不純物濃度はそれぞれ3.0μm、50μmおよび1.0×1017cm-3である。 The thickness and impurity concentration of the n + drain layer 11 are 300 μm and 2.0 × 10 18 cm −3 , respectively, and the width and impurity concentration of the n-type channel stopper region 50 are 30.0 μm and 6.0 × 10 15 cm −, respectively. 3 . In the outermost peripheral p base region 13b, the diffusion depth, the width Wb of the portion covered with the oxide film 33 outside the p + contact region 26, and the surface impurity concentration are 3.0 μm, 50 μm, and 1.0 ×, respectively. 10 17 cm −3 .

実施の形態1においては、アバランシェ降伏時の負性抵抗の発生原理に基づいて、アバランシェ耐量を高めるためには、素子周縁部30においてアバランシェ電流が流れたときに表面側の電界が緩和されるような構造とすればよいことを説明した。それ以外にも、上記原理によれば、アバランシェ耐量を高めるために、アバランシェ電流が流れる最外周pベース領域13bの抵抗を高くすればよいことがわかる。そこで、実施の形態5では、最外周pベース領域13bの不純物濃度を低くし、かつアバランシェ電流が流れる部分の幅Wbを広くすることによって、負性抵抗の緩和を図る構造としている。   In the first embodiment, in order to increase the avalanche resistance based on the principle of generation of negative resistance at the time of avalanche breakdown, the electric field on the surface side is relaxed when an avalanche current flows in the element peripheral portion 30. I explained that it should be a simple structure. In addition, according to the above principle, it is understood that the resistance of the outermost peripheral p base region 13b through which the avalanche current flows may be increased in order to increase the avalanche resistance. Therefore, in the fifth embodiment, the negative resistance is relaxed by reducing the impurity concentration of the outermost peripheral p base region 13b and increasing the width Wb of the portion through which the avalanche current flows.

ここで、アバランシェ降伏時の負性抵抗を回避するには、最外周pベース領域13bの抵抗値が最外周pベース領域13bの全体で2Ω以上であればよい。その理由は、従来例においてn型領域の不純物濃度Nnがp型領域の不純物濃度Npよりも高い場合の素子周縁部の負性抵抗値が2Ω前後であるからである。例えば、実施の形態5において、最外周pベース領域13bの総周縁長(全長)、シート抵抗および幅Wbがそれぞれ約16mm、800Ω/□および50μmである場合、最外周pベース領域13bの全体で抵抗値は2.5Ω程度になる。この場合には、最外周pベース領域13bの一部に局所的にアバランシェが発生しても、電流の集中が緩和される。   Here, in order to avoid the negative resistance at the time of avalanche breakdown, the resistance value of the outermost peripheral p base region 13b may be 2Ω or more in the entire outermost peripheral p base region 13b. This is because, in the conventional example, when the impurity concentration Nn of the n-type region is higher than the impurity concentration Np of the p-type region, the negative resistance value at the periphery of the element is around 2Ω. For example, in the fifth embodiment, when the total peripheral length (full length), sheet resistance, and width Wb of the outermost peripheral p base region 13b are about 16 mm, 800Ω / □, and 50 μm, respectively, The resistance value is about 2.5Ω. In this case, even if an avalanche is locally generated in a part of the outermost peripheral p base region 13b, the current concentration is alleviated.

その一方で、素子がオン状態のときには、最外周pベース領域13bは、電流を流さない無効領域となる。従って、面積効率をよくするためには、最外周pベース領域13bの幅はできるだけ狭いのが望ましい。しかし、アバランシェ降伏時の負性抵抗を回避するには、最外周pベース領域13bの幅をある程度、広くする必要がある。具体的には、最外周pベース領域13bの幅は、前記繰り返しピッチP1よりも広ければよい。   On the other hand, when the element is in the ON state, the outermost peripheral p base region 13b is an invalid region where no current flows. Therefore, in order to improve area efficiency, it is desirable that the width of the outermost peripheral p base region 13b be as narrow as possible. However, in order to avoid the negative resistance at the time of avalanche breakdown, it is necessary to widen the width of the outermost peripheral p base region 13b to some extent. Specifically, the width of the outermost peripheral p base region 13b only needs to be wider than the repetition pitch P1.

