JP2001127285A - Vertical field-effect transistor - Google Patents

Vertical field-effect transistor

Info

Publication number
JP2001127285A
JP2001127285A JP30477499A JP30477499A JP2001127285A JP 2001127285 A JP2001127285 A JP 2001127285A JP 30477499 A JP30477499 A JP 30477499A JP 30477499 A JP30477499 A JP 30477499A JP 2001127285 A JP2001127285 A JP 2001127285A
Authority
JP
Japan
Prior art keywords
region
connection region
effect transistor
type
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30477499A
Other languages
Japanese (ja)
Other versions
JP3484690B2 (en
Inventor
Teruhiro Shimomura
彰宏 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP30477499A priority Critical patent/JP3484690B2/en
Publication of JP2001127285A publication Critical patent/JP2001127285A/en
Application granted granted Critical
Publication of JP3484690B2 publication Critical patent/JP3484690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vertical field-effect transistor which decreases in on-state resistance without reducing resistance to pressure between a drain electrode and a source electrode. SOLUTION: On the bottoms and the sides of a plurality of P-type base regions 24 provided on an N-type drain region 22, P-type electric field relaxing layers 31 are provided which are 1×1015 atoms/cm3 to 1×10 atoms/cm3 in concentration of impurity. And then, a region between the adjacent electric field relaxing layers 31 is formed as an N-type connecting region 23a, which is substantially equal to the electric field relaxing layer 31 in impurity concentration. A surface layer of the N-type connecting region 23a is formed as an N-type connecting region 23b, which is equal to the drain region 22 in impurity concentration. A distance is set between the adjacent electric field relaxing layers 31 such that the connecting regions 23a and 23b are depleted completely while an off-control voltage is applied to the gate electrode and a reverse voltage applied between the drain electrode 30 and the source electrode 29 is set at 100 V or lower.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は縦型電界効果トラン
ジスタに関し、特に、高出力特性をもつ絶縁ゲート型の
縦型電界効果トランジスタに関する。
The present invention relates to a vertical field effect transistor, and more particularly to an insulated gate vertical field effect transistor having high output characteristics.

【0002】[0002]

【従来の技術】この種の縦型電界効果トランジスタであ
るゲートプレーナ型のパワーMOSFETが特許第2771
172号公報に開示されている。以下、この公報に開示さ
れたMOSFETに略同一のMOSFETを図4を参照
して説明する。高濃度のN+ 型半導体基板1に、低濃度
のN- 型ドレイン領域2をエピタキシアル成長法で形成
する。次に、イオン注入法によりN型不純物イオンをイ
オン注入し、熱拡散を行ない、N+ 型接続領域3aを形
成する。次に、N+ 型接続領域3aの上から、P型不純
物イオンをイオン注入して、N+ 型接続領域3aの表面
のN型不純物濃度を薄めて、N- 型ドレイン領域2の濃
度と同程度のN- 型接続領域3bを形成する。次に、ゲ
ート酸化膜8aを形成し、その上に多結晶層を成長させ
ゲート電極7を形成する。次に、ゲート電極7の上に絶
縁膜8bを形成して、ゲート電極7を絶縁する。次に、
イオン注入法、CVD法、ドライエッチング法及び金属
蒸着法等を用いて、P型ベース領域4、P+ 型拡散層
5、N+ 型ソース領域6、ソース電極9及びドレイン電
極10を形成する。
2. Description of the Related Art A gate planar type power MOSFET which is a vertical field effect transistor of this kind is disclosed in Japanese Patent No. 2771.
No. 172 publication. Hereinafter, a MOSFET substantially the same as the MOSFET disclosed in this publication will be described with reference to FIG. A low-concentration N- type drain region 2 is formed on a high-concentration N + type semiconductor substrate 1 by an epitaxial growth method. Next, N-type impurity ions are implanted by ion implantation, and thermal diffusion is performed to form an N @ + -type connection region 3a. Next, P-type impurity ions are ion-implanted from above the N + -type connection region 3a to reduce the N-type impurity concentration on the surface of the N + -type connection region 3a, and the same as the concentration of the N − -type drain region 2. N-type connection region 3b is formed. Next, a gate oxide film 8a is formed, and a polycrystalline layer is grown thereon to form a gate electrode 7. Next, an insulating film 8b is formed on the gate electrode 7 to insulate the gate electrode 7. next,
A P-type base region 4, a P + -type diffusion layer 5, an N + -type source region 6, a source electrode 9 and a drain electrode 10 are formed by ion implantation, CVD, dry etching, metal deposition, or the like.

【0003】[0003]

