JP2002072267A - 光機能素子、該素子用単結晶基板、およびその使用方法 - Google Patents

光機能素子、該素子用単結晶基板、およびその使用方法

Info

Publication number
JP2002072267A
JP2002072267A JP2000255253A JP2000255253A JP2002072267A JP 2002072267 A JP2002072267 A JP 2002072267A JP 2000255253 A JP2000255253 A JP 2000255253A JP 2000255253 A JP2000255253 A JP 2000255253A JP 2002072267 A JP2002072267 A JP 2002072267A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
optical
domain
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000255253A
Other languages
English (en)
Inventor
Yasunori Furukawa
保典 古川
Kenji Kitamura
健二 北村
Shunji Takegawa
俊二 竹川
Masaru Nakamura
優 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2000255253A priority Critical patent/JP2002072267A/ja
Priority to EP01105151A priority patent/EP1182490A3/en
Priority to US09/797,596 priority patent/US6747787B2/en
Publication of JP2002072267A publication Critical patent/JP2002072267A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0018Electro-optical materials
    • G02F1/0027Ferro-electric materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/20LiNbO3, LiTaO3

Abstract

(57)【要約】 (修正有) 【課題】 光学的歪みのない分極反転構造を精度良くか
つ均一に作成する。 【解決手段】 Li/Nbのモル比が0.95〜1.01の範囲のLiN
bO3結晶を基板として用いた強誘電体単結晶基板の一部
に、電子ビーム走査照射法または電圧印加法を用いてキ
ュリー温度以下の温度で分極反転構造を形成し、この分
極反転部を通過した光を制御する光機能素子。熱処理な
しに2%以下の伝搬ロスおよび1×10-4以下の光学的歪み
が得られる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、レーザ光を利用し
た光情報処理、光加工技術、光通信技術、光計測制御等
々の分野で利用する、LiNbO3単結晶基板の分極反転構造
を利用して光を制御する光機能素子、光機能素子用単結
晶基板、光機能素子用単結晶基板の使用方法に関する。
【0002】
【従来の技術】代表的な強誘電体単結晶として知られて
いるニオブ酸リチウム(LiNbO3)単結晶(以下適宜LNと
略記する)は、主に表面弾性波素子の基板として使用さ
れている。この結晶は、大口径で組成均質性の高い単結
晶が比較的安価で供給可能である。さらに、可視から赤
外の広い波長域で透明であり、数十kV/mm程度の高電界
を加えることで室温でも強誘電体分極を反転することが
可能なことから、近年、分極反転構造を利用した非線形
光学素子や電気光学素子など各種光機能素子の基板とし
ても注目されている。
【0003】特に、近年では、近赤外波長の半導体レー
ザを非線形光学効果により半波長の青色光に変換する導
波路型の光第二高調波発生(SHG)素子の開発が期待さ
れており、なかでも、光ディスクの高密度記録・再生用
光源として、LNなどの無機強誘電体単結晶の分極を周期
的に反転した構造の素子を用いた波長変換素子は最も良
く研究されている。この波長変換素子は疑似位相整合
(Quasi Phase Matching; QPM)方式によるもので、基
本波と高調波の伝搬定数の差を周期構造で補償して位相
整合をとる方式である。
【0004】この方式では、高い変換効率が得られるこ
と、出力光の平行ビーム化・回折限界集光が容易である
こと、適用できる材料や波長に制限がないことなど、多
くの優れた特徴を持っている。QPMのための周期構造と
しては、SHG係数(d33係数)の符号を周期的に反転した
構造が高い効率を得る上で最も有効であり、強誘電体結
晶ではd係数の正負は強誘電体分極の極性に対応するの
で、強誘電分極ドメインを周期的に反転させる形成技術
が重要である。
【0005】この方式を用いて、公知文献(L.E.Myers
et al., Optics Letters, 21, p591,1996)にあるよう
に、LN単結晶に約21kV/mmの電界を加え、周期反転構造
を作成した、QPM方式によるパラメトリック発振の波長
変換素子が報告されている。さらに、公知文献(A. Har
ada et al., Optics Letters, 22,p805,1997)にあるよ
うに、コロナ放電法を用いMgO を添加したLN単結晶に4.
75ミクロンの周期で分極反転構造を形成して、波長946n
mのレーザ光から473nmの青色SHG光を高効率で変換したS
HGレーザについても報告されている。
【0006】また、電気光学効果を利用した光学素子に
おいては、例えば、公知文献(M. Yamada et al., App
l.Phys.Lett., 69,p3659,1996)によると、強誘電体結
晶であるLN単結晶に高電圧を印加することで、結晶中に
レンズやプリズム状の分極反転構造を形成し、これを通
過したレーザ光を電気光学効果を利用して偏向する光素
子やシリンドリカルレンズ、ビームスキャナー、スイッ
チなどが新しい光素子として注目され、LN単結晶も基板
材料として有望とされている。
【0007】これまでに報告された、強誘電体LN単結晶
の分極反転構造を利用した波長変換素子や電気光学素子
は、いずれの場合にも基板結晶としては、市販されてい
る無添加またはMgO添加のコングルエント組成のLN単結
晶が用いられてきた。
【0008】この理由は、これまで、入手可能なLN単結
晶は、工業的な面から安価で大口径の育成が可能なチョ
クラルスキー法で育成されたコングルエント組成の結晶
