JP2004095836A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2004095836A
JP2004095836A JP2002254695A JP2002254695A JP2004095836A JP 2004095836 A JP2004095836 A JP 2004095836A JP 2002254695 A JP2002254695 A JP 2002254695A JP 2002254695 A JP2002254695 A JP 2002254695A JP 2004095836 A JP2004095836 A JP 2004095836A
Authority
JP
Japan
Prior art keywords
semiconductor
embedding material
semiconductor device
rewiring
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002254695A
Other languages
Japanese (ja)
Other versions
JP3888267B2 (en
Inventor
Hiroyasu Sadabetto
定別当 裕康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002254695A priority Critical patent/JP3888267B2/en
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to KR1020047005322A priority patent/KR100593049B1/en
Priority to PCT/JP2003/009958 priority patent/WO2004015771A2/en
Priority to EP03784529A priority patent/EP1527480A2/en
Priority to AU2003253425A priority patent/AU2003253425C1/en
Priority to CA2464078A priority patent/CA2464078C/en
Priority to CN038012693A priority patent/CN1568546B/en
Priority to TW092121811A priority patent/TWI231551B/en
Publication of JP2004095836A publication Critical patent/JP2004095836A/en
Priority to US10/826,039 priority patent/US7294922B2/en
Priority to HK05105873.6A priority patent/HK1073389A1/en
Priority to US11/671,318 priority patent/US7547967B2/en
Priority to US11/671,268 priority patent/US7618886B2/en
Application granted granted Critical
Publication of JP3888267B2 publication Critical patent/JP3888267B2/en
Priority to US12/415,782 priority patent/US7737543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To connect a silicon substrate and solder balls through conductive connection without effecting the bonding process when manufacturing a semiconductor device called as a BGA(ball grid array), for example. <P>SOLUTION: A lattice embedding member 34 is bonded onto a bonding layer above a base board 21 having a size coping with a plurality of semiconductor devices. Next, a semiconductor constituting body 23, provided on the silicon substrate 24 with a rewiring 31, a columnar electrode 32 and a sealing film 33, is bonded onto the bonding layer 22 in the opening of the embedding member 34. Next, a sealing film 36 is formed between the semiconductor constituting body 23 and a square frame embedding member 34 at the outside of the semiconductor constituting body 23. Next, a first upper layer insulating film 37, a first upper layer rewiring 39, a second upper layer insulating film 41, a second upper layer rewiring 43 and a third upper layer insulating film 44 are formed in the form of lamination and subsequently solder balls 46 are formed. Next, when the mutually neighbored semiconductor constituting body 23 is cut along a boundary line between the constituting bodies, a plurality of semiconductor devices equipped with the solder balls 46 are obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
例えばBGA(ball grid array)と呼ばれる半導体装置には、LSIなどからなる半導体チップを該半導体チップのサイズよりもやや大きいサイズの中継基板(インターポーザ)の上面中央部に搭載し、中継基板の下面に半田ボールによる接続端子をマトリクス状に配置したものがある。ここで、中継基板は、半導体チップ上に形成された外部接続電極を他の回路基板にボンディングする際、接続強度および信頼性を得るために、再配線によりそのサイズおよびピッチを充分大きなものとするために用いられる。
【0003】
図51は従来のこのような半導体装置の一例の断面図を示したものである。半導体チップ1は、シリコン基板2の下面周辺部に銅などからなる複数のバンプ電極3が設けられた構造となっている。
【0004】
中継基板4は、サイズが半導体チップ1のシリコン基板2のサイズよりもやや大きいベースフィルム5を備えている。ベースフィルム5の上面には、半導体チップ1のバンプ電極3に接続される再配線6が設けられている。
【0005】
再配線6は、半導体チップ1のバンプ電極3に対応して設けられた第1の接続パッド7と、マトリクス状に設けられた第2の接続パッド8と、第1と第2の接続パッド7、8を接続する引き回し線9とからなっている。第2の接続パッド8の中央部に対応する部分におけるベースフィルム5には円孔10が設けられている。
【0006】
そして、半導体チップ1は中継基板4の上面中央部に異方性導電接着剤11を介して搭載されている。異方性導電接着剤11は、熱硬化性樹脂12中に多数の導電性粒子13を含有させたものからなっている。
【0007】
半導体チップ1を中継基板4上に搭載する場合には、まず、中継基板4の上面中央部にシート状の異方性導電接着剤11を介して半導体チップ1を位置合わせしてただ単に載置する。
【0008】
次に、熱硬化性樹脂12が硬化する温度にて所定の圧力を加えてボンディングする。すると、バンプ電極3が熱硬化性樹脂12を押し退けて第1の接続パッド7の上面に導電性粒子13を介して導電接続され、且つ、半導体チップ1の下面が中継基板4の上面に熱硬化性樹脂12を介して接着される。
【0009】
次に、半導体チップ1を含む中継基板4の上面全体にエポキシ系樹脂からなる樹脂封止膜14を形成する。次に、円孔10内およびその下方に半田ボール15を第2の接続パッド8に接続させて形成する。この場合、第2の接続パッド8はマトリクス状に配置されているため、半田ボール15もマトリクス状に配置される。
【0010】
ここで、半田ボール15のサイズは半導体チップ1のバンプ電極3のサイズより大きく、また、各半田ボール15相互の接触を避けるため、その配置間隔をバンプ電極3の配置間隔より大きくする必要がある。そこで、半導体チップ1のバンプ電極3の数が増大した場合、各半田ボール15に必要な配置間隔を得るため、その配置領域を半導体チップ1のサイズより大きくすることが必要となり、そのために、中継基板4のサイズを半導体チップ1のサイズよりもやや大きくしている。したがって、マトリクス状に配置された半田ボール15のうち、周辺部の半田ボール15は半導体チップ1の周囲に配置されている。
【0011】
【発明が解決しようとする課題】
ところで、上記従来の半導体装置では、再配線6が形成された中継基板4を用い、位置合わせした後のボンディングにより、半導体チップ1のバンプ電極3の下面を中継基板4の再配線6の第1の接続パッド7の上面に異方性導電接着剤11の導電性粒子13を介して導電接続する構成としているので、半導体チップ1のバンプ電極3の数が増大し、バンプ電極3のサイズおよび配置間隔が小さくなると、位置合わせが極めて大変であるという問題があった。この場合、半導体チップ1のサイズを大きくすれば、バンプ電極3のサイズおよび配置間隔を大きくすることができることは当然であるが、そのようにすると、ウエハ状態からの半導体チップの取り数が激減し、極めて高価なものとなってしまう。また、半導体チップ1を1つずつ中継基板4上にボンディングして搭載しなければならず、製造工程が煩雑であるという問題があった。このようなことは、半導体チップを複数個備えたマルチチップモジュール型の半導体装置の場合も同様である。
【0012】
そこで、この発明は、ボンディングによることなく外部接続電極の配置間隔を大きくすることができる半導体装置およびその製造方法を提供することを目的とする。
また、この発明は、複数の半導体装置を一括して製造することができる半導体装置の製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1に記載の発明は、半導体基板上に設けられた複数の再配線および該各再配線の上に設けられた柱状電極を有する半導体構成体と、該半導体構成体の側方に設けられた枠状の埋込材と、前記半導体構成体の柱状電極を除く上面全体に設けられた絶縁膜と、該絶縁膜および前記埋込材上に、前記柱状電極に接続されて設けられ且つ接続パッド部を有する少なくとも一層の上層再配線とを備え、前記上層再配線の中、最上層の上層再配線の少なくとも一部の接続パッド部は前記埋込材上に配置されていることを特徴とするものである。
請求項2に記載の発明は、各々が、半導体基板と、該半導体基板上に設けられた複数の再配線および該各再配線上に設けられた柱状電極を有し、相互に離間して配置された複数の半導体構成体と、前記半導体構成体の間または前記各半導体構成体の側方に設けられた埋込材と、前記各半導体構成体の柱状電極を除く上面全体に設けられた絶縁膜と、該絶縁膜および前記埋込材上に、前記柱状電極に接続されて設けられ且つ接続パッド部を有する少なくとも一層の上層再配線とを備え、前記上層再配線の中、最上層の上層再配線の少なくとも一部の接続パッド部は前記埋込材上に配置されていることを特徴とするものである。
請求項3に記載の発明は、請求項1または2に記載の発明において、前記半導体構成体と前記埋込材との間に別の絶縁膜が設けられていることを特徴とするものである。
請求項4に記載の発明は、請求項1または2に記載の発明において、前記埋込材の下面は前記半導体構成体の下面とほぼ同一の平面上に配置されていることを特徴とするものである。
請求項5に記載の発明は、請求項1または2に記載の発明において、前記埋込材の上面は前記半導体構成体の上面とほぼ同一の平面上に配置されていることを特徴とするものである。
請求項6に記載の発明は、請求項1または2に記載の発明において、前記埋込材の上面は前記半導体構成体の上面と異なる高さ位置に配置されていることを特徴とするものである。
請求項7に記載の発明は、請求項1または2に記載の発明において、前記半導体構成体および前記埋込材はベース板上に設けられていることを特徴とするものである。
請求項8に記載の発明は、請求項1または2に記載の発明において、前記上層再配線はメッキ層を含むことを特徴とするものである。
請求項9に記載の発明は、請求項1または2に記載の発明において、前記絶縁膜は複数層であり、その層間に、前記半導体構成体の柱状電極と前記上層再配線とを接続する層間再配線が設けられていることを特徴とするものである。
請求項10に記載の発明は、請求項1または2に記載の発明において、前記上層再配線を含む前記絶縁膜の上面に前記上層再配線の接続パッド部の少なくとも一部を除く部分に最上層絶縁膜が設けられていることを特徴とするものである。請求項11に記載の発明は、請求項10に記載の発明において、前記上層再配線の接続パッド部上に突起状の接続端子が設けられていることを特徴とするものである。
請求項12に記載の発明は、請求項11に記載の発明において、前記突起状の接続端子は半田ボールであることを特徴とするものである。
請求項13に記載の発明は、請求項1または2に記載の発明において、前記上層再配線の一部の一端部は前記埋込材の端面まで延ばされ、この端面近傍における部分は接続端子となっていることを特徴とするものである。
請求項14に記載の発明は、ベース板上に、少なくとも一方向に所定間隔で埋込材を配置する工程と、各々が、複数の再配線および該各再配線上に設けられた柱状電極を有する複数の半導体構成体を、前記ベース板上の一方向において、前記埋込材が前記半導体構成体の所定個数毎にその側方に介在されるように配置する工程と、接続パッド部を有し且ついずれかの前記半導体構成体の対応する前記柱状電極に接続される上層再配線を、少なくともいずれかの前記上層再配線の接続パッド部が前記埋込材上に配置されるように形成する工程と、前記半導体構成体間における前記埋込材を切断して少なくともいずれかの前記上層再配線の接続パッド部が前記半導体構成体の側方に介在された前記埋込材上に配置された前記半導体構成体を少なくとも1つ有する半導体装置を複数個得る工程とを有することを特徴とするものである。
請求項15に記載の発明は、請求項14に記載の発明において、前記半導体構成体と前記埋込材との間に別の絶縁膜を形成する工程を有することを特徴とするものである。
請求項16に記載の発明は、請求項14に記載の発明において、前記埋込材を切断する工程は、前記半導体構成体が複数個含まれるように切断することを特徴とするものである。
請求項17に記載の発明は、請求項16に記載の発明において、前記絶縁膜は複数層であり、その層間に、前記各半導体構成体の柱状電極とそれに対応する前記上層再配線とを接続する複数組の層間再配線を形成する工程を有することを特徴とするものである。
請求項18に記載の発明は、請求項16に記載の発明において、前記上層再配線を含む前記絶縁膜の上面において前記上層再配線の接続パッド部を除く部分に最上層絶縁膜を形成する工程を有することを特徴とするものである。
請求項19に記載の発明は、請求項18に記載の発明において、前記上層再配線の接続パッド部上に突起状の接続端子を形成する工程を有することを特徴とするものである。
請求項20に記載の発明は、請求項16に記載の発明において、前記埋込材を切断する工程は前記埋込材を切断するとともに前記ベース板を切断し、前記半導体装置としてベース板を備えたものを得ることを特徴とするものである。
請求項21に記載の発明は、請求項20に記載の発明において、切断前の前記ベース板下に別のベース板を配置し、前記ベース板を切断した後に、前記別のベース板を取り除く工程を有することを特徴とするものである。
そして、この発明によれば、半導体基板上に再配線および柱状電極を有する複数または複数組の半導体構成体および埋込材をベース板上に配置し、半導体構成体上の絶縁膜および埋込材上に上層再配線を半導体構成体の柱状電極に接続させて形成し、埋込材を少なくとも切断することにより、半導体構成体を1つまたは1組有するとともに埋込材を有し、且つ、埋込材上に上層再配線の一部が配置されてなる半導体装置を複数個一括して得ることができ、従来のようなボンディング工程がなく、したがってボンディングによることなく外部接続電極の配置間隔を大きくすることができ、また複数または複数組の半導体構成体に対して絶縁膜および上層再配線の形成を一括して行うことができるので、製造工程を簡略化することができる。
【0014】
【発明の実施の形態】
(第1実施形態)
図1はこの発明の第1実施形態としての半導体装置の断面図を示したものである。この半導体装置は、シリコン、ガラス、セラミックス、樹脂、金属などからなる平面正方形状のベース板21を備えている。ベース板21の上面には、接着剤、粘着シート、両面接着テープなどからなる接着層22が設けられている。
【0015】
接着層22の上面中央部には、ベース板21のサイズよりもやや小さいサイズの平面正方形状の半導体構成体23の下面が接着されている。この場合、半導体構成体23は、CSP(chip size package)と呼ばれるものであり、接着層22の上面中央部に接着されたシリコン基板(半導体基板)24を備えている。シリコン基板24の上面周辺部にはアルミニウムなどからなる複数の接続パッド25が設けられ、接続パッド25の中央部を除くシリコン基板24の上面には酸化シリコンなどからなる絶縁膜26が設けられている。
【0016】
シリコン基板24上に接続パッド25および絶縁膜26を設けてなるものは、通常、ウエハ状態の半導体基板をダイシングして個々のチップとなした場合に得られるものである。しかしながら、この発明では、ウエハ状態の半導体基板上に接続パッド25および絶縁膜26が形成された状態では、ダイシングを行わず、以下に説明するように、再配線および柱状電極を有する半導体構成体23が得られる状態でウエハ状態の半導体基板をダイシングする。まず、半導体構成体23の構成について説明する。
【0017】
シリコン基板24上に形成された絶縁膜26上にはポリイミドなどからなる保護膜27が設けられている。接続パッド25の中央部は、絶縁膜26および保護膜27に形成された開口部28を介して露出されている。開口部28を介して露出された接続パッド25の上面から保護膜27の上面の所定の箇所にかけて下地金属層31aおよび該下地金属層31a上に設けられた上層金属層31bからなる再配線31が設けられている。
【0018】
再配線31の接続パッド部上面には銅からなる柱状電極32が設けられている。再配線31を含む保護膜27の上面にはエポキシ系樹脂などからなる封止膜(絶縁膜)33がその上面が柱状電極32の上面と面一となるように設けられている。このように、半導体構成体23は、シリコン基板24、接続パッド25、絶縁膜26を含み、さらに、保護膜27、再配線31、柱状電極32、封止膜33を含んで構成されている。
【0019】
半導体構成体23の周囲における接着層22の上面には方形枠状の埋込材34が接着されている。この場合、埋込材34の材料は、ベース板21と同じであってもよく、また別であってもよい。また、埋込材34の厚さは、半導体構成体23の全体の厚さとほぼ同じとなっている。さらに、半導体構成体23とその外側に配置された方形枠状の埋込材34との間には比較的狭い隙間35が形成されている。隙間35にはエポキシ系樹脂などからなる封止膜(絶縁膜)36がその上面が封止膜33および埋込材34の上面とほぼ面一となるように設けられている。
【0020】
半導体構成体23、埋込材34および封止膜36の上面全体にはポリイミドなどからなる第1の上層絶縁膜37が設けられている。第1の上層絶縁膜37の柱状電極32の上面中央部に対応する部分には開口部38が設けられている。開口部38を介して露出された柱状電極32の上面から第1の上層絶縁膜37の上面の所定の箇所にかけて第1の下地金属層39aおよび該第1の下地金属層39a上に設けられた第1の上層金属層39bからなる第1の上層再配線39が設けられている。
【0021】
第1の上層再配線39を含む第1の上層絶縁膜37の上面全体にはポリイミドなどからなる第2の上層絶縁膜41が設けられている。第2の上層絶縁膜41の第1の上層再配線39の接続パッド部に対応する部分には開口部42が設けられている。開口部42を介して露出された第1の上層再配線39の接続パッド部上面から第2の上層絶縁膜41の上面の所定の箇所にかけて第2の下地金属層43aおよび該第2の下地金属層43a上に設けられた第2の上層金属層43bからなる第2の上層再配線43が設けられている。
【0022】
第2の上層再配線43を含む第2の上層絶縁膜41の上面全体にはポリイミドなどからなる第3の上層絶縁膜44が設けられている。第3の上層絶縁膜44の第2の上層再配線43の接続パッド部に対応する部分には開口部45が設けられている。開口部45内およびその上方には半田ボール(突起状の接続端子)46が第2の上層再配線43の接続パッド部に接続されて設けられている。複数の半田ボール46は、第3の上層絶縁膜44上にマトリクス状に配置されている。
【0023】
ところで、ベース板21のサイズを半導体構成体23のサイズよりもやや大きくしているのは、シリコン基板24上の接続パッド25の数の増加に応じて、半田ボール46の配置領域を半導体構成体23のサイズよりもやや大きくし、これにより、接続パッド25のサイズおよび配置間隔を柱状電極32のサイズおよび配置間隔よりも大きくするためである。
【0024】
このため、マトリクス状に配置された第2の上層再配線43の接続パッド部(第3の上層絶縁膜44の開口部45内の部分)は、半導体構成体23に対応する領域のみでなく、半導体構成体23の周囲に設けられた埋込材34およびその間の隙間35に設けられた封止膜36の領域上にも配置されている。つまり、マトリクス状に配置された半田ボール46のうち、少なくとも最外周の半田ボール46は半導体構成体23よりも外側に位置する周囲に配置されている。
【0025】
この場合、変形例として、第2の上層再配線43の接続パッド部を全て半導体構成体23よりも外側に位置する周囲に配置するようにしてもよい。また、上層の再配線を1層として、つまり第1の上層再配線39のみとして、少なくとも、最外周の接続パッド部を半導体構成体23よりも外側に位置する周囲に配置することもできる。
【0026】
このように、この半導体装置では、シリコン基板24上に、接続パッド25、絶縁膜26を有するのみでなく、保護膜27、再配線31、柱状電極32、封止膜33などをも形成した半導体構成体23の周囲に封止膜36および埋込材34を設け、その上面に少なくとも第1の上層絶縁膜37および該第1の上層絶縁膜37に形成された開口部38を介して柱状電極32に接続される第1の上層再配線39を設ける構成を特徴としている。
【0027】
この場合、半導体構成体23とその外側に配置された方形枠状の埋込材34との間に比較的狭い隙間35を形成し、この隙間35内にエポキシ系樹脂などからなる封止膜36を設けているので、埋込材34が無い場合と比較して、封止膜36の量を埋込材34の体積の分だけ少なくすることができる。この結果、エポキシ系樹脂などからなる封止膜36の硬化時の収縮による応力を小さくすることができ、ひいてはベース基板21が反りにくいようにすることができる。
【0028】
次に、この半導体装置の製造方法の一例について説明するに、まず、半導体構成体23の製造方法の一例について説明する。この場合、まず、図2に示すように、ウエハ状態のシリコン基板(半導体基板)24上にアルミニウムからなる接続パッド25、酸化シリコンからなる絶縁膜26およびポリイミドからなる保護膜27が設けられ、接続パッド25の中央部が絶縁膜26および保護膜27に形成された開口部28を介して露出されたものを用意する。
【0029】
次に、図3に示すように、開口部28を介して露出された接続パッド25の上面を含む保護膜27の上面全体に下地金属層31aを形成する。この場合、下地金属層31aは、無電解メッキにより形成された銅層のみからなっているが、スパッタにより形成された銅層のみであってもよく、またスパッタにより形成されたチタンなどの薄膜層上にスパッタにより銅層を形成したものであってもよい。これは、後述する上層下地金属層39a、43aの場合も同様である。
【0030】
次に、下地金属層31aの上面にメッキレジスト膜51をパターン形成する。この場合、再配線31形成領域に対応する部分におけるメッキレジスト膜51には開口部52が形成されている。次に、下地金属層31aをメッキ電流路として銅の電解メッキを行うことにより、メッキレジスト膜51の開口部52内の下地金属層31aの上面に上層金属層31bを形成する。次に、メッキレジスト膜51を剥離する。
【0031】
次に、図4に示すように、上層金属層31bを含む下地金属層31aの上面にメッキレジスト膜53をパターン形成する。この場合、柱状電極32形成領域に対応する部分におけるメッキレジスト膜53には開口部54が形成されている。次に、下地金属層31aをメッキ電流路として銅の電解メッキを行うことにより、メッキレジスト膜53の開口部54内の上層金属層31bの接続パッド部上面に柱状電極32を形成する。
【0032】
次に、メッキレジスト膜53を剥離し、次いで、柱状電極32および上層金属層31bをマスクとして下地金属層31aの不要な部分をエッチングして除去すると、図5に示すように、上層金属層31b下にのみ下地金属層31aが残存され、この残存された下地金属層31aおよびその上面全体に形成された上層金属層31bにより再配線31が形成される。
【0033】
次に、図6に示すように、柱状電極32および再配線31を含む保護膜27の上面全体にエポキシ系樹脂からなる封止膜33をその厚さが柱状電極32の高さよりも厚くなるように形成する。したがって、この状態では、柱状電極32の上面は封止膜33によって覆われている。次に、封止膜33および柱状電極32の上面側を適宜に研磨し、図7に示すように、柱状電極32の上面を露出させ、且つ、この露出された柱状電極32の上面を含む封止膜33の上面を平坦化する。次に、図8に示すように、ダンシング工程を経ると、図1に示す半導体構成体23が複数個得られる。
【0034】
ところで、柱状電極32の上面側を適宜に研磨するのは、電解メッキにより形成される柱状電極32の高さにばらつきがあるため、このばらつきを解消して、柱状電極32の高さを均一にするためである。また、この場合、銅からなる柱状電極32の上面側を研磨するため、高価で高精度なグラインダーを用いている。
【0035】
次に、このようにして得られた半導体構成体23を用いて、図1に示す半導体装置を製造する場合の一例について説明する。まず、図9に示すように、図1に示すベース板21を複数枚採取することができるベース板21の上面全体に接着層22が設けられたものを用意する。
【0036】
そして、接着層22の上面の所定の箇所に格子状の埋込材34の下面を接着する。格子状の埋込材34は、一例として、シリコン、ガラス、セラミックス、樹脂、金属などからなるシート状の埋込材34に型抜き加工やエッチングなどにより複数の方形状の開口部34aを形成することにより得られる。また、シート状の埋込材34を接着層22の上面全体に接着し、座ぐり加工により、格子状の埋込材34を形成するようにしてもよい。
【0037】
次に、格子状の埋込材34の各開口部34a内における接着層22の上面中央部にそれぞれ半導体構成体23のシリコン基板24の下面を接着する。この状態では、埋込材34の上面と半導体構成体23の上面とはほぼ同一の平面上に配置されている。また、半導体構成体23とその外側に配置された方形枠状の埋込材34との間には比較的狭い隙間35が形成されている。
【0038】
次に、図10に示すように、隙間35を含む半導体構成体23および埋込材34の上面全体にエポキシ系樹脂からなる封止膜36を印刷などにより塗布する。したがって、この状態では、半導体構成体23および埋込材34の上面は封止膜36によって覆われている。次に、半導体構成体23および埋込材34の上面を覆っている未硬化の封止膜36をバフ研磨により除去することにより、図11に示すように、半導体構成体23および埋込材34の上面を露出させ、且つ、隙間35内に設けられた封止膜36の上面を半導体構成体23および埋込材34の上面とほぼ面一とし、全体としての上面をほぼ平坦化する。次に、封止膜36を硬化させる。
【0039】
ところで、この場合の研磨は、半導体構成体23の上面側つまり銅からなる柱状電極32の上面側を研磨するのではなく、半導体構成体23および埋込材34の上面を覆っている未硬化の封止膜36を除去するものであるので、安価で低精度のバフを用いても何ら支障はない。なお、隙間35内に設けられた未硬化の封止膜36を研磨し過ぎないためと封止膜36の硬化収縮を小さくするために、塗布後の封止膜36を紫外線照射や加熱により仮硬化させるようにしてもよい。また、隙間35内に設けられた封止膜36の硬化収縮が大きくて平坦化が不十分な場合には、封止樹脂の塗布および研磨を繰り返すようにしてもよい。
【0040】
なお、研磨の他の例としては、安価で低精度のエンドレス研磨ベルトの一部をフラット化し、このフラット化した部分で半導体構成体23および埋込材34の上面を覆っている未硬化または仮硬化の封止膜36を半導体構成体23および埋込材34の上面を研磨制限面として平滑化研磨するようにしてもよい。
【0041】
また、半導体構成体23とその外側に配置された方形枠状の埋込材34との間に比較的狭い隙間35を形成し、この隙間35内にエポキシ系樹脂からなる封止膜36を設けているので、埋込材34が無い場合と比較して、封止膜36の量を埋込材34の体積の分だけ少なくすることができる。この結果、エポキシ系樹脂からなる封止膜36の硬化時の収縮による応力を小さくすることができ、ひいてはベース板21が反りにくいようにすることができる。
【0042】
さて、図11に示す研磨工程が終了したら、次に、図12に示すように、ほぼ面一となった半導体構成体23、埋込材34および封止膜36の上面全体に第1の上層絶縁膜37を形成する。この第1の上層絶縁膜37は、感光性ポリイミド、感光性ポリベンザオキサゾール、感光性エポキシ樹脂、感光性ノボラック樹脂、感光性アクリル系カルゾ樹脂などからなり、ドライフィルム化されている。したがって、このドライフィルム化されたものをラミネータによりラミネートすると、第1の上層絶縁膜37が形成される。なお、後述する第2および第3の上層絶縁膜41、44の場合も同様であるが、印刷などの塗布法により形成するようにしてもよい。
【0043】
次に、第1の上層絶縁膜37の柱状電極32の上面中央部に対応する部分に、フォトリソグラフィにより、開口部38を形成する。次に、図13に示すように、開口部38を介して露出された柱状電極32の上面を含む第1の上層絶縁膜37の上面全体に第1の下地金属層39aを形成する。次に、第1の下地金属層39aの上面にメッキレジスト膜55をパターン形成する。この場合、第1の上層再配線39形成領域に対応する部分におけるメッキレジスト膜55には開口部56が形成されている。次に、第1の下地金属層39aをメッキ電流路として銅の電解メッキを行うことにより、メッキレジスト膜55の開口部56内の第1の下地金属層39aの上面に第1の上層金属層39bを形成する。
【0044】
次に、メッキレジスト膜55を剥離し、次いで、第1の上層金属層39bをマスクとして第1の下地金属層39aの不要な部分をエッチングして除去すると、図14に示すように、第1の上層金属層39b下にのみ第1の下地金属層39aが残存され、この残存された第1の下地金属層39aおよびその上面全体に形成された第1の上層金属層39bにより第1の上層再配線39が形成される。
【0045】
次に、図15に示すように、第1の上層再配線39を含む第1の上層絶縁膜37の上面全体に感光性ポリイミドなどからなる第2の上層絶縁膜41をパターン形成する。この場合、第2の上層絶縁膜41の第1の上層再配線39の接続パッド部に対応する部分には開口部42が形成されている。次に、開口部42を介して露出された第1の上層再配線39の接続パッド部を含む第2の上層絶縁膜41の上面全体に第2の下地金属層43aを無電解メッキにより形成する。
【0046】
次に、第2の下地金属層43aの上面にメッキレジスト膜57をパターン形成する。この場合、第2の上層再配線43形成領域に対応する部分におけるメッキレジスト膜57には開口部58が形成されている。次に、第2の下地金属層43aをメッキ電流路として銅の電解メッキを行うことにより、メッキレジスト膜57の開口部58内の第2の下地金属層43aの上面に第2の上層金属層43bを形成する。
【0047】
次に、メッキレジスト膜57を剥離し、次いで、第2の上層金属層43bをマスクとして第2の下地金属層43aの不要な部分をエッチングして除去すると、図16に示すように、第2の上層金属層43b下にのみ第2の下地金属層43aが残存され、この残存された第2の下地金属層43aおよびその上面全体に形成された第2の上層金属層43bにより第2の上層再配線43が形成される。
【0048】
次に、図17に示すように、第2の上層再配線43を含む第2の上層絶縁膜41の上面全体に感光性ポリイミドなどからなる第3の上層絶縁膜44をパターン形成する。この場合、第3の上層絶縁膜44の第2の上層再配線43の接続パッド部に対応する部分には開口部45が形成されている。次に、開口部45内およびその上方に半田ボール46を第2の上層再配線43の接続パッド部に接続させて形成する。
【0049】
次に、図18に示すように、互いに隣接する半導体構成体23間において、3層の絶縁膜44、41、37、埋込材34、接着層22およびベース板21を切断すると、図1に示す半導体装置が複数個得られる。
【0050】
このようにして得られた半導体装置では、半導体構成体23の柱状電極32に接続される第1の下地金属層39aおよび第1の上層金属層39bを無電解メッキ(またはスパッタ)および電解メッキにより形成し、第1の上層再配線39の接続パッド部に接続される第2の下地金属層43aおよび第2の上層金属層43bを無電解メッキ(またはスパッタ)および電解メッキにより形成しているので、ボンディングによらないで、半導体構成体23の柱状電極32と第1の上層再配線39との間および第1の上層再配線39と第2の上層再配線43との間を導電接続することができる。
【0051】
また、上記製造方法では、ベース板21上の接着層22上に格子状の埋込材34および複数の半導体構成体23を接着して配置し、複数の半導体構成体23に対して封止膜36、第1〜第3の上層絶縁膜37、41、44、第1、第2の下地金属層39a、43a、第1、第2の上層金属層39b、44bおよび半田ボール46の形成を一括して行い、その後に分断して複数個の半導体装置を得ているので、製造工程を簡略化することができる。
【0052】
また、ベース板21と共に複数の半導体構成体23を搬送することができるので、これによっても製造工程を簡略化することができる。さらに、ベース板21の外形寸法を一定にすると、製造すべき半導体装置の外形寸法に関係なく、搬送系を共有化することができる。
【0053】
さらに、上記製造方法では、図9に示すように、再配線31および柱状電極32を備えたCSPタイプの半導体構成体23を接着層22上に接着しているので、例えば、シリコン基板24上に接続パッド25および絶縁膜26を設けてなる通常の半導体チップを接着層22上に接着して、半導体チップの周囲に設けられた封止膜上などに再配線および柱状電極を形成する場合と比較して、コストを低減することができる。
【0054】
例えば、切断前のベース板21がシリコンウエハのように一定のサイズのほぼ円形状である場合、接着層22上に接着された半導体チップの周囲に設けられた封止膜上などに再配線および柱状電極を形成すると、処理面積が増大する。換言すれば、低密度処理になるため、一回当たりの処理枚数が低減し、スループットが低下するので、コストアップとなる。
【0055】
これに対し、上記製造方法では、再配線31および柱状電極32を備えたCSPタイプの半導体構成体23を接着層22上に接着した後に、ビルドアップしているので、プロセス数は増大するが、柱状電極32を形成するまでは高密度処理のため、効率が良く、プロセス数の増大を考慮しても、全体の価格を低減することができる。
【0056】
なお、上記実施形態においては、半田ボール46を、半導体構成体23上および埋込材34上の全面に対応してマトリクス状に配列されるよう設けているが、半田ボール46を半導体構成体23の周囲の埋込材34上に対応する領域上にのみ設けるようにしてもよい。その場合、半田ボール46を半導体構成体23の全周囲ではなく、半導体構成体23の4辺の中、1〜3辺の側方のみに設けてもよい。また、このような場合には、埋込材34を方形枠状のものとする必要はなく、半田ボール46を設ける辺の側方のみに配置されるようにしてもよい。また、埋込材34は、印刷、転写、成形などによって形成してもよく、さらに、ベース板21上に半導体構成体23を配列した後に形成するようにしてもよい。
【0057】
次に、図1に示す半導体装置の製造方法の他の例について説明する。まず、図19に示すように、紫外線透過性の透明樹脂板やガラス板などからなる別のベース板60の上面全体に紫外線硬化型の粘着シートなどからなる接着層61を接着し、接着層61の上面に上述のベース板21および接着層22を接着したものを用意する。
【0058】
そして、図9〜図17にそれぞれ示す製造工程を経た後に、図20に示すように、3層の絶縁膜44、41、37、埋込材34、接着層22、ベース板21および接着層61を切断し、別のベース板60を切断しない。次に、別のベース板60の下面側から紫外線を照射し、接着層61を硬化させる。すると、分断されたベース板21の下面に対する接着層61による接着性が低下する。そこで、接着層61上に存在する個片化されたものを1つずつ剥がしてピックアップすると、図1に示す半導体装置が複数個得られる。
【0059】
この製造方法では、図20に示す状態において、接着層61上に存在する個片化された半導体装置がバラバラとならないので、専用の半導体装置載置用トレーを用いることなく、そのまま、図示しない回路基板上への実装時に1つずつ剥がしてピックアップすることができる。また、別のベース板60の上面に残存する接着性が低下した接着層61を剥離すると、別のベース板60を再利用することができる。さらに、別のベース板60の外形寸法を一定にすると、製造すべき半導体装置の外形寸法に関係なく、搬送系を共有化することができる。
【0060】
なおここで、別のベース板60として、膨張させることにより半導体装置を取り外す、通常のダイシングテープなどを用いることも可能であり、その場合には、接着層は紫外線硬化型でなくてもよい。また、別のベース板60を研磨やエッチングにより除去するようにしてもよい。
【0061】
次に、図1に示す半導体装置の製造方法のさらに他の例について説明する。この製造方法では、図12に示す製造工程後に、図21に示すように、開口部38を介して露出された柱状電極32の上面を含む第1の上層絶縁膜37の上面全体に銅の無電解メッキにより第1の下地金属層39aを形成する。次に、第1の下地金属層39aをメッキ電流路として銅の電解メッキを行うことにより、第1の下地金属層39aの上面全体に第1の上層金属形成用層39cを形成する。次に、第1の上層金属形成用層39cの上面の第1の上層再配線形成領域に対応する部分にレジスト膜62をパターン形成する。
【0062】
次に、レジスト膜62をマスクとして第1の上層金属形成用層39cおよび第1の下地金属層39aの不要な部分をエッチングして除去すると、図22に示すように、レジスト膜62下にのみ第1の上層配線層39が残存される。この後、レジスト膜62を剥離する。なお、これと同様の形成方法により、第2の上層再配線43を形成するようにしてもよい。
【0063】
ところで、図9に示すベース板21あるいは図19に示す別のベース板60をトレイ状とすることもできる。つまり、ベース板を、半導体構成体23を配列する領域が周囲より陥没した受け皿のような形状とする。そして、このトレイ状のベース板の半導体構成体23配列領域を囲む周囲の上面にメッキ電流路用金属層を設け、このメッキ電流路用金属層とメッキ電流路用の下地金属層(39a、43a)とを導電部材で接続して、電解メッキを行うようにしてもよい。この場合、トレイの外形サイズを同一としておくことにより、製造する半導体装置のサイズが異なる場合でも、同一の製造装置の使用が可能となり効率的となる。
【0064】
(第2実施形態)
図9に示す製造工程において、接着層22を半導体構成体23のシリコン基板24の下面および埋込材34の下面にそれぞれ設け、これらの接着層22をベース板21の上面の各所定の箇所に接着した場合には、図23に示すこの発明の第2実施形態としての半導体装置が得られる。
【0065】
このようにして得られた半導体装置では、例えば、シリコン基板24の下面が接着層22を介してベース板21の上面に接着されているほかに、シリコン基板24の側面などが封止膜36を介してベース板21の上面に接合されているので、半導体構成体23および埋込材34のベース板21に対する接合強度をある程度強くすることができる。
【0066】
(第3、第4実施形態)
図24はこの発明の第3実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図1に示す半導体装置と異なる点は、ベース板21および接着層22を備えていないことである。
【0067】
この第3実施形態の半導体装置を製造する場合には、例えば図17に示すように、半田ボール46を形成した後に、ベース板21および接着層22を研磨やエッチングなどにより除去し、次いで互いに隣接する半導体構成体23間において、3層の絶縁膜44、41、37および埋込材34を切断すると、図24に示す半導体装置が複数個得られる。このようにして得られた半導体装置では、ベース板21および接着層22を備えていないので、その分だけ、薄型化することができる。
【0068】
また、ベース板21および接着層22を研磨やエッチングなどにより除去した後に、シリコン基板24、埋込材34および封止膜36の下面側を適宜に研磨し、次いで互いに隣接する半導体構成体23間において、3層の絶縁膜44、41、37および埋込材34を切断すると、図25に示すこの発明の第4実施形態としての半導体装置が複数個得られる。このようにして得られた半導体装置では、さらに薄型化することができる。
【0069】
なお、半田ボール46を形成する前に、ベース板21および接着層22を研磨やエッチングなどにより除去し(必要に応じてさらにシリコン基板24、埋込材34および封止膜36の下面側を適宜に研磨し)、次いで半田ボール46を形成し、次いで互いに隣接する半導体構成体23間において、3層の絶縁膜44、41、37および埋込材34を切断するようにしてもよい。
【0070】
(第5実施形態)
図26はこの発明の第5実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図1に示す半導体装置と異なる点は、接着層22の下面に放熱用の金属層63が接着されていることである。金属層63は、厚さ数十μmの銅箔などからなっている。
【0071】
この第5実施形態の半導体装置を製造する場合には、例えば図17に示すように、半田ボール46を形成した後に、ベース板21を研磨やエッチングなどにより除去し、次いで接着層22の下面全体に金属層63を接着し、次いで互いに隣接する半導体構成体23間において、3層の絶縁膜44、41、37、埋込材34、接着層22および金属層63を切断すると、図26に示す半導体装置が複数個得られる。
【0072】
なお、接着層22も研磨やエッチングなどにより除去し(必要に応じてさらにシリコン基板24、埋込材34および封止膜36の下面側を適宜に研磨し)、シリコン基板24、埋込材34および封止膜36の下面に新たな接着層を介して金属層63を接着するようにしてもよい。
【0073】
(第6実施形態)
図27はこの発明の第6実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図1に示す半導体装置と異なる点は、第1、第2の上層絶縁膜37、41の開口部38、42のサイズを可及的に小さくし、且つ、これらの開口部38、42上における第1、第2の上層再配線39、43のランドを可及的に小さくしたことである。
【0074】
例えば、第1の上層再配線39は柱状電極32上にメッキにより直接接合されるものであるため、第1の上層絶縁膜37の開口部38は、10μm×10μmの方形または同面積の円形の面積を有していれば強度的に十分である。したがって、第1の上層絶縁膜37の開口部38のサイズを可及的に小さくすることができ、且つ、この開口部38上における第1の上層再配線39のランドを可及的に小さくすることができる。
【0075】
このように、この第6実施形態によれば、第1、第2の上層絶縁膜37、41の開口部38、42のサイズを可及的に小さくし、且つ、これらの開口部38、42上における第1、第2の上層再配線39、43のランドを可及的に小さくすることができるので、第1、第2の上層再配線39、43の占有面積を小さくすることができる。この結果、半導体構成体23のシリコン基板24上の接続パッド25(つまり柱状電極32)の数が増大しても、半導体装置全体としてのサイズを小さいものとすることができる。