次に、本発明者らが、図17に示す構造の600Vクラスの縦形MOSFET素子について、アバランシェ降伏時における素子周縁部と素子活性部の電流電圧特性のシミュレーションを行った結果を、図18〜図20に示す。なお、シミュレーションに用いた並列pn構造の各部の寸法および不純物濃度は、実施の形態5において先に述べた値とする。また、従来同様、不純物濃度のばらつきを考慮し、各n型領域の不純物濃度Nnを各p型領域の不純物濃度Npに対して−10%(図18)、0%(図19)および+10%(図20)としてシミュレーションを行った。   Next, the present inventors conducted simulations of the current-voltage characteristics of the element peripheral part and the element active part at the time of avalanche breakdown for the 600 V class vertical MOSFET element having the structure shown in FIG. 20 shows. Note that the dimensions and impurity concentration of each part of the parallel pn structure used in the simulation are the values described in the fifth embodiment. As in the prior art, the impurity concentration Nn of each n-type region is set to −10% (FIG. 18), 0% (FIG. 19), and + 10% with respect to the impurity concentration Np of each p-type region in consideration of variations in impurity concentration. (FIG. 20) was simulated.

図20と図28(従来例)の比較より明らかなように、p型領域の不純物濃度Npがn型領域の不純物濃度Nnよりも低い場合、負性抵抗が緩和されて正性抵抗になっているので、アバランシェ耐量を向上させることができる。それに対して、図18と図26(従来例)の比較、および図19と図27(従来例)の比較より明らかなように、p型領域の不純物濃度Npがn型領域の不純物濃度Nnよりも高い場合、および両者が等しい場合には、負性抵抗はほとんど緩和されていない。これは、アバランシェ電流が最外周pベース領域13bの途中または一部分にしか流れないからである。   As is clear from comparison between FIG. 20 and FIG. 28 (conventional example), when the impurity concentration Np of the p-type region is lower than the impurity concentration Nn of the n-type region, the negative resistance is relaxed and becomes a positive resistance. Therefore, the avalanche resistance can be improved. On the other hand, as apparent from the comparison between FIG. 18 and FIG. 26 (conventional example) and the comparison between FIG. 19 and FIG. 27 (conventional example), the impurity concentration Np of the p-type region is higher than the impurity concentration Nn of the n-type region. Is high, and when both are equal, the negative resistance is hardly relaxed. This is because the avalanche current flows only in the middle or part of the outermost peripheral p base region 13b.

しかし、いずれの場合も、素子周縁部30の負性抵抗が現われるアバランシェ電圧が高いので、高いアバランシェ耐量を確保することができる。図18〜図20より、n型領域の不純物濃度が±10%変動しても、300A/cm2程度のアバランシェ耐量を確保することができる(図19参照)。 However, in any case, since the avalanche voltage at which the negative resistance of the element peripheral portion 30 appears is high, a high avalanche resistance can be ensured. 18 to 20, an avalanche resistance of about 300 A / cm 2 can be secured even if the impurity concentration in the n-type region varies by ± 10% (see FIG. 19).

なお、前記特許文献4には、最外周pベース領域においてその中の高濃度p領域よりも素子周縁部側の部分の幅が若干広い断面構造の図(例えば、図14)が記載されているが、当該特許文献では、アバランシェ降伏時に現われる負性抵抗については考慮されていない。また、特許文献4の例えば図14を参照するとわかるように、最外周pベース領域においてその中の高濃度p領域よりも素子周縁部側の部分で、かつ酸化膜により覆われた部分の幅は、特に広いわけではない。実施の形態5は、特許文献4の例えば図14と比べて、当該部分の幅が極めて広い点で、特許文献4に記載されている素子とは異なる。   Note that Patent Document 4 describes a cross-sectional view (for example, FIG. 14) in which the width of the portion on the element peripheral side is slightly wider than the high concentration p region in the outermost peripheral p base region. However, in the said patent document, the negative resistance which appears at the time of avalanche breakdown is not considered. Further, as can be seen with reference to FIG. 14 of Patent Document 4, for example, the width of the outermost peripheral p base region closer to the element periphery than the high-concentration p region therein and the portion covered with the oxide film is Not particularly wide. The fifth embodiment is different from the element described in Patent Document 4 in that the width of the portion is extremely wide compared to, for example, FIG. 14 of Patent Document 4.