に限られているためである。LN結晶では、ストイキオメ
トリ組成(化学量論組成または以下定比組成とよぶ)と
コングルエント組成(一致溶融組成)は一致しないこと
は、温度-組成比の相関図(相図)から良く知られてい
る。
【0009】コングルエント組成のみが融液組成と結晶
組成とが一致し、結晶全体にわたって均一組成の結晶を
育成することが出来る組成であるため、現在、各種用途
に製造、使用されているLN単結晶の組成は、Li2O/(Nb2O
5+Li2O)のモル分率が約0.485(Li/Nbのモル比は約0.9
4)のコングルエント組成である。
【0010】このため、従来のコングルエント組成LN単
結晶は、Nb成分が過剰であるため、数%に達するNbイオ
ンがLiイオンを置き換えている(アンチサイト欠陥)
し、Liイオンサイトにやはり数%の空位欠陥をもたらし
ている。この影響は表面弾性波素子応用としては深刻で
ないとしても、光学素子応用には無視することはできな
い。このため、光機能素子応用への基板として、不定比
の欠陥を減らした定比に近い組成を持つ結晶の開発が望
まれていた。
【0011】相図からわかるように、例えば、LN単結晶
の場合、Li濃度が定比よりも高い組成の融液から定比に
近い組成の結晶が析出できる。しかし、従来から、大口
径のLN結晶を工業的に大量生産する手段として使用され
ているチョクラルスキー法を用いて定比組成結晶を育成
しようとした場合には、結晶の析出に伴ってLi成分の過
剰分が坩堝内に残されることになり、融液のLiとNbの組
成比が徐々に変化するため、育成開始後すぐに融液組成
比は共晶点に至ってしまう。このため、結晶の固化率は
わずか10%程度に制限され、析出した結晶の品質も光
機能素子応用に使用できるものではなかった。
【0012】本発明者等は、従来の市販されているコン
グルエント組成のLN結晶と異なる新規物質として、コン
グルエント組成の不定比欠陥濃度を大幅に低減したLi2O
/(Nb2O5+Li2O)のモル分率が0.495〜0.50(Li/Nbのモ
ル比は約0.98〜1.00)の定比組成に近いニオブ酸リチウ
ム単結晶の発明をなし、特許出願した(特開平10-45497
号公報)。また、この新規結晶に関して下記のように文
献報告した。
【0013】この不定比欠陥を低減して高品質結晶を開
発する手段として、本発明者等は、例えば、公知文献
(K. Kitamura et al., Journal of Crystal Growth 第
116巻、1992年発行、第327〜332頁、または北村健二
他、応用物理、第65巻、第9号1996年発行 第931〜935
頁)において、原料を連続的に供給しながら育成する方
法(以後原料連続供給二重るつぼ法と略記する)を提案
している。
【0014】例えば、定比組成に近いLN単結晶の育成に
おいては、具体的には、育成融液のLi2O/(Nb2O5+Li2
O)のモル分率をLi成分の過剰の0.56〜0.60とし、るつ
ぼを二重構造にして内側のるつぼから定比組成に近いLi
2O/(Nb2O5+Li2O)のモル分率が0.498〜0.502(Li/Nb
のモル比は約0.99〜1.01)のLN結晶も引き上げることが
できた。
【0015】引き上げている結晶の重量を随時測定する
ことで成長レートを求め、そのレートで結晶と同じ定比
組成の成分の原料粉末を外るつぼと内るつぼの間に連続
的に供給するという方法を用いることで、長尺の結晶育
成が可能となり、原料供給量に対して100%の結晶固
化率が実現されている。
【0016】また、本発明者等による最近の公知文献
(北村健二他、日本結晶成長学会誌、第25巻、第3号、1
998年発行、第A4頁)によれば、上記の定比組成に近い
無添加のLN単結晶(Li/Nbモル比で0.98〜1.0)では、分
極反転に要する印加電界が従来の1/5程度で済むことを
報告した。すなわち、従来のコングルエント組成結晶に
おける数%の不定比欠陥(アンチサイト欠陥や空位欠
陥)の存在が、LN結晶が本来有する光学特性や、周期的
な分極構造を作成するのに必要な印加電圧を高くしてい
る可能性があることを報告している。
【0017】さらに、本発明者等による最近の公知文献
(Y. Furukawa et al., Journal ofCrystal Growth 第2
11巻、2000年発行、第230〜236頁)によれば、定比組成
に近い組成の結晶では、従来のコングルエント組成結晶
の耐光損傷性を向上させるために5mol%以上必要とされ
ていたMg等の添加量は1mol%程度の少量の添加でも、十
分に耐光損傷性が向上できることを報告している。
【0018】この場合、MgがLiサイトも置換するのでMg
の添加量が増えるに従いLi/Nbモル比は無添加の結晶に
較べて小さくなり、得られた結晶のLi/Nbモル比は0.95
〜1.0となっている。このように、ストイキオメトリッ
ク組成LNはコングルエント組成LNに対し、わずかなモル
分率の変化であるが、化学量論比に近づくに従いその結
晶特性は大幅に異なる。特に、結晶のLi/Nbのモル比が
0.95〜1.01の範囲で従来のコングルエント組成の結晶と
は大きく異なる光学特性を有する。
【0019】
【発明が解決しようとする課題】強誘電体単結晶の基板
上に分極反転構造を形成し、分極反転部を通過する光の
非線形光学効果や電気光学効果との相互作用を利用した
光機能素子を実現する上で最も重要な技術は、数個〜数
百個にも及ぶ数ミクロンから数十ミクロンサイズの分極
反転構造を精度良くかつ均一に作成することである。分
極反転形成方法として、電子ビーム照射法や電圧印加法
がよく知られており一般的によく使用されている。これ
ら光機能素子では分極反転部を光を通過させて使用する
ために、特に、それぞれの分極反転境界部に光学的歪み
やロスがあると素子全体としては非常に大きな光学的な
不均一性を引き起こしてしまうため、高効率の素子が実
現できなくなる。
【0020】分極反転部の境界には光学的歪みが発生
し、10-3〜10-4以上の非常に大きな屈折率変化が生じ
る。これが通過レーザ光の散乱をもたらし、これによっ
て素子動作も理想条件からずれるため素子効率が低下す
るという大きな問題があることが、公知例(V. Gopalan
et al., J.Appl. Phys.第80巻, 1996年, 6104頁)にお
いて指摘されている。
【0021】このため、前記の公知文献(L.E.Myers et
al., Optics Letters, 21, p591,1996)にあるよう
に、LN単結晶に約21kV/mmの電界を加え、周期反転構造
を作成した後に、結晶を120℃で1時間加熱し光学的歪み
を緩和させなければならないことが報告されている。
【0022】また、前記公知文献(M. Yamada et al.,
Appl.Phys.Lett., 69,p3659,1996)によると、強誘電体
結晶であるLN単結晶に高電圧を印加することで、結晶中
にレンズやプリズム状の分極反転構造を形成した光学素
子においても、電圧印加による分極反転形成後に熱処理
が必要で、この場合には、結晶基板を500℃に大気中で
加熱し5時間も熱処理することが、分極反転部の光学的
歪みを除去するために不可欠であることが報告されてい
る。
【0023】従来の電圧印加法では、通常、zカットの
コングルエント組成のLN単結晶を用い、結晶の片面に周
期電極を、反対面に一様電極を設けて、試料を室温また
は200℃程度までに加熱し、電極を通じてパルス電圧を
印加することで周期電極直下の部分をz軸方位に向けて
分極反転させている。従来のコングルエント組成のLN単
結晶の場合には、分極反転に必要な印加電界は21kV/mm
以上と高電圧が必要とされている。
【0024】このような分極反転技術は、キュリー温度
以下の温度で強制的に分極の方向、すなわち結晶中のNb
やLiイオンの位置を変えるわけである。LN単結晶におい
て分極反転に必要とされる高電界が、光学的歪みを引き
起こす直接の原因であるとは必ずしも言えないことがわ
かっている。
【0025】すなわち、前記公知文献(A. Harada et a
l., Optics Letters, 22,p805,1997)において、MgO を
5モル%添加したコングルエント組成のLN単結晶では分極
反転に必要とされる電界が通常のコングルエント組成よ
り約1/5程度に小さくなるが、この材料を用いた場合で
も、コロナ放電法を用いてMgO を添加したLN単結晶に4.
75ミクロン周期で分極反転構造を形成したSHGレーザを
作成する場合には、光学的歪みを除去するために約500
℃で3時間加熱することが必要とされることが報告され
ている。
【0026】このような従来のコングルエント組成LN結
晶を基板に用い、基板上に分極反転構造を形成した素子
の分極反転境界を偏光顕微鏡で観察すると、図1の(a)
に様子を示したように大きな光学的歪みがすべての分極
反転境界部において観察された。さらに分極反転部を横
切るように使用するレーザ光を通過させると数%から十
数%もの非常に大きな伝搬ロスが観察された。このよう
な分極反転境界における光学的歪みの発生は、大きな伝
搬ロスの問題だけではなく、この光学的歪みを緩和する
ための光機能素子の製作における余分な熱処理工程を必
要とさせることにもなる。
【0027】さらに大きな問題は、歪み除去のための熱
処理中に、単一分極基板の一部に電圧印加法などで一旦
形成された数ミクロンサイズの分極反転部で、焦電効果
が発生し結晶が破壊したり、反転分極のサイズや位置が
ほんのわずかであるが変化させることである。この変化
は高効率の素子を再現性良く作成するうえで大きな問題
となった。
【0028】
【課題を解決するための手段】本発明者は、前記従来の
問題を解決するため、強誘電体単結晶としてLN単結晶の
特性究明を鋭意継続していたところ、定比組成に近い組
成のLN単結晶は、分極反転を形成しても反転境界部での
光学的歪や光の伝搬ロスが非常に小さく、これを基板に
用いることで分極反転構造を持つ光機能素子として優れ
た特性を有することを見いだした。
【0029】すなわち、強誘電体単結晶基板の一部に、
電子ビーム走査照射法または電圧印加法を用いてキュリ
ー温度以下の温度で分極反転構造を形成し、この分極反
転部を通過した光を制御する光機能素子であって、Li/N
bのモル比が0.95〜1.01の範囲のLiNbO3結晶を基板とし
て用いたことで分極反転構造を形成直後の分極反転部を
通過させた光の伝搬ロスが2%以下であることを特徴と
する。
【0030】さらに、強誘電体単結晶基板の一部に、電
子ビーム走査照射法または電圧印加法を用いてキュリー
温度以下の温度で分極反転構造を形成し、この分極反転
部を通過した光を制御する光機能素子であって、Li/Nb
のモル比が0.95〜1.01の範囲のLiNbO3結晶を基板として
用いたことで、強誘電体単結晶の自発分極の方向反転に
伴う分極反転境界部での光学的歪みを除去するための加
熱工程なしに分極反転境界部の屈折率変化が1×10-4
下であることを特徴とする。
【0031】また、前記光機能素子に用いる強誘電体単
結晶基板は、Mg,Zn,Sc,Inから選ばれる少なくとも一つ
の元素を0.1〜4.8モル%ドーピングして含有するLi/Nb
のモル比が0.95〜1.00の範囲のLiNbO3結晶であることを
特徴とする。
【0032】また、本発明の光機能素子用単結晶基板
は、電子ビーム走査照射法または電圧印加法によりキュ
リー温度以下の温度での分極反転構造を形成する強誘電
体単結晶基板において、Li/Nbのモル比が0.95〜1.01の
範囲のLiNbO3結晶を基板として用いることで、熱処理な
しに2%以下の伝搬ロスおよび1×10-4以下の光学的歪み
が得られることを特徴とする。
【0033】また、本発明の光機能素子の変換効率を向
上させる方法は、非線形光学効果を利用して周期的反転
分極構造を持つ単結晶内に入射したレーザの波長変換を
行う光機能素子基板に、Li/Nbのモル比が0.95〜1.01の
範囲のLiNbO3結晶を用いたことを特徴とする。
【0034】また、本発明の光機能素子の駆動効率を向
上させる方法は、電気光学効果を利用してリズムまたは
レンズ形状に反転した分極構造を持つ単結晶内に入射さ
れたレーザ光の偏光または集光を制御する光機能素子基
板に、Li/Nbのモル比が0.95〜1.01の範囲のLiNbO3結晶
を用いたことを特徴とする。
【0035】本発明者らは、強誘電体単結晶の分極反転
構造を利用した光機能素子における素子性能や分極反転
制御性の問題点は単結晶基板にあることを突き止めた。
本発明は、強誘電体単結晶の分極反転構造を利用した光
機能素子用途として、ある組成範囲にあるLN結晶単結晶
基板に着目した点にある。Li/Nbのモル比が0.95〜1.01
の範囲であるニオブ酸リチウム単結晶が従来の材料の特
性と異なり、分極反転素子材料の品質を大幅に向上させ
ることが可能になった。これを利用することで、光機能
素子の特性も飛躍的に向上することが明らかになった。
【0036】今回見いだされた分極反転特性について
も、このモル分率を有するLN単結晶特有の効果である。
定比組成に近いLN単結晶は、原料連続供給二重坩堝法に
よって、最近ようやく光学的に均質な基板作製が可能に
なった結晶であり、その光学特性については、未だ総て
が明らかにされていない。
【0037】特にこれらの結晶の分極反転境界の光学特
性については、本発明者らが初めて明らかにしたもので
ある。また、この特性を利用した光機能素子特性の大幅
な向上については、さらに未開拓な分野であった。
【0038】
【発明の実施の形態】次に本発明の光機能素子として用
いられるLN単結晶の製造方法と物性を示す。市販の高純
度Li2O、Nb2O5の原料粉末を準備し、Li2O:Nb2O5の比が
0.54:0.46〜0.60:0.40のLi成分過剰原料を混合し
た。また、Li2O:Nb2O5=0.50:0.50の定比組成原料を
混合した。次に、1ton/cm2の静水圧でラバープレス成
形し、それぞれを約1050℃の大気中で焼結し原料棒を作
成した。また、混合済みの定比組成原料を連続供給用原
料として、約1150℃の大気中で焼結し、粉砕し、大きさ
が50ミクロン以上500ミクロンのサイズの範囲で分級し
た。
【0039】次に、二重るつぼ法による単結晶育成に際
して、作成したLi成分過剰原料からなる原料棒を内側お
よび外側るつぼに予め充填し、次にるつぼを加熱してLi
成分過剰な融液を作成した。Mg添加の効果を確認する実
験では、この充填の際に、市販の高純度MgCO3を内側お
よび外側るつぼに予め0.1〜4.8mol%の範囲で充填した。
【0040】次に、原料連続供給型二重坩堝法を用いて
定比組成に近いLN単結晶の育成を行った。二重るつぼ内
のLi成分過剰組成の融液に種結晶を漬け、定比組成に近
い、すなわち、不定比欠陥濃度を極力抑えた単結晶を得
た。不定比欠陥の密度や構造を精密に制御するために、
結晶化した成長量に見合った量のLi2O /(Nb2O5+Li2O)
のモル分率が0.50の化学量論組成比の原料を外側坩堝に
自動的に供給しながら結晶を育成した。
【0041】ここで、育成に用いた坩堝は白金でできて
おり、外側るつぼは直径125mm高さ70mm、内側るつぼは
直径85mm高さ90mmとした。この場合にも融液組成を均一
化させるために育成に際して坩堝を3rpmの速度で種結晶
と反対方向に回転させた。育成条件は結晶回転速度を15
rpm、引き上げ速度は0.5mm/hで一定とし、育成雰囲気を
大気中とした。約1週間の育成により直径約49〜52mm、
長さ約65〜75mmの大きさで、クラックのない無色透明
のLN結晶体を得た。
【0042】得られた全ての結晶に関して、結晶の上
部、中心、下部の3ヶ所から試料を切り出しLi/Nbモル比
を化学分析より求めた。化学分析では組成比の絶対値を
精度良く求めるために、非常に慎重に組成を分析した。
分析は同一試料について数カ所の異なる分析装置を用い
て評価した結果の平均値として求めた。その結果、LN単
結晶の場合、定比に最も近い組成ではLi/Nbモル比が0.9
9〜0.01であった。
【0043】一方、Mgを添加した結晶ではMgがLiやNbサ
イトを置換していくので、Mgの添加量が増えるに従いLi
/Nbモル比は変化し、得られた結晶のLi/Nbモル比は0.95
より大きく1.0より小さい範囲にあった。Mg以外にZn、S
c、Inを添加した場合には元素の種類によって結晶内で
の偏析係数は異なるため、添加量に対する結晶内含有量
は異なるものの、いずれの添加元素においても、添加元
素がLiやNbサイトを置換していくので、添加元素の添加
量が増えるに従いLi/Nbモル比は変化し、得られた結晶
のLi/Nbモル比は0.95より大きく1.0より小さい範囲にあ
った。
【0044】一方、キュリー温度測定による組成評価に
おいては、予め定比組成に調合し1150℃で焼結した定比
組成の標準焼結試料のキュリー温度は1200℃であること
を確認し、この値と上記原料連続供給二重るつぼで育成
したLN単結晶のキュリー温度を比較した。キュリー温度
測定によるLi/Nbモル比の評価結果も化学分析の結果と
ほぼ一致し、また、1本の結晶内での結晶組成の均質性
も極めて良いことを確認した。
【0045】次に、単一分域化状態にあるLN単結晶から
大きさが35mm×35mm×40mmのブロック状試料を切り出
し、メカノケミカル研磨により表面研磨を行った。試料
の光学的均質性をマッハツエンダー干渉法により評価し
たところ、マクロな欠陥や光学的に不均一な部分は見ら
れず、試料内の屈折率変化は1×10-5以下が得られ光学
的均質性に優れていることが確認された。
【0046】従来から市販されてきたコングルエント組
成のLN単結晶基板は単結晶育成技術の制約から多量のNb
成分が過剰のものである。Li/Nbモル比が0.94であるた
め数%にもおよぶ多量の不定比欠陥を含んでいる。一
方、本発明者等は、原料連続供給二重坩堝法によってLi
成分過剰の融液から結晶を育成し、より定比組成に近い
Li/Nbモル比が0.95〜1.01のLN単結晶が育成でき、Nb成
分過剰による不定比欠陥濃度を低減した単結晶が光機能
素子基板として優れた特性を示すことを初めて明らかに
したものである。
【0047】すなわち、従来の結晶における過剰なNbに
より形成される多量の不定比欠陥が、分極反転構造を利
用する光機能素子応用にとって大きな問題を引き起こす
ことを見い出した。この欠陥の存在によって、分極反転
に必要な印加電圧と自発分極の関係を示すヒステリシス
曲線は非対称的になり、分極反転には数十kV/mmの高電
界が必要とされ、しかも分極反転を行うとその反転境界
部には大きな光学的歪みと伝搬ロスが導入されることが
分かった。さらに、不定比欠陥が多く結晶内部で欠陥が
不均一に分布しており欠陥濃度が高いような箇所では分
極反転がピンニングされやすいために、より大きな歪み
が蓄積され結晶の破壊の原因になることが明らかになっ
た。
【0048】図1は、LN単結晶を基板に用いて、両面光
学研磨された厚み0.5mmの基板上に電圧印加法により周
期的分極反転構造を形成した後に、分極反転部を偏光顕
微鏡で詳細に観察した様子の一例を示している。分極反
転の周期は約3〜4μmとし、波長850nm帯の基本波に対し
て擬似位相整合するように設計した。
【0049】図1(a)は、従来のコングルエント組成のLN
単結晶を基板に用いた場合の様子である。図1 (b)は、
基板に上述した定比組成に近い組成のLN単結晶を用いた
場合の様子である。両者の違いは明らかで、図1(a)で
は、分極反転部に非常に大きな光学的歪みがあるのが観
察されたのに対し、図1 (b)では、偏光顕微鏡下で光は
均一に透過し歪みは観察されなかった。
【0050】さらに、結晶基板にさまざまな形状と大き
さの分極反転を形成し、基板の違いによる分極反転境界
部での歪みを観察し、レーザ干渉法により分極反転境界
での屈折率の大きさを評価すると従来結晶では8×10-3
〜3×10-4と非常に大きな屈折率変化が観察された。一
方、本発明での結晶基板を用いた光機能素子では、熱処
理を行わなくても光学的歪みは1×10-4以下が得られる
ことが確認された。
【0051】さらに図2は、室温〜200℃付近の温度で電
子ビーム照射法および電圧印加法で周期的分極反転構造
を形成した、長さ5mm、厚さ0.5mmの各種組成のLN単結晶
の両端面を鏡面研磨し、分極反転部を伝搬していく光が
結晶内部で散乱や歪みなどで引き起こされる伝搬ロスの
大きさを評価した結果を示したグラフである。
【0052】同一組成の試料であっても、分極反転作成
時の印加電圧、電極の形状、電極材質、温度などによっ
て伝搬ロスにはばらつきが見られた。Li/Nbモル比が0.9
4のコングルエント組成結晶では、伝搬ロスは4〜8%と
非常に大きいことが分かった。これに対して、Li/Nbモ
ル比が0.98〜1.01と定比に近い無添加のLN単結晶や、3
モル%程度のMgOを含むLi/Nbモル比0.95のLN単結晶など
多くの結晶で伝搬ロスが2%以下が得られ、中には0.1%
以下の伝搬ロスの良質な分極反転結晶も得られた。
【0053】さらに図3は、室温付近の温度で電子ビー
ム照射法および電圧印加法で周期的分極反転構造を形成
した、長さ5mm、厚さ0.5mmの結晶の分極反転部を通過し
ていく光の伝搬ロスが熱処理によってどれだけ低減でき
るかを示したグラフである。
【0054】従来のコングルエント組成結晶を用いると
分極反転処理後は、散乱や光学歪みなどの影響によりロ
スは非常に大きく、コングルエントLN結晶では、かなり
高温度に基板を加熱してやらないとロスが下がらない結
果が得られた。これに対して、本発明の定比組成に近い
LN単結晶を基板に用いた場合には熱処理をしなくてもロ
スは小さく光機能素子の性能向上が期待できることが明
らかである。
【0055】LN単結晶では、キュリー温度より高温の常
誘電相において、LiとNbイオンは電気的中性位置に配置
しているが、キュリー温度以下の強誘電相ではLiおよび
Nbイオン、またはLiおよびTaイオンが+zもしくは-z方向
に少しずれる。このイオンのずれの方向によってドメイ
ンの正負の分極方向が決定されている。分極反転構造を
持つ光機能素子では、高電界を加えることでこのイオン
を低温で強制的に移動させることが必要になる。
【0056】一致溶融組成の不定比欠陥が多い場合には
Liサイトに入った過剰のNbを移動させることは容易では
ないため、分極反転には大きな印加電圧が必要となる。
さらに、高電圧を印加して強制的に分極を反転させるわ
けであるから、その境界部には大きな光学的歪みが導入
されると考えられる。現状では、本発明で見られた光学
的歪みや伝搬ロスの低減の原因について、結晶の反転電
圧や内部電界の大きさだけでは十分な説明ができている
わけではない。
【0057】しかしながら、不定比欠陥を多量に含む従
来のコングルエント組成結晶よりも、不定比欠陥を1桁
以上低減した光学歪みやロスの小さな定比組成に近いLN
単結晶が分極反転素子の基板として優れることは明らか
である。このことから、強誘電体単結晶基板として定比
組成に近い組成のLN単結晶を用いることで、分極反転を
形成しても反転境界部での光学的歪みを示さず、分極反
転境界部での光学的歪みを除去するための加熱工程なし
に、分極反転境界部の屈折率変化が1×10-4以下が得ら
れるため、分極反転構造の制御性に優れ、レーザ光の散
乱がなく伝搬ロスが小さく光機能素子として優れた特性
を有する。
【0058】
【実施例】以下実施例を用いて、本発明をさらに具体的
に説明する。 実施例1 LN単結晶を光波長変換素子に適用した場合の特性につい
て説明する。図4は定比組成に近い単結晶(Li/Nbモル比
が0.98〜1.01の無添加LN単結晶)を基板に用いて、基板
上に周期的分極反転構造を形成したQPMデバイスの概
略構成図である。両面光学研磨された厚み0.30mm〜3.0m
mの基板6の+z面に櫛形電極と平行電極をパターニング
した。周期は約3.2μmで、波長約850nmの基本波に対し
て擬似位相整合するように設計された。上記組成の結晶
基板の−z面は、電極を全面に蒸着した。櫛形電極と平
行電極の間、および櫛形電極と−z面の裏面電極に、そ
れぞれ3〜4kV/mm程度の従来のコングルエント結晶より1
/5程度の低い電界を印加して、絶縁破壊なしに周期的分
極反転領域2を形成した。
【0059】本実施例においては周期状分極反転構造の
分極反転部を偏光顕微鏡で詳細に観察したが光学的歪み
は見られなかった。また、分極反転部にレーザ光を通過
させたが、レーザ光の散乱は全く観察されず、このた
め、熱処理は全く不要で、しかも高効率の波長変換が得
られた。用いたLN結晶は予め分極状態は非常に均一化さ
れている。結晶に周期状の分極反転を形成する際にも、
定比組成に近いLN単結晶においては、結晶の均一性に優
れているため、均一な分極反転構造の形成が可能にな
る。
【0060】このように、従来のコングルエント組成の
LN結晶を基板として用いたときに見られた問題は解決さ
れていた。さらに、分極反転構造を形成した後、結晶を
取り外し、断面となる結晶のy面を研摩、フッ酸・硝酸
の混合液でエッチングして、分極の反転の様子を調べ
た。周期分極反転幅比その分極の形は印加電圧のパルス
幅や電流を最適化することで、試料全体にわたり周期分
極の分極反転幅比を理想的な比に精度よく作成すること
ができていることが確認された。
【0061】周期分極反転構造の形成は厚みが1mm以上
の試料についても同様に高精度に形成が可能であった。
しかも光学的歪みは見られず、伝搬損失も0.2%以下と
非常に少なかった。これらの厚い試料では、特に、分極
反転後の熱処理が不要なことは大きなメリットとなっ
た。これは、1mm以上の厚さを持つ試料では、部分的な
結晶のマクロな欠陥や、電極の不均一、熱的な不均一が
あると、光学的歪みを除去する熱処理中に分極反転境界
部が容易に移動したり、焦電効果で結晶が破壊してしま
う問題があったからである。このため、本実施例で作成
された光学的均一性と分極反転制御性に優れた光機能素
子は、特に伝搬ロスの小さなことが要求される内部共振
器型の波長変換素子として最適であると考えられる。
【0062】QPM-SHGデバイスの特性の評価は基本波と
して、波長可変高出力Tiサファイヤレーザ(波長850n
m)を用いて行い、高効率の光波長変換が確認できた。
その様子を図5に示す。従来のコングルエント組成LN結
晶を基板に用いた場合、熱処理前ではほとんど効率良い
波長変換は得られない。熱処理により変換効率が改善さ
れる様子が見られたが、本発明の光素子ではより高い変
換効率が得られている。
【0063】この理由は、伝搬ロスが小さいことが大き
な理由として考えられる。さらに、基板の非線形光学定
数が大きいことに加え、光学的歪みがなく、かつ熱処理
不要のため分極反転構造の完全性がより高いことも高性
能な光機能素子が得られるのに寄与していると考えられ
る。
【0064】また、ここでは、850nm付近の近赤外光の
基本波に対して青色光を発生するQPM-SHG素子を作成し
た実施例に付いて詳しく述べたが、本発明によれば、基
本波がこの二つの波長に限ることはなく、LN単結晶が透
明でかつ位相整合が可能である波長域に関して適用する
ことが可能である。
【0065】さらに、LN単結晶の分極構造を周期的に反
転させ、可視から近赤外域の波長を持った入射レーザの
波長を短波長化あるいは長波長化させる本発明の光機能
素子は第二高調波発生素子に限らず、光パラメトリック
発振素子や差周波、和周波発生素子をはじめ、光スイッ
チや光変調器など分極反転構造を利用する高性能光素子
を実現することが可能である。その応用も、さらにはリ
モートセンシング、ガス検知をはじめとする応用分野
や、波長ミキサーやパルス成形素子などの光通信分野へ
の適用も可能である。
【0066】ここでは、強誘電体単結晶基板の一部にキ
ュリー温度以下の温度において分極反転構造を形成する
実施例として、電圧印加法を用いたLN単結晶の光機能素
子について説明したが、キュリー温度以下の温度におけ
る分極反転構造を形成する方法として、電子ビーム走査
照射法であっても同様の効果が得られる。
【0067】実施例2 定比組成に近い (Li/Nbモル比が0.98〜1.01の無添加LN
単結晶)を基板に用いて、レンズやプリズム状の分極反
転構造を作製し電気光学効果を利用した偏向素子や、シ
リンドリカルレンズ、ビームスキャナー、スイッチなど
の光素子を製作した。
【0068】図6および図7は、それぞれレンズおよびプ
リズム状の分極反転構造を作成し、作成した電気光学効
果を利用して単結晶内に入射されたレーザ光を制御する
フォーカシングおよびスキャンニングを行う光機能素子
の概略構成図である。直径1.5インチ、厚み0.2〜2.0m
m、両面研摩されたz-カットの上述したLN単結晶を準備
し、両z面に厚さ約200nmのAl電極をスパッタリングに
より形成し、リソグラフを用いて、レンズやプリズム状
パターンを形成した。その後、+z面にパルス状の電圧
を約2.5〜5KV/mmで印加し分極を反転させた。
【0069】本実施例においては分極反転部を偏光顕微
鏡で詳細に観察したが光学的歪みは見られなかった。ま
た、分極反転部にレーザ光を通過させたが、レーザ光の
散乱は全く観察されず、このため、熱処理は全く不要
で、しかも光機能素子が得られた。用いたLN結晶は予め
分極状態は非常に均一化されている。さらに結晶の端面
を鏡面研磨仕上げを行い、レーザ光の入出射面とした。
【0070】試作した分極反転構造による屈折率の反転
を形成したLN単結晶の電気光学効果を利用した光素子の
性能は、レンズやプリズム状の分極反転構造の設計や分
極反転構造の作製プロセスの精度、および材料の持つ電
気光学定数の大きさで決定された。本実施例のレンズや
プリズム状パターンの分極反転構造で、特筆すべきこと
は分極反転性境界での伝搬ロスと光学的歪みがなく、か
つ分極反転性の制御が非常に容易であることから良好な
素子特性が得られたことである。
【0071】従来の一致溶融組成のLN結晶では反転周期
が短くなり反転構造が複雑になると、精度の良いレンズ
やプリズム状の分極反転構造の作製は困難で、かつ熱処
理が必要であった。これに対し、定比組成に近いLN単結
晶を、分極反転構造を利用した光機能素子用途として用
いることにより、光機能素子の高精度な分極反転の形成
が可能であった。
【0072】さらに、本結晶は一致溶融組成の結晶より
も大きな電気光学定数r33を有しているので、より小さ
な動作電圧でより優れたデバイス性能が得られた。例え
ば偏向素子の場合には約600V/mmの電界で約6℃と大き
な偏向角が得られた。また、約100V/mm近傍で動作する
レンズや、約500V/mmでのスイッチング動作も得られ
た。
【0073】ここでは、強誘電体単結晶基板の一部にキ
ュリー温度以下の温度において分極反転構造を形成する
実施例として、電圧印加法を用いたLN単結晶の光機能素
子について説明したが、キュリー温度以下の温度におけ
る分極反転構造を形成する方法として、電子ビーム走査
照射法であっても同様の効果が得られる。
【0074】
【発明の効果】以上詳しく述べたように、本発明によれ
ば、強誘電体単結晶基板の一部に、キュリー温度以下の
温度において、電子ビーム走査照射法、または電圧印加
法を用いて分極反転構造を形成し、この分極反転部を通
過した光を制御する光機能素子において、強誘電体単結
晶としてLi/Nbのモル比が0.95〜1.01の範囲の定比組成
に近い組成のLN単結晶を用いることによって、2%以下
の伝搬ロスが得られ、自発分極の方向反転に伴う分極反
転境界部での光学的歪みを除去するための加熱工程なし
に、分極反転境界部の屈折率変化が1×10-4以下を得る
ことができるため、分域境界で歪みがなく、かつ光学的
均質性と分極反転制御性とに優れた素子が実現できるた
め、光機能素子特性の大幅な向上が期待できる。
【0075】これにより、本発明は、レーザ光を利用し
た光情報処理、光加工技術、光通信技術、光計測制御等
々の分野での光機能素子の実用化を促進させる大きな効
果をもたらす。
【図面の簡単な説明】
【図1】LN単結晶基板に周期分極反転形成後、+z面を
透過偏光観察した外観図であり、(a)は、従来のコング
ルエント組成LN結晶基板、(b)は、定比組成に近いLN結
晶基板を示す。
【図2】結晶組成と分極反転部を伝搬した結晶内部のロ
スの関係を示したグラフ。
【図3】熱処理温度と分極反転部を通過した結晶内部の
伝搬ロスの関係を示したグラフ。
【図4】本発明の一実施例の光波長変換素子を示す概念
図。
【図5】基本入力光とSHG光出力の関係を示したグラ
フ。
【図6】本発明の一実施例の集光素子を示す概念図。
【図7】本発明の一実施例の偏向素子を示す概念図。
【符号の説明】
1.コングルエント組成LN単結晶基板+z面 2.周期的分極反転部 3.光学歪み 4.定比組成に近いLN単結晶基板+z面 5.周期的分極反転部 6.定比組成に近いLN単結晶基板 7.分極反転領域 8.周期的分極反転幅 9.波長可変レーザ 10. レンズ 11. 定比組成に近いLN単結晶基板 12. 半導体レーザ 13. 分極反転領域 14. レンズ 15. 印加電圧 16. 定比組成に近いLN単結晶基板 17. 半導体レーザ 18. 分極反転領域 19. プリズム 20. 印加電圧
───────────────────────────────────────────────────── フロントページの続き (71)出願人 500400755 中村 優 茨城県つくば市並木1丁目1番 科学技術 庁無機材質研究所内 (72)発明者 古川 保典 茨城県つくば市並木1丁目1番 科学技術 庁無機材質研究所内 (72)発明者 北村 健二 茨城県つくば市並木1丁目1番 科学技術 庁無機材質研究所内 (72)発明者 竹川 俊二 茨城県つくば市並木1丁目1番 科学技術 庁無機材質研究所内 (72)発明者 中村 優 茨城県つくば市並木1丁目1番 科学技術 庁無機材質研究所内 Fターム(参考) 2K002 AB06 AB12 BA06 CA03 FA27 GA07 GA10 HA02 HA20 4G077 AA02 AB01 AB04 BC32 CF10 EB01 EC07 HA01

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 強誘電体単結晶基板の一部に、電子ビー
    ム走査照射法または電圧印加法を用いてキュリー温度以
    下の温度で分極反転構造を形成し、この分極反転部を通
    過した光を制御する光機能素子であって、Li/Nbのモル
    比が0.95〜1.01の範囲のLiNbO3結晶を基板として用いた
    ことで分極反転構造を形成直後の分極反転部を通過させ
    た光の伝搬ロスが2%以下であることを特徴とする光機
    能素子。
  2. 【請求項2】 強誘電体単結晶基板の一部に、電子ビー
    ム走査照射法または電圧印加法を用いてキュリー温度以
    下の温度で分極反転構造を形成し、この分極反転部を通
    過した光を制御する光機能素子であって、Li/Nbのモル
    比が0.95〜1.01の範囲のLiNbO3結晶を基板として用いた
    ことで、強誘電体単結晶の自発分極の方向反転に伴う分
    極反転境界部での光学的歪みを除去するための加熱工程
    なしに分極反転境界部の屈折率変化が1×10-4以下であ
    ることを特徴とする光機能素子。
  3. 【請求項3】 前記光機能素子に用いる強誘電体単結晶
    基板は、Mg,Zn,Sc,Inから選ばれる少なくとも一つの元
    素を0.1〜4.8モル%ドーピングして含有するLi/Nbのモ
    ル比が0.95〜1.00の範囲のLiNbO3結晶であることを特徴
    とする請求項1または2に記載の光機能素子。
  4. 【請求項4】 電子ビーム走査照射法または電圧印加法
    によりキュリー温度以下の温度での分極反転構造を形成
    する強誘電体単結晶基板において、Li/Nbのモル比が0.9
    5〜1.01の範囲のLiNbO3結晶を基板として用いること
    で、熱処理なしに2%以下の伝搬ロスおよび1×10-4以下
    の光学的歪みが得られることを特徴とする、分極反転部
    を通過した光を制御する光機能素子用単結晶基板。
  5. 【請求項5】 非線形光学効果を利用して周期的反転分
    極構造を持つ単結晶内に入射したレーザの波長変換を行
    う光機能素子基板に、Li/Nbのモル比が0.95〜1.01の範
    囲のLiNbO3結晶を用いたことを特徴とする光機能素子の
    変換効率を向上させる方法。
  6. 【請求項6】 電気光学効果を利用してプリズムまたは
    レンズ形状に反転した分極構造を持つ単結晶内に入射さ
    れたレーザ光の偏光または集光を制御する光機能素子基
    板に、Li/Nbのモル比が0.95〜1.01の範囲のLiNbO3結晶
    を用いたことを特徴とする光機能素子の駆動効率を向上
    させる方法。
JP2000255253A 2000-08-25 2000-08-25 光機能素子、該素子用単結晶基板、およびその使用方法 Pending JP2002072267A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000255253A JP2002072267A (ja) 2000-08-25 2000-08-25 光機能素子、該素子用単結晶基板、およびその使用方法
EP01105151A EP1182490A3 (en) 2000-08-25 2001-03-02 Optically functional device, single crystal substrate for the device and method for its use
US09/797,596 US6747787B2 (en) 2000-08-25 2001-03-05 Optically functional device, single crystal substrate for the device and method for its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000255253A JP2002072267A (ja) 2000-08-25 2000-08-25 光機能素子、該素子用単結晶基板、およびその使用方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003166548A Division JP3909845B2 (ja) 2003-06-11 2003-06-11 光機能素子の製造方法

Publications (1)

Publication Number Publication Date
JP2002072267A true JP2002072267A (ja) 2002-03-12

Family

ID=18744078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000255253A Pending JP2002072267A (ja) 2000-08-25 2000-08-25 光機能素子、該素子用単結晶基板、およびその使用方法

Country Status (3)

Country Link
US (1) US6747787B2 (ja)
EP (1) EP1182490A3 (ja)
JP (1) JP2002072267A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276326A (ja) * 2005-03-29 2006-10-12 Ricoh Co Ltd 分極反転構造を作成する装置及び分極反転構造の作成方法
US7848011B2 (en) 2005-03-25 2010-12-07 Panasonic Corporation Wavelength converting element
JP2013010656A (ja) * 2011-06-28 2013-01-17 Chichibu Fuji Co Ltd 単一分極化されたニオブ酸リチウム単結晶の製造方法
JP2015014716A (ja) * 2013-07-05 2015-01-22 Tdk株式会社 光導波路および電気光学デバイス

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762874B2 (en) * 2000-11-14 2004-07-13 Fuji Photo Film Co., Ltd. Polarization inversion method of ferroelectrics and fabrication method of optical wavelength conversion device
US7843632B2 (en) * 2006-08-16 2010-11-30 Cymer, Inc. EUV optics
JP4243995B2 (ja) * 2003-08-21 2009-03-25 日本碍子株式会社 分極反転部の製造方法および光デバイス
US9180081B2 (en) * 2005-03-03 2015-11-10 Revance Therapeutics, Inc. Compositions and methods for topical application and transdermal delivery of botulinum toxins
JP4855401B2 (ja) * 2005-07-28 2012-01-18 パナソニック株式会社 波長変換素子、レーザ光源装置、2次元画像表示装置及びレーザ加工装置
US7486432B2 (en) * 2007-03-08 2009-02-03 Hc Photonics Corp. Method for preparing a periodically poled structure
JP5594192B2 (ja) * 2011-03-08 2014-09-24 住友大阪セメント株式会社 光変調器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3148896B2 (ja) * 1990-11-30 2001-03-26 イビデン株式会社 ニオブ酸リチウム単結晶薄膜
JP3025982B2 (ja) * 1992-01-21 2000-03-27 イビデン株式会社 導波路型光方向性結合器
JPH063546A (ja) * 1992-06-18 1994-01-14 Ibiden Co Ltd シングルモード光導波路
CN1224735C (zh) * 1998-05-29 2005-10-26 东洋通信机株式会社 单晶制造装置、单晶制造方法及单晶体
US6195197B1 (en) * 1998-08-28 2001-02-27 The Regents Of The University Of California Lithium niobate single-crystal and photo-functional device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7848011B2 (en) 2005-03-25 2010-12-07 Panasonic Corporation Wavelength converting element
JP4860605B2 (ja) * 2005-03-25 2012-01-25 パナソニック株式会社 波長変換素子
JP2006276326A (ja) * 2005-03-29 2006-10-12 Ricoh Co Ltd 分極反転構造を作成する装置及び分極反転構造の作成方法
JP4577718B2 (ja) * 2005-03-29 2010-11-10 株式会社リコー 分極反転構造を作成する装置及び分極反転構造の作成方法
JP2013010656A (ja) * 2011-06-28 2013-01-17 Chichibu Fuji Co Ltd 単一分極化されたニオブ酸リチウム単結晶の製造方法
JP2015014716A (ja) * 2013-07-05 2015-01-22 Tdk株式会社 光導波路および電気光学デバイス

Also Published As

Publication number Publication date
EP1182490A2 (en) 2002-02-27
EP1182490A3 (en) 2004-01-14
US20020024716A1 (en) 2002-02-28
US6747787B2 (en) 2004-06-08

Similar Documents

Publication Publication Date Title
US6211999B1 (en) Lithium tantalate single-crystal and photo-functional device
JP3511204B2 (ja) 光機能素子、該素子用単結晶基板、およびその使用方法
JP2002072267A (ja) 光機能素子、該素子用単結晶基板、およびその使用方法
JP4553081B2 (ja) ニオブ酸リチウム単結晶、およびその光素子、およびその製造方法
Wood et al. Optical birefringence study of the ferroelectric phase transition in lithium niobate tantalate mixed crystals: LiNb1− xTaxO3
JP3424125B2 (ja) タンタル酸リチウム単結晶の強誘電分極反転を利用した光機能素子
Kumaragurubaran et al. Growth of 4-in diameter MgO-doped near-stoichiometric lithium tantalate single crystals and fabrication of periodically poled structures
WO2003003111A1 (en) Electric field poling of ferroelectric materials
Kawaguchi et al. Liquid-phase epitaxial growth of Zn-doped LiNbO3 thin films and optical damage resistance for second-harmonic generation
Kumaragurubaran et al. Growth of 4-in diameter near-stoichiometric lithium tantalate single crystals
Bermúdez et al. Role of stoichiometric point defect in electric-field-poling lithium niobate
JP4730365B2 (ja) 光機能素子の製造方法及びタンタル酸リチウム単結晶の製造方法
US6195197B1 (en) Lithium niobate single-crystal and photo-functional device
JP3909845B2 (ja) 光機能素子の製造方法
JP4107365B2 (ja) タンタル酸リチウム単結晶、およびその光素子、およびその製造方法
JP3213907B2 (ja) ニオブ酸リチウム単結晶と光機能素子
Inaba et al. Effects of the application of electric fields on the growth of SrB4O7 crystals by the micro-pulling-down method
JPH05313033A (ja) 光導波路、製造方法、および光素子
JP4729698B2 (ja) タンタル酸リチウム単結晶、およびその光機能素子
LEE Optically functional device, single crystal substrate for the device and method for its use
Hu et al. Greatly enhanced electro-optic modulation efficiency in titanium in-diffusion PIN-PMN-PT waveguide.
JP4590531B2 (ja) ニオブ酸リチウム単結晶ウエハーからなる光素子、および該ウエハー用のニオブ酸リチウム単結晶体の製造方法
JP2001059983A (ja) ニオブ酸リチウム単結晶
Ghambaryan et al. Periodically poled structures in lithium niobate crystals: growth and photoelectric properties.
JP4569911B2 (ja) タンタル酸リチウム単結晶からなる波長変換素子