【発明が解決しようとする課題】ところで、この種の縦
型電界効果トランジスタのチップを小型化する場合、チ
ップのトータルオン抵抗を増加させないためには、単位
面積当りのオン抵抗Ronを小さくする必要があるが、こ
れは高集積化技術の向上に伴い単位セルのサイズを縮小
することにより単位面積当りのセル数を増加させ、その
結果、単位面積当りのゲート幅を広くすることにより実
現してきた。しかし、上記構成のMOSFETの場合、
小型化を進めていくに従い、ベース領域4間の接続領域
3a,3bの幅も狭くなり、オン抵抗Ronに対して接続
領域3a,3bでのJFET成分による抵抗RJFET
が支配的となってくるため、さらに小型化を進めようと
するとオン抵抗Ronが下がらなくなる。そこで、抵抗R
JFETを下げるために、N+ 型接続領域3aの不純物濃度を
高めることが考えられるが、N+ 型接続領域3aの不純
物濃度を高めようとすると、図5に示すように、ゲート
電極7にオフ制御電圧を印加しドレイン電極とソース電
極間に逆電圧を印加したときのベース領域4と接続領域
3a,3b間のPN接合のN側に広がる空乏層の伸びが
少なくなりN+ 型接続領域3aを完全に空乏化しなくな
って空乏層がフラットでなくなり、ベース領域4の底面
と側面とによるR形状の角部周辺に電界が集中し、この
ベース領域4の角部の曲率によりドレイン電極とソース
電極間耐圧が決定され、この空乏層がフラットのときよ
り耐圧低下する。N+ 型接続領域3aを不純物濃度を高
めたうえで完全に空乏化するにはベース領域4間を狭く
すればよいが、反対に抵抗RJFETが高くなり、結
局、オン抵抗Ronを下げることができない。また、この
耐圧低下はドレイン領域2の厚さを厚くすることにより
ベース領域4の角部周辺の電界集中を緩和することによ
りある程度避けることが可能であるが、ドレイン領域2
の厚さを厚くすることによりその抵抗Rdが高くなり、
結局、オン抵抗Ronを下げることができない。本発明の
目的はドレイン電極とソース電極間耐圧を下げずにオン
抵抗Ronを低減した縦型電界効果トランジスタを提供す
ることにある。
However, when downsizing a vertical field effect transistor chip of this kind, it is necessary to reduce the on-resistance Ron per unit area so as not to increase the total on-resistance of the chip. However, this has been realized by increasing the number of cells per unit area by reducing the size of the unit cell and improving the gate width per unit area as the integration technology improves. . However, in the case of the MOSFET having the above configuration,
As the miniaturization progresses, the width of the connection regions 3a and 3b between the base regions 4 also decreases, and the resistance R JFET due to the JFET component in the connection regions 3a and 3b becomes smaller than the ON resistance Ron.
Becomes dominant, so that if the size is further reduced, the on-resistance Ron will not decrease. Then, the resistance R
In order to lower the JFET , it is conceivable to increase the impurity concentration of the N + -type connection region 3a. However, if the impurity concentration of the N + -type connection region 3a is to be increased, as shown in FIG. When a control voltage is applied and a reverse voltage is applied between the drain electrode and the source electrode, the extension of the depletion layer spreading to the N side of the PN junction between the base region 4 and the connection regions 3a and 3b is reduced, and the N + type connection region 3a Is not completely depleted, the depletion layer is no longer flat, and an electric field is concentrated around the R-shaped corner formed by the bottom surface and the side surface of the base region 4, and the curvature of the corner of the base region 4 causes the drain electrode and the source electrode The breakdown voltage is determined, and the breakdown voltage is lower than when the depletion layer is flat. In order to completely deplete the N + type connection region 3a after increasing the impurity concentration, it is necessary to narrow the space between the base regions 4. On the other hand, the resistance RJFET is increased, and eventually the on-resistance Ron is reduced. Can not. This reduction in withstand voltage can be avoided to some extent by increasing the thickness of the drain region 2 to reduce the electric field concentration around the corner of the base region 4.
The resistance Rd is increased by increasing the thickness of
As a result, the on-resistance Ron cannot be reduced. An object of the present invention is to provide a vertical field effect transistor in which the on-resistance Ron is reduced without lowering the withstand voltage between the drain electrode and the source electrode.

【0004】[0004]