実施の形態6.
図21は本発明の実施の形態6にかかる縦形MOSFET素子のチップを切断した状態を示す縦断面図である。この縦断面は、実施の形態6にかかる縦形MOSFET素子のチップを、例えば図1中のA−A’線に相当する切断線に沿って切断したときの切断面に相当する。
Embodiment 6 FIG.
FIG. 21 is a longitudinal sectional view showing a state in which a chip of a vertical MOSFET element according to the sixth embodiment of the present invention is cut. This vertical cross section corresponds to a cut surface when the chip of the vertical MOSFET element according to the sixth embodiment is cut along a cutting line corresponding to the AA ′ line in FIG. 1, for example.

実施の形態6の縦形MOSFETは、実施の形態5の変形例であり、実施の形態5と異なる点は、以下の通りである。すなわち、第3のn型領域34aと第3のp型領域34bよりなる第3の並列pn構造が最外周pベース領域13bに接続していない。このような構造でも、p型領域の不純物濃度Npがn型領域の不純物濃度Nnよりも低い場合に、最外周pベース領域13bのコーナー部でアバランシェが発生し、アバランシェ電流が最外周pベース領域13bの、p+コンタクト領域26よりも外側の幅の広い部分を通ってソース電極17へ流れるので、アバランシェ降伏時の負性抵抗が緩和される。従って、実施の形態5と同様の効果が得られる。 The vertical MOSFET according to the sixth embodiment is a modification of the fifth embodiment, and is different from the fifth embodiment as follows. That is, the third parallel pn structure composed of the third n-type region 34a and the third p-type region 34b is not connected to the outermost peripheral p base region 13b. Even in such a structure, when the impurity concentration Np of the p-type region is lower than the impurity concentration Nn of the n-type region, an avalanche is generated at the corner portion of the outermost peripheral p base region 13b, and an avalanche current is generated in the outermost peripheral p base region. 13b flows through the wide portion outside the p + contact region 26 to the source electrode 17, so that the negative resistance at the time of avalanche breakdown is relaxed. Therefore, the same effect as in the fifth embodiment can be obtained.

実施の形態7.
図22は本発明の実施の形態7にかかる縦形MOSFET素子のチップを切断した状態を示す縦断面図である。この縦断面は、実施の形態7にかかる縦形MOSFET素子のチップを、例えば図1中のA−A’線に相当する切断線に沿って切断したときの切断面に相当する。
Embodiment 7 FIG.
FIG. 22 is a longitudinal sectional view showing a state in which the chip of the vertical MOSFET element according to the seventh embodiment of the present invention is cut. This vertical cross section corresponds to a cut surface when the chip of the vertical MOSFET element according to the seventh embodiment is cut along a cutting line corresponding to the AA ′ line in FIG. 1, for example.

実施の形態7の縦形MOSFETは、実施の形態5の変形例であり、実施の形態5と異なる点は、以下の通りである。すなわち、第3のn型領域34aと第3のp型領域34bよりなる第3の並列pn構造がn+ドレイン層11まで達していることである。つまり、実施の形態7では、第2のn型領域30aと第2のp型領域30bよりなる第2の並列pn構造が設けられていない。このような構造でも、実施の形態5と同様に、p型領域の不純物濃度Npがn型領域の不純物濃度Nnよりも低い場合のアバランシェ降伏時の負性抵抗が緩和されるので、実施の形態5と同様の効果が得られる。 The vertical MOSFET according to the seventh embodiment is a modification of the fifth embodiment, and is different from the fifth embodiment as follows. That is, the third parallel pn structure composed of the third n-type region 34 a and the third p-type region 34 b reaches the n + drain layer 11. That is, in the seventh embodiment, the second parallel pn structure including the second n-type region 30a and the second p-type region 30b is not provided. Even in such a structure, as in the fifth embodiment, the negative resistance at the time of avalanche breakdown when the impurity concentration Np of the p-type region is lower than the impurity concentration Nn of the n-type region is mitigated. The same effect as 5 is obtained.