【0076】
(第7実施形態)
図28はこの発明の第7実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図1に示す半導体装置と異なる点は、上層の再配線を1層として、つまり第1の上層再配線39のみとして、半導体構成体23の再配線31の一部をクロス再配線としたことである。
【0077】
すなわち、半導体構成体23の保護膜27上に面積的に余裕がある場合には、保護膜27上に接続パッド25と接続されない再配線31Aを設け、この再配線31Aの両端部上に柱状電極32Aを設け、この柱状電極32Aと本来の柱状電極32に第1の上層再配線39を接続し、再配線31Aをクロス再配線としたものである。このようにすれば、上層の再配線の層数を少なくすることができる。
【0078】
(第8、第9実施形態)
図29はこの発明の第8実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図1に示す半導体装置と異なる点は、第1の上層絶縁膜37を省略し、封止膜36を隙間35の周囲における半導体構成体23および埋込材34の各上面にやや盛り上げるように設け、この盛り上げ部、半導体構成体23および埋込材34の上面に第1の上層再配線39を設けたことである。
【0079】
この場合、封止膜36は、メタルマスクなどを用いてあるいはスクリーン印刷により形成する。なお、隙間35の周囲における半導体構成体23および埋込材34の各上面にやや盛り上げるように設けられた未硬化または仮硬化の封止膜36をバフ研磨などにより除去した場合には、図30に示すこの発明の第9実施形態としての半導体装置が得られる。
【0080】
(第10実施形態)
図31はこの発明の第10実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図1に示す半導体装置と異なる点は、第2の上層配線層43および第3の上層絶縁膜44を省略し、第1の上層再配線37の接続パッド部上に半田ボール46を設け、埋込材34の上面に再配線64を設けたことである。この場合、埋込材34上の再配線64の両端部は、その上を覆っている第1の上層絶縁膜37に形成された開口部38を介して第1の上層再配線39に接続されている。
【0081】
(第11実施形態)
図32はこの発明の第11実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図31に示す半導体装置と異なる点は、封止膜36および第1の上層絶縁膜37をダイコーターなどを用いて感光性ポリイミドなどを塗布して一体的に形成したことである。この場合、第1の上層絶縁膜37への開口部38の形成は、フォトリソグラフィであってもよく、またCO2レーザの照射であってもよい。
【0082】
なお、この場合の塗布材料が熱可塑性樹脂や硬化前に比較的低温加熱で流動状態となる流動化可能な樹脂である場合には、塗布により一体的に形成された絶縁膜36、37の平坦化は、加熱加圧処理であってもよい。ここで、図12に示す第1の上層絶縁膜37も、このような塗布材料で形成する場合には、その平坦化は加熱加圧処理であってもよい。
【0083】
(第12実施形態)
図33はこの発明の第12実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図31に示す半導体装置と異なる点は、第1の上層絶縁膜37を省略し、半導体構成体23の上面周辺部、封止膜36の上面および再配線64を含む埋込材34の上面全体に別の第1の上層絶縁膜65をスクリーン印刷などにより形成したことである。
【0084】
この場合、埋込材34上の再配線64の両端部は、その上を覆っている別の第1の上層絶縁膜65にCO2レーザの照射などにより形成された開口部66を介して第1の上層再配線39に接続されている。また、第1の上層再配線39は柱状電極32の上面に絶縁膜の開口部を介することなく直接接続されている。
【0085】
(第13、第14実施形態)
図34はこの発明の第13実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図31に示す半導体装置と大きく異なる点は、再配線64を含む埋込材34の高さが半導体構成体23の高さよりも低くなっていることである。
【0086】
この場合、再配線64を含む埋込材34の上面は封止膜36で覆われている。また、埋込材34上の再配線64の両端部は、その上を覆っている封止膜36にCO2レーザの照射などにより形成された開口部67内に必要に応じて充填された導電性樹脂などからなる導電材68を介して第1の上層再配線39に接続されている。
【0087】
なお、図35に示すこの発明の第14実施形態のように、再配線64を含む埋込材34の高さが半導体構成体23の高さよりも高くなるようにしてもよい。この場合、半導体構成体23の上面は封止膜36で覆われている。また、柱状電極32は、その上を覆っている封止膜36にCO2レーザの照射などにより形成された開口部69内に必要に応じて充填された導電性樹脂などからなる導電材70を介して第1の上層再配線39に接続されている。
【0088】
(第15実施形態)
図18に示す場合には、互いに隣接する半導体構成体23間において切断したが、これに限らず、2個またはそれ以上の半導体構成体23を1組として切断し、例えば、図36に示すこの発明の第15実施形態のように、3個の半導体構成体23を1組として切断し、マルチチップモジュール型の半導体装置を得るようにしてもよい。この場合、3個で1組の半導体構成体23は同種、異種のいずれであってもよい。
【0089】
(第16実施形態)
図37はこの発明の第16実施形態としての半導体装置の断面図を示したものである。この半導体装置では、平面正方形状のベース板71の上面中央部に第1の接着層72aを介して図1に示す場合と同様の第1の半導体構成体73aのシリコン基板74aの下面が接着されている。
【0090】
第1の半導体構成体73aの周囲におけるベース板71の上面には方形枠状の第1の埋込材75aの下面が接合されている。第1の半導体構成体73aと第1の埋込材75aとの間には第1の封止膜76aが設けられている。第1の半導体構成体73a、第1の埋込材75aおよび第1の封止膜76aの上面の所定の箇所には第1の上層再配線77aが第1の半導体構成体73aの柱状電極78aに接続されて設けられている。
【0091】
第1の上層再配線77aを含む第1の半導体構成体73aの上面には第2の接着層72bを介して図1に示す場合と同様の第2の半導体構成体73bのシリコン基板74bの下面が接着されている。第1の上層再配線77aを含む第1の埋込材75aの上面には方形枠状の第2の埋込材75bの下面が接合されている。この場合、第2の埋込材75b内の所定の箇所には上下導通部79bが設けられている。この上下導通部79bの下面は第1の上層再配線77aの接続パッドに接続されている。第2の半導体構成体73bと第2の埋込材75bとの間には第2の封止膜76bが設けられている。
【0092】
第2の半導体構成体73b、第2の埋込材75bおよび第2の封止膜76bの上面の所定の箇所には第2の上層再配線77bが第2の半導体構成体73bの柱状電極78bおよび第2の埋込材75b内の上下導通部79bに接続されて設けられている。第2の上層再配線77bを含む第2の半導体構成体73bの上面には第3の接着層72cを介して図1に示す場合と同様の第3の半導体構成体73cのシリコン基板74cの下面が接着されている。
【0093】
第2の上層再配線77bを含む第2の埋込材75bの上面には方形枠状の第3の埋込材75cの下面が接合されている。この場合、第3の埋込材75c内の所定の箇所には上下導通部79cが設けられている。この上下導通部79cの下面は第2の上層再配線77bの接続パッドに接続されている。第3の半導体構成体73cと第3の埋込材75cとの間には第3の封止膜76cが設けられている。
【0094】
第3の半導体構成体73c、第3の埋込材75cおよび第3の封止膜76cの上面の所定の箇所には第3の上層再配線77cが第3の半導体構成体73cの柱状電極78cおよび第3の埋込材75c内の上下導通部79cに接続されて設けられている。第3の上層再配線77cを含む第3の半導体構成体73c、第3の埋込材75cおよび第3の封止膜76cの上面全体には上層絶縁膜80が設けられている。上層絶縁膜80上の所定の箇所には半田ボール81が第3の上層再配線77cの接続パッドに接続されて設けられている。
【0095】
次に、この半導体装置の製造方法の一例について説明する。まず、図38に示すように、図37に示すベース板71を複数枚採取することができるベース板71の上面の所定の箇所に格子状の第1の埋込材75aを配置する。この場合、ベース板71、第1の埋込材75aおよび後述する第2、第3の埋込材75b、75cは熱可塑性樹脂からなっている。そして、加熱加圧により、第1の埋込材75aをベース板71の上面の所定の箇所に接合する。
【0096】
次に、図39に示すように、格子状の第1の埋込材75aの各開口部内におけるベース板71の上面中央部にそれぞれ第1の半導体構成体73aのシリコン基板74aの下面を該下面に予め接着された第1の接着層72aを介して接着する。この状態では、第1の埋込材75aの上面と第1の半導体構成体73aの上面とはほぼ同一の平面上に配置されている。また、第1の半導体構成体73aとその外側に配置された方形枠状の第1の埋込材75aとの間には比較的狭い第1の隙間82aが形成されている。
【0097】
次に、図40に示すように、第1の隙間82a内に第1の封止膜76aを形成する。次に、第1の半導体構成体73a、第1の埋込材75aおよび第1の封止膜76aの上面の所定の箇所に第1の上層再配線77aを第1の半導体構成体73aの柱状電極78aに接続させて形成する。
【0098】
次に、図41に示すように、第1の上層再配線77aを含む格子状の第1の埋込材75aの上面に格子状の第2の埋込材75bを熱圧着する。この場合、第2の埋込材75b内の所定の箇所には上下導通材79bが予め形成されている。そして、熱圧着により、第1の上層再配線77aによる段差は解消され、第2の埋込材75b内の上下導通材79bの下面は第1の上層再配線77aの接続パッドに接続される。
【0099】
次に、図42に示すように、格子状の第2の埋込材75bの開口部内における第1の上層再配線77aを含む第1の半導体構成体73aの上面に第2の半導体構成体73bのシリコン基板74bの下面を該下面に予め接着された第2の接着層72bを介して接着する。
【0100】
次に、第2の半導体構成体73bとその外側に配置された方形枠状の第2の埋込材75bとの間に形成された比較的狭い第2の隙間内に第2の封止膜76bを形成する。次に、第1の半導体構成体73a、第1の埋込材75aおよび第1の封止膜76aの上面の所定の箇所に第2の上層再配線77bを第2の半導体構成体73bの柱状電極78bおよび第2の埋込材75b内の上下導通材79bに接続させて形成する。
【0101】
次に、図43に示すように、第2の上層再配線77bを含む格子状の第2の埋込材75bの上面に格子状の第3の埋込材75cを熱圧着する。この場合、第3の埋込材75c内の所定の箇所には上下導通材79cが予め形成されている。そして、熱圧着により、第2の上層再配線77bによる段差は解消され、第3の埋込材75c内の上下導通材79cの下面は第2の上層再配線77bの接続パッドに接続される。
【0102】
次に、格子状の第3の埋込材75cの開口部内における第2の上層再配線77bを含む第2の半導体構成体73bの上面に第3の半導体構成体73cのシリコン基板74cの下面を該下面に予め接着された第3の接着層72cを介して接着する。
【0103】
次に、第3の半導体構成体73cとその外側に配置された方形枠状の第3の埋込材75cとの間に形成された比較的狭い第3の隙間内に第3の封止膜76cを形成する。次に、第3の半導体構成体73c、第3の埋込材75cおよび第3の封止膜76cの上面の所定の箇所に第3の上層再配線77cを第3の半導体構成体73cの柱状電極78cおよび第3の埋込材75c内の上下導通材79cに接続させて形成する。
【0104】
次に、第3の上層再配線77cを含む第3の半導体構成体73c、第3の埋込材75cおよび第3の封止膜76cの上面に上層絶縁膜80をパターン形成する。次に、上層絶縁膜80上の所定の箇所に半田ボール81を第3の上層再配線77cの接続パッド部に接続させて形成する。次に、図44に示すように、所定のダイシング工程を経ると、図37に示す半導体装置が複数個得られる。
【0105】
(第17実施形態)
図45はこの発明の第17実施形態としての半導体装置の断面図を示したものである。この半導体装置では、まず、図1に示すものとほぼ同じものを用意する。以下、この用意したものを第1の半導体ブロック81という。ただし、第1の半導体ブロック81の半田ボール46は、全て半導体構成体23よりも外側に位置する周囲にのみ配置され、図1に示す場合よりも径がやや小さくなっている。
【0106】
また、図24に示すものとほぼ同じであるが、埋込材34内に上下導通材82が設けられたものを用意する。以下、この用意したものを第2の半導体ブロック83という。そして、第2の半導体ブロック83は第1の半導体ブロック81上に、第2の半導体ブロック83の埋込材34内の上下導通材82の下面を第1の半導体ブロック81の半田ボール46に接続されて、搭載されている。
【0107】
(第18、第19実施形態)
図46はこの発明の第18実施形態としての半導体装置の断面図を示したものである。この半導体装置では、まず、図24に示すものとほぼ同じであるが、埋込材34内に上下導通材84が設けられたものを用意する。以下、この用意したものを半導体ブロック85という。
【0108】
ただし、この半導体ブロック85では、半導体構成体23、埋込材34および封止膜36の上面に第1の絶縁膜86がパターン形成され、第1の絶縁膜86の上面に配線87が上下導通材84の上面に接続されて形成され、配線87を含む第1の絶縁膜86の上面に第2の絶縁膜88がパターン形成され、第2の絶縁膜88で覆われずに露出された配線87の接続パッド部上に小径の半田ボール89が形成されている。
【0109】
そして、半導体ブロック85上には、図1に示す場合とほぼ同じ構造の複数の半導体構成体23が、その柱状電極32を半導体ブロック85の半田ボール89に接続されて、搭載されている。
【0110】
なお、図47に示すこの発明の第19実施形態のように、半導体ブロック85上にLSIなどからなる第1および第2の半導体チップ91、92を搭載するようにしてもよい。この場合、半導体ブロック85の第2の絶縁膜88で覆われずに露出された配線87の接続パッド部は、全て半導体構成体23よりも外側に位置する周囲にのみ配置されている。
【0111】
第1および第2の半導体チップ91、92は、チップ本体91a、92aの上周辺部に複数の接続パッド91b、92bが設けられた構造となっている。第1の半導体チップ91の平面サイズは半導体構成体23の平面サイズとほぼ同じであり、第2の半導体チップ92の平面サイズは半導体チップ91の平面サイズよりもある程度小さくなっている。
【0112】
そして、第1の半導体チップ91は半導体ブロック85の絶縁膜88の上面中央部に接着層93を介して搭載され、その接続パッド91bはワイヤ94を介して半導体ブロック85の第2の絶縁膜88で覆われずに露出された配線87の接続パッド部に接続されている。第2の半導体チップ92は第1の半導体チップ91の上面中央部に接着層95を介して搭載され、その接続パッド92bはワイヤ96を介して半導体ブロック85の第2の絶縁膜88で覆われずに露出された配線87の接続パッド部に接続されている。第1、第2の半導体チップ91、92およびワイヤ94、96を含む絶縁膜88の上面全体にはエポキシ系樹脂などからなる封止膜97が設けられている。
【0113】
(第20、第21実施形態)
図48はこの発明の第20実施形態としての半導体装置の断面図を示したものである。この半導体装置では、まず、図1に示すものとほぼ同じであるが、第2の上層再配線43、第3の上層絶縁膜44および半田ボール46を備えていないものを用意する。ただし、この場合、埋込材34の一辺部34aは平面的にある程度幅広となっている。
【0114】
そして、第1の上層再配線39の一部の一端部は埋込材34の一辺部34aの端面まで延ばされ、この端面近傍における部分は接続端子39Aとなっている。また、接続端子39Aを含む接続部分を除いて、第1の上層再配線39を含む第2の上層絶縁膜41の上面には接着層101を介してシールド用の金属層102が設けられている。金属層102は、厚さ数十μmの同箔などからなっている。
【0115】
この半導体装置の具体的な応用例としては、端子数が少なく、シリコン基板24(チップ部分)とモジュール間の接続の温度サイクル信頼性が要求されるDRAMなどのメモリーモジュールが考えられる。この場合、図49に示すこの発明の第21実施形態のように、図48に示すものにおいてベース板21を除去してなるものを2つ接着層22を介して接着するようにしてもよい。
【0116】
ところで、図48に示す半導体装置において、半導体構成体23が不良品である場合、リペアー法として、金属層102を接着層101を介して接着せずに、第1の上層再配線39の一部をレーザの照射によりカットして、不良品である半導体構成体23を使用不能とし、次いで、図50に示すように、別の良品の半導体構成体23Aを搭載するようにしてもよい。この場合、第1の上層絶縁膜41の所定の箇所にCO2レーザの照射により開口部を形成し、この開口部内に導電性樹脂などからなる導電材103を埋め込み、別の良品の半導体構成体23Aの柱状電極32をこの導電材103に半田(図示せず)を介して接続するようにしてもよい。
【0117】
(その他の実施形態)
例えば、図9に示す状態において、半導体構成体23として封止膜33を備えていないものを用意する。つまり、図5に示すように、接続パッド25および絶縁膜26が形成されたウエハ状態のシリコン基板24上に保護膜27、再配線31および柱状電極32を形成した後、封止膜33を形成することなく、これをダイシングする。
【0118】
そして、例えば、図10に示す製造工程において、封止膜33、36を形成すべき領域に同一の封止材料によって同時に封止膜33、36を形成し、該封止膜33、36(ただし、封止膜は一体化されており境界はない)の上面側を研磨して、図11に示す状態とするようにしてもよい。
【0119】
【発明の効果】
以上説明したように、この発明によれば、半導体基板上に再配線および柱状電極を有する複数または複数組の半導体構成体および埋込材をベース板上に配置し、半導体構成体上の絶縁膜および埋込材上に上層再配線を半導体構成体の柱状電極に接続させて形成し、埋込材を少なくとも切断することにより、半導体構成体を1つまたは1組有するとともに埋込材を有し、且つ、埋込材上に上層再配線の一部が配置されてなる半導体装置を複数個一括して得ることができ、従来のようなボンディング工程がなく、したがってボンディングによることなく外部接続電極の配置間隔を大きくすることができ、また複数または複数組の半導体構成体に対して絶縁膜および上層再配線の形成を一括して行うことができるので、製造工程を簡略化することができる。
【図面の簡単な説明】
【図1】この発明の第1実施形態としての半導体装置の断面図。
【図2】図1に示す半導体装置の製造方法の一例において、当初用意したものの断面図。
【図3】図2に続く製造工程の断面図。
【図4】図3に続く製造工程の断面図。
【図5】図4に続く製造工程の断面図。
【図6】図5に続く製造工程の断面図。
【図7】図6に続く製造工程の断面図。
【図8】図7に続く製造工程の断面図。
【図9】図8に続く製造工程の断面図。
【図10】図9に続く製造工程の断面図。
【図11】図10に続く製造工程の断面図。
【図12】図11に続く製造工程の断面図。
【図13】図12に続く製造工程の断面図。
【図14】図13に続く製造工程の断面図。
【図15】図14に続く製造工程の断面図。
【図16】図15に続く製造工程の断面図。
【図17】図16に続く製造工程の断面図。
【図18】図17に続く製造工程の断面図。
【図19】図1に示す半導体装置の製造方法の他の例において、当初用意したものの断面図。
【図20】同他の例において、所定の製造工程の断面図。
【図21】図1に示す半導体装置の製造方法のさらに他の例において、所定の製造工程の断面図。
【図22】図21に続く製造工程の断面図。
【図23】この発明の第2実施形態としての半導体装置の断面図。
【図24】この発明の第3実施形態としての半導体装置の断面図。
【図25】この発明の第4実施形態としての半導体装置の断面図。
【図26】この発明の第5実施形態としての半導体装置の断面図。
【図27】この発明の第6実施形態としての半導体装置の断面図。
【図28】この発明の第7実施形態としての半導体装置の断面図。
【図29】この発明の第8実施形態としての半導体装置の断面図。
【図30】この発明の第9実施形態としての半導体装置の断面図。
【図31】この発明の第10実施形態としての半導体装置の断面図。
【図32】この発明の第11実施形態としての半導体装置の断面図。
【図33】この発明の第12実施形態としての半導体装置の断面図。
【図34】この発明の第13実施形態としての半導体装置の断面図。
【図35】この発明の第14実施形態としての半導体装置の断面図。
【図36】この発明の第15実施形態としての半導体装置の断面図。
【図37】この発明の第16実施形態としての半導体装置の断面図。
【図38】図37に示す半導体装置の製造方法の一例において、当初の製造工程の断面図。
【図39】図38に続く製造工程の断面図。
【図40】図39に続く製造工程の断面図。
【図41】図40に続く製造工程の断面図。
【図42】図41に続く製造工程の断面図。
【図43】図42に続く製造工程の断面図。
【図44】図43に続く製造工程の断面図。
【図45】この発明の第17実施形態としての半導体装置の断面図。
【図46】この発明の第18実施形態としての半導体装置の断面図。
【図47】この発明の第19実施形態としての半導体装置の断面図。
【図48】この発明の第20実施形態としての半導体装置の断面図。
【図49】この発明の第21実施形態としての半導体装置の断面図。
【図50】図48に示す半導体装置においてリペアーを行う場合を説明するために示す断面図。
【図51】従来の半導体装置の一例の断面図。
【符号の説明】
21 ベース板
22 接着層
23 半導体構成体
24 シリコン基板
25 接続パッド
31 再配線
32 柱状電極
33 封止膜
34 埋込材
36 封止膜
37 第1の上層絶縁膜
39 第1の上層再配線
41 第2の上層絶縁膜
43 第2の上層再配線
44 第3の上層絶縁膜
46 半田ボール
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device and a method for manufacturing the same.
[0002]
[Prior art]
For example, in a semiconductor device called a BGA (ball grid array), a semiconductor chip composed of an LSI or the like is mounted on the center of the upper surface of a relay substrate (interposer) slightly larger than the size of the semiconductor chip, and is mounted on the lower surface of the relay substrate. There is one in which connection terminals using solder balls are arranged in a matrix. Here, when bonding the external connection electrodes formed on the semiconductor chip to another circuit board, the relay board has a sufficiently large size and pitch by rewiring in order to obtain connection strength and reliability. Used for
[0003]
FIG. 51 is a sectional view showing an example of such a conventional semiconductor device. The semiconductor chip 1 has a structure in which a plurality of bump electrodes 3 made of copper or the like are provided around the lower surface of a silicon substrate 2.
[0004]
The relay substrate 4 includes a base film 5 whose size is slightly larger than the size of the silicon substrate 2 of the semiconductor chip 1. On the upper surface of the base film 5, a rewiring 6 connected to the bump electrode 3 of the semiconductor chip 1 is provided.
[0005]
The rewiring 6 includes a first connection pad 7 provided corresponding to the bump electrode 3 of the semiconductor chip 1, a second connection pad 8 provided in a matrix, and first and second connection pads 7. , 8 are connected. A circular hole 10 is provided in the base film 5 at a portion corresponding to the center of the second connection pad 8.
[0006]
The semiconductor chip 1 is mounted on the center of the upper surface of the relay board 4 via the anisotropic conductive adhesive 11. The anisotropic conductive adhesive 11 is made of a thermosetting resin 12 containing a large number of conductive particles 13.
[0007]
When the semiconductor chip 1 is mounted on the relay substrate 4, first, the semiconductor chip 1 is positioned at the center of the upper surface of the relay substrate 4 via the sheet-like anisotropic conductive adhesive 11 and simply placed. I do.
[0008]
Next, bonding is performed by applying a predetermined pressure at a temperature at which the thermosetting resin 12 is cured. Then, the bump electrode 3 pushes away the thermosetting resin 12 and is conductively connected to the upper surface of the first connection pad 7 through the conductive particles 13, and the lower surface of the semiconductor chip 1 is thermoset to the upper surface of the relay substrate 4. It is bonded via the conductive resin 12.
[0009]
Next, a resin sealing film 14 made of an epoxy resin is formed on the entire upper surface of the relay substrate 4 including the semiconductor chip 1. Next, a solder ball 15 is formed in and below the circular hole 10 so as to be connected to the second connection pad 8. In this case, since the second connection pads 8 are arranged in a matrix, the solder balls 15 are also arranged in a matrix.
[0010]
Here, the size of the solder balls 15 is larger than the size of the bump electrodes 3 of the semiconductor chip 1, and the interval between the solder balls 15 needs to be larger than the interval between the bump electrodes 3 to avoid contact between the solder balls 15. . Therefore, when the number of the bump electrodes 3 of the semiconductor chip 1 increases, it is necessary to make the arrangement area larger than the size of the semiconductor chip 1 in order to obtain a necessary arrangement interval between the solder balls 15. The size of the substrate 4 is slightly larger than the size of the semiconductor chip 1. Therefore, among the solder balls 15 arranged in a matrix, the peripheral solder balls 15 are arranged around the semiconductor chip 1.
[0011]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional semiconductor device, the lower surface of the bump electrode 3 of the semiconductor chip 1 is bonded to the first wiring of the relay substrate 4 by bonding after the alignment using the relay substrate 4 on which the redistribution 6 is formed. Is electrically connected to the upper surface of the connection pad 7 via the conductive particles 13 of the anisotropic conductive adhesive 11, the number of the bump electrodes 3 of the semiconductor chip 1 increases, and the size and arrangement of the bump electrodes 3 are increased. When the interval is small, there is a problem that alignment is extremely difficult. In this case, if the size of the semiconductor chip 1 is increased, it is natural that the size and the arrangement interval of the bump electrodes 3 can be increased. However, in this case, the number of semiconductor chips to be removed from the wafer state is drastically reduced. Would be extremely expensive. In addition, the semiconductor chips 1 must be bonded and mounted one by one on the relay substrate 4, and there is a problem that the manufacturing process is complicated. The same applies to a multi-chip module type semiconductor device including a plurality of semiconductor chips.
[0012]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor device and a method of manufacturing the semiconductor device, which can increase the interval between external connection electrodes without using bonding.
Another object of the present invention is to provide a method of manufacturing a semiconductor device, which can manufacture a plurality of semiconductor devices collectively.
[0013]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a semiconductor structure having a plurality of rewirings provided on a semiconductor substrate and a columnar electrode provided on each of the rewirings, and a semiconductor structure provided on a side of the semiconductor structure. Frame-shaped embedding material, an insulating film provided on the entire upper surface of the semiconductor structure excluding the columnar electrode, and provided on the insulating film and the embedding material so as to be connected to the columnar electrode and connected. And at least one upper layer rewiring having a pad portion, wherein at least a part of the connection pad portion of the uppermost layer upper rewiring in the upper layer rewiring is arranged on the embedding material. Is what you do.
The invention according to claim 2 has a semiconductor substrate, a plurality of rewirings provided on the semiconductor substrate, and a columnar electrode provided on each of the rewirings, which are arranged apart from each other. A plurality of semiconductor structures, an embedding material provided between the semiconductor structures or on a side of each semiconductor structure, and an insulating material provided on the entire upper surface of each of the semiconductor structures except for the columnar electrodes. A film, and at least one upper layer rewiring provided on the insulating film and the burying material and connected to the columnar electrode and having a connection pad portion. At least a part of the connection pad portion of the rewiring is arranged on the embedding material.
According to a third aspect of the present invention, in the first or second aspect of the present invention, another insulating film is provided between the semiconductor structure and the embedding material. .
According to a fourth aspect of the present invention, in the first or second aspect of the present invention, the lower surface of the embedding material is disposed on substantially the same plane as the lower surface of the semiconductor structure. It is.
According to a fifth aspect of the present invention, in the first or second aspect of the present invention, an upper surface of the embedding material is disposed on substantially the same plane as an upper surface of the semiconductor structure. It is.
According to a sixth aspect of the present invention, in the first or second aspect of the present invention, an upper surface of the embedding material is arranged at a different height from an upper surface of the semiconductor structure. is there.
According to a seventh aspect of the present invention, in the first or second aspect, the semiconductor structure and the embedding material are provided on a base plate.
According to an eighth aspect of the present invention, in the first or second aspect, the upper layer rewiring includes a plating layer.
According to a ninth aspect of the present invention, in the first or second aspect of the invention, the insulating film has a plurality of layers, and an interlayer connecting the columnar electrode of the semiconductor structure and the upper layer rewiring is provided between the layers. A rewiring is provided.
According to a tenth aspect of the present invention, in the invention according to the first or second aspect, an uppermost layer is formed on an upper surface of the insulating film including the upper layer rewiring except for at least a part of a connection pad portion of the upper layer rewiring. An insulating film is provided. According to an eleventh aspect of the present invention, in the invention of the tenth aspect, a protruding connection terminal is provided on the connection pad portion of the upper layer rewiring.
According to a twelfth aspect of the present invention, in the eleventh aspect of the present invention, the projecting connection terminals are solder balls.
According to a thirteenth aspect of the present invention, in the first or second aspect, one end of a part of the upper layer rewiring is extended to an end face of the embedding material, and a portion near the end face is a connection terminal. It is characterized by having become.
According to a fourteenth aspect of the present invention, the step of arranging the embedding material at predetermined intervals in at least one direction on the base plate, and each of the step includes a plurality of rewirings and a columnar electrode provided on each of the rewirings. Arranging a plurality of semiconductor structures having a plurality of semiconductor structures in one direction on the base plate such that the embedding material is interposed at a predetermined number of the semiconductor structures on a side thereof; and a connection pad portion. And forming an upper layer rewiring connected to the corresponding columnar electrode of any of the semiconductor structures such that at least a connection pad portion of the upper layer rewiring is arranged on the embedding material. A step of cutting the burying material between the semiconductor structures and disposing at least one of the connection pad portions of the upper layer rewiring on the burying material interposed on the side of the semiconductor structure Reduce the semiconductor structure It is characterized in that a step of obtaining a plurality of semiconductor devices also have one.
According to a fifteenth aspect, in the fourteenth aspect, a step of forming another insulating film between the semiconductor structure and the burying material is provided.
According to a sixteenth aspect of the present invention, in the invention according to the fourteenth aspect, the step of cutting the embedding material is performed so as to include a plurality of the semiconductor structures.
According to a seventeenth aspect, in the invention according to the sixteenth aspect, the insulating film has a plurality of layers, and a columnar electrode of each of the semiconductor structures and the corresponding upper layer rewiring are connected between the layers. A step of forming a plurality of sets of interlayer rewirings.
According to an eighteenth aspect of the present invention, in the invention according to the sixteenth aspect, a step of forming an uppermost-layer insulating film on a portion of the upper surface of the insulating film including the upper-layer rewiring except for a connection pad portion of the upper-layer rewiring. Which is characterized by having
A nineteenth aspect of the present invention is characterized in that, in the invention of the eighteenth aspect, a step of forming a projecting connection terminal on the connection pad portion of the upper layer rewiring is provided.
In the invention according to claim 20, in the invention according to claim 16, the step of cutting the embedding material includes cutting the embedding material and cutting the base plate, and comprising a base plate as the semiconductor device. It is characterized in that it is obtained.
According to a twenty-first aspect of the present invention, in the invention of the twentieth aspect, a step of disposing another base plate below the base plate before cutting, and removing the another base plate after cutting the base plate. Which is characterized by having
According to the present invention, a plurality of or a plurality of sets of the semiconductor structure and the embedding material having the rewiring and the columnar electrode on the semiconductor substrate are arranged on the base plate, and the insulating film and the embedding material on the semiconductor structure are An upper layer rewiring is formed thereon by connecting it to the columnar electrode of the semiconductor structure, and at least the burying material is cut to have one or one set of the semiconductor structure and the burying material. It is possible to collectively obtain a plurality of semiconductor devices in which a part of the upper layer redistribution is arranged on the embedded material, and there is no bonding process as in the related art, so that the arrangement interval of the external connection electrodes can be increased without bonding. In addition, the insulating film and the upper layer rewiring can be collectively formed on a plurality of or a plurality of sets of the semiconductor structures, so that the manufacturing process can be simplified.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
FIG. 1 is a sectional view of a semiconductor device according to a first embodiment of the present invention. This semiconductor device includes a square base plate 21 made of silicon, glass, ceramics, resin, metal, or the like. An adhesive layer 22 made of an adhesive, a pressure-sensitive adhesive sheet, a double-sided adhesive tape, or the like is provided on the upper surface of the base plate 21.
[0015]
At the center of the upper surface of the adhesive layer 22, the lower surface of a planar square semiconductor structure 23 slightly smaller than the size of the base plate 21 is bonded. In this case, the semiconductor structure 23 is called a CSP (chip size package), and includes a silicon substrate (semiconductor substrate) 24 bonded to the center of the upper surface of the bonding layer 22. A plurality of connection pads 25 made of aluminum or the like are provided around the upper surface of the silicon substrate 24, and an insulating film 26 made of silicon oxide or the like is provided on the upper surface of the silicon substrate 24 except for the center of the connection pad 25. .
[0016]
The one in which the connection pads 25 and the insulating film 26 are provided on the silicon substrate 24 is usually obtained when a semiconductor substrate in a wafer state is diced into individual chips. However, according to the present invention, in a state where the connection pads 25 and the insulating film 26 are formed on the semiconductor substrate in a wafer state, dicing is not performed, and as described below, the semiconductor structure 23 having a rewiring and a columnar electrode is formed. The semiconductor substrate in a wafer state is diced in a state where the above is obtained. First, the configuration of the semiconductor component 23 will be described.
[0017]
On the insulating film 26 formed on the silicon substrate 24, a protective film 27 made of polyimide or the like is provided. The central portion of the connection pad 25 is exposed through an opening 28 formed in the insulating film 26 and the protective film 27. From the upper surface of the connection pad 25 exposed through the opening 28 to a predetermined portion of the upper surface of the protective film 27, a redistribution wiring 31 composed of a base metal layer 31a and an upper metal layer 31b provided on the base metal layer 31a is formed. Is provided.
[0018]
A columnar electrode 32 made of copper is provided on the upper surface of the connection pad portion of the rewiring 31. A sealing film (insulating film) 33 made of an epoxy resin or the like is provided on the upper surface of the protective film 27 including the rewiring 31 so that the upper surface thereof is flush with the upper surface of the columnar electrode 32. As described above, the semiconductor structure 23 includes the silicon substrate 24, the connection pad 25, and the insulating film 26, and further includes the protective film 27, the rewiring 31, the columnar electrode 32, and the sealing film 33.
[0019]
A rectangular frame-shaped embedding material 34 is adhered to the upper surface of the adhesive layer 22 around the semiconductor structure 23. In this case, the material of the embedding material 34 may be the same as the base plate 21 or may be different. The thickness of the embedding material 34 is substantially the same as the entire thickness of the semiconductor structure 23. Further, a relatively narrow gap 35 is formed between the semiconductor structure 23 and the rectangular frame-shaped embedding material 34 disposed outside the semiconductor structure 23. A sealing film (insulating film) 36 made of an epoxy resin or the like is provided in the gap 35 so that the upper surface thereof is substantially flush with the upper surfaces of the sealing film 33 and the embedding material 34.
[0020]
A first upper insulating film 37 made of polyimide or the like is provided on the entire upper surfaces of the semiconductor structure 23, the embedding material 34, and the sealing film 36. An opening 38 is provided in a portion of the first upper insulating film 37 corresponding to the center of the upper surface of the columnar electrode 32. The first base metal layer 39a and the first base metal layer 39a are provided on the first base metal layer 39a from the upper surface of the columnar electrode 32 exposed through the opening 38 to a predetermined portion of the upper surface of the first upper insulating film 37. A first upper layer redistribution line 39 made of a first upper layer metal layer 39b is provided.
[0021]
A second upper insulating film 41 made of polyimide or the like is provided on the entire upper surface of the first upper insulating film 37 including the first upper wiring 39. An opening 42 is provided in a portion of the second upper insulating film 41 corresponding to the connection pad of the first upper rewiring 39. The second base metal layer 43a and the second base metal from the upper surface of the connection pad portion of the first upper layer redistribution wiring 39 exposed through the opening 42 to a predetermined portion of the upper surface of the second upper layer insulating film 41. A second upper layer redistribution wiring 43 composed of a second upper layer metal layer 43b provided on the layer 43a is provided.
[0022]
A third upper insulating film 44 made of polyimide or the like is provided on the entire upper surface of the second upper insulating film 41 including the second upper wiring 43. An opening 45 is provided in a portion of the third upper insulating film 44 corresponding to the connection pad portion of the second upper rewiring 43. Inside and above the opening 45, a solder ball (protruding connection terminal) 46 is provided so as to be connected to the connection pad portion of the second upper layer rewiring 43. The plurality of solder balls 46 are arranged in a matrix on the third upper insulating film 44.
[0023]
By the way, the reason why the size of the base plate 21 is made slightly larger than the size of the semiconductor component 23 is that the arrangement area of the solder balls 46 is changed according to the increase in the number of connection pads 25 on the silicon substrate 24. This is because the size and the arrangement interval of the connection pads 25 are made slightly larger than the size and the arrangement interval of the columnar electrodes 32.
[0024]
For this reason, the connection pad portions of the second upper layer redistribution wirings 43 (portions in the openings 45 of the third upper layer insulating film 44) arranged in a matrix form are not limited to the region corresponding to the semiconductor structure 23, An embedding material 34 provided around the semiconductor structure 23 and a sealing film 36 provided in a gap 35 therebetween are also arranged. In other words, of the solder balls 46 arranged in a matrix, at least the outermost solder balls 46 are arranged around the outside of the semiconductor structure 23.
[0025]
In this case, as a modification, all the connection pad portions of the second upper layer redistribution wiring 43 may be arranged around the semiconductor element 23. Further, the upper layer redistribution may be formed as one layer, that is, only the first upper layer redistribution 39, and at least the outermost connection pad portion may be arranged around the outer side of the semiconductor structure 23.
[0026]
As described above, in this semiconductor device, a semiconductor in which not only the connection pad 25 and the insulating film 26 are formed on the silicon substrate 24 but also the protective film 27, the rewiring 31, the columnar electrode 32, the sealing film 33, and the like are formed. A sealing film 36 and an embedding material 34 are provided around the structure 23, and the columnar electrode is formed on the upper surface thereof through at least a first upper insulating film 37 and an opening 38 formed in the first upper insulating film 37. The second embodiment is characterized in that a first upper layer redistribution line 39 connected to the second upper layer wiring 32 is provided.
[0027]
In this case, a relatively narrow gap 35 is formed between the semiconductor structure 23 and the rectangular frame-shaped embedding material 34 disposed outside the semiconductor structure 23, and a sealing film 36 made of an epoxy resin or the like is formed in the gap 35. Is provided, the amount of the sealing film 36 can be reduced by the volume of the embedding material 34 as compared with the case where the embedding material 34 is not provided. As a result, stress due to shrinkage of the sealing film 36 made of an epoxy resin or the like at the time of curing can be reduced, and the base substrate 21 can be less likely to warp.
[0028]
Next, an example of a method of manufacturing the semiconductor device will be described. First, an example of a method of manufacturing the semiconductor structure 23 will be described. In this case, first, as shown in FIG. 2, a connection pad 25 made of aluminum, an insulating film 26 made of silicon oxide, and a protective film 27 made of polyimide are provided on a silicon substrate (semiconductor substrate) 24 in a wafer state. A pad whose central portion is exposed through an opening 28 formed in the insulating film 26 and the protective film 27 is prepared.
[0029]
Next, as shown in FIG. 3, a base metal layer 31a is formed on the entire upper surface of the protective film 27 including the upper surface of the connection pad 25 exposed through the opening 28. In this case, the base metal layer 31a is composed of only a copper layer formed by electroless plating, but may be only a copper layer formed by sputtering, or a thin film layer of titanium or the like formed by sputtering. A copper layer may be formed thereon by sputtering. This is the same in the case of the upper base metal layers 39a and 43a to be described later.
[0030]
Next, a plating resist film 51 is pattern-formed on the upper surface of the base metal layer 31a. In this case, an opening 52 is formed in the plating resist film 51 in a portion corresponding to the rewiring 31 forming region. Next, an upper metal layer 31b is formed on the upper surface of the base metal layer 31a in the opening 52 of the plating resist film 51 by performing copper electrolytic plating using the base metal layer 31a as a plating current path. Next, the plating resist film 51 is peeled off.
[0031]
Next, as shown in FIG. 4, a plating resist film 53 is pattern-formed on the upper surface of the base metal layer 31a including the upper metal layer 31b. In this case, an opening 54 is formed in the plating resist film 53 at a portion corresponding to the region where the columnar electrode 32 is formed. Next, the columnar electrode 32 is formed on the upper surface of the connection pad portion of the upper metal layer 31b in the opening 54 of the plating resist film 53 by performing copper electrolytic plating using the base metal layer 31a as a plating current path.
[0032]
Next, the plating resist film 53 is peeled off, and then unnecessary portions of the base metal layer 31a are removed by etching using the columnar electrodes 32 and the upper metal layer 31b as a mask. As shown in FIG. The underlying metal layer 31a is left only below, and the rewiring 31 is formed by the remaining underlying metal layer 31a and the upper metal layer 31b formed on the entire upper surface thereof.
[0033]
Next, as shown in FIG. 6, a sealing film 33 made of an epoxy resin is formed on the entire upper surface of the protective film 27 including the columnar electrode 32 and the rewiring 31 so that the thickness thereof is larger than the height of the columnar electrode 32. Formed. Therefore, in this state, the upper surface of the columnar electrode 32 is covered with the sealing film 33. Next, the sealing film 33 and the upper surface of the columnar electrode 32 are appropriately polished to expose the upper surface of the columnar electrode 32 and seal the upper surface of the columnar electrode 32 including the exposed upper surface, as shown in FIG. The upper surface of the stop film 33 is flattened. Next, as shown in FIG. 8, through a dancing step, a plurality of semiconductor components 23 shown in FIG. 1 are obtained.
[0034]
By the way, when the upper surface of the columnar electrode 32 is appropriately polished, the height of the columnar electrode 32 formed by the electrolytic plating has a variation. To do that. In this case, an expensive and high-precision grinder is used to polish the upper surface side of the columnar electrode 32 made of copper.
[0035]
Next, an example in which the semiconductor device shown in FIG. 1 is manufactured using the semiconductor component 23 obtained in this manner will be described. First, as shown in FIG. 9, a base plate 21 from which a plurality of base plates 21 shown in FIG. 1 can be obtained is provided with an adhesive layer 22 provided on the entire upper surface thereof.
[0036]
Then, the lower surface of the lattice-shaped embedding material 34 is bonded to a predetermined location on the upper surface of the adhesive layer 22. As an example, the lattice-shaped embedding material 34 forms a plurality of square openings 34a in a sheet-shaped embedding material 34 made of silicon, glass, ceramics, resin, metal, or the like by stamping or etching. It can be obtained by: Alternatively, the sheet-shaped embedding material 34 may be adhered to the entire upper surface of the adhesive layer 22 and the lattice-shaped embedding material 34 may be formed by spot facing.
[0037]
Next, the lower surface of the silicon substrate 24 of the semiconductor structure 23 is bonded to the center of the upper surface of the adhesive layer 22 in each opening 34a of the lattice-shaped embedding material 34, respectively. In this state, the upper surface of the embedding material 34 and the upper surface of the semiconductor structure 23 are arranged on substantially the same plane. A relatively narrow gap 35 is formed between the semiconductor structure 23 and the rectangular frame-shaped embedding material 34 disposed outside the semiconductor structure 23.
[0038]
Next, as shown in FIG. 10, a sealing film 36 made of an epoxy-based resin is applied to the entire upper surfaces of the semiconductor structure 23 including the gap 35 and the embedding material 34 by printing or the like. Therefore, in this state, the upper surfaces of the semiconductor structure 23 and the embedding material 34 are covered with the sealing film 36. Next, the uncured sealing film 36 covering the upper surfaces of the semiconductor structure 23 and the embedding material 34 is removed by buffing, so that the semiconductor structure 23 and the embedding material 34 are removed as shown in FIG. Is exposed, and the upper surface of the sealing film 36 provided in the gap 35 is substantially flush with the upper surfaces of the semiconductor structure 23 and the embedding material 34, and the entire upper surface is substantially flattened. Next, the sealing film 36 is cured.
[0039]
By the way, in this case, the polishing is not performed on the upper surface side of the semiconductor structure 23, that is, on the upper surface side of the columnar electrode 32 made of copper, but the uncured uncured material covering the upper surfaces of the semiconductor structure 23 and the embedding material 34. Since the sealing film 36 is removed, there is no problem even if an inexpensive and low-precision buff is used. In order to prevent the uncured sealing film 36 provided in the gap 35 from being polished excessively and to reduce the curing shrinkage of the sealing film 36, the applied sealing film 36 is temporarily irradiated with ultraviolet light or heated. You may make it harden. When the curing shrinkage of the sealing film 36 provided in the gap 35 is large and the flattening is insufficient, the application and polishing of the sealing resin may be repeated.
[0040]
As another example of polishing, a part of an inexpensive and low-precision endless polishing belt is flattened, and the flattened portion covers the upper surfaces of the semiconductor structure 23 and the embedding material 34. The hardened sealing film 36 may be smoothed and polished by using the upper surfaces of the semiconductor structure 23 and the embedding material 34 as polishing restriction surfaces.
[0041]
Further, a relatively narrow gap 35 is formed between the semiconductor structure 23 and the rectangular frame-shaped embedding material 34 disposed outside the semiconductor structure 23, and a sealing film 36 made of an epoxy resin is provided in the gap 35. Therefore, the amount of the sealing film 36 can be reduced by the volume of the embedding material 34 as compared with the case where the embedding material 34 is not provided. As a result, stress due to shrinkage of the sealing film 36 made of an epoxy resin during curing can be reduced, and the base plate 21 can be made less likely to warp.
[0042]
When the polishing step shown in FIG. 11 is completed, next, as shown in FIG. 12, a first upper layer is formed on the entire upper surfaces of the semiconductor structure 23, the embedding material 34, and the sealing film 36 which are substantially flush. An insulating film 37 is formed. The first upper insulating film 37 is made of a photosensitive polyimide, a photosensitive polybenzoxazole, a photosensitive epoxy resin, a photosensitive novolak resin, a photosensitive acrylic calzo resin, or the like, and is formed into a dry film. Therefore, when this dry film is laminated by a laminator, the first upper insulating film 37 is formed. The same applies to the second and third upper insulating films 41 and 44 described later, but they may be formed by a coating method such as printing.
[0043]
Next, an opening 38 is formed by photolithography in a portion of the first upper insulating film 37 corresponding to the center of the upper surface of the columnar electrode 32. Next, as shown in FIG. 13, a first base metal layer 39a is formed on the entire upper surface of the first upper insulating film 37 including the upper surface of the columnar electrode 32 exposed through the opening 38. Next, a plating resist film 55 is pattern-formed on the upper surface of the first base metal layer 39a. In this case, an opening 56 is formed in the plating resist film 55 in a portion corresponding to the first upper layer rewiring 39 formation region. Next, copper electrolytic plating is performed using the first base metal layer 39a as a plating current path, so that the first upper metal layer 39a is formed on the upper surface of the first base metal layer 39a in the opening 56 of the plating resist film 55. 39b is formed.
[0044]
Next, the plating resist film 55 is peeled off, and then unnecessary portions of the first base metal layer 39a are removed by etching using the first upper metal layer 39b as a mask. As shown in FIG. The first base metal layer 39a remains only under the upper metal layer 39b, and the remaining first base metal layer 39a and the first upper metal layer 39b formed over the entire upper surface thereof form a first upper layer. The rewiring 39 is formed.
[0045]
Next, as shown in FIG. 15, a second upper insulating film 41 made of photosensitive polyimide or the like is pattern-formed on the entire upper surface of the first upper insulating film 37 including the first upper wiring 39. In this case, an opening 42 is formed in a portion of the second upper insulating film 41 corresponding to the connection pad of the first upper wiring 39. Next, a second base metal layer 43a is formed by electroless plating over the entire upper surface of the second upper insulating film 41 including the connection pad portion of the first upper wiring layer 39 exposed through the opening. .
[0046]
Next, a plating resist film 57 is pattern-formed on the upper surface of the second base metal layer 43a. In this case, an opening 58 is formed in the plating resist film 57 at a portion corresponding to the second upper layer rewiring 43 forming region. Next, copper electrolytic plating is performed using the second base metal layer 43a as a plating current path, so that a second upper metal layer is formed on the upper surface of the second base metal layer 43a in the opening 58 of the plating resist film 57. 43b is formed.
[0047]
Next, the plating resist film 57 is peeled off, and then unnecessary portions of the second base metal layer 43a are removed by etching using the second upper metal layer 43b as a mask. As shown in FIG. The second base metal layer 43a remains only under the upper metal layer 43b, and the remaining second base metal layer 43a and the second upper metal layer 43b formed over the entire upper surface thereof form a second upper layer. The rewiring 43 is formed.
[0048]
Next, as shown in FIG. 17, a third upper insulating film 44 made of photosensitive polyimide or the like is patterned on the entire upper surface of the second upper insulating film 41 including the second upper wiring 43. In this case, an opening 45 is formed in a portion of the third upper insulating film 44 corresponding to the connection pad of the second upper rewiring 43. Next, a solder ball 46 is formed in and above the opening 45 so as to be connected to the connection pad portion of the second upper layer rewiring 43.
[0049]
Next, as shown in FIG. 18, the three insulating films 44, 41, 37, the embedding material 34, the adhesive layer 22, and the base plate 21 are cut between the semiconductor structures 23 adjacent to each other. A plurality of the semiconductor devices shown are obtained.
[0050]
In the semiconductor device thus obtained, the first base metal layer 39a and the first upper metal layer 39b connected to the columnar electrodes 32 of the semiconductor structure 23 are formed by electroless plating (or sputtering) and electrolytic plating. Since the second base metal layer 43a and the second upper metal layer 43b connected to the connection pad portion of the first upper layer rewiring 39 are formed by electroless plating (or sputtering) and electrolytic plating. Conductive connection between the columnar electrode 32 of the semiconductor structure 23 and the first upper layer redistribution line 39 and between the first upper layer redistribution line 39 and the second upper layer redistribution line 43 without using bonding. Can be.
[0051]
In the above-described manufacturing method, the lattice-shaped embedding material 34 and the plurality of semiconductor components 23 are bonded and arranged on the adhesive layer 22 on the base plate 21, and the sealing film is applied to the plurality of semiconductor components 23. 36, the formation of the first to third upper insulating films 37, 41, 44, the first and second base metal layers 39a, 43a, the first and second upper metal layers 39b, 44b, and the solder balls 46 are collectively performed. After that, a plurality of semiconductor devices are obtained by dividing the semiconductor device, so that the manufacturing process can be simplified.
[0052]
In addition, since the plurality of semiconductor components 23 can be transported together with the base plate 21, the manufacturing process can be simplified. Furthermore, if the outer dimensions of the base plate 21 are made constant, the transport system can be shared regardless of the outer dimensions of the semiconductor device to be manufactured.
[0053]
Further, in the above-described manufacturing method, as shown in FIG. 9, the CSP type semiconductor structure 23 including the rewiring 31 and the columnar electrode 32 is bonded on the bonding layer 22. Compared with the case where a normal semiconductor chip provided with the connection pads 25 and the insulating film 26 is adhered on the adhesive layer 22 to form a rewiring and a columnar electrode on a sealing film provided around the semiconductor chip. Thus, costs can be reduced.
[0054]
For example, when the base plate 21 before cutting has a substantially circular shape with a certain size like a silicon wafer, rewiring and re-wiring are performed on a sealing film provided around a semiconductor chip bonded on the bonding layer 22. When the columnar electrodes are formed, the processing area increases. In other words, low-density processing results in a reduction in the number of processed sheets at one time and a decrease in throughput, resulting in an increase in cost.
[0055]
On the other hand, in the above-described manufacturing method, since the CSP type semiconductor structure 23 having the rewiring 31 and the columnar electrode 32 is adhered on the adhesive layer 22 and then built up, the number of processes increases. Since the high-density processing is performed until the columnar electrodes 32 are formed, the efficiency is high, and the overall cost can be reduced even if the number of processes is increased.
[0056]
In the above embodiment, the solder balls 46 are provided so as to be arranged in a matrix corresponding to the entire surface of the semiconductor structure 23 and the embedding material 34. May be provided only on a region corresponding to the surrounding embedding material 34. In this case, the solder balls 46 may be provided not on the entire periphery of the semiconductor structure 23 but only on the sides of the first to third sides of the four sides of the semiconductor structure 23. In such a case, the embedding material 34 need not be formed in a rectangular frame shape, and may be arranged only on the side of the side where the solder ball 46 is provided. The embedding material 34 may be formed by printing, transfer, molding, or the like, or may be formed after the semiconductor components 23 are arranged on the base plate 21.
[0057]
Next, another example of the method for manufacturing the semiconductor device shown in FIG. 1 will be described. First, as shown in FIG. 19, an adhesive layer 61 made of an ultraviolet-curable pressure-sensitive adhesive sheet or the like is adhered to the entire upper surface of another base plate 60 made of a transparent resin plate or a glass plate that is transparent to ultraviolet light. The base plate 21 and the adhesive layer 22 described above are bonded to the upper surface of the substrate.
[0058]
Then, after passing through the manufacturing steps shown in FIGS. 9 to 17, respectively, as shown in FIG. 20, the three insulating films 44, 41, and 37, the embedding material 34, the adhesive layer 22, the base plate 21, and the adhesive layer 61 are formed. Is cut, and another base plate 60 is not cut. Next, ultraviolet rays are irradiated from the lower surface side of another base plate 60 to cure the adhesive layer 61. Then, the adhesiveness of the adhesive layer 61 to the separated lower surface of the base plate 21 is reduced. Then, when the individual pieces existing on the adhesive layer 61 are peeled off one by one and picked up, a plurality of semiconductor devices shown in FIG. 1 are obtained.
[0059]
In this manufacturing method, in the state shown in FIG. 20, the individualized semiconductor devices existing on the adhesive layer 61 do not fall apart, so that a circuit (not shown) is used without using a dedicated semiconductor device mounting tray. At the time of mounting on a substrate, it can be peeled off and picked up one by one. Further, when the adhesive layer 61 remaining on the upper surface of another base plate 60 and having reduced adhesiveness is peeled off, another base plate 60 can be reused. Furthermore, if the external dimensions of another base plate 60 are constant, the transport system can be shared regardless of the external dimensions of the semiconductor device to be manufactured.
[0060]
Here, as another base plate 60, it is also possible to use a normal dicing tape or the like, from which the semiconductor device is removed by expanding, and in this case, the adhesive layer does not need to be of the ultraviolet curing type. Further, another base plate 60 may be removed by polishing or etching.
[0061]
Next, still another example of the method for manufacturing the semiconductor device shown in FIG. 1 will be described. In this manufacturing method, after the manufacturing process shown in FIG. 12, as shown in FIG. 21, the entire upper surface of the first upper insulating film 37 including the upper surface of the columnar electrode 32 exposed through the opening 38 is free of copper. A first base metal layer 39a is formed by electrolytic plating. Next, a first upper metal forming layer 39c is formed on the entire upper surface of the first base metal layer 39a by performing copper electrolytic plating using the first base metal layer 39a as a plating current path. Next, a resist film 62 is pattern-formed on a portion of the upper surface of the first upper metal formation layer 39c corresponding to the first upper layer rewiring formation region.
[0062]
Next, unnecessary portions of the first upper metal forming layer 39c and the first base metal layer 39a are removed by etching using the resist film 62 as a mask, and as shown in FIG. The first upper wiring layer 39 remains. After that, the resist film 62 is peeled off. Note that the second upper layer redistribution wiring 43 may be formed by the same forming method.
[0063]
By the way, the base plate 21 shown in FIG. 9 or another base plate 60 shown in FIG. 19 may be formed in a tray shape. That is, the base plate is shaped like a saucer in which the region where the semiconductor components 23 are arranged is depressed from the surroundings. Then, a plating current path metal layer is provided on the upper surface of the tray base plate surrounding the semiconductor structure 23 arrangement region, and the plating current path metal layer and the plating current path base metal layer (39a, 43a) are provided. ) May be connected by a conductive member to perform electrolytic plating. In this case, by setting the outer dimensions of the trays to be the same, the same manufacturing apparatus can be used even when the sizes of the semiconductor devices to be manufactured are different, so that the efficiency is improved.
[0064]
(2nd Embodiment)
In the manufacturing process shown in FIG. 9, the adhesive layers 22 are provided on the lower surface of the silicon substrate 24 of the semiconductor structure 23 and the lower surface of the embedding material 34, respectively, and these adhesive layers 22 are provided at predetermined positions on the upper surface of the base plate 21. In the case of bonding, a semiconductor device as a second embodiment of the present invention shown in FIG. 23 is obtained.
[0065]
In the semiconductor device obtained in this manner, for example, in addition to the lower surface of the silicon substrate 24 being bonded to the upper surface of the base plate 21 via the adhesive layer 22, the side surface of the silicon substrate 24 is provided with a sealing film 36. Since the semiconductor structure 23 and the embedding material 34 are joined to the base plate 21 to some extent, the joining strength can be increased to some extent.
[0066]
(Third and fourth embodiments)
FIG. 24 is a sectional view of a semiconductor device according to a third embodiment of the present invention. This semiconductor device differs from the semiconductor device shown in FIG. 1 in that it does not include a base plate 21 and an adhesive layer 22.
[0067]
In the case of manufacturing the semiconductor device of the third embodiment, for example, as shown in FIG. 17, after the solder balls 46 are formed, the base plate 21 and the adhesive layer 22 are removed by polishing or etching, and then adjacent to each other. When the three insulating films 44, 41, and 37 and the burying material 34 are cut between the semiconductor structures 23 to be formed, a plurality of semiconductor devices shown in FIG. 24 are obtained. Since the semiconductor device thus obtained does not include the base plate 21 and the adhesive layer 22, the thickness can be reduced accordingly.
[0068]
After the base plate 21 and the adhesive layer 22 are removed by polishing or etching, the lower surfaces of the silicon substrate 24, the embedding material 34, and the sealing film 36 are appropriately polished, and then, between the semiconductor structures 23 adjacent to each other. In this case, when the three insulating films 44, 41, 37 and the burying material 34 are cut, a plurality of semiconductor devices according to the fourth embodiment of the present invention shown in FIG. 25 are obtained. The semiconductor device thus obtained can be further reduced in thickness.
[0069]
Before forming the solder balls 46, the base plate 21 and the adhesive layer 22 are removed by polishing, etching, or the like (if necessary, the lower surfaces of the silicon substrate 24, the embedding material 34, and the sealing film 36 may be appropriately removed). Then, a solder ball 46 is formed, and then the three-layered insulating films 44, 41, 37 and the embedding material 34 may be cut between the semiconductor structures 23 adjacent to each other.
[0070]
(Fifth embodiment)
FIG. 26 is a sectional view of a semiconductor device according to a fifth embodiment of the present invention. This semiconductor device differs from the semiconductor device shown in FIG. 1 in that a metal layer 63 for heat dissipation is adhered to the lower surface of the adhesive layer 22. The metal layer 63 is made of a copper foil having a thickness of several tens μm or the like.
[0071]
In the case of manufacturing the semiconductor device of the fifth embodiment, for example, as shown in FIG. 17, after the solder balls 46 are formed, the base plate 21 is removed by polishing or etching, and then the entire lower surface of the adhesive layer 22 is formed. FIG. 26 shows a state in which the metal layers 63 are bonded to each other, and then the three insulating films 44, 41, and 37, the embedding material 34, the adhesive layer 22, and the metal layers 63 are cut between the semiconductor structures 23 adjacent to each other. A plurality of semiconductor devices are obtained.
[0072]
The adhesive layer 22 is also removed by polishing, etching, or the like (the silicon substrate 24, the embedding material 34, and the lower surface of the sealing film 36 are appropriately polished as necessary), and the silicon substrate 24, the embedding material 34 are removed. Alternatively, the metal layer 63 may be bonded to the lower surface of the sealing film 36 via a new bonding layer.
[0073]
(Sixth embodiment)
FIG. 27 is a sectional view of a semiconductor device according to a sixth embodiment of the present invention. This semiconductor device is different from the semiconductor device shown in FIG. 1 in that the sizes of the openings 38 and 42 of the first and second upper insulating films 37 and 41 are made as small as possible, and That is, the lands of the first and second upper layer rewirings 39 and 43 on 38 and 42 are made as small as possible.
[0074]
For example, since the first upper layer redistribution line 39 is directly bonded to the columnar electrode 32 by plating, the opening 38 of the first upper layer insulating film 37 has a square shape of 10 μm × 10 μm or a circular shape having the same area. If it has an area, the strength is sufficient. Therefore, the size of the opening 38 of the first upper insulating film 37 can be made as small as possible, and the land of the first upper wiring 39 on this opening 38 is made as small as possible. be able to.
[0075]
Thus, according to the sixth embodiment, the sizes of the openings 38, 42 of the first and second upper insulating films 37, 41 are made as small as possible, and the openings 38, 42 Since the lands of the first and second upper layer redistribution lines 39 and 43 can be made as small as possible, the area occupied by the first and second upper layer redistribution lines 39 and 43 can be reduced. As a result, even if the number of connection pads 25 (that is, the columnar electrodes 32) on the silicon substrate 24 of the semiconductor structure 23 increases, the size of the entire semiconductor device can be reduced.
[0076]
(Seventh embodiment)
FIG. 28 is a sectional view of a semiconductor device according to a seventh embodiment of the present invention. This semiconductor device is different from the semiconductor device shown in FIG. 1 in that the upper layer rewiring is a single layer, that is, only the first upper layer rewiring 39 is used, and a part of the rewiring 31 of the semiconductor structure 23 is cross-reconnected. That is to say, wiring.
[0077]
That is, when there is room in area on the protective film 27 of the semiconductor structure 23, a rewiring 31A not connected to the connection pad 25 is provided on the protective film 27, and columnar electrodes are provided on both ends of the rewiring 31A. 32A, a first upper layer rewiring 39 is connected to the columnar electrode 32A and the original columnar electrode 32, and the rewiring 31A is a cross rewiring. By doing so, the number of layers of the rewiring in the upper layer can be reduced.
[0078]
(Eighth and ninth embodiments)
FIG. 29 is a sectional view of a semiconductor device according to an eighth embodiment of the present invention. This semiconductor device is different from the semiconductor device shown in FIG. 1 in that the first upper insulating film 37 is omitted and the sealing film 36 is formed on the upper surfaces of the semiconductor structure 23 and the embedding material 34 around the gap 35. That is, the first upper layer rewiring 39 is provided on the upper surface of the raised portion, the semiconductor structure 23 and the embedding material 34.
[0079]
In this case, the sealing film 36 is formed using a metal mask or the like or by screen printing. In the case where the uncured or temporarily cured sealing film 36 provided so as to be slightly raised on the upper surfaces of the semiconductor structure 23 and the embedding material 34 around the gap 35 is removed by buff polishing or the like, FIG. The semiconductor device according to the ninth embodiment of the present invention shown in FIG.
[0080]
(Tenth embodiment)
FIG. 31 is a sectional view of a semiconductor device according to a tenth embodiment of the present invention. This semiconductor device is different from the semiconductor device shown in FIG. 1 in that the second upper wiring layer 43 and the third upper insulating film 44 are omitted, and solder balls are provided on the connection pad portions of the first upper redistribution wiring 37. 46 and the rewiring 64 is provided on the upper surface of the embedding material 34. In this case, both ends of the rewiring 64 on the embedding material 34 are connected to the first upper rewiring 39 via the opening 38 formed in the first upper insulating film 37 covering the rewiring 64. ing.
[0081]
(Eleventh embodiment)
FIG. 32 is a sectional view of a semiconductor device according to an eleventh embodiment of the present invention. This semiconductor device is different from the semiconductor device shown in FIG. 31 in that the sealing film 36 and the first upper insulating film 37 are integrally formed by applying photosensitive polyimide or the like using a die coater or the like. is there. In this case, the opening 38 in the first upper insulating film 37 may be formed by photolithography or irradiation of a CO2 laser.
[0082]
In this case, when the coating material is a thermoplastic resin or a fluidizable resin which becomes a fluidized state by heating at a relatively low temperature before curing, the insulating films 36 and 37 formed integrally by coating are flattened. The formation may be a heating and pressing treatment. Here, when the first upper insulating film 37 shown in FIG. 12 is also formed of such a coating material, the flattening may be performed by heating and pressing.
[0083]
(Twelfth embodiment)
FIG. 33 is a sectional view of a semiconductor device according to a twelfth embodiment of the present invention. This semiconductor device is different from the semiconductor device shown in FIG. 31 in that the first upper insulating film 37 is omitted, and the embedded portion including the peripheral portion of the upper surface of the semiconductor structure 23, the upper surface of the sealing film 36, and the rewiring 64 is provided. Another upper insulating film 65 is formed on the entire upper surface of the material 34 by screen printing or the like.
[0084]
In this case, both ends of the rewiring 64 on the embedding material 34 are connected to the first upper insulating film 65 covering the other via an opening 66 formed by irradiation of a CO2 laser or the like. Is connected to the upper layer rewiring 39. Further, the first upper layer rewiring 39 is directly connected to the upper surface of the columnar electrode 32 without passing through the opening of the insulating film.
[0085]
(Thirteenth and fourteenth embodiments)
FIG. 34 is a sectional view of a semiconductor device according to a thirteenth embodiment of the present invention. This semiconductor device is significantly different from the semiconductor device shown in FIG. 31 in that the height of the embedding material 34 including the rewiring 64 is lower than the height of the semiconductor structure 23.
[0086]
In this case, the upper surface of the embedding material 34 including the rewiring 64 is covered with the sealing film 36. Both ends of the rewiring 64 on the embedding material 34 are filled with a conductive film filled as necessary in an opening 67 formed by irradiating a CO2 laser on the sealing film 36 covering the rewiring 64. It is connected to the first upper layer rewiring 39 via a conductive material 68 made of resin or the like.
[0087]
Note that, as in the fourteenth embodiment of the present invention shown in FIG. 35, the height of the embedding material 34 including the rewiring 64 may be higher than the height of the semiconductor structure 23. In this case, the upper surface of the semiconductor structure 23 is covered with the sealing film 36. In addition, the columnar electrode 32 is provided with a conductive material 70 made of a conductive resin or the like filled as necessary in an opening 69 formed by irradiating the sealing film 36 with a CO2 laser or the like on the sealing film 36. Connected to the first upper layer rewiring 39.
[0088]
(Fifteenth embodiment)
In the case shown in FIG. 18, the cutting is performed between the semiconductor components 23 adjacent to each other. However, the cutting is not limited to this, and two or more semiconductor components 23 are cut as one set. As in the fifteenth embodiment of the present invention, the three semiconductor components 23 may be cut into one set to obtain a multi-chip module type semiconductor device. In this case, the set of three semiconductor components 23 may be the same or different.
[0089]
(Sixteenth embodiment)
FIG. 37 is a sectional view of a semiconductor device according to a sixteenth embodiment of the present invention. In this semiconductor device, the lower surface of a silicon substrate 74a of a first semiconductor component 73a similar to the case shown in FIG. 1 is bonded to the center of the upper surface of a base plate 71 having a planar square shape via a first adhesive layer 72a. ing.
[0090]
The lower surface of a first embedding material 75a having a rectangular frame shape is joined to the upper surface of the base plate 71 around the first semiconductor structure 73a. A first sealing film 76a is provided between the first semiconductor structure 73a and the first embedding material 75a. The first upper layer rewiring 77a is provided at a predetermined position on the upper surface of the first semiconductor structure 73a, the first burying material 75a, and the first sealing film 76a with the columnar electrode 78a of the first semiconductor structure 73a. Is provided to be connected to.
[0091]
The lower surface of the silicon substrate 74b of the second semiconductor component 73b similar to that shown in FIG. 1 is provided on the upper surface of the first semiconductor component 73a including the first upper layer rewiring 77a via the second adhesive layer 72b. Is glued. The lower surface of a second embedding material 75b having a rectangular frame shape is joined to the upper surface of the first embedding material 75a including the first upper layer rewiring 77a. In this case, a vertical conduction portion 79b is provided at a predetermined position in the second embedding material 75b. The lower surface of the upper / lower conducting portion 79b is connected to the connection pad of the first upper layer rewiring 77a. A second sealing film 76b is provided between the second semiconductor component 73b and the second embedding material 75b.
[0092]
A second upper layer rewiring 77b is provided at a predetermined position on the upper surface of the second semiconductor component 73b, the second burying material 75b, and the second sealing film 76b by the columnar electrode 78b of the second semiconductor component 73b. And it is provided so as to be connected to the upper and lower conductive portions 79b in the second embedding material 75b. The lower surface of the silicon substrate 74c of the third semiconductor component 73c similar to that shown in FIG. 1 is provided on the upper surface of the second semiconductor component 73b including the second upper layer rewiring 77b via the third adhesive layer 72c. Is glued.
[0093]
The lower surface of a rectangular frame-shaped third embedding material 75c is joined to the upper surface of the second embedding material 75b including the second upper layer rewiring 77b. In this case, a vertical conduction portion 79c is provided at a predetermined location in the third embedding material 75c. The lower surface of the upper / lower conducting portion 79c is connected to the connection pad of the second upper layer rewiring 77b. A third sealing film 76c is provided between the third semiconductor component 73c and the third embedding material 75c.
[0094]
A third upper layer rewiring 77c is provided at a predetermined location on the upper surface of the third semiconductor component 73c, the third burying material 75c, and the third sealing film 76c by the columnar electrode 78c of the third semiconductor component 73c. And, it is connected to the upper and lower conductive portions 79c in the third embedding material 75c. An upper insulating film 80 is provided on the entire upper surfaces of the third semiconductor structure 73c including the third upper layer rewiring 77c, the third burying material 75c, and the third sealing film 76c. At predetermined positions on the upper insulating film 80, solder balls 81 are provided so as to be connected to connection pads of the third upper rewiring 77c.
[0095]
Next, an example of a method for manufacturing the semiconductor device will be described. First, as shown in FIG. 38, a grid-like first embedding material 75a is arranged at a predetermined position on the upper surface of the base plate 71 from which a plurality of base plates 71 shown in FIG. 37 can be sampled. In this case, the base plate 71, the first embedding material 75a, and second and third embedding materials 75b and 75c described later are made of a thermoplastic resin. Then, the first embedding material 75a is joined to a predetermined location on the upper surface of the base plate 71 by heating and pressing.
[0096]
Next, as shown in FIG. 39, the lower surface of the silicon substrate 74a of the first semiconductor structure 73a is placed at the center of the upper surface of the base plate 71 in each opening of the first embedding material 75a in a lattice shape. Is bonded via a first bonding layer 72a which has been bonded beforehand. In this state, the upper surface of the first embedding material 75a and the upper surface of the first semiconductor structure 73a are arranged on substantially the same plane. Further, a relatively narrow first gap 82a is formed between the first semiconductor component 73a and the first embedding material 75a having a rectangular frame shape disposed outside the first semiconductor component 73a.
[0097]
Next, as shown in FIG. 40, a first sealing film 76a is formed in the first gap 82a. Next, a first upper layer rewiring 77a is formed at a predetermined location on the upper surface of the first semiconductor structure 73a, the first burying material 75a, and the first sealing film 76a in a columnar shape of the first semiconductor structure 73a. It is formed so as to be connected to the electrode 78a.
[0098]
Next, as shown in FIG. 41, a lattice-shaped second embedding material 75b is thermocompression-bonded to the upper surface of the lattice-shaped first embedding material 75a including the first upper layer rewiring 77a. In this case, a vertical conductive material 79b is formed in advance at a predetermined location in the second embedding material 75b. Then, the step caused by the first upper layer rewiring 77a is eliminated by thermocompression bonding, and the lower surface of the upper and lower conductive material 79b in the second embedding material 75b is connected to the connection pad of the first upper layer rewiring 77a.
[0099]
Next, as shown in FIG. 42, the second semiconductor component 73b is formed on the upper surface of the first semiconductor component 73a including the first upper layer rewiring 77a in the opening of the grid-like second embedding material 75b. The lower surface of the silicon substrate 74b is bonded to the lower surface of the silicon substrate 74b via a second bonding layer 72b previously bonded to the lower surface.
[0100]
Next, the second sealing film is inserted into a relatively narrow second gap formed between the second semiconductor component 73b and the second embedding material 75b having a rectangular frame shape disposed outside the second semiconductor component 73b. 76b is formed. Next, a second upper layer rewiring 77b is formed at a predetermined position on the upper surface of the first semiconductor structure 73a, the first burying material 75a, and the first sealing film 76a by forming a columnar shape of the second semiconductor structure 73b. It is formed so as to be connected to the electrode 78b and the vertical conducting material 79b in the second embedding material 75b.
[0101]
Next, as shown in FIG. 43, a grid-like third embedding material 75c is thermocompression-bonded to the upper surface of the grid-like second embedding material 75b including the second upper layer rewiring 77b. In this case, a vertical conductive material 79c is formed in advance at a predetermined location in the third embedding material 75c. Then, the step due to the second upper layer rewiring 77b is eliminated by the thermocompression bonding, and the lower surface of the upper and lower conductive material 79c in the third embedding material 75c is connected to the connection pad of the second upper layer rewiring 77b.
[0102]
Next, the lower surface of the silicon substrate 74c of the third semiconductor component 73c is placed on the upper surface of the second semiconductor component 73b including the second upper layer rewiring 77b in the opening of the third embedding material 75c having a lattice shape. It is bonded to the lower surface via a third bonding layer 72c which has been bonded in advance.
[0103]
Next, a third sealing film is formed in a relatively narrow third gap formed between the third semiconductor component 73c and the third embedding material 75c having a rectangular frame shape disposed outside the third semiconductor component 73c. 76c is formed. Next, a third upper layer rewiring 77c is formed at a predetermined position on the upper surface of the third semiconductor component 73c, the third embedding material 75c, and the third sealing film 76c in a columnar shape of the third semiconductor component 73c. It is formed so as to be connected to the electrode 78c and the vertical conductive material 79c in the third embedding material 75c.
[0104]
Next, the upper insulating film 80 is patterned on the upper surfaces of the third semiconductor component 73c including the third upper layer rewiring 77c, the third burying material 75c, and the third sealing film 76c. Next, a solder ball 81 is formed at a predetermined location on the upper insulating film 80 so as to be connected to the connection pad portion of the third upper layer rewiring 77c. Next, as shown in FIG. 44, after a predetermined dicing step, a plurality of semiconductor devices shown in FIG. 37 are obtained.
[0105]
(Seventeenth embodiment)
FIG. 45 is a sectional view of a semiconductor device according to a seventeenth embodiment of the present invention. In this semiconductor device, first, a device substantially the same as that shown in FIG. 1 is prepared. Hereinafter, the prepared one is referred to as a first semiconductor block 81. However, the solder balls 46 of the first semiconductor block 81 are all disposed only on the periphery located outside the semiconductor structure 23, and have a slightly smaller diameter than that shown in FIG.
[0106]
Also, a material which is substantially the same as that shown in FIG. 24 but in which the vertical conductive material 82 is provided in the embedded material 34 is prepared. Hereinafter, the prepared one is referred to as a second semiconductor block 83. Then, the second semiconductor block 83 connects the lower surface of the vertical conductive material 82 in the embedded material 34 of the second semiconductor block 83 to the solder ball 46 of the first semiconductor block 81 on the first semiconductor block 81. It has been installed.
[0107]
(Eighteenth and nineteenth embodiments)
FIG. 46 is a sectional view showing a semiconductor device according to the eighteenth embodiment of the present invention. First, in this semiconductor device, a device which is substantially the same as that shown in FIG. 24 but in which a vertical conductive material 84 is provided in an embedded material 34 is prepared. Hereinafter, the prepared one is referred to as a semiconductor block 85.
[0108]
However, in this semiconductor block 85, a first insulating film 86 is pattern-formed on the upper surfaces of the semiconductor structure 23, the embedding material 34, and the sealing film 36, and the wiring 87 is vertically connected to the upper surface of the first insulating film 86. The wiring is formed by being connected to the upper surface of the material 84 and the second insulating film 88 is pattern-formed on the upper surface of the first insulating film 86 including the wiring 87, and is exposed without being covered by the second insulating film 88. Small solder balls 89 are formed on the connection pad portions 87.
[0109]
A plurality of semiconductor components 23 having substantially the same structure as that shown in FIG. 1 are mounted on the semiconductor block 85 by connecting the columnar electrodes 32 to the solder balls 89 of the semiconductor block 85.
[0110]
Incidentally, as in the nineteenth embodiment of the present invention shown in FIG. 47, the first and second semiconductor chips 91 and 92 made of LSI or the like may be mounted on the semiconductor block 85. In this case, the connection pad portions of the wiring 87 that are exposed without being covered with the second insulating film 88 of the semiconductor block 85 are all disposed only on the periphery located outside the semiconductor structure 23.
[0111]
The first and second semiconductor chips 91 and 92 have a structure in which a plurality of connection pads 91b and 92b are provided on the upper peripheral portion of the chip bodies 91a and 92a. The plane size of the first semiconductor chip 91 is substantially the same as the plane size of the semiconductor structure 23, and the plane size of the second semiconductor chip 92 is somewhat smaller than the plane size of the semiconductor chip 91.
[0112]
The first semiconductor chip 91 is mounted on the central portion of the upper surface of the insulating film 88 of the semiconductor block 85 via an adhesive layer 93, and its connection pad 91 b is connected via a wire 94 to the second insulating film 88 of the semiconductor block 85. It is connected to the connection pad portion of the wiring 87 which is not covered with and exposed. The second semiconductor chip 92 is mounted on the center of the upper surface of the first semiconductor chip 91 via an adhesive layer 95, and its connection pad 92 b is covered by a second insulating film 88 of the semiconductor block 85 via a wire 96. Without being connected to the exposed connection pad portion of the wiring 87. A sealing film 97 made of an epoxy resin or the like is provided on the entire upper surface of the insulating film 88 including the first and second semiconductor chips 91 and 92 and the wires 94 and 96.
[0113]
(Twentieth and twenty-first embodiments)
FIG. 48 is a sectional view of a semiconductor device according to a twentieth embodiment of the present invention. In this semiconductor device, first, a device which is substantially the same as that shown in FIG. 1 but does not include the second upper layer redistribution wiring 43, the third upper layer insulating film 44 and the solder balls 46 is prepared. However, in this case, one side portion 34a of the embedding material 34 is somewhat wide in plan view.
[0114]
One end of a part of the first upper layer redistribution wiring 39 extends to the end surface of one side 34a of the embedding material 34, and a portion near this end surface is a connection terminal 39A. Except for the connection portion including the connection terminal 39A, a shielding metal layer 102 is provided on the upper surface of the second upper insulating film 41 including the first upper redistribution wiring 39 via an adhesive layer 101. . The metal layer 102 is made of the same foil having a thickness of several tens of μm.
[0115]
As a specific application example of this semiconductor device, a memory module such as a DRAM, which requires a small number of terminals and requires a temperature cycle reliability of connection between the silicon substrate 24 (chip portion) and the module, can be considered. In this case, as shown in the twenty-first embodiment of the present invention shown in FIG. 49, two components obtained by removing the base plate 21 from the components shown in FIG.
[0116]
Incidentally, in the semiconductor device shown in FIG. 48, when the semiconductor structure 23 is defective, a part of the first upper layer rewiring 39 without bonding the metal layer 102 via the adhesive layer 101 is used as a repair method. May be cut by laser irradiation to make the defective semiconductor component 23 unusable, and then another non-defective semiconductor component 23A may be mounted as shown in FIG. In this case, an opening is formed in a predetermined portion of the first upper insulating film 41 by irradiating a CO2 laser, a conductive material 103 made of a conductive resin or the like is embedded in the opening, and another non-defective semiconductor structure 23A is formed. May be connected to this conductive material 103 via solder (not shown).
[0117]
(Other embodiments)
For example, in the state shown in FIG. 9, a semiconductor component 23 that does not include the sealing film 33 is prepared. That is, as shown in FIG. 5, after forming the protective film 27, the rewiring 31, and the columnar electrode 32 on the silicon substrate 24 in a wafer state on which the connection pads 25 and the insulating film 26 are formed, the sealing film 33 is formed. Dicing this without doing.
[0118]
Then, for example, in the manufacturing process shown in FIG. 10, the sealing films 33 and 36 are simultaneously formed with the same sealing material in the regions where the sealing films 33 and 36 are to be formed, and the sealing films 33 and 36 (however, (The sealing film is integrated and has no boundary) and the upper surface side may be polished to obtain the state shown in FIG.
[0119]
【The invention's effect】
As described above, according to the present invention, a plurality of or a plurality of sets of a semiconductor structure having rewiring and columnar electrodes on a semiconductor substrate and an embedding material are arranged on a base plate, and an insulating film on the semiconductor structure is provided. And forming an upper layer rewiring on the embedding material by connecting to the columnar electrode of the semiconductor structure, and cutting at least the embedding material, thereby having one or one set of semiconductor components and having the embedding material. In addition, a plurality of semiconductor devices in which a part of the upper layer rewiring is arranged on the embedding material can be obtained in a lump, and there is no conventional bonding step, and thus the external connection electrode can be formed without bonding. The arrangement interval can be increased, and the insulating film and the upper-layer rewiring can be collectively formed on a plurality or a plurality of sets of semiconductor structures, so that the manufacturing process can be simplified. Kill.
[Brief description of the drawings]
FIG. 1 is a sectional view of a semiconductor device according to a first embodiment of the present invention;
FIG. 2 is a cross-sectional view of an example of a method for manufacturing the semiconductor device shown in FIG. 1 which is initially prepared.
FIG. 3 is a sectional view of the manufacturing process following FIG. 2;
FIG. 4 is a sectional view of the manufacturing process following FIG. 3;
FIG. 5 is a sectional view of the manufacturing process following FIG. 4;
FIG. 6 is a sectional view of the manufacturing process following FIG. 5;
FIG. 7 is a sectional view of the manufacturing process following FIG. 6;
FIG. 8 is a sectional view of the manufacturing process following FIG. 7;
FIG. 9 is a sectional view of the manufacturing process following FIG. 8;
FIG. 10 is a sectional view of the manufacturing process following FIG. 9;
FIG. 11 is a sectional view of the manufacturing process continued from FIG. 10;
FIG. 12 is a sectional view of the manufacturing process following FIG. 11;
FIG. 13 is a sectional view of the manufacturing process following FIG. 12;
FIG. 14 is a sectional view of the manufacturing process following FIG. 13;
FIG. 15 is a sectional view of the manufacturing process continued from FIG. 14;
FIG. 16 is a sectional view of the manufacturing process continued from FIG. 15;
FIG. 17 is a sectional view of the manufacturing process continued from FIG. 16;
FIG. 18 is a sectional view of the manufacturing process following FIG. 17;
FIG. 19 is a sectional view of another example of the method of manufacturing the semiconductor device shown in FIG. 1 which is initially prepared.
FIG. 20 is a sectional view of a predetermined manufacturing process in the other example.
FIG. 21 is a sectional view of a predetermined manufacturing step in still another example of the method of manufacturing the semiconductor device shown in FIG. 1;
FIG. 22 is a sectional view of the manufacturing process continued from FIG. 21;
FIG. 23 is a sectional view of a semiconductor device as a second embodiment of the present invention.
FIG. 24 is a sectional view of a semiconductor device according to a third embodiment of the present invention;
FIG. 25 is a sectional view of a semiconductor device according to a fourth embodiment of the present invention;
FIG. 26 is a sectional view of a semiconductor device according to a fifth embodiment of the present invention;
FIG. 27 is a sectional view of a semiconductor device as a sixth embodiment of the present invention.
FIG. 28 is a sectional view of a semiconductor device according to a seventh embodiment of the present invention;
FIG. 29 is a sectional view of a semiconductor device as an eighth embodiment of the present invention;
FIG. 30 is a sectional view of a semiconductor device according to a ninth embodiment of the present invention;
FIG. 31 is a sectional view of a semiconductor device as a tenth embodiment of the present invention;
FIG. 32 is a sectional view of a semiconductor device according to an eleventh embodiment of the present invention;
FIG. 33 is a sectional view of a semiconductor device according to a twelfth embodiment of the present invention;
FIG. 34 is a sectional view of a semiconductor device according to a thirteenth embodiment of the present invention;
FIG. 35 is a sectional view of a semiconductor device as a fourteenth embodiment of the present invention;
FIG. 36 is a sectional view of a semiconductor device according to a fifteenth embodiment of the present invention;
FIG. 37 is a sectional view of a semiconductor device according to a sixteenth embodiment of the present invention;
38 is a cross-sectional view of an example of a manufacturing method of the semiconductor device shown in FIG. 37, which is an initial manufacturing process;
FIG. 39 is a sectional view of the manufacturing process following FIG. 38;
FIG. 40 is a sectional view of the manufacturing process continued from FIG. 39;
FIG. 41 is a sectional view of the manufacturing process continued from FIG. 40;
FIG. 42 is a sectional view of the manufacturing process continued from FIG. 41;
FIG. 43 is a sectional view of the manufacturing process continued from FIG. 42;
FIG. 44 is a sectional view of the manufacturing process following FIG. 43;
FIG. 45 is a sectional view of a semiconductor device as a seventeenth embodiment of the present invention;
FIG. 46 is a sectional view of a semiconductor device according to an eighteenth embodiment of the present invention;
FIG. 47 is a sectional view of a semiconductor device as a nineteenth embodiment of the present invention;
FIG. 48 is a sectional view of a semiconductor device according to a twentieth embodiment of the present invention;
FIG. 49 is a sectional view of a semiconductor device as a twenty-first embodiment of the present invention;
50 is a cross-sectional view for explaining a case where repair is performed in the semiconductor device shown in FIG. 48;
FIG. 51 is a cross-sectional view of an example of a conventional semiconductor device.
[Explanation of symbols]
21 Base plate
22 Adhesive layer
23 Semiconductor Structure
24 Silicon substrate
25 connection pads
31 Rewiring
32 pillar electrode
33 sealing film
34 embedded material
36 sealing film
37 First Upper Insulating Film
39 1st upper layer rewiring
41 Second upper insulating film
43 Second Upper Layer Rewiring
44 Third upper insulating film
46 Solder Ball

Claims (21)

半導体基板上に設けられた複数の再配線および該各再配線の上に設けられた柱状電極を有する半導体構成体と、該半導体構成体の側方に設けられた枠状の埋込材と、前記半導体構成体の柱状電極を除く上面全体に設けられた絶縁膜と、該絶縁膜および前記埋込材上に、前記柱状電極に接続されて設けられ且つ接続パッド部を有する少なくとも一層の上層再配線とを備え、前記上層再配線の中、最上層の上層再配線の少なくとも一部の接続パッド部は前記埋込材上に配置されていることを特徴とする半導体装置。A semiconductor structure having a plurality of rewirings provided on a semiconductor substrate and columnar electrodes provided on each of the rewirings, and a frame-shaped embedding material provided on a side of the semiconductor structure, An insulating film provided on the entire upper surface of the semiconductor structure excluding the columnar electrodes, and at least one upper layer having a connection pad portion provided on the insulating film and the embedding material and connected to the columnar electrodes. And a connection pad portion of at least a part of the upper layer rewiring in the upper layer rewiring is disposed on the embedding material. 各々が、半導体基板と、該半導体基板上に設けられた複数の再配線および該各再配線上に設けられた柱状電極を有し、相互に離間して配置された複数の半導体構成体と、前記半導体構成体の間または前記各半導体構成体の側方に設けられた埋込材と、前記各半導体構成体の柱状電極を除く上面全体に設けられた絶縁膜と、該絶縁膜および前記埋込材上に、前記柱状電極に接続されて設けられ且つ接続パッド部を有する少なくとも一層の上層再配線とを備え、前記上層再配線の中、最上層の上層再配線の少なくとも一部の接続パッド部は前記埋込材上に配置されていることを特徴とする半導体装置。Each having a semiconductor substrate, a plurality of rewiring provided on the semiconductor substrate and a plurality of columnar electrodes provided on each of the rewiring, a plurality of semiconductor structures disposed apart from each other, An embedding material provided between the semiconductor structures or on the side of each of the semiconductor structures; an insulating film provided on the entire upper surface of each of the semiconductor structures except for the columnar electrodes; At least one upper layer rewiring connected to the columnar electrode and having a connection pad portion, on at least one of the upper layer rewirings in the upper layer rewiring. A semiconductor device, wherein a portion is disposed on the embedding material. 請求項1または2に記載の発明において、前記半導体構成体と前記埋込材との間に別の絶縁膜が設けられていることを特徴とする半導体装置。3. The semiconductor device according to claim 1, wherein another insulating film is provided between the semiconductor structure and the embedding material. 請求項1または2に記載の発明において、前記埋込材の下面は前記半導体構成体の下面とほぼ同一の平面上に配置されていることを特徴とする半導体装置。3. The semiconductor device according to claim 1, wherein a lower surface of the embedding material is disposed on a substantially same plane as a lower surface of the semiconductor structure. 請求項1または2に記載の発明において、前記埋込材の上面は前記半導体構成体の上面とほぼ同一の平面上に配置されていることを特徴とする半導体装置。3. The semiconductor device according to claim 1, wherein an upper surface of the embedding material is arranged on substantially the same plane as an upper surface of the semiconductor structure. 4. 請求項1または2に記載の発明において、前記埋込材の上面は前記半導体構成体の上面と異なる高さ位置に配置されていることを特徴とする半導体装置。3. The semiconductor device according to claim 1, wherein an upper surface of the embedding material is arranged at a height different from an upper surface of the semiconductor structure. 4. 請求項1または2に記載の発明において、前記半導体構成体および前記埋込材はベース板上に設けられていることを特徴とする半導体装置。3. The semiconductor device according to claim 1, wherein the semiconductor structure and the embedding material are provided on a base plate. 請求項1または2に記載の発明において、前記上層再配線はメッキ層を含むことを特徴とする半導体装置。3. The semiconductor device according to claim 1, wherein the upper rewiring includes a plating layer. 請求項1または2に記載の発明において、前記絶縁膜は複数層であり、その層間に、前記半導体構成体の柱状電極と前記上層再配線とを接続する層間再配線が設けられていることを特徴とする半導体装置。3. The invention according to claim 1, wherein the insulating film has a plurality of layers, and an interlayer rewiring for connecting the columnar electrode of the semiconductor structure and the upper layer rewiring is provided between the layers. Characteristic semiconductor device. 請求項1または2に記載の発明において、前記上層再配線を含む前記絶縁膜の上面に前記上層再配線の接続パッド部の少なくとも一部を除く部分に最上層絶縁膜が設けられていることを特徴とする半導体装置。3. The method according to claim 1, wherein an uppermost insulating film is provided on a portion of the upper surface of the insulating film including the upper redistribution wiring except at least a part of a connection pad portion of the upper redistribution wiring. Characteristic semiconductor device. 請求項10に記載の発明において、前記上層再配線の接続パッド部上に突起状の接続端子が設けられていることを特徴とする半導体装置。11. The semiconductor device according to claim 10, wherein a protruding connection terminal is provided on the connection pad portion of the upper layer rewiring. 請求項11に記載の発明において、前記突起状の接続端子は半田ボールであることを特徴とする半導体装置。12. The semiconductor device according to claim 11, wherein the projecting connection terminals are solder balls. 請求項1または2に記載の発明において、前記上層再配線の一部の一端部は前記埋込材の端面まで延ばされ、この端面近傍における部分は接続端子となっていることを特徴とする半導体装置。3. The invention according to claim 1, wherein one end of a part of the upper layer rewiring is extended to an end face of the embedding material, and a portion near the end face is a connection terminal. Semiconductor device. ベース板上に、少なくとも一方向に所定間隔で埋込材を配置する工程と、
各々が、複数の再配線および該各再配線上に設けられた柱状電極を有する複数の半導体構成体を、前記ベース板上の一方向において、前記埋込材が前記半導体構成体の所定個数毎にその側方に介在されるように配置する工程と、
接続パッド部を有し且ついずれかの前記半導体構成体の対応する前記柱状電極に接続される上層再配線を、少なくともいずれかの前記上層再配線の接続パッド部が前記埋込材上に配置されるように形成する工程と、
前記半導体構成体間における前記埋込材を切断して少なくともいずれかの前記上層再配線の接続パッド部が前記半導体構成体の側方に介在された前記埋込材上に配置された前記半導体構成体を少なくとも1つ有する半導体装置を複数個得る工程とを有することを特徴とする半導体装置の製造方法。
On the base plate, a step of arranging the embedding material at predetermined intervals in at least one direction,
A plurality of semiconductor structures each having a plurality of rewirings and columnar electrodes provided on each of the rewirings, in one direction on the base plate, the embedding material is provided for every predetermined number of the semiconductor structures. Arranging it so as to be interposed on its side,
An upper layer rewiring having a connection pad portion and connected to a corresponding one of the columnar electrodes of any of the semiconductor structures, a connection pad portion of at least one of the upper layer rewirings is disposed on the embedding material. Forming a so that
The semiconductor structure in which the embedding material between the semiconductor structures is cut and at least one of the connection pad portions of the upper layer rewiring is disposed on the embedding material interposed on a side of the semiconductor structure. Obtaining a plurality of semiconductor devices having at least one body.
請求項14に記載の発明において、前記半導体構成体と前記埋込材との間に別の絶縁膜を形成する工程を有することを特徴とする半導体装置の製造方法。15. The method of manufacturing a semiconductor device according to claim 14, further comprising a step of forming another insulating film between the semiconductor structure and the embedding material. 請求項14に記載の発明において、前記埋込材を切断する工程は、前記半導体構成体が複数個含まれるように切断することを特徴とする半導体装置の製造方法。15. The method of manufacturing a semiconductor device according to claim 14, wherein in the step of cutting the embedding material, cutting is performed so that a plurality of the semiconductor components are included. 請求項16に記載の発明において、前記絶縁膜は複数層であり、その層間に、前記各半導体構成体の柱状電極とそれに対応する前記上層再配線とを接続する複数組の層間再配線を形成する工程を有することを特徴とする半導体装置の製造方法。17. The invention according to claim 16, wherein the insulating film has a plurality of layers, and between the layers, a plurality of sets of interlayer rewirings for connecting the columnar electrodes of the respective semiconductor structures and the corresponding upper layer rewirings are formed. A method for manufacturing a semiconductor device, comprising: 請求項16に記載の発明において、前記上層再配線を含む前記絶縁膜の上面において前記上層再配線の接続パッド部を除く部分に最上層絶縁膜を形成する工程を有することを特徴とする半導体装置の製造方法。17. The semiconductor device according to claim 16, further comprising a step of forming an uppermost insulating film on a portion of the upper surface of the insulating film including the upper layer redistribution except for a connection pad portion of the upper layer redistribution. Manufacturing method. 請求項18に記載の発明において、前記上層再配線の接続パッド部上に突起状の接続端子を形成する工程を有することを特徴とする半導体装置の製造方法。19. The method of manufacturing a semiconductor device according to claim 18, further comprising a step of forming a protruding connection terminal on the connection pad portion of the upper layer rewiring. 請求項16に記載の発明において、前記埋込材を切断する工程は前記埋込材を切断するとともに前記ベース板を切断し、前記半導体装置としてベース板を備えたものを得ることを特徴とする半導体装置の製造方法。In the invention according to claim 16, the step of cutting the embedding material cuts the embedding material and cuts the base plate, and obtains a semiconductor device having a base plate. A method for manufacturing a semiconductor device. 請求項20に記載の発明において、切断前の前記ベース板下に別のベース板を配置し、前記ベース板を切断した後に、前記別のベース板を取り除く工程を有することを特徴とする半導体装置の製造方法。21. The semiconductor device according to claim 20, further comprising a step of disposing another base plate below the base plate before cutting, and removing the another base plate after cutting the base plate. Manufacturing method.
JP2002254695A 2002-08-09 2002-08-30 Semiconductor device and manufacturing method thereof Expired - Fee Related JP3888267B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2002254695A JP3888267B2 (en) 2002-08-30 2002-08-30 Semiconductor device and manufacturing method thereof
CN038012693A CN1568546B (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
PCT/JP2003/009958 WO2004015771A2 (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
EP03784529A EP1527480A2 (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
AU2003253425A AU2003253425C1 (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
CA2464078A CA2464078C (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
KR1020047005322A KR100593049B1 (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
TW092121811A TWI231551B (en) 2002-08-09 2003-08-08 Semiconductor device and method of manufacturing the same
US10/826,039 US7294922B2 (en) 2002-08-09 2004-04-16 Semiconductor device and method of manufacturing the same
HK05105873.6A HK1073389A1 (en) 2002-08-09 2005-07-11 Semiconductor device and method of manufacturing the same
US11/671,318 US7547967B2 (en) 2002-08-09 2007-02-05 Semiconductor device and method of manufacturing the same
US11/671,268 US7618886B2 (en) 2002-08-09 2007-02-05 Semiconductor device and method of manufacturing the same
US12/415,782 US7737543B2 (en) 2002-08-09 2009-03-31 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002254695A JP3888267B2 (en) 2002-08-30 2002-08-30 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004095836A true JP2004095836A (en) 2004-03-25
JP3888267B2 JP3888267B2 (en) 2007-02-28

Family

ID=32060403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002254695A Expired - Fee Related JP3888267B2 (en) 2002-08-09 2002-08-30 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3888267B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071998A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004072032A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2006012885A (en) * 2004-06-22 2006-01-12 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2007318059A (en) * 2006-04-26 2007-12-06 Sony Corp Semiconductor device, and manufacturing method thereof
JP2008186941A (en) * 2007-01-29 2008-08-14 Cmk Corp Semiconductor device and its manufacturing method
JP2008235573A (en) * 2007-03-20 2008-10-02 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2009016378A (en) * 2007-06-29 2009-01-22 Fujikura Ltd Multilayer wiring board and multilayer wiring board manufacturing method
JP2009054666A (en) * 2007-08-24 2009-03-12 Casio Comput Co Ltd Semiconductor device and manufacturing method thereof
JP2009182366A (en) * 2009-05-22 2009-08-13 Casio Comput Co Ltd Semiconductor device and method of manufacturing the same
JP2009260165A (en) * 2008-04-21 2009-11-05 Casio Comput Co Ltd Semiconductor device
KR100927773B1 (en) 2008-03-11 2009-11-20 앰코 테크놀로지 코리아 주식회사 Semiconductor package and manufacturing method thereof
JP2009277846A (en) * 2008-05-14 2009-11-26 Fujikura Ltd Printed wiring board and its method for manufacturing
JP2010016398A (en) * 2009-09-11 2010-01-21 Casio Comput Co Ltd Method of manufacturing semiconductor device
JP2010109181A (en) * 2008-10-30 2010-05-13 Shinko Electric Ind Co Ltd Method of manufacturing substrate with built-in semiconductor device
JP2010199129A (en) * 2009-02-23 2010-09-09 Shinko Electric Ind Co Ltd Semiconductor device and method of manufacturing the same, and electronic apparatus
US7849591B2 (en) 2005-10-14 2010-12-14 Fujikura Ltd. Method of manufacturing a printed wiring board
JP2011091216A (en) * 2009-10-22 2011-05-06 Shinko Electric Ind Co Ltd Method of manufacturing semiconductor package
JP2011091217A (en) * 2009-10-22 2011-05-06 Shinko Electric Ind Co Ltd Method of manufacturing semiconductor package
JP2011114304A (en) * 2009-11-30 2011-06-09 Shinko Electric Ind Co Ltd Semiconductor device built-in substrate and method of manufacturing the same
JP2011155313A (en) * 2011-05-18 2011-08-11 Casio Computer Co Ltd Semiconductor device
JP2011187800A (en) * 2010-03-10 2011-09-22 Shinko Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
JP2011249458A (en) * 2010-05-25 2011-12-08 Dainippon Printing Co Ltd Wiring board incorporating component and method for manufacturing the same
JP2012069804A (en) * 2010-09-24 2012-04-05 J Devices:Kk Semiconductor device and manufacturing method therefor
JP2012109297A (en) * 2010-11-15 2012-06-07 Shinko Electric Ind Co Ltd Semiconductor package and method for manufacturing the same
JP2013128149A (en) * 2013-03-25 2013-06-27 J Devices:Kk Semiconductor device and stacked semiconductor device
US8502086B2 (en) 2007-05-17 2013-08-06 Fujikura Ltd. Laminated wiring board and method for manufacturing the same
US8710639B2 (en) 2010-04-08 2014-04-29 Nec Corporation Semiconductor element-embedded wiring substrate
US8766440B2 (en) 2010-03-04 2014-07-01 Nec Corporation Wiring board with built-in semiconductor element
US8779573B2 (en) 2010-06-29 2014-07-15 Shinko Electric Industries Co., Ltd. Semiconductor package having a silicon reinforcing member embedded in resin
KR20150000173A (en) * 2013-06-24 2015-01-02 삼성전기주식회사 Electric component module and manufacturing method threrof
KR20170046073A (en) * 2015-10-20 2017-04-28 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Semiconductor device and method
JP2019009444A (en) * 2017-06-23 2019-01-17 三星電子株式会社Samsung Electronics Co.,Ltd. Semiconductor package and method of manufacturing the same
US10727295B2 (en) 2016-05-13 2020-07-28 Murata Manufacturing Co., Ltd. Wafer level package and capacitor
JP2020184604A (en) * 2019-04-29 2020-11-12 日月暘電子股▲ふん▼有限公司 Embedded component package structure and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326299A (en) * 2000-05-18 2001-11-22 Iep Technologies:Kk Semiconductor device and method for manufacturing the same
JP2001332643A (en) * 2000-05-19 2001-11-30 Iep Technologies:Kk Semiconductor device and its manufacturing method
JP2002016173A (en) * 2000-06-30 2002-01-18 Mitsubishi Electric Corp Semiconductor device
WO2002027786A1 (en) * 2000-09-25 2002-04-04 Ibiden Co., Ltd. Semiconductor element, method of manufacturing semiconductor element, multi-layer printed circuit board, and method of manufacturing multi-layer printed circuit board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326299A (en) * 2000-05-18 2001-11-22 Iep Technologies:Kk Semiconductor device and method for manufacturing the same
JP2001332643A (en) * 2000-05-19 2001-11-30 Iep Technologies:Kk Semiconductor device and its manufacturing method
JP2002016173A (en) * 2000-06-30 2002-01-18 Mitsubishi Electric Corp Semiconductor device
WO2002027786A1 (en) * 2000-09-25 2002-04-04 Ibiden Co., Ltd. Semiconductor element, method of manufacturing semiconductor element, multi-layer printed circuit board, and method of manufacturing multi-layer printed circuit board

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071998A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004072032A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2006012885A (en) * 2004-06-22 2006-01-12 Casio Comput Co Ltd Semiconductor device and its manufacturing method
US7849591B2 (en) 2005-10-14 2010-12-14 Fujikura Ltd. Method of manufacturing a printed wiring board
JP2007318059A (en) * 2006-04-26 2007-12-06 Sony Corp Semiconductor device, and manufacturing method thereof
JP2008186941A (en) * 2007-01-29 2008-08-14 Cmk Corp Semiconductor device and its manufacturing method
JP2008235573A (en) * 2007-03-20 2008-10-02 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP4668938B2 (en) * 2007-03-20 2011-04-13 Okiセミコンダクタ株式会社 Semiconductor device and manufacturing method thereof
US8502086B2 (en) 2007-05-17 2013-08-06 Fujikura Ltd. Laminated wiring board and method for manufacturing the same
JP2009016378A (en) * 2007-06-29 2009-01-22 Fujikura Ltd Multilayer wiring board and multilayer wiring board manufacturing method
US8063490B2 (en) 2007-08-24 2011-11-22 Casio Computer Co., Ltd. Semiconductor device including semiconductor constituent
JP2009054666A (en) * 2007-08-24 2009-03-12 Casio Comput Co Ltd Semiconductor device and manufacturing method thereof
KR100927773B1 (en) 2008-03-11 2009-11-20 앰코 테크놀로지 코리아 주식회사 Semiconductor package and manufacturing method thereof
JP2009260165A (en) * 2008-04-21 2009-11-05 Casio Comput Co Ltd Semiconductor device
JP2009277846A (en) * 2008-05-14 2009-11-26 Fujikura Ltd Printed wiring board and its method for manufacturing
JP2010109181A (en) * 2008-10-30 2010-05-13 Shinko Electric Ind Co Ltd Method of manufacturing substrate with built-in semiconductor device
JP2010199129A (en) * 2009-02-23 2010-09-09 Shinko Electric Ind Co Ltd Semiconductor device and method of manufacturing the same, and electronic apparatus
JP2009182366A (en) * 2009-05-22 2009-08-13 Casio Comput Co Ltd Semiconductor device and method of manufacturing the same
JP2010016398A (en) * 2009-09-11 2010-01-21 Casio Comput Co Ltd Method of manufacturing semiconductor device
JP2011091216A (en) * 2009-10-22 2011-05-06 Shinko Electric Ind Co Ltd Method of manufacturing semiconductor package
JP2011091217A (en) * 2009-10-22 2011-05-06 Shinko Electric Ind Co Ltd Method of manufacturing semiconductor package
JP2011114304A (en) * 2009-11-30 2011-06-09 Shinko Electric Ind Co Ltd Semiconductor device built-in substrate and method of manufacturing the same
US8766440B2 (en) 2010-03-04 2014-07-01 Nec Corporation Wiring board with built-in semiconductor element
JP2011187800A (en) * 2010-03-10 2011-09-22 Shinko Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
US8710639B2 (en) 2010-04-08 2014-04-29 Nec Corporation Semiconductor element-embedded wiring substrate
JP2011249458A (en) * 2010-05-25 2011-12-08 Dainippon Printing Co Ltd Wiring board incorporating component and method for manufacturing the same
US8779573B2 (en) 2010-06-29 2014-07-15 Shinko Electric Industries Co., Ltd. Semiconductor package having a silicon reinforcing member embedded in resin
JP2012069804A (en) * 2010-09-24 2012-04-05 J Devices:Kk Semiconductor device and manufacturing method therefor
US8786110B2 (en) 2010-09-24 2014-07-22 J-Devices Corporation Semiconductor device and manufacturing method thereof
JP2012109297A (en) * 2010-11-15 2012-06-07 Shinko Electric Ind Co Ltd Semiconductor package and method for manufacturing the same
JP2011155313A (en) * 2011-05-18 2011-08-11 Casio Computer Co Ltd Semiconductor device
JP2013128149A (en) * 2013-03-25 2013-06-27 J Devices:Kk Semiconductor device and stacked semiconductor device
KR101994715B1 (en) * 2013-06-24 2019-07-01 삼성전기주식회사 Manufacturing method of electronic component module
KR20150000173A (en) * 2013-06-24 2015-01-02 삼성전기주식회사 Electric component module and manufacturing method threrof
KR20170046073A (en) * 2015-10-20 2017-04-28 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Semiconductor device and method
US10304700B2 (en) 2015-10-20 2019-05-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
KR102086065B1 (en) * 2015-10-20 2020-03-09 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Semiconductor device and method
US10867811B2 (en) 2015-10-20 2020-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device
US11699598B2 (en) 2015-10-20 2023-07-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device
US10727295B2 (en) 2016-05-13 2020-07-28 Murata Manufacturing Co., Ltd. Wafer level package and capacitor
JP2019009444A (en) * 2017-06-23 2019-01-17 三星電子株式会社Samsung Electronics Co.,Ltd. Semiconductor package and method of manufacturing the same
JP7011981B2 (en) 2017-06-23 2022-01-27 三星電子株式会社 Semiconductor package and its manufacturing method
JP2020184604A (en) * 2019-04-29 2020-11-12 日月暘電子股▲ふん▼有限公司 Embedded component package structure and manufacturing method thereof
US11296030B2 (en) 2019-04-29 2022-04-05 Advanced Semiconductor Engineering, Inc. Embedded component package structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP3888267B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
JP3888267B2 (en) Semiconductor device and manufacturing method thereof
JP3918681B2 (en) Semiconductor device
AU2003253425C1 (en) Semiconductor device and method of manufacturing the same
JP3888302B2 (en) Semiconductor device
JP2003298005A (en) Semiconductor device and method of manufacturing thereof
TW201916293A (en) Substrate for semiconductor elements and semiconductor device
JP4135390B2 (en) Semiconductor device and manufacturing method thereof
JP2006148161A (en) Semiconductor device and manufacturing method therefor
JP3951854B2 (en) Semiconductor device and manufacturing method thereof
JP4337859B2 (en) Semiconductor device
JP4297154B2 (en) Manufacturing method of semiconductor device
JP4337860B2 (en) Semiconductor device
JP4337858B2 (en) Semiconductor device
JP2004165234A (en) Semiconductor device and its manufacturing method
JP4341663B2 (en) Manufacturing method of semiconductor device
JP2004221418A (en) Semiconductor device and its producing process
JP4297153B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees