JP2002016173A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2002016173A
JP2002016173A JP2000198427A JP2000198427A JP2002016173A JP 2002016173 A JP2002016173 A JP 2002016173A JP 2000198427 A JP2000198427 A JP 2000198427A JP 2000198427 A JP2000198427 A JP 2000198427A JP 2002016173 A JP2002016173 A JP 2002016173A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor chip
conductive
wiring
bottom plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000198427A
Other languages
Japanese (ja)
Inventor
Satoshi Yanagiura
聡 柳浦
Seiji Oka
誠次 岡
Hirofumi Fujioka
弘文 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000198427A priority Critical patent/JP2002016173A/en
Publication of JP2002016173A publication Critical patent/JP2002016173A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device for enabling high density wiring and preventing peeling at the time of reflow. SOLUTION: A substrate 1 is composed of a bottom plate 11 composed of a metal and a frame material 12 composed of a resin composite material and is provided with a recessed part 22. A semiconductor chip 2 is buried in the recessed part 22, an insulation layer 3 provided with an inter-layer conductive part 42 on the terminal of the semiconductor chip 2 is provided on it and the insulation layer 3 is provided with conductor wiring 41 in continuity with the inter-layer conductive part. Further, the insulation layer provided with a stud via and a conductor wiring pattern are laminated on the conductor wiring 41 by a build-up method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に半導体チップ
等の電子部品を実装した半導体装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device on which electronic parts such as semiconductor chips are mounted.

【0002】[0002]

【従来の技術】従来、半導体インターポーザー基板を含
んだパッケージのチップとインターポーザー基板の接続
はワイヤーボンドかバンプ接続で行っているが、位置合
わせ精度や電極の微細化に限界があり、0.4mm以下
のピッチに対応するのは困難と考えられる。
2. Description of the Related Art Conventionally, the connection between a chip of a package including a semiconductor interposer substrate and an interposer substrate is performed by wire bonding or bump connection. However, there is a limit in alignment accuracy and miniaturization of electrodes. It is considered difficult to cope with a pitch of 4 mm or less.

【0003】この対策として、高密度配線半導体チップ
をフェイスアップで基板に埋め込み、アウターバンプを
引き出す方法が下記特許公報に記載されている。即ち、
特開平4−25038号公報には、基材凹部に、外部接
続端子が表面に設けられたチップを埋め込み、この上に
絶縁層を設けて上記外部接続端子部分にビアホールを形
成した後、上層回路とバンプを形成し、それ以外の領域
にソルダーレジストを形成したもので、上記基材として
は、アルミニウム等の金属を用い、凹部をエッチングや
機械的切削により設けたものや、熱硬化性樹脂等を用
い、凹部を機械的切削や射出成形により設けたものが記
載されている。
As a countermeasure, a method of embedding a high-density wiring semiconductor chip face-up in a substrate and pulling out outer bumps is described in the following patent publication. That is,
JP-A-4-25038 discloses that a chip provided with external connection terminals on its surface is embedded in a concave portion of a base material, an insulating layer is provided thereon, a via hole is formed in the external connection terminal portion, and then an upper layer circuit is formed. And a bump formed, and a solder resist formed in other areas. The base material is a metal such as aluminum, and a concave portion is provided by etching or mechanical cutting, or a thermosetting resin. And that the concave portion is provided by mechanical cutting or injection molding.

【0004】また、特開平9−321408号公報に
は、上記公報と同様にして半導体チップを埋め込み、さ
らにビルドアップにより多層化したもので、半導体チッ
プの外部接続端子として、スタッドバンプを用い、上記
凹部は削り出しにより形成したものや、打ち抜かれたも
のが記載されている。
Japanese Patent Application Laid-Open No. Hei 9-321408 discloses a semiconductor device in which a semiconductor chip is embedded and multi-layered by build-up in the same manner as in the above-mentioned publication, and a stud bump is used as an external connection terminal of the semiconductor chip. The concave portion is formed by cutting or punched.

【0005】また、特開平1−175297号公報に
は、一枚の基板の両面に、半導体チップの大きさの貫通
孔を同一箇所に形成した二枚の基板を貼り合せた基板を
用い、上記貫通孔に半導体チップを埋め込むことによ
り、高密度実装を行い、上記基板としてはガラスエポキ
シ等、銅張り積層板を用いたものが記載されている。
Japanese Patent Application Laid-Open No. HEI 1-175297 discloses a method in which a substrate is used in which two substrates in which through holes each having the size of a semiconductor chip are formed at the same position on both surfaces of a single substrate are used. A high-density mounting is performed by embedding a semiconductor chip in a through hole, and a substrate using a copper-clad laminate such as glass epoxy is described as the substrate.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開平
4−25038号公報に記載のものは、配線の展開が一
層なので十分な引きまわしができず、放熱対策として金
属基材表面に凹部を形成したものを用いているが、加工
に高いコストがかかったり、リフロー時に、金属基材と
この上に設けた絶縁層との熱膨張の差により、金属基材
と絶縁層の間に剥離が生じるという課題があった。ま
た、樹脂からなる基材は、樹脂を機械加工したり、熱可
塑性樹脂を射出成形して得ているが前者は高いコストが
かかり、後者は離型剤を含有しているため上からコーテ
ィングする絶縁層との密着性が悪く、また、基材自体の
熱膨張率が大きいため、半導体チップとの熱膨張係数差
が大きく、リフロー時に半導体チップが割れたり、半導
体チップとの間に剥離が生じやすいという課題があっ
た。さらに後者ではチップの放熱性が悪く、チップの誤
動作の原因となる。
However, in the device disclosed in Japanese Patent Application Laid-Open No. 4-25038, the wiring is more developed, so that it cannot be routed sufficiently, and a concave portion is formed on the surface of the metal substrate as a measure against heat radiation. Although it is used, high cost is required for processing, and at the time of reflow, separation occurs between the metal base and the insulating layer due to the difference in thermal expansion between the metal base and the insulating layer provided thereon. There were challenges. In addition, the base material made of resin is obtained by machining the resin or by injection molding a thermoplastic resin, but the former is expensive, and the latter contains a release agent and is coated from above. Poor adhesion to the insulating layer and large thermal expansion coefficient of the base material itself, resulting in a large difference in thermal expansion coefficient from the semiconductor chip, causing the semiconductor chip to break during reflow or peeling off from the semiconductor chip There was a problem that it was easy. Further, in the latter case, the heat radiation of the chip is poor, which causes a malfunction of the chip.

【0007】特開平9−321408号公報に記載のも
のは、スタッドバンプを用いるのでスタッドビア構造を
得るのが困難であるため、高密度の配線引きまわしには
不向きで、また、凹部を削り出した基板の材料は考慮さ
れていないので、上記と同様、リフロー時に半導体チッ
プ間に剥離が生じやすい、チップの放熱が不十分という
課題があった。
The one disclosed in Japanese Patent Application Laid-Open No. 9-321408 is not suitable for high-density wiring routing since a stud via structure is difficult to obtain since a stud bump is used. Since the material of the substrate is not taken into consideration, there is a problem that peeling is likely to occur between the semiconductor chips at the time of reflow and heat dissipation of the chips is insufficient, as in the above case.

【0008】特開平1−175297号公報に記載のも
のは、第1、第2の基板(底板と枠材に相当)としてガ
ラスエポキシ等銅張り積層板が用いられているが、熱伝
導性が悪く放熱性に課題があった。
[0008] Japanese Unexamined Patent Publication No. 1-175297 uses a copper-clad laminate such as glass epoxy as the first and second substrates (corresponding to a bottom plate and a frame material). There was a problem in heat dissipation.

【0009】本発明はかかる課題を解消するためになさ
れたもので、放熱性に優れ、かつリフロー時の剥離の発
生が防止された半導体装置か得られる。
SUMMARY OF THE INVENTION The present invention has been made in order to solve such a problem, and it is possible to obtain a semiconductor device which is excellent in heat dissipation and in which peeling during reflow is prevented.

【0010】[0010]

【課題を解決するための手段】本発明に係る第1の半導
体装置は、凹部を有する基板、上記凹部に埋め込まれた
半導体チップ、上記半導体チップおよび基板表面を被覆
し、上記半導体チップの接続端子部に開口を有する絶縁
層、上記開口を導電性材料で導通をとった層間導通部、
並びに上記絶縁層に設け、上記層間導通部と導通する導
体配線を備えた半導体装置であって、上記基板が、サー
マルバイヤーを形成した樹脂複合材料、または金属から
なる底板と、この底板に接着され、上記半導体チップよ
り大きい貫通孔を有し、ポリイミドまたは樹脂複合材料
からなる枠材とを備えたものである。
According to a first aspect of the present invention, there is provided a semiconductor device having a substrate having a concave portion, a semiconductor chip embedded in the concave portion, covering the semiconductor chip and the surface of the substrate, and connecting terminals of the semiconductor chip. An insulating layer having an opening in the portion, an interlayer conductive portion in which the opening is made conductive with a conductive material,
A semiconductor device provided on the insulating layer and provided with a conductor wiring that is electrically connected to the interlayer conductive portion, wherein the substrate is bonded to a bottom plate made of a resin composite material or a metal on which a thermal buyer is formed; And a frame material having a through hole larger than the semiconductor chip and made of a polyimide or resin composite material.