以上において、本発明は、上述した各実施の形態に限らず、種々変更可能である。例えば、表面エッジ構造にフィールドプレート構造を適用する代わりに、ガードリングを用いてもよいし、表面エッジ構造が素子活性部の最外周部に位置するpベース領域13bの曲率を十分緩和することができる構造であれば、フィールドプレート構造やガードリング構造だけでなく、それら両者を併用した構造であってもよい。また、基板の第1主面側に形成された素子活性部とは、例えば縦形MOSFETの場合は第1主面側で反転層を形成するチャネル拡散層とソース領域を含むスイッチング部、バイポーラトランジスタの場合はエミッタまたはコレクタ領域を含むスイッチング部であり、ドリフト部の第1主面側で導通と非導通の選択機能を持つ能動部分または受動部分を指すので、本発明はMOSFETに限らず、IGBT、バイポーラトランジスタ、FWDまたはショットキーダイオード等にも適用できる。   As described above, the present invention is not limited to the above-described embodiments, and various modifications can be made. For example, instead of applying the field plate structure to the surface edge structure, a guard ring may be used, and the surface edge structure may sufficiently relax the curvature of the p base region 13b located at the outermost peripheral portion of the element active portion. As long as the structure can be used, not only the field plate structure and the guard ring structure, but also a structure using both of them may be used. In addition, the element active portion formed on the first main surface side of the substrate is, for example, a vertical MOSFET, a switching portion including a channel diffusion layer and a source region forming an inversion layer on the first main surface side, and a bipolar transistor In this case, the switching part includes an emitter or a collector region, and refers to an active part or a passive part having a selection function of conduction and non-conduction on the first main surface side of the drift part. Therefore, the present invention is not limited to a MOSFET, but an IGBT, The present invention can also be applied to a bipolar transistor, FWD, or Schottky diode.

以上のように、本発明は、大電力用半導体装置に有用であり、特に、並列pn構造をドリフト部に有するMOSFETやIGBTやバイポーラトランジスタ等の高耐圧化と大電流容量化を両立させることのできる半導体装置に適している。   As described above, the present invention is useful for high-power semiconductor devices, and in particular, it is possible to achieve both high breakdown voltage and large current capacity of MOSFETs, IGBTs, bipolar transistors, etc. having a parallel pn structure in the drift portion. Suitable for semiconductor devices that can be used.

FP フィールドプレート電極
11 第1導電型の低抵抗層(n+ドレイン層)
13b 最外周pベース領域
22 縦形ドリフト部(ドレイン・ドリフト部)
22a,22a’ 第1の縦形第1導電型領域(第1のn型領域)
22b,22b’ 第1の縦形第2導電型領域(第1のp型領域)
30 素子周縁部
30a,30a’ 第2の縦形第1導電型領域(第2のn型領域)
30b,30b’ 第2の縦形第2導電型領域(第2のp型領域)
33 絶縁膜(酸化膜)
34a,34aa,34ab,34a’,34aa’ 第3の縦形第1導電型領域(第3のn型領域)
34b,34ba,34bb,34b’,34ba’ 第3の縦形第2導電型領域(第3のp型領域)
34d 第2導電型領域(p型領域)
50 n型チャネルストッパー領域
FP field plate electrode 11 low resistance layer of first conductivity type (n + drain layer)
13b Outermost peripheral p base region 22 Vertical drift portion (drain drift portion)
22a, 22a ′ first vertical first conductivity type region (first n-type region)
22b, 22b ′ first vertical second conductivity type region (first p-type region)
30 Element peripheral portion 30a, 30a ′ Second vertical first conductivity type region (second n-type region)
30b, 30b ′ second vertical second conductivity type region (second p-type region)
33 Insulating film (oxide film)
34a, 34aa, 34ab, 34a ′, 34aa ′ Third vertical first conductivity type region (third n-type region)
34b, 34ba, 34bb, 34b ', 34ba' Third vertical second conductivity type region (third p-type region)
34d Second conductivity type region (p-type region)
50 n-type channel stopper region

Claims (5)

基板の第1主面側に存在して能動または受動で電流を流す素子活性部と、前記基板の第2主面側に存在する第1導電型の低抵抗層と、前記素子活性部と前記低抵抗層との間に介在し、オン状態ではドリフト電流が縦方向に流れるとともにオフ状態では空乏化する縦形ドリフト部と、前記基板の第1主面側に設けられた複数の第2導電型ベース領域とを有し、前記縦形ドリフト部が、前記基板の厚み方向に配向する縦形第1導電型領域と前記基板の厚み方向に配向する第1の縦形第2導電型領域とが交互に繰り返し接合してなる並列pn構造をなす半導体素子であって、
複数の前記第2導電型ベース領域のうちの最も外側に設けられた第2導電型ベース領域では、相対的に不純物濃度が低い第1の部分と相対的に不純物濃度が高い第2の部分が設けられているとともに、前記第1の部分の、前記第2の部分よりも外側の部分が絶縁膜により覆われており、前記第1の部分の、前記第2の部分よりも外側で前記絶縁膜により覆われた部分の幅は、前記並列pn構造の繰り返しピッチよりも広いことを特徴とする半導体素子。
An element active portion that is present on the first main surface side of the substrate and allows an active or passive current to flow, a low-resistance layer of a first conductivity type that is present on the second main surface side of the substrate, the element active portion, A vertical drift portion interposed between the low resistance layer and flowing in the vertical direction in the on state and depleted in the off state, and a plurality of second conductivity types provided on the first main surface side of the substrate And a vertical first drift type conductive region that is oriented in the thickness direction of the substrate and a first vertical second conductivity type region that is oriented in the thickness direction of the substrate alternately. A semiconductor element having a parallel pn structure formed by bonding,
In the second conductivity type base region provided on the outermost side among the plurality of second conductivity type base regions, a first portion having a relatively low impurity concentration and a second portion having a relatively high impurity concentration are present. The first portion of the first portion outside the second portion is covered with an insulating film, and the first portion outside the second portion is insulated from the second portion. The width of the portion covered with the film is wider than the repetition pitch of the parallel pn structure.
最も外側に設けられた前記第2導電型ベース領域では、前記第1の部分の、前記第2の部分よりも外側で前記絶縁膜により覆われた部分の抵抗値が2Ω以上であることを特徴とする請求項1に記載の半導体素子。   In the second conductivity type base region provided on the outermost side, the resistance value of the portion of the first portion covered by the insulating film outside the second portion is 2Ω or more. The semiconductor device according to claim 1. 前記縦形ドリフト部の周りで前記第1主面と前記低抵抗層との間に介在し、オン状態では概ね非電路領域であってオフ状態では空乏化する素子周縁部をさらに有し、該素子周縁部は、前記基板の厚み方向に配向する縦形第1導電型領域と前記基板の厚み方向に配向する縦形第2導電型領域とが交互に繰り返し接合してなる並列pn構造をなし、該素子周縁部の並列pn構造の少なくとも一部では、前記第1主面側の部分における繰り返しピッチが前記縦形ドリフト部の並列pn構造の繰り返しピッチよりも狭いことを特徴とする請求項1または2に記載の半導体素子。   An element peripheral portion that is interposed between the first main surface and the low-resistance layer around the vertical drift portion and is substantially a non-electric path region in the on state and depleted in the off state; The peripheral portion has a parallel pn structure in which a vertical first conductivity type region oriented in the thickness direction of the substrate and a vertical second conductivity type region oriented in the thickness direction of the substrate are alternately and repeatedly joined. 3. The repetitive pitch in the first main surface side portion is narrower than the repetitive pitch of the parallel pn structure of the vertical drift portion in at least a part of the parallel pn structure of the peripheral portion. Semiconductor element. 前記素子周縁部の並列pn構造の、繰り返しピッチが前記縦形ドリフト部の並列pn構造の繰り返しピッチよりも狭い部分の一部は、最も外側に設けられた前記第2導電型ベース領域の下側に配置されていることを特徴とする請求項3に記載の半導体素子。   A part of the portion of the parallel pn structure of the peripheral portion of the element having a repetition pitch narrower than the repetition pitch of the parallel pn structure of the vertical drift portion is below the second conductivity type base region provided on the outermost side. The semiconductor element according to claim 3, wherein the semiconductor element is arranged. 前記素子周縁部の並列pn構造の、繰り返しピッチが前記縦形ドリフト部の並列pn構造の繰り返しピッチよりも狭い部分と前記低抵抗層との間に、前記基板の厚み方向に配向する縦形第1導電型領域と前記基板の厚み方向に配向する縦形第2導電型領域とが、前記縦形ドリフト部の並列pn構造の繰り返しピッチと同じ繰り返しピッチで交互に繰り返し接合してなる並列pn構造が設けられていることを特徴とする請求項3または4に記載の半導体素子。   A vertical first conductive material oriented in the thickness direction of the substrate between a portion of the parallel pn structure of the peripheral edge of the element and a portion where the repetition pitch is narrower than the repetition pitch of the parallel pn structure of the vertical drift portion and the low resistance layer. A parallel pn structure is provided in which a mold region and a vertical second conductivity type region oriented in the thickness direction of the substrate are alternately and repeatedly joined at the same repetition pitch as that of the parallel pn structure of the vertical drift portion. The semiconductor device according to claim 3, wherein the semiconductor device is a semiconductor device.
JP2012011583A 2004-08-04 2012-01-23 Semiconductor element Active JP5652409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012011583A JP5652409B2 (en) 2004-08-04 2012-01-23 Semiconductor element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004228599 2004-08-04
JP2004228599 2004-08-04
JP2012011583A JP5652409B2 (en) 2004-08-04 2012-01-23 Semiconductor element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005006869A Division JP4967236B2 (en) 2004-08-04 2005-01-13 Semiconductor element

Publications (2)

Publication Number Publication Date
JP2012109599A true JP2012109599A (en) 2012-06-07
JP5652409B2 JP5652409B2 (en) 2015-01-14

Family

ID=36077068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011583A Active JP5652409B2 (en) 2004-08-04 2012-01-23 Semiconductor element

Country Status (2)

Country Link
JP (1) JP5652409B2 (en)
CN (1) CN100530679C (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102473721B (en) * 2009-07-31 2015-05-06 富士电机株式会社 Semiconductor apparatus
DE102015106693A1 (en) * 2015-04-29 2016-11-03 Infineon Technologies Austria Ag A superjunction semiconductor device with junction termination extension structure and method of fabrication
CN103178101B (en) * 2011-12-21 2015-12-02 上海华虹宏力半导体制造有限公司 Igbt and manufacture method
WO2014073656A1 (en) * 2012-11-08 2014-05-15 富士電機株式会社 Semiconductor device and semiconductor device fabrication method
JP6197294B2 (en) * 2013-01-16 2017-09-20 富士電機株式会社 Semiconductor element
CN103531615A (en) * 2013-10-15 2014-01-22 苏州晶湛半导体有限公司 Nitride power transistor and manufacturing method thereof
JP6568735B2 (en) * 2015-07-17 2019-08-28 日立オートモティブシステムズ株式会社 Switch element and load drive device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077154A (en) * 1993-03-25 1995-01-10 Siemens Ag Power mosfet
JPH09266311A (en) * 1996-01-22 1997-10-07 Fuji Electric Co Ltd Semiconductor device and its manufacture
JP2003224273A (en) * 2002-01-30 2003-08-08 Fuji Electric Co Ltd Semiconductor device
JP2003273355A (en) * 2002-03-18 2003-09-26 Toshiba Corp Semiconductor element and method for manufacturing the same
JP2005116951A (en) * 2003-10-10 2005-04-28 Toyota Central Res & Dev Lab Inc Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077154A (en) * 1993-03-25 1995-01-10 Siemens Ag Power mosfet
JPH09266311A (en) * 1996-01-22 1997-10-07 Fuji Electric Co Ltd Semiconductor device and its manufacture
JP2003224273A (en) * 2002-01-30 2003-08-08 Fuji Electric Co Ltd Semiconductor device
JP2003273355A (en) * 2002-03-18 2003-09-26 Toshiba Corp Semiconductor element and method for manufacturing the same
JP2005116951A (en) * 2003-10-10 2005-04-28 Toyota Central Res & Dev Lab Inc Semiconductor device

Also Published As

Publication number Publication date
CN1734782A (en) 2006-02-15
JP5652409B2 (en) 2015-01-14
CN100530679C (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4967236B2 (en) Semiconductor element
JP4839519B2 (en) Semiconductor device
JP6369173B2 (en) Vertical semiconductor device and manufacturing method thereof
US6825565B2 (en) Semiconductor device
JP5762689B2 (en) Semiconductor device
JP5741567B2 (en) Semiconductor device
JP6197294B2 (en) Semiconductor element
JP5652409B2 (en) Semiconductor element
JP4289123B2 (en) Semiconductor device
US10276666B2 (en) Semiconductor device
JP6415749B2 (en) Silicon carbide semiconductor device
JP2019169597A (en) Semiconductor device
JP6323556B2 (en) Semiconductor device
US9620595B2 (en) Semiconductor device
JP5687582B2 (en) Semiconductor device and manufacturing method thereof
JP2023022141A (en) Semiconductor device and power module
JP2021052078A (en) Semiconductor device and manufacturing method thereof
US11264451B2 (en) Semiconductor device exhibiting soft recovery characteristics
JP6295012B2 (en) Semiconductor device and power conversion device
JP2003204065A (en) Semiconductor device
CN111668212A (en) Semiconductor device with a plurality of semiconductor chips
JPWO2015107614A1 (en) Power semiconductor device
JP4212552B2 (en) Semiconductor device
WO2023047687A1 (en) Semiconductor device and power conversion device
JP2024009372A (en) Super-junction semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141103

R150 Certificate of patent or registration of utility model

Ref document number: 5652409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250