【課題を解決するための手段】(1)本発明に係る縦型
電界効果トランジスタは、ゲート電極にオン制御電圧を
印加してドレイン電極とソース電極間に印加した電圧に
より隣接する他導電型のベース領域に挟まれた一導電型
の接続領域を経由してベース領域のチャネルに電流を流
す縦型電界効果トランジスタにおいて、前記ベース領域
の底面および側面の周りにベース領域と同一導電型でベ
ース領域より不純物濃度範囲が低濃度の他導電型電界緩
和層を配置するとともに、前記接続領域の不純物濃度範
囲を前記電界緩和層と同一とし、ゲート電極にオフ制御
電圧を印加したとき前記ドレイン電極とソース電極間に
印加する逆電圧が100V以内で前記接続領域を完全に
空乏化するようにしたことを特徴とする。上記手段によ
れば、ゲート電極にオフ制御電圧を印加しドレイン電極
とソース電極間に逆電圧を印加したとき、電界緩和層に
より電界緩和層の底面と側面とによるR形状の角部周辺
の電界集中を緩和できるとともに、電界緩和層と接続領
域間のPN接合の一導電型側への空乏層の広がりをフラ
ット化できるため、ほぼドレイン領域の厚さと抵抗率で
耐圧を決定することができ、従来と同レベルの耐圧を確
保する場合はドレイン領域の厚さを薄く、または抵抗率
を小さくできるため、ドレイン領域の厚さおよび抵抗率
で決まる抵抗Rdを低減することができ、したがって、
単位面積当りのオン抵抗Ronを低減することができる。 (2)本発明に係る縦型電界効果トランジスタは、上記
(1)項において、前記電界緩和層の不純物濃度範囲が
1×1015atoms/cm3〜1×1016atoms/cm3の範
囲内であることを特徴とする。 (3)本発明に係る縦型電界効果トランジスタは、上記
(1)または(2)項において、前記接続領域の不純物
濃度がエピタキシャル成長により得られた抵抗率により
決定されていることを特徴とする。 (4)本発明に係る縦型電界効果トランジスタは、上記
(1)乃至(3)項のうち1つにおいて、前記電界緩和
層および前記接続領域が低濃度一導電型ドレイン領域上
に配置され、前記接続領域がその表面層に前記ドレイン
領域の不純物濃度範囲と同一の低濃度一導電型接続領域
を有することを特徴とする。 (5)本発明に係る縦型電界効果トランジスタは、半導
体基板上に低濃度に形成した一導電型ドレイン領域と、
このドレイン領域上に中濃度に形成した一導電型接続領
域と、この接続領域上にゲート酸化膜を介して形成した
ゲート電極と、このゲート電極をマスクに前記接続領域
に複数個形成した他導電型ベース領域と、前記ゲート電
極をマスクに前記各ベース領域と同一個所にベース領域
より深く低濃度で、かつ、前記接続領域と不純物濃度範
囲を同一に形成した他導電型電界緩和層と、前記ゲート
電極をマスクに前記ベース領域に高濃度に形成した一導
電型ソース領域とを有する。 (6)本発明に係る縦型電界効果トランジスタは、上記
(5)項において、前記電界緩和層および前記接続領域
の不純物濃度が1×1015atoms/cm3〜1×1016at
oms/cm3の範囲内である。 (7)本発明に係る縦型電界効果トランジスタは、上記
(5)または(6)項において、前記接続領域がエピタ
キシャル成長により形成されている。 (8)本発明に係る縦型電界効果トランジスタは、上記
(6)または(7)項において、前記複数の電界緩和層
のうち隣接する電界緩和層間の離間距離を、前記ドレイ
ン領域と前記ソース領域間に印加する逆電圧が100V
以内で前記接続領域を完全に空乏化する距離としてい
る。 (9)本発明に係る縦型電界効果トランジスタは、上記
(5)乃至(8)項のうち1つにおいて、前記接続領域
が前記ゲート酸化膜下の表面層に前記ドレイン領域と不
純物濃度範囲を同一に形成した一導電型接続領域を有す
る。
(1) In a vertical field effect transistor according to the present invention, an on-control voltage is applied to a gate electrode, and a voltage applied between a drain electrode and a source electrode causes an adjacent other conductivity type transistor to be turned on. In a vertical field-effect transistor in which a current flows through a channel of a base region through a connection region of one conductivity type sandwiched between base regions, the base region has the same conductivity type as the base region around the bottom surface and side surfaces of the base region. The other conductivity type electric field relaxation layer having a lower impurity concentration range is arranged, and the impurity concentration range of the connection region is the same as that of the electric field relaxation layer. When an off control voltage is applied to the gate electrode, the drain electrode and the source are reduced. The connection region is completely depleted when the reverse voltage applied between the electrodes is within 100 V. According to the above means, when an off-control voltage is applied to the gate electrode and a reverse voltage is applied between the drain electrode and the source electrode, the electric field in the vicinity of the R-shaped corner formed by the bottom surface and the side surface of the electric field relaxation layer by the electric field relaxation layer The concentration can be alleviated, and the spread of the depletion layer to the one conductivity type side of the PN junction between the electric field relaxation layer and the connection region can be flattened. Therefore, the breakdown voltage can be determined substantially by the thickness and resistivity of the drain region. In order to ensure the same level of breakdown voltage as before, the thickness of the drain region can be reduced or the resistivity can be reduced, so that the resistance Rd determined by the thickness and the resistivity of the drain region can be reduced.
The on-resistance Ron per unit area can be reduced. (2) In the vertical field effect transistor according to the present invention, in the above item (1), the impurity concentration range of the electric field relaxation layer is in a range of 1 × 10 15 atoms / cm 3 to 1 × 10 16 atoms / cm 3 . It is characterized by being. (3) In the vertical field effect transistor according to the present invention, in the above item (1) or (2), the impurity concentration of the connection region is determined by a resistivity obtained by epitaxial growth. (4) In the vertical field effect transistor according to the present invention, in any one of the above items (1) to (3), the electric field relaxation layer and the connection region are arranged on a low-concentration one-conductivity-type drain region; The connection region has a low-concentration one-conductivity-type connection region in a surface layer thereof, which is the same as the impurity concentration range of the drain region. (5) A vertical field-effect transistor according to the present invention includes a one-conductivity-type drain region formed on a semiconductor substrate at a low concentration;
One conductivity type connection region formed at a medium concentration on the drain region, a gate electrode formed on the connection region via a gate oxide film, and a plurality of other conductive regions formed on the connection region using the gate electrode as a mask. A base region, and a different conductivity type electric field relaxation layer in which the gate electrode is used as a mask and the base region is deeper and lower in concentration than the base region at the same location as each base region, and the impurity concentration range is the same as the connection region. A source region of one conductivity type formed at a high concentration in the base region using the gate electrode as a mask. (6) In the vertical field effect transistor according to the present invention, in the above item (5), the electric field relaxation layer and the connection region have an impurity concentration of 1 × 10 15 atoms / cm 3 to 1 × 10 16 at.
oms / cm 3 . (7) In the vertical field effect transistor according to the present invention, in the above item (5) or (6), the connection region is formed by epitaxial growth. (8) In the vertical field effect transistor according to the present invention, in the above item (6) or (7), the distance between the adjacent electric field relaxation layers among the plurality of electric field relaxation layers is set to the drain region and the source region. 100V reverse voltage applied between
Within this range, the connection region is completely depleted. (9) In the vertical field-effect transistor according to the present invention, in any one of the above-mentioned items (5) to (8), the connection region is formed such that the drain region and the impurity concentration range are formed in a surface layer below the gate oxide film. It has one conductive type connection region formed identically.