【0011】本発明に係る第2の半導体装置は、上記第
1の半導体装置において、導体配線上にビルドアップ法
により、ビア内を導電性の材料で充填したスタッドビア
を有する絶縁層と導体配線を順次積層したものである。
According to a second semiconductor device of the present invention, in the above first semiconductor device, an insulating layer having a stud via filled with a conductive material on the conductive wiring by a build-up method on the conductive wiring and the conductive wiring are provided. Are sequentially laminated.

【0012】本発明に係る第3の半導体装置は、上記第
1または第2の半導体装置において、樹脂複合材料が樹
脂と、ガラスクロス、ガラス不織布、ポリアミド系不織
布または液晶ポリマー系不織布とで構成されているもの
である。
In a third semiconductor device according to the present invention, in the first or second semiconductor device, the resin composite material is composed of a resin and glass cloth, glass nonwoven fabric, polyamide nonwoven fabric or liquid crystal polymer nonwoven fabric. Is what it is.

【0013】[0013]

【発明の実施の形態】実施の形態1.図1(a)〜
(h)は、本発明の実施の形態の半導体装置を製造する
工程を示す説明図であり、図中、1は基板で、底板11
と枠材12からなり、2は半導体チップ、22は凹部、
3は絶縁層、31は開口、4は導体層、41は導体配
線、42は層間導通部、5はバンプ、6はソルダーレジ
ストである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 (a)-
(H) is an explanatory view showing a step of manufacturing the semiconductor device according to the embodiment of the present invention, wherein 1 is a substrate, and 1 is a bottom plate;
, Frame member 12, 2 is a semiconductor chip, 22 is a concave portion,
Reference numeral 3 denotes an insulating layer, 31 denotes an opening, 4 denotes a conductor layer, 41 denotes a conductor wiring, 42 denotes an interlayer conductive portion, 5 denotes a bump, and 6 denotes a solder resist.

【0014】本発明の実施の形態に係る凹部を有する基
板1は、底板11と枠材12からなり枠材12により基
板1に凹部22を形成し、枠材12は半導体チップ2を
底板11にフェイスアップして載置できる半導体チップ
2より大きい貫通孔を有したものである。
A substrate 1 having a concave portion according to an embodiment of the present invention comprises a bottom plate 11 and a frame member 12, and a concave portion 22 is formed in the substrate 1 by the frame member 12, and the frame member 12 connects the semiconductor chip 2 to the bottom plate 11. It has a through hole larger than the semiconductor chip 2 that can be mounted face up.

【0015】底板11としては、銅、42アロイもしく
はアルミ等の金属、またはサーマルバイヤーを形成した
樹脂複合材料が用いられ、放熱性に優れるという効果が
ある。樹脂複合材料の樹脂成分としては、エポキシ、ポ
リパラフェニレン系樹脂またはBTレジンが用いられ、
補強成分としては、液晶ポリマー不織布、ポリアミド繊
維不織布、ガラスクロスまたはガラス不織布が用いられ
る。サーマルバイヤーとは底板上部(チップ実装側)に
発生した熱を底板裏側に逃がすために形成されたスルー
ホールのことで、底板にφ0.25mm〜φ0.6mm
の貫通孔をドリル等であけ、その孔壁または孔全体に金
属メッキまたは高熱伝導材料を充填したものである。高
熱伝導材料とは有機樹脂に金属粒子やセラミック粒子を
充填したもので熱伝導率が1.0W/mK以上のもので
ある。底板にその裏面となる側に銅箔を貼り付けた樹脂
複合材料を用い、サーマルバイヤーを設けた場合、サー
マルバイヤーを伝わって裏側に回った熱はさらに底板裏
側の銅箔に伝わりそこから空気中に効率的に放熱され、
銅箔の上に放熱フィンやファンなどを設けることにより
放熱性は一層強化される。また、底板にその両面に銅箔
を貼り付けた樹脂複合材料を用いる場合は、半導体チッ
プを設ける位置にサーマルバイヤーを形成して放熱性を
維持し、かつ枠材を設ける位置の金属層を除くことによ
り枠材との密着性を向上することができる。また、底板
11として金属を用いると、放熱性に優れるとともに、
半導体チップ2との熱膨張率差が小さいため、リフロー
時の剥離を防止できる。
The bottom plate 11 is made of a metal such as copper, 42 alloy or aluminum, or a resin composite material formed with a thermal buyer, and has an effect of being excellent in heat dissipation. As the resin component of the resin composite material, epoxy, polyparaphenylene resin or BT resin is used,
As the reinforcing component, a liquid crystal polymer nonwoven fabric, a polyamide fiber nonwoven fabric, a glass cloth or a glass nonwoven fabric is used. Thermal buyers are through holes formed to allow heat generated at the top of the bottom plate (chip mounting side) to escape to the back of the bottom plate.
Is drilled with a drill or the like, and the hole wall or the entire hole is filled with metal plating or a high heat conductive material. The high thermal conductive material is a material in which metal particles or ceramic particles are filled in an organic resin and has a thermal conductivity of 1.0 W / mK or more. When using a resin composite material with copper foil attached to the bottom side of the bottom plate and providing a thermal buyer, the heat transferred to the back side through the thermal buyer is further transferred to the copper foil on the back side of the bottom plate and from there in the air Heat is efficiently dissipated
By providing a radiating fin or a fan on the copper foil, the radiating property is further enhanced. When using a resin composite material in which copper foil is attached to both sides of the bottom plate, a thermal buyer is formed at the position where the semiconductor chip is provided to maintain heat dissipation, and the metal layer at the position where the frame material is provided is excluded. Thereby, the adhesion to the frame material can be improved. In addition, when a metal is used for the bottom plate 11, heat dissipation is excellent, and
Since the difference in thermal expansion coefficient with the semiconductor chip 2 is small, peeling during reflow can be prevented.

【0016】また、枠材12としては、上記樹脂複合材
料プリプレグの他、ポリイミドフィルムまたは液晶ポリ
マーフィルムが用いられるが、ポリイミドフィルムは耐
熱性に優れるとともに、熱膨張率が小さく、絶縁層との
密着性が良いためリフロー時の剥離を防止できる。
As the frame member 12, a polyimide film or a liquid crystal polymer film is used in addition to the resin composite material prepreg. The polyimide film has excellent heat resistance, a small coefficient of thermal expansion, and a close contact with the insulating layer. Because of good properties, peeling during reflow can be prevented.

【0017】さらに、本発明に係る半導体パッケージは
底板の片側に絶縁層と導体配線を積んでゆくので、後工
程において反りが発生しないようなある程度剛性の高い
底板、枠板が好ましく、例えば底板に銅を用いる場合は
0.5mm厚以上の銅板が好ましく、枠板の厚さは用い
る半導体チップの厚さと同程度が良い。
Further, in the semiconductor package according to the present invention, the insulating layer and the conductor wiring are stacked on one side of the bottom plate. Therefore, it is preferable to use a bottom plate or a frame plate having a relatively high rigidity to prevent warpage in a later step. When copper is used, a copper plate having a thickness of 0.5 mm or more is preferable, and the thickness of the frame plate is preferably about the same as the thickness of the semiconductor chip used.

【0018】また、ビルドアップ法により絶縁層と導体
配線を積層して多層配線を施す場合、本実施の形態に係
わる上記基板を用いることにより、チップから発生する
熱を効率よく外部に放熱することができ、チップの温度
上昇を押さえチップの誤動作や破壊を防止するという効
果が得られる。
When a multilayer wiring is formed by laminating an insulating layer and a conductor wiring by a build-up method, heat generated from a chip can be efficiently radiated to the outside by using the substrate according to the present embodiment. Therefore, the effect of suppressing the temperature rise of the chip and preventing malfunction and destruction of the chip can be obtained.

【0019】次に、図1を用いて、本発明の実施の形態
の半導体装置を製造する工程を説明する。まず、上記枠
材12と底板11を貼り合わせることにより凹部22を
有する基板1を得る{図1(a)}。貼り合わせは熱プ
レスまたは熱ラミネーターが量産性の点で好ましい。枠
材が複合材プリプレグの場合はそのまま貼り合わせ可能
であるが、樹脂フィルムの場合接着剤を用いる必要があ
る。
Next, steps for manufacturing the semiconductor device according to the embodiment of the present invention will be described with reference to FIG. First, the substrate 1 having the concave portion 22 is obtained by bonding the frame member 12 and the bottom plate 11 {FIG. 1 (a)}. For bonding, a hot press or a hot laminator is preferable in terms of mass productivity. If the frame material is a composite prepreg, it can be attached as it is, but if it is a resin film, an adhesive must be used.

【0020】次に、上記のようにして得られた基板1の
凹部22に半導体チップをフェイスアップして貼り付け
る{図1(b)}。貼り付けには高放熱性の観点から熱
伝導性の高いダイボンド剤を用いることが好ましい。熱
伝導性の高いダイボンド材とはエポキシ樹脂やポリイミ
ド樹脂中に銅、銀、アルミナ、ダイヤモンド、窒化珪素
または窒化硼素などのフィラーを高充填したもので、熱
伝導率としては、2.0W/m・K以上が好ましい。
Next, a semiconductor chip is attached face-up to the recess 22 of the substrate 1 obtained as described above {FIG. 1 (b)}. It is preferable to use a die-bonding agent having high thermal conductivity for the attachment from the viewpoint of high heat dissipation. The die bond material having high thermal conductivity is a material in which a filler such as copper, silver, alumina, diamond, silicon nitride, or boron nitride is highly filled in an epoxy resin or a polyimide resin, and has a thermal conductivity of 2.0 W / m. -K or more is preferable.

【0021】次に上から一層目の絶縁層3を形成する
(図1(c)}。絶縁層3は液状樹脂、フィルム樹脂、
RCC(Resin Coated Copper)の
いずれでも良いが、多層に積層する観点から上層の平坦
性は重要であり、その点を考慮するとフィルムまたはR
CCが好ましく、図は絶縁層としてRCCを用いた場合
を示し、絶縁層に導体層4が貼られている。絶縁層がR
CCの場合、積層は熱プレスまたは真空ラミネーターを
用い、フィルムの場合は真空ラミネーターを用いる。
Next, a first insulating layer 3 is formed from the top (FIG. 1C).
Any of RCC (Resin Coated Copper) may be used, but the flatness of the upper layer is important from the viewpoint of laminating a multilayer, and in view of this, the film or R
CC is preferable, and the figure shows a case where RCC is used as the insulating layer, and the conductor layer 4 is attached to the insulating layer. The insulation layer is R
In the case of CC, lamination uses a hot press or a vacuum laminator, and in the case of a film, a vacuum laminator is used.

【0022】絶縁層3に開口31(バイアホール)を形
成する{図1(d)}が、絶縁層が感光性を有している
場合は露光、現像により一括でバイアホールを形成する
ことが可能であり、感光性を有していない場合はレーザ
ー光を用いてバイアホールを形成する。レーザー光とし
ては炭酸ガスレーザー、エキシマレーザー、YAGレー
ザーの高調波が好ましい。エキシマレーザーはマスクを
用いたエリア一括露光が可能であり、他のレーザーは一
穴ずつのビーム照射となる。また、レーザーでバイアホ
ールを形成した場合、バイアホール底部に絶縁膜残渣が
残ったり、また絶縁膜に銅箔が付いていない場合、絶縁
膜に銅メッキ密着性を付与させるために、絶縁膜のパタ
ーニング工程の後、過マンガン酸処理工程、プラズマ処
理工程またはオゾン水処理工程の何れかを施す必要があ
る。
The opening 31 (via hole) is formed in the insulating layer 3 (FIG. 1D). If the insulating layer has photosensitivity, the via hole can be formed by exposure and development at once. If it is possible, and if it has no photosensitivity, a via hole is formed using laser light. As the laser light, a harmonic of a carbon dioxide laser, an excimer laser, or a YAG laser is preferable. Excimer lasers can perform area batch exposure using a mask, and other lasers emit beams one hole at a time. In addition, when a via hole is formed by a laser, an insulating film residue remains at the bottom of the via hole, and when the insulating film does not have a copper foil, the insulating film is formed to have copper plating adhesion. After the patterning step, it is necessary to perform one of a permanganic acid treatment step, a plasma treatment step, and an ozone water treatment step.

【0023】得られたバイアホール31に導電性材料を
充填して層間導通部42を形成する{図1(e)}。層
間導通部42は開口31に導電性材料を充填することに
より形成するので、スタッドビア形成が可能になり、高
密度実装が可能となる。充填する方法として銅メッキを
用いる方法と導電性ペーストを用いる方法がある。絶縁
層にRCCを用いた場合、導電性ペーストでバイアホー
ルを充填することによりメッキレスでの配線形成が可能
となる。導電性ペーストでバイアホールを充填する場合
は減圧下で印刷可能であるスクリーン印刷を用いるのが
好ましい、但し設備の都合上減圧下で印刷出来ない場合
でも、加圧下で硬化することによりボイドレスの充填が
可能である。絶縁層に銅箔が付いていない場合は、メッ
キによりバイアホールを充填する方法が工程を短縮でき
る点で好ましい。バイアホール充填を銅メッキで行う場
合は通常の無電解メッキ後、特殊なビアフィル銅メッキ
メッキ用電解メッキ液を用いる必要があるがこれらは市
販されており、容易に入手可能である。但しビアフィル
銅メッキでビアを充填した場合、絶縁膜表面にも厚いC
uメッキが形成される場合もあるので、その場合は必要
に応じ表面銅メッキ膜厚をハーフエッチングまたは研磨
によって薄くする必要がある。
The obtained via hole 31 is filled with a conductive material to form an interlayer conductive portion 42 (FIG. 1E). Since the interlayer conductive portion 42 is formed by filling the opening 31 with a conductive material, a stud via can be formed, and high-density mounting is possible. As a filling method, there are a method using copper plating and a method using a conductive paste. When RCC is used for the insulating layer, wiring can be formed without plating by filling via holes with a conductive paste. When filling via holes with conductive paste, it is preferable to use screen printing which can be printed under reduced pressure.However, even if printing under reduced pressure is not possible due to equipment, filling the voidless by curing under pressure Is possible. When no copper foil is attached to the insulating layer, a method of filling via holes by plating is preferable in that the process can be shortened. When filling via holes by copper plating, it is necessary to use a special electrolytic plating solution for via-fill copper plating after ordinary electroless plating, but these are commercially available and can be easily obtained. However, when vias are filled with via fill copper plating, thick C
In some cases, u-plating is formed. In such a case, it is necessary to reduce the thickness of the surface copper plating by half-etching or polishing as necessary.

【0024】次に得られた導体層4を通常のサブトラス
ト法により導体配線41を形成する{図1(f)}。ま
た微細な配線形成を行う場合はセミアデティブ銅メッキ
法を適用しても良い。この方法は無電解メッキ形成後、
メッキレジストパターンを形成し、開口部に電解メッキ
を積み上げ、配線形成を行った後、レジストを剥離し、
パターン間に残った無電解メッキをソフトエッチングで
除去することにより微細で厚い銅配線パターンを得るた
めのものである。
Next, a conductor wiring 41 is formed on the obtained conductor layer 4 by a normal sub-trust method (FIG. 1F). In the case of forming fine wiring, a semi-additive copper plating method may be applied. This method uses electroless plating
After forming a plating resist pattern, stacking electrolytic plating in the opening, forming the wiring, peeling the resist,
The purpose is to obtain a fine and thick copper wiring pattern by removing the electroless plating remaining between the patterns by soft etching.

【0025】さらに絶縁層形成、バイアホール形成、バ
イアホール導体接続(又は充填)、配線形成を繰り返す
ことによりビルドアップ配線層の多層化が達成され、本
発明の実施の形態の半導体装置を得ることができ、さら
に、最外層パターン上にソルダーレジスト6を形成し
{図1(g)}、接続用のバンプ5やボールを形成する
(図1(h)}。
Further, by repeating formation of an insulating layer, formation of a via hole, connection (or filling) of a via-hole conductor, and formation of a wiring, a multilayered build-up wiring layer is achieved, and a semiconductor device according to an embodiment of the present invention is obtained. Further, a solder resist 6 is formed on the outermost layer pattern {FIG. 1 (g)}, and bumps 5 and balls for connection are formed (FIG. 1 (h)).

【0026】[0026]

【実施例】実施例1.厚さ0.5mmの405mm×3
40mm銅板を底板11とし、酸化膜除去処理後、シラ
ンカップリング剤処理する。次に、250μm厚FR−
5{商品名:エポキシマルチR−1766,松下電工
(株)製}ガラスクロス・エポキシプリプレグに15m
m角の孔を28個(縦4列、横7列)あけたものを枠材
12とし、これを上記銅板に、プレス積層することによ
り、凹部22を設けた基板1を得る。
[Embodiment 1] 405mm × 3 with 0.5mm thickness
A 40 mm copper plate is used as the bottom plate 11, and after the oxide film removal treatment, a silane coupling agent treatment is performed. Next, a 250 μm thick FR-
5 {Product name: Epoxy Multi R-1766, manufactured by Matsushita Electric Works, Ltd. に 15m to glass cloth / epoxy prepreg
A frame material 12 having 28 m-square holes (4 rows vertically and 7 rows horizontally) is formed as a frame material 12 and press-laminated on the copper plate to obtain the substrate 1 provided with the concave portion 22.

【0027】上記凹部22に、高熱伝導性粘着シート
{商品名:T−gon2000,サーマゴンINC製}
を貼り付けた後、14mm角の半導体チップ2{pin
数2025、パット(表面処理された銅)径φ100μ
m、最短ピッチ370μmの千鳥配列}を、フェイスア
ップで圧着する。次に、68μm厚の感光性ドライフィ
ルム(DFと略す){商品名:ViaLux,Dupo
nt(株)製}を真空ラミネーターで上からラミネート
し、チップの端子部分に合わせて紫外線を用いてパター
ニングを行い、φ75μmビアホール穴を形成する。次
に、過マンガン酸工程(膨潤・過マンガン酸処理・還
元)を行い、DFの表面粗化を行った後、無電解メッキ
およびビアフィル電解銅メッキ{商品名:キューブライ
ト,荏原ユージーライト(株)製}を施しビア穴を埋め
込むと同時にDF上に導体層を形成する。このとき導体
層厚は25μmであった。次に導体層をハーフエッチン
グし、導体層厚を10μmとしたのちエッチングドライ
フィルムにより導体層のパターニングを行った。ビア上
のランド径はφ100μm、配線L/Sは30μm/3
0μmとした。
A high heat conductive adhesive sheet (trade name: T-gon2000, manufactured by Thermogon Inc.) is formed in the recess 22.
After attaching, a 14 mm square semiconductor chip 2 {pin
Number 2025, pad (surface-treated copper) diameter φ100μ
m, a staggered arrangement の having a minimum pitch of 370 μm is pressed face-up. Next, a photosensitive dry film (abbreviated as DF) having a thickness of 68 μm (trade name: ViaLux, Dupo)
} manufactured by nt Co., Ltd. is laminated from above with a vacuum laminator, and patterned using ultraviolet rays in accordance with the terminal portion of the chip to form a φ75 μm via hole. Next, after performing a permanganate process (swelling / permanganate treatment / reduction) to roughen the surface of the DF, electroless plating and via-fill electrolytic copper plating. 2) The conductor layer is formed on the DF at the same time that the via hole is filled by performing the manufacturing process. At this time, the thickness of the conductor layer was 25 μm. Next, the conductor layer was half-etched to make the thickness of the conductor layer 10 μm, and then the conductor layer was patterned with an etching dry film. Land diameter on via is φ100 μm, wiring L / S is 30 μm / 3
It was set to 0 μm.

【0028】得られた基板上の配線を表面処理(CZ処
理){商品名:エッチボンド,メック(株)製}し、5
0μm厚の感光性ドライフィルム{商品名:ViaLu
x,Dupont(株)製}をラミネート後、前工程と
同様、ビアフィルメッキされたバイアホールおよび厚さ
10μmの導体層を作製し、配線パターンをエッチング
により形成する。以下同様な工程で導体層が合計9層に
なるように順次積み上げ、最上層に端子部を開口させた
ソルダーレジストを形成する。最後に個片にカットする
ことにより、基板1枚につき28個の半導体パッケージ
を得た。得られたパッケージのチップ・底板裏面間の熱
抵抗を測定したところ0.1℃/Wであった。
The obtained wiring on the substrate is subjected to a surface treatment (CZ treatment) (trade name: H. Bond, manufactured by Mec Co., Ltd.)
0 μm-thick photosensitive dry film {Product name: ViaLu
After laminating x, manufactured by Dupont Co., Ltd., via-hole plated via holes and a conductor layer having a thickness of 10 μm are formed as in the previous step, and a wiring pattern is formed by etching. Thereafter, in a similar process, the conductor layers are sequentially stacked so as to have a total of nine layers, and a solder resist having a terminal portion opened in the uppermost layer is formed. Finally, 28 semiconductor packages were obtained per substrate by cutting into individual pieces. When the thermal resistance between the chip and the bottom surface of the bottom plate of the obtained package was measured, it was 0.1 ° C./W.

【0029】実施例2.厚さ0.5mmの405mm×
340mmの42アロイ板を底板11とし、これをシラ
ンカップリング剤処理した。その後、15mm角の孔を
28個(縦4列、横7列)あけた250μm厚液晶ポリ
マー不織布・エポキシプリプレグを枠材12とし、これ
を上記アロイ板にプレス積層し、凹部22を設けた基板
1を得た。凹部22に高熱伝導性粘着シート{商品名:
T−gon2000,サーマゴンINC製}を貼り付け
た後、14mm角の半導体チップ2{pin数202
5、パット(表面処理済みの銅)径φ100μm、最短
ピッチ370μmの千鳥配列}を、フェイスアップで圧
着する。
Embodiment 2 FIG. 405mm × 0.5mm thick
A 340 mm 42 alloy plate was used as the bottom plate 11 and treated with a silane coupling agent. Thereafter, a 250 μm thick liquid crystal polymer nonwoven fabric / epoxy prepreg having 28 holes of 15 mm square (4 rows and 7 rows) was used as the frame material 12, and the frame material 12 was press-laminated on the alloy plate to form a substrate having a recess 22. 1 was obtained. Highly heat conductive adhesive sheet in recess 22
After attaching T-gon2000, manufactured by Thermagon INC, a 14 mm square semiconductor chip 2 with 202 pins
5. A staggered arrangement の with a pad (surface-treated copper) diameter of φ100 μm and a minimum pitch of 370 μm is pressure-bonded face-up.

【0030】次に、RCC(樹脂厚100μm、銅箔厚
12μm){商品名:R−0870,松下電工(株)
製}を熱プレスで上から積層し、チップの端子部分に合
わせて炭酸ガスレーザーを用いてパターニングを行い、
φ75μmビアホール穴を形成した。但しこのあとビア
底に残った樹脂残渣を除去するため酸素プラズマでホー
ルクリーニングを行った。次にエポキシ樹脂に銀コート
銅フィラーを含有した導電性ペースト{商品名:京都エ
レックス社(株)製}を真空スクリーン印刷機を用いて
ビア穴に埋め込み、熱硬化した後はみ出した部分を研磨
により除去した。
Next, RCC (resin thickness 100 μm, copper foil thickness 12 μm) (trade name: R-0870, Matsushita Electric Works, Ltd.)
The product is laminated from above with a hot press, and patterned using a carbon dioxide laser according to the terminal of the chip.
A φ75 μm via hole was formed. However, after this, hole cleaning was performed with oxygen plasma to remove the resin residue remaining on the via bottom. Next, a conductive paste containing a silver-coated copper filler in an epoxy resin (trade name: manufactured by Kyoto Elex Co., Ltd.) is embedded in the via hole using a vacuum screen printer, and after thermosetting, the protruding portion is polished. Removed.

【0031】次にエッチングドライフィルムにより導体
層のパターニングを行った。ビア上のランド径はφ10
0μm、配線のL/Sは30μm/30μmとした。得
られた基板上の配線に黒化処理を施し、50μm厚のR
CCを積層後、前工程と同様レーザー穴あけ、導電性ペ
ーストが充填されたバイアホールおよび配線パターンを
エッチングにより形成する。以下同様な工程で導体層が
合計9層になるように順次積み上げ、最上層に端子部を
開口させたソルダーレジストを形成する。最後に個片に
カットすることにより、基板1枚につき28個の半導体
パッケージを得た。得られたパッケージのチップ・底板
裏面間の熱抵抗を測定したところ0.2W/℃であっ
た。
Next, the conductor layer was patterned using an etching dry film. Land diameter on via is φ10
0 μm, and the wiring L / S was 30 μm / 30 μm. The wiring on the obtained substrate is subjected to a blackening treatment, and a 50 μm thick R
After laminating the CCs, laser holes are formed as in the previous step, and via holes and a wiring pattern filled with the conductive paste are formed by etching. Thereafter, in a similar process, the conductor layers are sequentially stacked so as to have a total of nine layers, and a solder resist having a terminal portion opened in the uppermost layer is formed. Finally, 28 semiconductor packages were obtained per substrate by cutting into individual pieces. When the thermal resistance between the chip and the back surface of the bottom plate of the obtained package was measured, it was 0.2 W / ° C.

【0032】実施例3.厚さ0.7mmで405mm×
340mmの銅板を底板11とし、これを酸化膜除去処
理、シランカップリング剤処理する。15mm角の孔を
28個(縦4列、横7列)あけた150μm厚の片面接
着剤付きプラズマ表面処理済みポリイミドフィルムを枠
材12として、上記底板11に熱圧着し、凹部を有する
基板を形成した。凹部に高熱伝導性粘着シート{商品
名:T−gon2000,サーマゴンINC製}を貼り
付けた後、14mm角の半導体チップ2{pin数20
25、パット(表面処理銅)径φ100μm、最短ピッ
チ370μmの千鳥配列}を、フェイスアップで圧着す
る。
Embodiment 3 FIG. 405mm x 0.7mm thick
A 340 mm copper plate is used as the bottom plate 11, which is subjected to an oxide film removal treatment and a silane coupling agent treatment. A 150 μm-thick plasma-treated polyimide film with a single-sided adhesive having 28 holes of 15 mm square (4 rows and 7 rows) was thermocompressed to the bottom plate 11 as a frame material 12 to obtain a substrate having a concave portion. Formed. After attaching a high heat conductive adhesive sheet (trade name: T-gon2000, manufactured by Thermogon Inc.) to the concave portion, a 14 mm square semiconductor chip 2 {20 pins
25. A staggered arrangement の having a pad (surface-treated copper) diameter of φ100 μm and a minimum pitch of 370 μm is pressure-bonded face-up.

【0033】次に68μm厚の感光性ドライフィルム
(DF){商品名:ViaLux,Dupont(株)
製}を真空ラミネーターで上からラミネートし、チップ
の端子部分に合わせて紫外線を用いてパターニングを行
い、φ75μmのビアホール穴を形成した。次に過マン
ガン酸工程(膨潤・過マンガン酸処理・還元)を行い、
DFの表面粗化を行った後、無電解メッキおよびビアフ
ィル電解銅メッキ{商品名:キューブライト,荏原ユー
ジーライト(株)製}を施しビア穴を埋め込むと同時に
DF上に導体層を形成する。このとき導体層厚は25μ
mであった。次に導体層をハーフエッチングし、導体層
厚を10μmとしたのちエッチングドライフィルムによ
り導体層のパターニングを行った。ビア上のランド径は
φ100μm、配線のL/Sは30μm/30μmとし
た。得られた基板上の配線にCZ処理を施し、50μm
厚のDF{商品名:ViaLux,Dupont(株)
製}をラミネート後、前工程と同様、ビアフィルメッキ
されたバイアホールおよび厚さ10μmの導体層を作製
し、配線パターンをエッチングにより形成する。以下同
様な工程で導体層が合計9層になるように順次積み上
げ、最上層に端子部を開口させたソルダーレジストを形
成する。最後に個片にカットすることにより、基板1枚
につき28個の半導体パッケージを得た。得られたパッ
ケージのチップ・底板裏面間の熱抵抗を測定したところ
0.1W/℃であった。
Next, a photosensitive dry film (DF) having a thickness of 68 μm (trade name: ViaLux, Dupont Co., Ltd.)
The product was laminated from above with a vacuum laminator and patterned using ultraviolet light in accordance with the terminal of the chip to form a via hole hole of φ75 μm. Next, perform the permanganate process (swelling, permanganate treatment, reduction)
After surface roughening of the DF, electroless plating and via-fill electrolytic copper plating (trade name: Cubelite, manufactured by Ebara Uzylight Co., Ltd.) are performed to fill the via holes and simultaneously form a conductor layer on the DF. At this time, the conductor layer thickness is 25μ.
m. Next, the conductor layer was half-etched to make the thickness of the conductor layer 10 μm, and then the conductor layer was patterned with an etching dry film. The land diameter on the via was φ100 μm, and the L / S of the wiring was 30 μm / 30 μm. The obtained wiring on the substrate is subjected to a CZ process to be 50 μm
Thick DF @ Trade name: ViaLux, Dupont
After lamination, a via-hole plated via hole and a conductive layer having a thickness of 10 μm are prepared as in the previous step, and a wiring pattern is formed by etching. Thereafter, in a similar process, the conductor layers are sequentially stacked so as to have a total of nine layers, and a solder resist having a terminal portion opened in the uppermost layer is formed. Finally, 28 semiconductor packages were obtained per substrate by cutting into individual pieces. When the thermal resistance between the chip and the back surface of the bottom plate of the obtained package was measured, it was 0.1 W / ° C.

【0034】実施例4.厚さ1mmで両面に厚18μm
の銅箔を貼り付けた405mm×340mmのガラスエ
ポキシ積層板{商品名:エポキシマルチ、松下電工
(株)製}の、半導体チップを実装する部分に予め4個
のφ0.3mmの貫通孔をドリルであけ、デスミアした
後、20μm厚のスルーホールめっきを行い、サーマル
バイヤーホールを形成しこれを底板11とする。
Embodiment 4 FIG. 1mm thick and 18μm thick on both sides
405 mm x 340 mm glass epoxy laminated plate with copper foil attached. (Product name: Epoxy Multi, manufactured by Matsushita Electric Works, Ltd.) Drill four through-holes of φ0.3 mm in advance on the part where the semiconductor chip is mounted. Then, after desmearing, through-hole plating with a thickness of 20 μm is performed to form a thermal buyer hole, which is used as the bottom plate 11.

【0035】15mm角の孔を28個(縦4列、横7
列)あけた250μm厚のガラスエポキシプリプレグF
R−4{松下電工(株)製}を枠材12として、上記底
板11にプレス積層し、凹部を有する基板を形成した。
この際、凹部にはサーマルバイヤーホールが露出してい
る状態にある。上記凹部に高熱伝導性粘着シート{商品
名:T−gon2000,サーマゴンINC製}を貼り
付けた後、14mm角の半導体チップ2{pin数20
25、パット(表面処理銅)径φ100μm、最短ピッ
チ370μmの千鳥配列}を、フェイスアップで圧着す
る。
28 holes of 15 mm square (4 rows vertically, 7 rows horizontally)
Row) Opened 250μm thick glass epoxy prepreg F
R-4 (manufactured by Matsushita Electric Works, Ltd.) was used as the frame member 12 and press-laminated on the bottom plate 11 to form a substrate having a concave portion.
At this time, the thermal buyer hole is exposed in the recess. After attaching a high heat conductive adhesive sheet (trade name: T-gon2000, manufactured by Thermogon Inc.) to the recess, a semiconductor chip 2 of 14 mm square and 20 pins
25. A staggered arrangement の having a pad (surface-treated copper) diameter of φ100 μm and a minimum pitch of 370 μm is pressure-bonded face-up.

【0036】次に、68μm厚の感光性ドライフィルム
(DF){商品名:ViaLux,Dupont(株)
製}を真空ラミネーターで上からラミネートし、チップ
の端子部分に合わせて紫外線を用いてパターニングを行
い、φ75μmのビアホール穴を形成した。次に過マン
ガン酸工程(膨潤・過マンガン酸処理・還元)を行い、
DFの表面粗化を行った後、無電解メッキおよびビアフ
ィル電解銅メッキ{商品名:キューブライト,荏原ユー
ジーライト(株)製}を施しビア穴を埋め込むと同時に
DF上に導体層を形成する。この際、下面に露出してサ
ーマルバイヤー内もめっきされる。このとき導体層厚は
25μmであった。次に導体層をハーフエッチングし、
導体層厚を10μmとしたのちエッチングドライフィル
ムにより導体層のパターニングを行った。ビア上のラン
ド径は100μm、配線のL/Sは30μm/30μm
とした。得られた基板上の配線にCZ処理を施し、50
μm厚のDF{商品名:ViaLux,Dupont
(株)製}をラミネート後、前工程と同様、ビアフィル
メッキされたバイアホールおよび厚さ10μmの導体層
を作製し、配線パターンをエッチングにより形成する。
以下同様な工程で導体層が合計9層になるように順次積
み上げ、最上層に端子部を開口させたソルダーレジスト
を形成する。最後に個片にカットすることにより、基板
1枚につき28個の半導体パッケージを得た。得られた
パッケージのチップ・底板裏面間の熱抵抗を測定したと
ころ0.9W/℃であった。
Next, a photosensitive dry film (DF) having a thickness of 68 μm (trade name: ViaLux, Dupont Co., Ltd.)
The product was laminated from above with a vacuum laminator and patterned using ultraviolet light in accordance with the terminal of the chip to form a via hole hole of φ75 μm. Next, perform the permanganate process (swelling, permanganate treatment, reduction)
After surface roughening of the DF, electroless plating and via-fill electrolytic copper plating (trade name: Cubelite, manufactured by Ebara Uzylight Co., Ltd.) are performed to fill the via holes and simultaneously form a conductor layer on the DF. At this time, the inside of the thermal buyer is also exposed and plated on the lower surface. At this time, the thickness of the conductor layer was 25 μm. Next, half-etch the conductor layer,
After the thickness of the conductor layer was 10 μm, patterning of the conductor layer was performed using an etching dry film. Land diameter on via is 100 μm, L / S of wiring is 30 μm / 30 μm
And The wiring on the obtained substrate is subjected to CZ processing,
μm-thick DF Product name: ViaLux, Dupont
After laminating}, a via hole plated with via-fill and a conductor layer having a thickness of 10 μm are formed in the same manner as in the previous step, and a wiring pattern is formed by etching.
Thereafter, in a similar process, the conductor layers are sequentially stacked so as to have a total of nine layers, and a solder resist having a terminal portion opened in the uppermost layer is formed. Finally, 28 semiconductor packages were obtained per substrate by cutting into individual pieces. The thermal resistance between the chip and the bottom surface of the bottom plate of the obtained package was measured and found to be 0.9 W / ° C.

【0037】比較例1.30mm角、5mm厚ガラスエ
ポキシ積層板{商品名:FR−4,松下電工製}に、実
装する14mm角の半導体チップ(pin数2025)
と同形状の凹部を機械的切削法により形成し、チップを
フェイスアップでシリコーンダイボンド剤にて基板凹部
に接着した。さらにその上から感光性エポキシ系層間絶
縁膜{商品名:XP−9500cc,シプレィ・ファー
イースト(株)製}を硬化後の厚さ50μmになるよう
に塗布し、90℃45分乾燥した。チップの端子部分に
合わせて紫外線を用いてパターニングを行い、φ75μ
mビアホール穴を形成した。次に過マンガン酸工程(膨
潤・過マンガン酸処理・還元)を行い、表面粗化を行っ
た後、無電解銅メッキ・電解銅メッキを行ったところビ
アホール形状に沿った形でメッキが形成された。ついで
フォトエッチング法にて銅のパターニング(L/S=3
0μm/30μm)を行った。次に配線引きまわしのた
め同様なプロセスでフォトビアビルドアップ法にて多層
配線を形成した。このときスタットビア構造がとれない
ため上下層のビアを少しずらしてテアドロップ型ランド
を用いた。そのためバンプ間に配線を2本通すことがで
きず、合計17層積み上げなければならなくなった。さ
らにできあがったパッケージはマザーボード接続の際金
バンプでDBA(ダイレクト ボンディング アタッ
チ)接続を試みたが加圧の際に端子部の沈降が起こり、
良好な接続が得られなかった。また、得られたパッケー
ジのチップ・底板裏面間の熱抵抗を測定したところ1.
8W/℃であり、この構成ではチップから生じた熱を効
率良く逃がすことができなかった。
COMPARATIVE EXAMPLE 1. 14 mm square semiconductor chip (pin number: 2025) mounted on a 30 mm square, 5 mm thick glass epoxy laminate (trade name: FR-4, manufactured by Matsushita Electric Works)
A concave portion having the same shape as that of the above was formed by a mechanical cutting method, and the chip was bonded face-up to the substrate concave portion with a silicone die bonding agent. Further, a photosensitive epoxy-based interlayer insulating film (trade name: XP-9500 cc, manufactured by Shipley Far East Co., Ltd.) was applied thereon so as to have a cured thickness of 50 μm, and dried at 90 ° C. for 45 minutes. Perform patterning using ultraviolet light according to the terminal of the chip.
An m via hole was formed. Next, a permanganic acid process (swelling / permanganic acid treatment / reduction) was performed, the surface was roughened, and then electroless copper plating / electrolytic copper plating was performed. Was. Then, copper patterning (L / S = 3
0 μm / 30 μm). Next, a multi-layer wiring was formed by a photo-via build-up method by a similar process for wiring routing. At this time, the via holes in the upper and lower layers were slightly shifted from each other, so that a tear-drop type land was used because the stat via structure could not be obtained. Therefore, two wirings could not be passed between the bumps, and a total of 17 layers had to be stacked. Furthermore, the completed package tried DBA (direct bonding attach) connection with gold bumps when connecting the motherboard, but the terminals settled down when pressed,
No good connection could be obtained. Further, the thermal resistance between the chip and the back surface of the bottom plate of the obtained package was measured.
8 W / ° C., and with this configuration, heat generated from the chip could not be efficiently released.

【0038】比較例2.30mm角、1mm厚銅板に、
実装する14mm角の半導体チップ(pin数202
5)と同形状の凹部を機械的切削法により形成し、チッ
プをフェイスアップでシリコーンダイボンド剤にて基板
凹部に接着した。さらにその上から感光性エポキシ系層
間絶縁膜{商品名:XP−9500cc,シプレィ
(株)製}を硬化後の厚さ50μmになるように塗布
し、90℃45分乾燥した。チップの端子部分に合わせ
て紫外線を用いてパターニングを行い、φ75μmのビ
アホール穴を形成した。次に過マンガン酸工程(膨潤・
過マンガン酸処理・還元)を行い、表面粗化を行った
後、無電解銅メッキ・電解銅メッキを行ったところビア
ホール形状に沿った形でメッキが形成された。ついでフ
ォトエッチング法にて銅のパターニング(L/S=30
μm/30μm)を行った。次に配線引きまわしのため
同様なプロセスでフォトビアビルドアップ法にて多層配
線を形成した。このときスタットビア構造がとれないた
め上下層のビアを少しずらしてテアドロップ型ランドを
用いた。そのためバンプ間に配線を2本通すことができ
ず、合計17層積み上げなければならなくなった。得ら
れたパッケージのチップ・底板裏面間の熱抵抗を測定し
たところ、良好であったが、さらにできあがった半導体
パッケージはマザーボード接続の際金バンプでDBA接
続を試みたが加圧の際に端子部の沈降が起こり、良好な
接続が得られなかった。また得られたパッケージを半田
リフローテストしたところ金属基材部とエポキシ層間絶
縁膜の間に剥離が発生した。これは金属と層間絶縁膜の
熱膨張差およびビルドアップ層の層数が多いために大き
な応力が生じたことに起因する。
Comparative Example 2. On a 30 mm square, 1 mm thick copper plate,
14 mm square semiconductor chip (pin number 202)
A concave portion having the same shape as in 5) was formed by a mechanical cutting method, and the chip was bonded face-up to the substrate concave portion with a silicone die bonding agent. Further, a photosensitive epoxy-based interlayer insulating film (trade name: XP-9500 cc, manufactured by Shipley Co., Ltd.) was applied thereon so as to have a cured thickness of 50 μm, and dried at 90 ° C. for 45 minutes. Patterning was performed using ultraviolet light in accordance with the terminal portion of the chip to form a via hole hole of φ75 μm. Next, the permanganate process (swelling /
(Permanganic acid treatment / reduction), surface roughening was performed, and then electroless copper plating / electrolytic copper plating was performed. As a result, plating was formed along the shape of the via hole. Then, patterning of copper by photo etching (L / S = 30)
μm / 30 μm). Next, a multi-layer wiring was formed by a photo-via build-up method by a similar process for wiring routing. At this time, the via holes in the upper and lower layers were slightly shifted from each other, so that a tear-drop type land was used because the stat via structure could not be obtained. Therefore, two wirings could not be passed between the bumps, and a total of 17 layers had to be stacked. When the thermal resistance between the chip and the bottom surface of the bottom plate of the obtained package was measured, it was good. However, for the completed semiconductor package, DBA connection was attempted with gold bumps when connecting the motherboard. Sedimentation occurred, and a good connection was not obtained. When the obtained package was subjected to a solder reflow test, peeling occurred between the metal base portion and the epoxy interlayer insulating film. This is because a large stress is generated due to a difference in thermal expansion between the metal and the interlayer insulating film and a large number of build-up layers.

【0039】[0039]

【発明の効果】本発明の第1の半導体装置は、凹部を有
する基板、上記凹部に埋め込まれた半導体チップ、上記
半導体チップおよび基板表面を被覆し、上記半導体チッ
プの接続端子部に開口を有する絶縁層、上記開口を導電
性材料で導通をとった層間導通部、並びに上記絶縁層に
設け、上記層間導通部と導通する導体配線を備えた半導
体装置であって、上記基板が、サーマルバイヤーを形成
した樹脂複合材料、または金属からなる底板と、この底
板に接着され、上記半導体チップより大きい貫通孔を有
し、ポリイミドまたは樹脂複合材料からなる枠材とを備
えたもので、放熱性に優れ、リフロー時の剥離が防止で
きるという効果がある。
According to the first semiconductor device of the present invention, a substrate having a concave portion, a semiconductor chip embedded in the concave portion, the semiconductor chip and the surface of the substrate are covered, and an opening is provided in a connection terminal portion of the semiconductor chip. An insulating layer, an interlayer conductive portion in which the opening is electrically conductive with a conductive material, and a semiconductor device provided in the insulating layer and provided with a conductor wiring that is conductive to the interlayer conductive portion, wherein the substrate is a thermal buyer. It has a bottom plate made of a resin composite material or metal formed, and a frame material made of polyimide or a resin composite material that has a through hole that is bonded to the bottom plate and that is larger than the semiconductor chip and has excellent heat dissipation. This has the effect that peeling during reflow can be prevented.

【0040】本発明の第2の半導体装置は、上記第1の
半導体装置において、導体配線上にビルドアップ法によ
り、ビア内を導電性の材料で充填したスタッドビアを有
する絶縁層と導体配線を順次積層したもので、高密度配
線が可能であるという効果がある。
According to a second semiconductor device of the present invention, in the above first semiconductor device, an insulating layer having a stud via whose inside is filled with a conductive material and a conductive wiring are formed on the conductive wiring by a build-up method. Since the layers are sequentially stacked, there is an effect that high-density wiring is possible.

【0041】本発明の第3の半導体装置は、上記第1ま
たは第2の半導体装置において、樹脂複合材料が樹脂
と、ガラスクロス、ガラス不織布、ポリアミド系不織布
または液晶ポリマー系不織布とで構成されているもの
で、リフロー時の剥離が防止でき、耐熱性に優れるとい
う効果がある。
According to a third semiconductor device of the present invention, in the first or second semiconductor device, the resin composite material is composed of a resin and a glass cloth, a glass nonwoven fabric, a polyamide nonwoven fabric, or a liquid crystal polymer nonwoven fabric. This has the effect of preventing peeling during reflow and having excellent heat resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態の半導体装置を製造する
工程を示す説明図である。
FIG. 1 is an explanatory diagram showing a step of manufacturing a semiconductor device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板、11 底板、12 枠材、2 半導体チップ、
22 凹部、3 絶縁層、4 導体層、41 導体配線、4
2 層間導通部。
1 substrate, 11 bottom plate, 12 frame material, 2 semiconductor chip,
22 recess, 3 insulating layer, 4 conductor layer, 41 conductor wiring, 4
2 Interlayer conduction part.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 凹部を有する基板、上記凹部に埋め込ま
れた半導体チップ、上記半導体チップおよび基板表面を
被覆し、上記半導体チップの接続端子部に開口を有する
絶縁層、上記開口を導電性材料で導通を持たせた層間導
通部、並びに上記絶縁層に設け、上記層間導通部と導通
する導体配線を備えた半導体装置であって、上記基板
が、サーマルバイヤーを形成した樹脂複合材料、または
金属からなる底板と、この底板に接着され、上記半導体
チップより大きい貫通孔を有し、ポリイミドまたは樹脂
複合材料からなる枠材とを備えたものであることを特徴
とする半導体装置。
1. A substrate having a concave portion, a semiconductor chip embedded in the concave portion, an insulating layer covering the surface of the semiconductor chip and the substrate, having an opening in a connection terminal portion of the semiconductor chip, and filling the opening with a conductive material. A semiconductor device provided with an interlayer conductive portion having conductivity, and a conductor wiring provided on the insulating layer and conductive with the interlayer conductive portion, wherein the substrate is made of a resin composite material forming a thermal buyer, or a metal. A semiconductor device comprising: a bottom plate formed of a polyimide or a resin composite material, the bottom plate being bonded to the bottom plate and having a through hole larger than the semiconductor chip.
【請求項2】 導体配線上にビルドアップ法により、ビ
ア内を導電性の材料で充填したスタッドビアを有する絶
縁層と導体配線を順次積層したことを特徴とする請求項
1に記載の半導体装置。
2. The semiconductor device according to claim 1, wherein an insulating layer having a stud via whose inside is filled with a conductive material and a conductive wiring are sequentially laminated on the conductive wiring by a build-up method. .
【請求項3】 樹脂複合材料が樹脂と、ガラスクロス、
ガラス不織布、ポリアミド系不織布または液晶ポリマー
系不織布とで構成されていることを特徴とする請求項1
または請求項2に記載の半導体装置。
3. A resin composite material comprising: a resin; a glass cloth;
2. A nonwoven fabric comprising a glass nonwoven fabric, a polyamide nonwoven fabric or a liquid crystal polymer nonwoven fabric.
Alternatively, the semiconductor device according to claim 2.
JP2000198427A 2000-06-30 2000-06-30 Semiconductor device Pending JP2002016173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000198427A JP2002016173A (en) 2000-06-30 2000-06-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000198427A JP2002016173A (en) 2000-06-30 2000-06-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2002016173A true JP2002016173A (en) 2002-01-18

Family

ID=18696593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000198427A Pending JP2002016173A (en) 2000-06-30 2000-06-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2002016173A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071998A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004088082A (en) * 2002-06-24 2004-03-18 Fuji Photo Film Co Ltd Solid-state imaging device and method of manufacturing the same
JP2004095836A (en) * 2002-08-30 2004-03-25 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004165189A (en) * 2002-11-08 2004-06-10 Oki Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
JP2004165188A (en) * 2002-11-08 2004-06-10 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2004165190A (en) * 2002-11-08 2004-06-10 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2004165194A (en) * 2002-11-08 2004-06-10 Oki Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
JP2004165192A (en) * 2002-11-08 2004-06-10 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2004207306A (en) * 2002-12-24 2004-07-22 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004214543A (en) * 2003-01-08 2004-07-29 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2004281849A (en) * 2003-03-18 2004-10-07 Sumitomo Metal Electronics Devices Inc High heat radiation plastic package and its manufacturing method
JP2004320059A (en) * 2004-08-16 2004-11-11 Oki Electric Ind Co Ltd Method for manufacturing semiconductor device
JP2004320061A (en) * 2004-08-16 2004-11-11 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2004356649A (en) * 2004-08-16 2004-12-16 Oki Electric Ind Co Ltd Method of manufacturing semiconductor device
JP2005116714A (en) * 2003-10-07 2005-04-28 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2005142248A (en) * 2003-11-05 2005-06-02 Casio Comput Co Ltd Semiconductor device and manufacturing method therefor
JP2005159199A (en) * 2003-11-28 2005-06-16 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2006013205A (en) * 2004-06-28 2006-01-12 Akita Denshi Systems:Kk Semiconductor device and manufacturing method therefor
JP2006019441A (en) * 2004-06-30 2006-01-19 Shinko Electric Ind Co Ltd Method of manufacturing substrate with built-in electronic substrate
US7105423B2 (en) 2004-05-11 2006-09-12 Shinko Electric Industries Co., Ltd Method of manufacturing semiconductor device
US7183639B2 (en) 2003-01-16 2007-02-27 Casio Computer Co., Ltd. Semiconductor device and method of manufacturing the same
US7285856B2 (en) 2003-05-30 2007-10-23 Shinko Electric Industries Co., Ltd. Package for semiconductor devices
US7294922B2 (en) 2002-08-09 2007-11-13 Casio Computer Co., Ltd. Semiconductor device and method of manufacturing the same
JP2007299870A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Relay substrate, and three-dimensional electronic circuit structure using same
US7323778B2 (en) 2002-11-08 2008-01-29 Oki Electric Industry Co., Ltd. Semiconductor device with improved design freedom of external terminal
JP2008141144A (en) * 2006-11-16 2008-06-19 Nan Ya Printed Circuit Board Corp Embedded chip package having high heat dissipation capability
JP2009032824A (en) * 2007-07-25 2009-02-12 Tdk Corp Electronic component-embedded board and method of manufacturing the same
JP2009032823A (en) * 2007-07-25 2009-02-12 Tdk Corp Electronic component-embedded board and method of manufacturing the same
KR20090089267A (en) * 2008-02-18 2009-08-21 신코 덴키 코교 가부시키가이샤 Semiconductor device manufacturing method, semiconductor device and wiring board
JP2009252859A (en) * 2008-04-03 2009-10-29 Shinko Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
JP2010050475A (en) * 2009-10-20 2010-03-04 Shinko Electric Ind Co Ltd Method of manufacturing substrate with built-in electronic component
WO2011016555A1 (en) * 2009-08-07 2011-02-10 日本電気株式会社 Semiconductor device and method for manufacturing same
US8035217B2 (en) 2007-06-08 2011-10-11 Nec Corporation Semiconductor device and method for manufacturing same
JP2012109297A (en) * 2010-11-15 2012-06-07 Shinko Electric Ind Co Ltd Semiconductor package and method for manufacturing the same
JP2012248754A (en) * 2011-05-30 2012-12-13 Lapis Semiconductor Co Ltd Method of manufacturing semiconductor device and semiconductor device
US8536691B2 (en) 2006-11-06 2013-09-17 Renesas Electronics Corporation Semiconductor device and method for manufacturing the same
JP2016063214A (en) * 2014-09-19 2016-04-25 インテル・コーポレーション Control of warpage using abfgc cavity for embedded die package
JP2019087731A (en) * 2017-11-08 2019-06-06 サムソン エレクトロ−メカニックス カンパニーリミテッド. Fan-out semiconductor package
US10643919B2 (en) 2017-11-08 2020-05-05 Samsung Electronics Co., Ltd. Fan-out semiconductor package

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088082A (en) * 2002-06-24 2004-03-18 Fuji Photo Film Co Ltd Solid-state imaging device and method of manufacturing the same
US7547967B2 (en) 2002-08-09 2009-06-16 Casio Computer Co., Ltd. Semiconductor device and method of manufacturing the same
US7294922B2 (en) 2002-08-09 2007-11-13 Casio Computer Co., Ltd. Semiconductor device and method of manufacturing the same
US7618886B2 (en) 2002-08-09 2009-11-17 Casio Computer Co., Ltd. Semiconductor device and method of manufacturing the same
US7737543B2 (en) 2002-08-09 2010-06-15 Casio Computer Co., Ltd. Semiconductor device and method of manufacturing the same
JP2004071998A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004095836A (en) * 2002-08-30 2004-03-25 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004165188A (en) * 2002-11-08 2004-06-10 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method
US8039310B2 (en) 2002-11-08 2011-10-18 Oki Semiconductor Co., Ltd. Method of manufacturing semiconductor device with improved design freedom of external terminal
JP2004165192A (en) * 2002-11-08 2004-06-10 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method
US7323778B2 (en) 2002-11-08 2008-01-29 Oki Electric Industry Co., Ltd. Semiconductor device with improved design freedom of external terminal
JP2004165194A (en) * 2002-11-08 2004-06-10 Oki Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
JP2004165190A (en) * 2002-11-08 2004-06-10 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method
US7053486B2 (en) 2002-11-08 2006-05-30 Oki Electric Industry Co., Ltd. Semiconductor device with improved design freedom of external terminal
JP2004165189A (en) * 2002-11-08 2004-06-10 Oki Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
US7193330B2 (en) 2002-11-08 2007-03-20 Oki Electric Industry Co., Ltd. Semiconductor device with improved design freedom of external terminal
US7109579B2 (en) 2002-11-08 2006-09-19 Oki Electric Industry Co., Ltd. Semiconductor device with improved design freedom of external terminal
JP2004207306A (en) * 2002-12-24 2004-07-22 Casio Comput Co Ltd Semiconductor device and its manufacturing method
USRE41369E1 (en) 2002-12-24 2010-06-08 Casio Computer Co., Ltd. Semiconductor device and method of manufacturing the same
US7192805B2 (en) 2002-12-24 2007-03-20 Casio Computer Co., Ltd. Semiconductor device and method of manufacturing the same
US7736944B2 (en) 2003-01-08 2010-06-15 Oki Semiconductor Co., Ltd. Semiconductor device with improved design freedom of external terminal
US7151320B2 (en) 2003-01-08 2006-12-19 Oki Electric Industry Co., Ltd. Semiconductor device with improved design freedom of external terminal
JP2004214543A (en) * 2003-01-08 2004-07-29 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
US7445964B2 (en) 2003-01-16 2008-11-04 Casio Computer Co., Ltd. Semiconductor device and method of manufacturing the same
US7183639B2 (en) 2003-01-16 2007-02-27 Casio Computer Co., Ltd. Semiconductor device and method of manufacturing the same
JP2004281849A (en) * 2003-03-18 2004-10-07 Sumitomo Metal Electronics Devices Inc High heat radiation plastic package and its manufacturing method
US7285856B2 (en) 2003-05-30 2007-10-23 Shinko Electric Industries Co., Ltd. Package for semiconductor devices
US7696617B2 (en) 2003-05-30 2010-04-13 Shinko Electric Industries Co., Ltd. Package for semiconductor devices
JP2005116714A (en) * 2003-10-07 2005-04-28 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2005142248A (en) * 2003-11-05 2005-06-02 Casio Comput Co Ltd Semiconductor device and manufacturing method therefor
JP4561079B2 (en) * 2003-11-05 2010-10-13 カシオ計算機株式会社 Manufacturing method of semiconductor device
JP2005159199A (en) * 2003-11-28 2005-06-16 Casio Comput Co Ltd Semiconductor device and its manufacturing method
US7105423B2 (en) 2004-05-11 2006-09-12 Shinko Electric Industries Co., Ltd Method of manufacturing semiconductor device
JP2006013205A (en) * 2004-06-28 2006-01-12 Akita Denshi Systems:Kk Semiconductor device and manufacturing method therefor
JP2006019441A (en) * 2004-06-30 2006-01-19 Shinko Electric Ind Co Ltd Method of manufacturing substrate with built-in electronic substrate
US7727802B2 (en) 2004-06-30 2010-06-01 Shinko Electric Industries Co., Ltd. Method for fabricating an electronic component embedded substrate
JP2004356649A (en) * 2004-08-16 2004-12-16 Oki Electric Ind Co Ltd Method of manufacturing semiconductor device
JP2004320061A (en) * 2004-08-16 2004-11-11 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2004320059A (en) * 2004-08-16 2004-11-11 Oki Electric Ind Co Ltd Method for manufacturing semiconductor device
JP2007299870A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Relay substrate, and three-dimensional electronic circuit structure using same
US8536691B2 (en) 2006-11-06 2013-09-17 Renesas Electronics Corporation Semiconductor device and method for manufacturing the same
JP2008141144A (en) * 2006-11-16 2008-06-19 Nan Ya Printed Circuit Board Corp Embedded chip package having high heat dissipation capability
US8035217B2 (en) 2007-06-08 2011-10-11 Nec Corporation Semiconductor device and method for manufacturing same
US8975150B2 (en) 2007-06-08 2015-03-10 Renesas Electronics Corporation Semiconductor device manufacturing method
JP2009032824A (en) * 2007-07-25 2009-02-12 Tdk Corp Electronic component-embedded board and method of manufacturing the same
JP4518113B2 (en) * 2007-07-25 2010-08-04 Tdk株式会社 Electronic component built-in substrate and manufacturing method thereof
JP4518114B2 (en) * 2007-07-25 2010-08-04 Tdk株式会社 Electronic component built-in substrate and manufacturing method thereof
JP2009032823A (en) * 2007-07-25 2009-02-12 Tdk Corp Electronic component-embedded board and method of manufacturing the same
JP2009194322A (en) * 2008-02-18 2009-08-27 Shinko Electric Ind Co Ltd Semiconductor device manufacturing method, semiconductor device and wiring substrate
KR101602958B1 (en) * 2008-02-18 2016-03-11 신코 덴키 코교 가부시키가이샤 Semiconductor device manufacturing method, semiconductor device and wiring board
KR20090089267A (en) * 2008-02-18 2009-08-21 신코 덴키 코교 가부시키가이샤 Semiconductor device manufacturing method, semiconductor device and wiring board
US9048242B2 (en) 2008-02-18 2015-06-02 Shinko Electric Industries Co., Ltd. Semiconductor device manufacturing method, semiconductor device, and wiring board
US8217509B2 (en) 2008-02-18 2012-07-10 Shinko Electric Industries Co., Ltd. Semiconductor device
JP2009252859A (en) * 2008-04-03 2009-10-29 Shinko Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
WO2011016555A1 (en) * 2009-08-07 2011-02-10 日本電気株式会社 Semiconductor device and method for manufacturing same
US8692364B2 (en) 2009-08-07 2014-04-08 Nec Corporation Semiconductor device and method for manufacturing the same
JP2010050475A (en) * 2009-10-20 2010-03-04 Shinko Electric Ind Co Ltd Method of manufacturing substrate with built-in electronic component
JP2012109297A (en) * 2010-11-15 2012-06-07 Shinko Electric Ind Co Ltd Semiconductor package and method for manufacturing the same
JP2012248754A (en) * 2011-05-30 2012-12-13 Lapis Semiconductor Co Ltd Method of manufacturing semiconductor device and semiconductor device
JP2016063214A (en) * 2014-09-19 2016-04-25 インテル・コーポレーション Control of warpage using abfgc cavity for embedded die package
US10658307B2 (en) 2014-09-19 2020-05-19 Intel Corporation Control of warpage using ABF GC cavity for embedded die package
US11322457B2 (en) 2014-09-19 2022-05-03 Intel Corporation Control of warpage using ABF GC cavity for embedded die package
US12009318B2 (en) 2014-09-19 2024-06-11 Intel Corporation Control of warpage using ABF GC cavity for embedded die package
JP2019087731A (en) * 2017-11-08 2019-06-06 サムソン エレクトロ−メカニックス カンパニーリミテッド. Fan-out semiconductor package
US10643919B2 (en) 2017-11-08 2020-05-05 Samsung Electronics Co., Ltd. Fan-out semiconductor package

Similar Documents

Publication Publication Date Title
JP2002016173A (en) Semiconductor device
US8971053B2 (en) Wiring board and method for manufacturing the same
TW571371B (en) Method for fabricating semiconductor package
KR101077410B1 (en) Printed circuit board with electronic components embedded therein including cooling member and method for fabricating the same
US20140247571A1 (en) Wiring board with built-in electronic component and method for manufacturing the same
JP4427874B2 (en) Multilayer wiring board manufacturing method and multilayer wiring board
US20110296681A1 (en) Printed wiring board and method for manufacturing same
JPWO2007126090A1 (en) CIRCUIT BOARD, ELECTRONIC DEVICE DEVICE, AND CIRCUIT BOARD MANUFACTURING METHOD
JP2001028483A (en) Wiring board, multilayer wiring board, circuit component package, and manufacturing method of wiring board
JPH11233678A (en) Manufacture of ic package
JP2004256908A (en) Package substrate to be plated without using plating lead wire, and production method therefor
US20100108371A1 (en) Wiring board with built-in electronic component and method for manufacturing the same
JP2016063130A (en) Printed wiring board and semiconductor package
JP2000349435A (en) Multilayered printed wiring board and manufacture thereof
JP2015225895A (en) Printed wiring board, semiconductor package and printed wiring board manufacturing method
JP5003812B2 (en) Printed wiring board and printed wiring board manufacturing method
JP2001217550A (en) Multilayer circuit board and semiconductor device
JP2003188314A (en) Method of manufacturing substrate with built-in element and substrate with built-in element
JP5007164B2 (en) Multilayer wiring board and multilayer wiring board manufacturing method
JP4384157B2 (en) Method for manufacturing a substrate having a cavity
JP5861400B2 (en) Semiconductor mounting materials
US11363719B2 (en) Wiring substrate and component built-in wiring substrate
KR101109287B1 (en) Printed circuit board with electronic components embedded therein and method for fabricating the same
JP2022047099A (en) Component built-in wiring board
JP2001015912A (en) Multilayered printed wiring board and production thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040707