【0005】[0005]

【発明の実施の形態】以下に、本発明に基づき1実施例
のNチャネル型MOSFETを図1を参照して説明す
る。まず、構成を説明すると、図において、21は高濃
度一導電型であるN+ 型半導体基板で、この半導体基板
21上に低濃度一導電型であるN- 型ドレイン層22を
有し、このドレイン層22上に不純物濃度が1×1015
atoms/cm3〜1×1016atoms/cm3の範囲内の低濃
度他導電型である複数のP- 型電界緩和層31を有して
いる。各電界緩和層31の表面層に電界緩和層31より
不純物濃度が高い中濃度他導電型であるP型ベース領域
24を有し、各ベース領域24の表面層にN+ 型ソース
領域26と高濃度他導電型であるP+ 型拡散層25とを
有している。電界緩和層31のうち隣接する電界緩和層
31間に深さが電界緩和層31の深さと略同一で不純物
濃度が1×1015atoms/cm3〜1×1016atoms/c
3の範囲内の中濃度一導電型であるN型接続領域23
aと、この表面層に形成し不純物濃度がドレイン領域2
2と同程度のN- 型接続領域23bとを有している。ソ
ース領域26の一部、ベース領域24、電界緩和層31
およびN- 型接続領域23b上にゲート酸化膜28aを
介してゲート電極27を有し、チップ表面側に絶縁膜2
8bのコンタクト窓を介してP+ 型拡散層25とソース
領域26とに電気的接触するソース電極29を有し、チ
ップ裏面側に半導体基板21に電気的接触するドレイン
電極30を有している。尚、隣接する電界緩和層31間
の間隔はゲート電極27にオフ制御電圧を印加しドレイ
ン電極30とソース電極29間に逆電圧を印加したとき
にN型接続領域23aが100V以下で完全に空乏化す
るように離間している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An N-channel MOSFET according to an embodiment of the present invention will be described below with reference to FIG. First, the structure will be described. In the figure, reference numeral 21 denotes an N + -type semiconductor substrate having a high concentration and one conductivity type, and an N − -type drain layer 22 having a low concentration and one conductivity type is provided on the semiconductor substrate 21. An impurity concentration of 1 × 10 15 on the drain layer 22
It has a plurality of P − -type electric field relaxation layers 31 of low concentration and other conductivity type in the range of atoms / cm 3 to 1 × 10 16 atoms / cm 3 . The surface layer of each electric field relaxation layer 31 has a P-type base region 24 of a medium concentration and other conductivity type having a higher impurity concentration than that of the electric field relaxation layer 31. And a P + -type diffusion layer 25 of another conductivity type. The depth between adjacent electric field relaxation layers 31 of the electric field relaxation layers 31 is substantially the same as the depth of the electric field relaxation layers 31 and the impurity concentration is 1 × 10 15 atoms / cm 3 to 1 × 10 16 atoms / c.
N-type connection region 23 of a medium-concentration one conductivity type in the range of m 3
a and the impurity concentration formed on this surface layer
2 and an N-type connection region 23b of the same order. Part of source region 26, base region 24, electric field relaxation layer 31
And a gate electrode 27 on the N @-type connection region 23b via a gate oxide film 28a.
A source electrode 29 electrically contacts the P + type diffusion layer 25 and the source region 26 through the contact window 8b, and a drain electrode 30 electrically contacts the semiconductor substrate 21 on the back surface of the chip. . The space between adjacent electric field relaxation layers 31 is completely depleted when the off-control voltage is applied to the gate electrode 27 and a reverse voltage is applied between the drain electrode 30 and the source electrode 29 when the N-type connection region 23a is 100 V or less. Are separated from each other.

【0006】上記構成によれば、ゲート電極27にオフ
制御電圧を印加しドレイン電極30とソース電極29間
に逆電圧を印加したとき、電界緩和層31により電界緩
和層31の底面と側面とによるR形状の角部周辺の電界
集中を緩和できるとともに、電界緩和層31と接続領域
23a,23b間のPN接合の空乏層のN側への広がり
を図3に示すようにフラット化できるため、ほぼドレイ
ン領域22の厚さと抵抗率で耐圧を決定することがで
き、従来と同レベルの耐圧を確保する場合はドレイン領
域22の厚さを薄く、または抵抗率を小さくできるた
め、ドレイン領域22の厚さおよび抵抗率で決まる抵抗
Rdを低減することができ、したがって、単位面積当り
のオン抵抗Ronを低減することができる。
According to the above configuration, when an off-control voltage is applied to the gate electrode 27 and a reverse voltage is applied between the drain electrode 30 and the source electrode 29, the electric field relaxation layer 31 causes the bottom surface and the side surfaces of the electric field relaxation layer 31 to move. Since the electric field concentration around the corners of the R shape can be alleviated and the depletion layer of the PN junction between the electric field relaxation layer 31 and the connection regions 23a and 23b on the N side can be flattened as shown in FIG. The withstand voltage can be determined by the thickness and the resistivity of the drain region 22, and when the same level of withstand voltage as in the related art is ensured, the thickness of the drain region 22 can be reduced or the resistivity can be reduced. And the resistance Rd determined by the resistivity can be reduced, and therefore, the on-resistance Ron per unit area can be reduced.

【0007】次に製造方法を図2(a)〜(b)と図1
を参照して説明する。先ず、第1工程はこの工程の完了
後を図2(a)に示すように、N+ 型半導体基板21上
に、例えば、600V以上の耐圧を確保できるように、
厚さおよび抵抗率を選択したN- 型ドレイン領域22を
エピタキシャル成長法により形成して後、ドレイン領域
22上に、例えば、厚さ5μmで、不純物濃度が1×1
15atoms/cm3〜1×1016atoms/cm3の範囲内と
なる抵抗率を選択したN型接続領域23aをエピタキシ
ャル成長法により形成し、さらにN型接続領域23aの
極浅い表面層がドレイン領域22の不純物濃度と同程度
となるように、イオン注入法によりイオン注入条件を選
択してP型不純物イオンをイオン注入して、その表面層
のN型不純物濃度を薄めて、N- 型接続領域23bを形
成する。
Next, the manufacturing method will be described with reference to FIGS.
This will be described with reference to FIG. First, as shown in FIG. 2A, after the completion of this step, a first step is performed so that a withstand voltage of, for example, 600 V or more can be secured on the N + type semiconductor substrate 21.
After an N − -type drain region 22 having a selected thickness and resistivity is formed by an epitaxial growth method, an impurity concentration of, for example, 5 μm and an impurity concentration of 1 × 1 is formed on the drain region 22.
An N-type connection region 23a having a resistivity selected from a range of 0 15 atoms / cm 3 to 1 × 10 16 atoms / cm 3 is formed by epitaxial growth, and an extremely shallow surface layer of the N-type connection region 23a is drained. P-type impurity ions are ion-implanted by selecting ion-implantation conditions by the ion-implantation method so that the impurity concentration becomes substantially equal to the impurity concentration of the region 22, the N-type impurity concentration in the surface layer is reduced, and the N− type connection is performed. The region 23b is formed.

【0008】次に、第2工程はこの工程の完了後を図2
(b)に示すように、第1工程完了後、N- 型接続領域
23bの表面にゲート酸化膜28aを熱酸化により形成
し、その表面にCVD法により多結晶シリコン層を成長
させ、その多結晶シリコン層をフォトリソグラフィ法お
よびドライエッチ法により選択的に残してゲート電極2
7を形成する。この後、ゲート電極27をマスクとし
て、拡散深さがN- 型ドレイン領域22とN型接続領域
23aとの境界に略同一で、P型不純物の濃度がベース
領域24より低く、1×1015atoms/cm3〜1×10
16atoms/cm3の範囲内となるP- 型電界緩和層31を
イオン注入法および熱拡散法によりイオン注入条件およ
び熱拡散条件を選択して形成する。尚、隣接する電界緩
和層31間の間隔は、ドレイン電極30とソース電極2
9間に逆電圧印加時にN型接続領域23aが100V以
内で完全に空乏化するように離間する。
Next, in a second step, FIG.
As shown in FIG. 2B, after the completion of the first step, a gate oxide film 28a is formed on the surface of the N @-type connection region 23b by thermal oxidation, and a polycrystalline silicon layer is grown on the surface by the CVD method. The gate electrode 2 is formed by selectively leaving the crystalline silicon layer by photolithography and dry etching.
7 is formed. Thereafter, using gate electrode 27 as a mask, the diffusion depth is substantially the same as the boundary between N − type drain region 22 and N type connection region 23a, the concentration of P type impurity is lower than that of base region 24, and 1 × 10 15 atoms / cm 3 -1 × 10
A P − -type electric field relaxation layer 31 having a range of 16 atoms / cm 3 is formed by selecting an ion implantation condition and a thermal diffusion condition by an ion implantation method and a thermal diffusion method. The distance between the adjacent electric field relaxation layers 31 is determined by the distance between the drain electrode 30 and the source electrode 2.
During the application of a reverse voltage, the N-type connection regions 23a are completely depleted within 100 V during the application of the reverse voltage.

【0009】以下のP型ベース領域24、P+ 型ベース
領域25、N+ 型ソース領域26、絶縁膜28b、ソー
ス電極29およびドレイン電極30は、公知の方法で形
成する。
The following P-type base region 24, P + -type base region 25, N + -type source region 26, insulating film 28b, source electrode 29 and drain electrode 30 are formed by a known method.

【0010】上記実施例において、一導電型としてN型
および他導電型としてP型で説明したが、一導電型とし
てP型および他導電型としてN型であってもよい。ま
た、N型接続領域23aをエピタキシャル成長法で形成
することで説明したが、N- 型ドレイン領域22の表面
層にイオン注入法、または,拡散法で形成することもで
きる。また、N型接続領域23aの表面層にN- 型接続
領域23bを形成したもので説明したが、N- 型接続領
域23bを形成していなくてもよい。
In the above embodiment, the N-type is used as one conductivity type and the P-type is used as another conductivity type, but the P-type may be used as one conductivity type and the N-type may be used as another conductivity type. Further, the N-type connection region 23a has been described as being formed by the epitaxial growth method. However, the N-type connection region 23a may be formed in the surface layer of the N − -type drain region 22 by the ion implantation method or the diffusion method. Further, although the description has been given of the case where the N− type connection region 23b is formed on the surface layer of the N− type connection region 23a, the N− type connection region 23b may not be formed.

【0011】[0011]

【発明の効果】本発明によれば、ベース領域の底面およ
び側面の周りにベース領域と同一導電型でベース領域よ
り低濃度の他導電型電界緩和層を設けるとともに、一導
電型接続領域の濃度を電界緩和層と略同一とし、ゲート
電極にオフ制御電圧を印加しドレイン電極とソース電極
間に逆電圧を印加したとき100V以内で接続領域が完
全に空乏化するように隣接する低濃度他導電型ベース領
域間の間隔を離間するようにしたので、耐圧を下げずに
単位面積当りのオン抵抗Ronを低減することができ、従
来よりさらにチップ小型化を可能とする。
According to the present invention, an electric field relaxation layer of the other conductivity type having the same conductivity type as the base region and having a lower concentration than the base region is provided around the bottom surface and side surfaces of the base region. Is approximately the same as the electric field relaxation layer, and when an off-control voltage is applied to the gate electrode and a reverse voltage is applied between the drain electrode and the source electrode, the adjacent low-concentration other conductive layers are completely depleted within 100 V when the connection region is completely depleted. Since the interval between the mold base regions is increased, the on-resistance Ron per unit area can be reduced without lowering the withstand voltage, and the chip can be further reduced in size as compared with the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の1実施例である縦型パワーMOSF
ETの要部断面図。
FIG. 1 is a vertical power MOSF according to an embodiment of the present invention.
Sectional drawing of the principal part of ET.

【図2】 図1の縦型パワーMOSFETの製造工程を
示す要部断面図。
FIG. 2 is an essential part cross sectional view showing a manufacturing step of the vertical power MOSFET of FIG. 1;

【図3】 図1の縦型パワーMOSFETでの空乏層の
形成状況を示す模式断面図。
FIG. 3 is a schematic cross-sectional view showing how a depletion layer is formed in the vertical power MOSFET of FIG.

【図4】 従来の縦型パワーMOSFETの要部断面
図。
FIG. 4 is a sectional view of a main part of a conventional vertical power MOSFET.

【図5】 図5の縦型パワーMOSFETでの空乏層の
形成状況を示す模式断面図。
FIG. 5 is a schematic cross-sectional view showing how a depletion layer is formed in the vertical power MOSFET of FIG.

【符号の説明】[Explanation of symbols]

21 半導体基板 22 N- 型ドレイン領域 23a N型接続領域 23b N- 型接続領域 24 P型ベース領域 25 P+ 型拡散層 26 N+ 型ソース領域 27 ゲート電極 28a ゲート酸化膜 28b 絶縁膜 29 ソース電極 30 ドレイン電極 31 P- 型電界緩和層 Reference Signs List 21 semiconductor substrate 22 N- type drain region 23a N-type connection region 23b N- type connection region 24 P-type base region 25 P + -type diffusion layer 26 N + -type source region 27 Gate electrode 28a Gate oxide film 28b Insulating film 29 Source electrode Reference Signs List 30 drain electrode 31 P- type electric field relaxation layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】ゲート電極にオン制御電圧を印加してドレ
イン電極とソース電極間に印加した電圧により隣接する
他導電型のベース領域に挟まれた一導電型の接続領域を
経由してベース領域のチャネルに電流を流す縦型電界効
果トランジスタにおいて、 前記ベース領域の底面および側面の周りにベース領域と
同一導電型でベース領域より不純物濃度範囲が低濃度の
他導電型電界緩和層を配置するとともに、前記接続領域
の不純物濃度範囲を前記電界緩和層と同一とし、ゲート
電極にオフ制御電圧を印加したとき前記ドレイン電極と
ソース電極間に印加する逆電圧が100V以内で前記接
続領域を完全に空乏化するようにしたことを特徴とする
縦型電界効果トランジスタ。
An ON control voltage is applied to a gate electrode, and a voltage applied between a drain electrode and a source electrode is applied to a base region via a connection region of one conductivity type sandwiched between adjacent base regions of another conductivity type. A vertical field-effect transistor that allows a current to flow through the channel of the other conductivity type around the bottom surface and side surfaces of the base region, the other conductivity type electric field relaxation layer having the same conductivity type as the base region and a lower impurity concentration range than the base region. The connection region is completely depleted when the reverse concentration applied between the drain electrode and the source electrode is within 100 V when an off-control voltage is applied to the gate electrode, with the impurity concentration range of the connection region being the same as that of the electric field relaxation layer. A vertical field-effect transistor, characterized in that the transistor is formed into a vertical field-effect transistor.
【請求項2】前記電界緩和層の不純物濃度範囲が1×1
15atoms/cm3〜1×1016atoms/cm3の範囲内で
あることを特徴とする請求項1記載の縦型電界効果トラ
ンジスタ。
2. An impurity concentration range of said electric field relaxation layer is 1 × 1.
2. The vertical field effect transistor according to claim 1, wherein the range is from 0 15 atoms / cm 3 to 1 × 10 16 atoms / cm 3 .
【請求項3】前記接続領域の不純物濃度がエピタキシャ
ル成長により得られた抵抗率により決定されていること
を特徴とする請求項1または請求項2記載の縦型電界効
果トランジスタ。
3. The vertical field effect transistor according to claim 1, wherein the impurity concentration of the connection region is determined by a resistivity obtained by epitaxial growth.
【請求項4】前記電界緩和層および前記接続領域が低濃
度一導電型ドレイン領域上に配置され、前記接続領域が
その表面層に前記ドレイン領域の不純物濃度範囲と同一
の低濃度一導電型接続領域を有することを特徴とする請
求項1乃至請求項3のうち1つに記載の縦型電界効果ト
ランジスタ。
4. The low-concentration one-conductivity-type connection, wherein the electric-field relaxation layer and the connection region are disposed on a low-concentration one-conductivity-type drain region. The vertical field effect transistor according to claim 1, further comprising a region.
【請求項5】半導体基板上に低濃度に形成した一導電型
ドレイン領域と、このドレイン領域上に中濃度に形成し
た一導電型接続領域と、この接続領域上にゲート酸化膜
を介して形成したゲート電極と、このゲート電極をマス
クに前記接続領域に複数個形成した他導電型ベース領域
と、前記ゲート電極をマスクに前記各ベース領域と同一
個所にベース領域より深く低濃度で、かつ、前記接続領
域と不純物濃度範囲を同一に形成した他導電型電界緩和
層と、前記ゲート電極をマスクに前記ベース領域に高濃
度に形成した一導電型ソース領域とを有する縦型電界効
果トランジスタ。
5. A drain region of one conductivity type formed at a low concentration on a semiconductor substrate, a connection region of one conductivity type formed at a medium concentration on the drain region, and a gate oxide film formed on the connection region. A gate electrode, a plurality of other conductivity type base regions formed in the connection region using the gate electrode as a mask, and a lower concentration deeper than the base region at the same location as the base region using the gate electrode as a mask, and A vertical field effect transistor comprising: a different conductivity type electric field relaxation layer having the same impurity concentration range as the connection region; and a one conductivity type source region formed at a high concentration in the base region using the gate electrode as a mask.
【請求項6】前記電界緩和層および前記接続領域の不純
物濃度が1×1015atoms/cm3〜1×1016atoms/
cm3の範囲内である請求項5記載の縦型電界効果トラ
ンジスタ。
6. An impurity concentration of the electric field relaxation layer and the connection region is 1 × 10 15 atoms / cm 3 to 1 × 10 16 atoms / cm.
6. The vertical field-effect transistor according to claim 5, which is in a range of cm 3 .
【請求項7】前記接続領域がエピタキシャル成長により
形成された請求項5または請求項6記載の縦型電界効果
トランジスタ。
7. The vertical field effect transistor according to claim 5, wherein said connection region is formed by epitaxial growth.
【請求項8】前記複数の電界緩和層のうち隣接する電界
緩和層間の離間距離を、オフ制御のとき、前記ドレイン
領域と前記ソース領域間に印加する逆電圧が100V以
内で前記接続領域を完全に空乏化する距離とした請求項
6または請求項7記載の縦型電界効果トランジスタ。
8. When the distance between adjacent electric field relaxation layers of the plurality of electric field relaxation layers is controlled to be off, the connection region is completely formed when a reverse voltage applied between the drain region and the source region is within 100V. The vertical field-effect transistor according to claim 6 or 7, wherein the depletion distance is set to a depletion distance.
【請求項9】前記接続領域が前記ゲート酸化膜下の表面
層に前記ドレイン領域と不純物濃度範囲を同一に形成し
た一導電型接続領域を有する請求項5乃至請求項8のう
ち1つに記載の縦型電界効果トランジスタ。
9. The connection region according to claim 5, wherein the connection region has a one-conductivity-type connection region formed in the surface layer below the gate oxide film and having the same impurity concentration range as the drain region. Vertical field effect transistor.
JP30477499A 1999-10-27 1999-10-27 Vertical field-effect transistor Expired - Fee Related JP3484690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30477499A JP3484690B2 (en) 1999-10-27 1999-10-27 Vertical field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30477499A JP3484690B2 (en) 1999-10-27 1999-10-27 Vertical field-effect transistor

Publications (2)

Publication Number Publication Date
JP2001127285A true JP2001127285A (en) 2001-05-11
JP3484690B2 JP3484690B2 (en) 2004-01-06

Family

ID=17937073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30477499A Expired - Fee Related JP3484690B2 (en) 1999-10-27 1999-10-27 Vertical field-effect transistor

Country Status (1)

Country Link
JP (1) JP3484690B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1313147A2 (en) 2001-11-14 2003-05-21 Kabushiki Kaisha Toshiba Power MOSFET device
JP2006294990A (en) * 2005-04-13 2006-10-26 Rohm Co Ltd Semiconductor device
JP2007184434A (en) * 2006-01-10 2007-07-19 Mitsubishi Electric Corp Semiconductor device and manufacturing method thereof
JP2007299843A (en) * 2006-04-28 2007-11-15 Nissan Motor Co Ltd Semiconductor device, and its fabrication process
EP2089907A1 (en) * 2006-12-07 2009-08-19 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method for manufacturing the same
JP2011003919A (en) * 2010-08-23 2011-01-06 Sumitomo Electric Ind Ltd Semiconductor device and method of manufacturing the same
JP2012059744A (en) * 2010-09-06 2012-03-22 Toshiba Corp Semiconductor device
WO2012060248A1 (en) * 2010-11-01 2012-05-10 住友電気工業株式会社 Semiconductor device and manufacturing method therefor
JP5015361B2 (en) * 2010-10-29 2012-08-29 パナソニック株式会社 Semiconductor element and semiconductor device
JP2014508409A (en) * 2011-02-12 2014-04-03 フリースケール セミコンダクター インコーポレイテッド Semiconductor device and related formation method
JP2021034524A (en) * 2019-08-22 2021-03-01 富士電機株式会社 Nitride semiconductor device and method of manufacturing nitride semiconductor device
CN115332318A (en) * 2022-10-13 2022-11-11 杭州士兰集成电路有限公司 Silicon carbide VDMOS device and preparation method thereof
EP4310920A1 (en) * 2022-07-22 2024-01-24 Nexperia B.V. A vertical oriented semiconductor device comprising well regions having two lateral doping gradients at different depths and a corresponding manufacturing method
EP4310919A1 (en) * 2022-07-22 2024-01-24 Nexperia B.V. A vertical oriented semiconductor device comprising well regions having a lateral doping gradient and corresponding manufacturing method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1313147A3 (en) * 2001-11-14 2008-01-02 Kabushiki Kaisha Toshiba Power MOSFET device
EP1313147A2 (en) 2001-11-14 2003-05-21 Kabushiki Kaisha Toshiba Power MOSFET device
JP2006294990A (en) * 2005-04-13 2006-10-26 Rohm Co Ltd Semiconductor device
EP1870940A1 (en) * 2005-04-13 2007-12-26 Rohm Co., Ltd. Semiconductor device
EP1870940A4 (en) * 2005-04-13 2008-05-28 Rohm Co Ltd Semiconductor device
JP2007184434A (en) * 2006-01-10 2007-07-19 Mitsubishi Electric Corp Semiconductor device and manufacturing method thereof
JP4727426B2 (en) * 2006-01-10 2011-07-20 三菱電機株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2007299843A (en) * 2006-04-28 2007-11-15 Nissan Motor Co Ltd Semiconductor device, and its fabrication process
US8343833B2 (en) 2006-12-07 2013-01-01 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method for manufacturing the same
EP2089907A1 (en) * 2006-12-07 2009-08-19 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method for manufacturing the same
EP2089907A4 (en) * 2006-12-07 2011-05-25 Shindengen Electric Mfg Semiconductor device and method for manufacturing the same
JP2011003919A (en) * 2010-08-23 2011-01-06 Sumitomo Electric Ind Ltd Semiconductor device and method of manufacturing the same
US9029869B2 (en) 2010-09-06 2015-05-12 Kabushiki Kaisha Toshiba Semiconductor device
JP2012059744A (en) * 2010-09-06 2012-03-22 Toshiba Corp Semiconductor device
JP5015361B2 (en) * 2010-10-29 2012-08-29 パナソニック株式会社 Semiconductor element and semiconductor device
JP2012099601A (en) * 2010-11-01 2012-05-24 Sumitomo Electric Ind Ltd Semiconductor device and method of manufacturing the same
WO2012060248A1 (en) * 2010-11-01 2012-05-10 住友電気工業株式会社 Semiconductor device and manufacturing method therefor
US9443960B2 (en) 2010-11-01 2016-09-13 Sumitomo Electric Industries, Ltd. Semiconductor device and fabrication method thereof
US9006745B2 (en) 2010-11-01 2015-04-14 Sumitomo Electric Industries, Ltd. Semiconductor device and fabrication method thereof
US9105495B2 (en) 2011-02-12 2015-08-11 Freescale Semiconductor, Inc. Semiconductor device and related fabrication methods
JP2014508409A (en) * 2011-02-12 2014-04-03 フリースケール セミコンダクター インコーポレイテッド Semiconductor device and related formation method
JP2021034524A (en) * 2019-08-22 2021-03-01 富士電機株式会社 Nitride semiconductor device and method of manufacturing nitride semiconductor device
JP7404710B2 (en) 2019-08-22 2023-12-26 富士電機株式会社 Nitride semiconductor device and method for manufacturing nitride semiconductor device
EP4310920A1 (en) * 2022-07-22 2024-01-24 Nexperia B.V. A vertical oriented semiconductor device comprising well regions having two lateral doping gradients at different depths and a corresponding manufacturing method
EP4310919A1 (en) * 2022-07-22 2024-01-24 Nexperia B.V. A vertical oriented semiconductor device comprising well regions having a lateral doping gradient and corresponding manufacturing method
CN115332318A (en) * 2022-10-13 2022-11-11 杭州士兰集成电路有限公司 Silicon carbide VDMOS device and preparation method thereof

Also Published As

Publication number Publication date
JP3484690B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
KR100859701B1 (en) High voltage LDMOS transistor and method for fabricating the same
TWI544648B (en) Planar srfet using no additional masks and layout method
US8039346B2 (en) Insulated gate silicon carbide semiconductor device and method for manufacturing the same
EP1033759B1 (en) MOS-gated device having a buried gate and process for forming same
US7649223B2 (en) Semiconductor device having superjunction structure and method for manufacturing the same
US7560787B2 (en) Trench field plate termination for power devices
JP4024503B2 (en) Semiconductor device and manufacturing method thereof
TWI412071B (en) Method of forming a self-aligned charge balanced power dmos
US20080315297A1 (en) Semiconductor device
US20240222498A1 (en) Semiconductor device including trench gate structure and buried shielding region and method of manufacturing
JP2007123887A (en) Lateral dmos transistor comprising retrograde region and manufacturing method thereof
JP2004511910A (en) Trench double diffused metal oxide semiconductor transistor incorporating trench Schottky rectifier
JPH08181313A (en) Lateral-trench misfet and its manufacture
JP2003324196A (en) Vertical mosfet and method for manufacturing the same
US6198129B1 (en) Vertical type insulated gate transistor
JP2006186145A (en) Semiconductor device and manufacturing method thereof
KR20180097510A (en) A source-gate region structure in a vertical power semiconductor device
JP4063353B2 (en) Manufacturing method of trench gate type MOS field effect transistor
JP2001127285A (en) Vertical field-effect transistor
JP3826828B2 (en) Field effect transistor using silicon carbide semiconductor
JP2000269487A (en) Semiconductor device and its manufacture
JP2003142698A (en) Power semiconductor device
WO2012071297A2 (en) Vertical dmos-field effect transistor
US6703665B1 (en) Transistor
JPH0494576A (en) Vertical power mos fet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees