JP4135390B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4135390B2
JP4135390B2 JP2002117307A JP2002117307A JP4135390B2 JP 4135390 B2 JP4135390 B2 JP 4135390B2 JP 2002117307 A JP2002117307 A JP 2002117307A JP 2002117307 A JP2002117307 A JP 2002117307A JP 4135390 B2 JP4135390 B2 JP 4135390B2
Authority
JP
Japan
Prior art keywords
insulating film
protruding electrode
semiconductor chip
semiconductor
protruding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002117307A
Other languages
Japanese (ja)
Other versions
JP2003318323A (en
Inventor
猛 若林
一郎 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2002117307A priority Critical patent/JP4135390B2/en
Priority to TW092102111A priority patent/TW577160B/en
Priority to CNB038001284A priority patent/CN100358118C/en
Priority to US10/472,803 priority patent/US7190064B2/en
Priority to PCT/JP2003/001061 priority patent/WO2003067648A2/en
Priority to KR1020037012972A priority patent/KR100548668B1/en
Priority to EP03737462A priority patent/EP1472724A2/en
Priority to MXPA03009043A priority patent/MXPA03009043A/en
Priority to CA002443149A priority patent/CA2443149C/en
Priority to AU2003244348A priority patent/AU2003244348A1/en
Priority to NO20034441A priority patent/NO20034441L/en
Publication of JP2003318323A publication Critical patent/JP2003318323A/en
Priority to US11/429,368 priority patent/US20060202353A1/en
Priority to US11/588,647 priority patent/US7514335B2/en
Application granted granted Critical
Publication of JP4135390B2 publication Critical patent/JP4135390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
例えばBGA(ball grid array)と呼ばれる半導体装置には、LSI等からなる半導体チップを該半導体チップのサイズよりもやや大きいサイズの中継基板(インターポーザ)の上面中央部に搭載し、中継基板の下面に半田ボールによる接続端子をマトリクス状に配置したものがある。
【0003】
図18は従来のこのような半導体装置の一例の断面図を示したものである。半導体チップ1は、半導体基板2の上面周辺部に複数のバンプ電極3が設けられた構造となっている。
【0004】
中継基板4は、サイズが半導体チップ1の半導体基板2のサイズよりもやや大きいベースフィルム5を備えている。ベースフィルム5の上面には、半導体チップ1のバンプ電極3に接続される再配線6が設けられている。
【0005】
再配線6は、半導体チップ1のバンプ電極3に対応して設けられた第1の接続パッド7と、マトリクス状に設けられた第2の接続パッド8と、第1と第2の接続パッド7、8を接続する引き回し線9とからなっている。第2の接続パッド8の中央部に対応する部分におけるベースフィルム5には円孔10が設けられている。
【0006】
そして、半導体チップ1は中継基板4の上面中央部に異方性導電接着剤11を介して搭載されている。異方性導電接着剤11は、熱硬化性樹脂12中に多数の導電性粒子13を含有させたものからなっている。
【0007】
半導体チップ1を中継基板4上に搭載する場合には、まず、中継基板4の上面中央部にシート状の異方性導電接着剤11を介して半導体チップ1を位置合わせしてただ単に載置する。
【0008】
次に、熱硬化性樹脂12が硬化する温度にて所定の圧力を加えてボンディングする。すると、バンプ電極3が熱硬化性樹脂12を押し退けて第1の接続パッド7の上面に導電性粒子13を介して導電接続され、且つ、半導体チップ1の下面が中継基板4の上面に熱硬化性樹脂12を介して接着される。
【0009】
次に、半導体チップ1を含む中継基板4の上面全体にエポキシ系樹脂からなる樹脂封止膜14を形成する。次に、円孔10内およびその下方に半田ボール15を第2の接続パッド8に接続させて形成する。この場合、第2の接続パッド8はマトリクス状に配置されているため、半田ボール15もマトリクス状に配置される。
【0010】
ここで、半田ボール15のサイズは半導体チップ1のバンプ電極3のサイズより大きく、また、各半田ボール15相互の接触を避けるため、その配置間隔をバンプ電極3の配置間隔より大きくする必要がある。そこで、半導体チップ1のバンプ電極3の数が増大した場合、各半田ボール15に必要な配置間隔を得るため、配置領域を半導体チップ1のサイズより大きくすることが必要となり、そのために、中継基板4のサイズを半導体チップ1のサイズよりもやや大きくしている。したがって、マトリクス状に配置された半田ボール15のうち、周辺部の半田ボール15は半導体チップ1の周囲に配置されている。
【0011】
【発明が解決しようとする課題】
ところで、上記のように半田ボール15による接続端子を半導体チップ1の周囲にも備える従来の半導体装置では、再配線6が形成された中継基板4を用い、ボンディングにより、半導体チップ1のバンプ電極3の下面を中継基板4の再配線6の第1の接続電極7の上面に異方性導電接着剤11の導電性粒子13を介して導電接続する構成としているので、ボンディング状態により接続不良が発生する可能性があるという問題があった。また、半導体チップ1を1つずつ中継基板4上にボンディングして搭載しなければならず、製造工程が煩雑であるという問題があった。
【0012】
そこで、この発明は、接続端子を半導体チップの周囲にも備える半導体装置において、中継基板を用いることなく、半導体チップと再配線とを確実導電接続することができる、半導体装置およびその製造方法を提供することを目的とする。また、この発明は、複数の半導体装置を一括して製造することができる、半導体装置の製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1の記載の発明に係る半導体装置は、上面、該上面に対向する下面および前記上面および前記下面間に介在された周側面を有し且つ前記上面上に接続パッドを有する半導体チップと、該半導体チップの少なくとも前記面および前記周側面を覆うように設けられ、前記接続パッドに対応する第1の開口部と、前記半導体チップの前記周側面より外側に前記半導体チップの下面側に向けて開口する第2の開口部を有する絶縁膜と、該絶縁膜の上面に設けられ、前記第1の開口部内に前記半導体チップの接続パッドに接続されて設けられた第1のパッド部、前記絶縁膜に形成された第2の開口部内に該第2の開口部の底部を塞いで設けられた突起電極に接続された第2のパッド部を有し、前記両パッド部および前記突起電極が同一材料により一体的に形成された再配線と、前記突起電極の下面に設けられた半田ボールとを備えていることを特徴とするものである。
請求項の記載の発明に係る半導体装置は、請求項1に記載の発明において、前記突起電極が形成された前記再配線に、前記突起電極とは反対方向に突き出す第2の突起電極が形成されていることを特徴とするものである。
請求項の記載の発明に係る半導体装置は、請求項1に記載の発明において、さらに、前記再配線が接続されていない前記接続パッドに接続された第2の再配線が前記絶縁膜の上面に形成され、該第2の再配線のパッド部上に前記突起電極とは反対方向に突き出す第2の突起電極が形成されていることを特徴とするものである。
請求項の記載の発明に係る半導体装置は、請求項またはに記載の発明において、前記絶縁膜上に前記第2の突起電極の周囲を覆う第2の絶縁膜が形成されていることを特徴とするものである。
請求項の記載の発明に係る半導体装置は、請求項1に記載の発明において、さらに、前記接続パッドに接続されない突起電極を有することを特徴とするものである。
請求項の記載の発明に係る半導体装置の製造方法は、一面、該一面に対向する他面および前記一面および前記他面間に介在された周側面を有し且つ前記一面上に接続パッドを有する複数の半導体チップをベース板に固着する工程と、前記複数の半導体チップを含む前記ベース板上に絶縁膜を形成する工程と、前記各半導体チップの周側面より外側における前記絶縁膜に前記半導体チップの他面側に向けて開口する開口部を形成する工程と、前記絶縁膜の上面に、各々が前記各半導体チップの接続パッドに接続されて設けられたパッド部、前記絶縁膜に形成された開口部に対応するパッド部および前記半導体チップの他面側に露出する下面を有する突起電極を有する複数組の再配線を同一材料により一体的に形成する工程と、前記ベース板を剥がして、前記突起電極の下面に半田ボールを設ける工程と、前記各組の半導体チップ間における前記絶縁膜を切断して前記各半導体チップの周囲に前記突起電極が形成された半導体装置を複数個得る工程とを有することを特徴とするものである。
請求項の記載の発明に係る半導体装置の製造方法は、請求項に記載の発明において、前記半導体チップを前記ベース板から剥がした後、前記各再配線の突起電極の下面に半田ボールを形成する前に前記突起電極の下面に付着している異物を除去する工程を有することを特徴とするものである。
請求項8の記載の発明に係る半導体装置の製造方法は、請求項に記載の発明において、さらに、前記半導体チップの他面側に露出する下面を有する突起電極を有していない前記再配線のパッド部上に、前記突起電極とは反対方向に突き出す第2の突起電極を形成する工程と、前記絶縁膜上に前記突起電極の周囲を覆う第2の絶縁膜を形成する工程を有することを特徴とするものである。
【0014】
【発明の実施の形態】
図1(A)〜(C)はこの発明の一実施形態としての半導体装置を示すものであり、図1(A)は同半導体装置の拡大平面図、図1(B)は同半導体装置の裏面側の配線状態を説明するためのもので、図1(A)のIB−IBに沿う拡大断面図、図1(C)は同半導体装置の表面側の配線状態を説明するためのもので、図1(A)のIC−ICに沿う拡大断面図である。
【0015】
この半導体装置は、LSI等からなる半導体チップ11を備えている。半導体チップ21は、シリコン等からなる半導体基板22の上面周辺部に複数の接続パッド23が設けられ、接続パッド23の中央部を除く半導体基板22の上面に酸化シリコン等からなる絶縁膜24が設けられ、接続パッド23の中央部が絶縁膜24に設けられた開口部25を介して露出された構造となっている。
【0016】
半導体チップ21には、その下面を除いて、上面および周側面にポリイミド系樹脂、エポキシ系樹脂、PBO(ポリベンザオキシドール)系樹脂等からなる絶縁膜26が被着されている。絶縁膜26は、その上面を平坦とされ、且つ、その下面が半導体基板22の下面と面一となるように設けられている。この場合、絶縁膜26の半導体チップ21の開口部25に対応する部分には開口部27が設けられている。また、半導体チップ21の周側面より外側における絶縁膜26の所定の複数箇所にはスルーホール(開口部)28が設けられている。
【0017】
図1(A)、(B)に示すように、半導体チップ21の相対向する一対の辺側に配列され、両開口部25、27を介して露出された接続パッド23の上面から絶縁膜26の上面およびスルーホール28の内壁面と内底部に亘り第1の下地金属層31が設けられている。この場合、スルーホール28の内底部に設けられた第1の下地金属層31の下面は絶縁膜26の下面と面一となっている。第1の下地金属層31の上面には第1の再配線32が設けられている。
【0018】
ここで、スルーホール28内に設けられた第1の下地金属層31および第1の再配線32は、後述する如く、外部回路に接続される接続端子部の機能を有する第1の突起電極33を構成している。したがって、第1の再配線32は、半導体チップ21の接続パッド23に接続された部分からなるパッド部と、スルーホール28上に配置されて第1の突起電極33に一体的に接続された部分からなるパッド部と、両パッド部を接続する引き回し線とからなっている。そして、スルーホール28の内底部に設けられた第1の下地金属層31の下面、すなわち、第1の突起電極33の下面には第1の半田ボール34が設けられている。
【0019】
図1(A)、(C)に示すように、半導体チップ21の相対向する他の一対の辺側に配列され、両開口部25、27を介して露出された接続パッド23の上面から絶縁膜26の上面の他の箇所にかけて第2の下地金属層35が設けられている。第2の下地金属層35の上面には第2の再配線36が設けられている。第2の再配線36の先端部上には柱状の第2の突起電極37が設けられている。ここで、第2の再配線36は、半導体チップ21の接続パッド23に接続された部分からなるパッド部と、第2の突起電極37に接続された部分からなるパッド部と、両パッド部を接続する引き回し線とからなっている。後述する如く、第2の下地金属層35および第2の再配線36は、それぞれ、第1の下地金属層31および第1の再配線32と同一工程で形成されるもので、材料、膜厚は、それぞれ、同一である。
【0020】
第2の突起電極37の上面には第2の半田ボール38が設けられている。第2の突起電極37を除いて両再配線32、36を含む絶縁膜26の上面にはポリイミド系樹脂、エポキシ系樹脂、PBO系樹脂等からなる絶縁膜(封止膜)39がその上面が第2の突起電極37の上面と面一となるように設けられている。
【0021】
このように、この半導体装置では、上・下面側に第1および第2の突起電極33、37が形成され、各第1および第2の突起電極33、37に接合された第1および第2の半田ボール34、38を備えているので、該半導体装置の一面側の第1の半田ボール34を回路基板または他の電子部品に接合し、他面側の第2の半田ボール38を他の回路基板または電子部品に直接接合することが可能になり、生産効率およびコスト面で有利となるばかりでなく、実装密度を向上することが可能となる。
【0022】
また、上記実施形態では、上・下面の第1および第2の半田ボール34、38を半導体チップ21の外周部に配置しているので、第1および第2の半田ボール34、38間のピッチを大きくすることが可能となるので、半導体チップ21の接続パッド23のピッチが小さい場合でも、接続部間の短絡を防止することができる。
【0023】
なお、上記実施形態においては、半導体装置の上・下面に配列される第1および第2の半田ボール34、38を半導体チップ21の外周部に1列だけ配列したものとしているが、複数列配列することもできる。また、半導体装置の上面側に配列する第2の半田ボール38は、半導体チップ21の外周部のみでなく、半導体チップ21に対応する領域上にも、例えば、マトリクス状等の配列にして形成することができる。
【0024】
次に、この半導体装置の製造方法の一例について説明する。まず、図2に示すように、紫外線透過性のガラス板、透明金属板、透明樹脂板等からなるベース板41の上面に紫外線の照射により接着力が低下する接着層42が設けられたものを用意する。そして、接着層42の上面の所定の複数箇所にそれぞれ半導体チップ21を構成する半導体基板22の下面を接着する。半導体チップ21の厚さは20〜50μm程度である。この場合、ベース板41にダイシングにより分離された個々の半導体チップ21を搭載する方法に替えて、ベース板41に半導体ウエハを接着し、ブレード等により各半導体チップ21が分離されるように半導体ウエハを切除するようにしてもよい。なお、以下の製造方法を説明する各図においては、中央部の半導体チップ21の領域は、図1(A)のIB−IB線に沿う断面を、また、その両側の半導体チップ21の領域は図1(A)のIC−IC線に沿う断面を示している。
【0025】
次に、複数の半導体チップ21を含む接着層42の上面にポリイミド系樹脂、エポキシ系樹脂、PBO系樹脂等からなる絶縁膜26をスピンコート法や印刷法等により塗布し、これを乾燥した後に、フォトレジストを塗布し、フォトリソグラフィー法により絶縁膜26を図3に示すようにパターニングする。この場合、絶縁膜26の上面は平坦であり、その半導体チップ21の開口部25に対応する部分には開口部27が形成され、また中央部の半導体チップ21の周囲における絶縁膜26の所定の複数箇所にはスルーホール28が形成されている。絶縁膜26をパターニングした後、フォトレジストを剥離する。
【0026】
次に、図4に示すように、スルーホール28内および両開口部25、27を介して露出された接続パッド23の上面を含む絶縁膜26の上面に下地金属層43を形成する。下地金属層43は、例えば、スパッタにより形成された銅層のみであってもよく、またスパッタにより形成されたチタン等の薄膜層上にスパッタにより銅層を形成したものであってもよい。
【0027】
次に、下地金属層43の上面にメッキレジスト膜44をパターン形成する。この場合、第1および第2の再配線32、36形成領域に対応する部分におけるメッキレジスト膜44には開口部45が形成されている。次に、下地金属層43をメッキ電流路として銅等の電解メッキを行うことにより、メッキレジスト膜44の開口部45内の下地金属層43の上面に第1および第2の再配線32、36を形成する。
【0028】
これにより、第1の再配線32は、半導体チップ21の接続パッド23に接続された部分からなるパッド部と、スルーホール28上に配置されて第1の突起電極33に一体的に接続された部分からなるパッド部と、両パッド部を接続する引き回し線とから構成され、第2の再配線36は、半導体チップ21の接続パッド23に接続された部分からなるパッド部と、後述する第2の突起電極37に接続される部分からなるパッド部と、両パッド部を接続する引き回し線とから構成される。次に、メッキレジスト膜44を剥離する。
【0029】
第1の再配線32の形成において、絶縁膜26の開口部27に対応するパッド部は、第1の突起電極33に一体的に設けられるので、生産が、大変効率的である。しかし、第1の突起電極33を構成する第1の再配線32のパッド部の上部側は、メッキ時に窪んで形成される。もし、第1の突起電極33の上部側を引き回し線と平坦になるように形成することを望むならば、図3において、絶縁膜26にスルーホール28を形成せず、半導体チップ21の開口部25に対応する部分には開口部27のみを形成し、下地金属層43を形成し、メッキレジスト膜44をパターン形成し、下地金属層43をメッキ電流路として銅等の電解メッキを行うことにより、第1および第2の再配線32、36を形成してから、絶縁膜26にスルーホール28を形成し(ベース板41を剥がして行う)、メッキ等によりスルーホール28内の第1の再配線32のパッド部上に第1の突起電極33を形成するようにしてもよい。
【0030】
次に、図5に示すように、第1および第2の再配線32、36を含む下地金属層43の上面にメッキレジスト膜46をパターン形成する。この場合、第2の再配線36のパッド部に対応する部分におけるメッキレジスト膜46には開口部47が形成されている。次に、下地金属層43をメッキ電流路として銅等の電解メッキを行うことにより、メッキレジスト膜46の開口部47内の第2の再配線36のパッド部の上面に第2の突起電極37を高さ100〜150μm程度に形成する。次に、メッキレジスト膜46を剥離する。
【0031】
次に、第1および第2の再配線32、36をマスクとして下地金属層43の不要な部分をエッチングして除去する(この場合、マスクとなる第1および第2の再配線32、36も同時にエッチングされるが、下地金属層43に比し厚さが厚いので、下地金属層43がエッチングされた時点でエッチングをやめればよい)と、図6に示すように、第1および第2の再配線32、36下にのみ第1および第2の下地金属層31、35が残存される。
【0032】
ここで、スルーホール28内に形成された第1の下地金属層31および第1の再配線32からなる第1の突起電極33の高さは、半導体チップ21の厚さ(20〜50μm程度)と絶縁膜26の厚さ(例えば半導体チップ21上で10μm程度)との合計厚さ(30〜60μm程度)であり、第2の突起電極37の高さ(100〜150μm程度)よりも低くなっている。
【0033】
次に、図7に示すように、第2の突起電極37、第1および第2の再配線32、36を含む絶縁膜26の上面にポリイミド系樹脂、エポキシ系樹脂、PBO系樹脂等からなる絶縁膜39をディスペンサ法、印刷法、トランスファモールド法等によりその厚さが第2の突起電極37の高さよりもやや厚くなるように形成する。したがって、この状態では、第2の突起電極37の上面は絶縁膜39によって覆われている。
【0034】
次に、絶縁膜39の上面側を適宜に研磨することにより、図8に示すように、第2の突起電極37の上面を露出させる。次に、図9に示すように、第2の突起電極37の上面に第2の半田ボール38を形成する。第2の半田ボール38の形成は、第2の半田ボール38を吸着具で吸着して第2の突起電極37上に載置し、リフローを行う方法、印刷等により第2の突起電極37の上面に半田層を被着し、リフローにより第2の半田ボール38を形成する方法等による。
【0035】
次に、ベース板41の下面側から紫外線を照射し、接着層42の接着力を低下させ、ベース板41および接着層42を剥がすと、図10に示すようになる。この状態では、絶縁膜26の下面および第1の突起電極33の下面は半導体基板22の下面と面一となっている。ここで、第1の突起電極33の下面に、接着剤や異物等が付着している場合には、プラズマエッチング等を行って除去する。
【0036】
次に、図11に示すように、第1の突起電極33下に第1の半田ボール34を形成する。次に、図12に示すように、互いに隣接する半導体チップ21、21間において絶縁膜26および絶縁膜39を切断すると、図1(A)、(B)、(C)に示す半導体装置が複数個得られる。
【0037】
このようにして得られた半導体装置では、半導体チップ21の接続パッド23に接続される第1、第2の下地金属層31、35および第1、第2の再配線32、36をスパッタおよび電解メッキにより形成しているので、半導体チップ21の接続パッド23と第1および第2の再配線32、36との間の導電接続を確実とすることができる。
【0038】
また、本実施形態の製造方法では、ベース板41上の接着層42上の所定の複数箇所にそれぞれ半導体チップ21を接着して配置し、複数の半導体チップ21に対して絶縁膜16、39、第1、第2の下地金属層31、35、第1、第2の再配線32、36、第1、第2の突起電極33、37および第1、第2の半田ボール34、38の形成を一括して行い、その後に分断して複数個の半導体装置を得ているので、製造工程を簡略化することができる。
【0039】
また、ベース板41と共に複数の半導体チップ21を搬送することができるので、これによっても製造工程を簡略化することができる。さらに、ベース板41の外形寸法を一定にすると、製造すべき半導体装置の外形寸法に関係なく、搬送系を共有化することができる。
【0040】
なお、上記実施形態では、例えば図9に示すように、ベース板41の上面全体に接着層42を設けた場合について説明したが、これに限らず、例えば図13に示す他の製造方法のように、半導体チップ21の半導体基板22の下面のみを接着層42を介してベース板41上に接着するようにしてもよい。ただし、この場合、ベース板41および接着層42を剥がすと、絶縁膜26の下面および第1の突起電極33の下面が半導体基板22の下面から突出するので、実装時の必要性に応じてこれらの突出部を研磨して除去してもよい。また、接着層42の代わりに、ダイシングテープのように引き延ばして半導体基板22等から剥離するものを用いてもよい。
【0041】
また、上記実施形態では、図1(A)、(B)、(C)に示すように、第1の再配線32のパッド部下に第1の突起電極33を形成し、第2の再配線36のパッド部上に第2の突起電極37を形成した場合について説明したが、これに限定されるものではない。例えば、図14に示すこの発明の他の実施形態のように、第1の再配線32のパッド部上に第2の突起電極37を形成するようにしてもよい。この場合、第1の突起電極33と第2の突起電極37は同じ位置に形成されるので、図15に図示するように、半田ボール34を半導体装置の一面側、例えば、第1の突起電極33側上のみに形成しておけば、他面側の第2の突起電極37上に第2の半田ボール38を形成せずとも、この上に同様な半導体装置を積層することもできる。
【0042】
さらに、図示していないが、第1の突起電極33下に半田ボールを形成せずに、第2の突起電極37上にのみ半田ボールを形成するようにしてもよい。また、図14および図15に図示された構造の変形例として、全ての再配線に第1、第2の突起電極33、37を形成するのではなく、一部は、図1(C)に示すような、第2の再配線36を形成し、そのパッド部上に第2の突起電極37を有するものとしたり、また、第1の再配線32を形成し、図1(B)に示すような、第1の突起電極33のみを有するようにもよい。
【0043】
次に、図16は複数の例えば3個の半導体装置を回路基板上に積層して実装した場合の一例の断面図を示したものである。この例では、第1番目の半導体装置51は、その半田ボール34が回路基板54上の接続端子55に接合されていることにより、回路基板54上に搭載されている。第2番目の半導体装置52は、その半田ボール34が第1番目の半導体装置51の突起電極37上に接合されていることにより、第1番目の半導体装置51上に搭載されている。第3番目の半導体装置53は、その半田ボール34が第2番目の半導体装置52の突起電極37上に接合されていることにより、第2番目の半導体装置52上に搭載されている。
【0044】
この場合、一番上の第3番目の半導体装置53は、例えば、図1(B)に示すような第1の再配線32および第1の突起電極33のみを有し、第2の再配線36および第2の突起電極37を備えていないものからなっている。なお、回路基板54上に4個以上の半導体装置を積層して実装する場合には、当然のことながら、第3番目の半導体装置53は第2の突起電極37を備えている。
【0045】
また、第1番目と第2番目の半導体装置51、52は、第3番目の半導体装置53への中継端子の機能のみを有する突起電極を数本有する。すなわち、図16において左側に示すように、第1の突起電極33と第2の突起電極37とは、当該半導体装置に内蔵された半導体チップ21のいずれの接続パッド23にも接続されていないフローティング状態の下地金属層56および中継パッド部57を介して接続された構造となっている。この場合、図16において、このような中継端子の機能を有する突起電極に接続される回路基板54の接続端子55(図16における左側)には、第3番目の半導体装置53のセレクト信号、リセット信号等の制御信号や、場合により駆動電圧が供給される。
【0046】
また、図17に示す他の例のように、回路基板54の左側の接続端子55がGND端子である場合には、第1番目と第2番目の半導体装置51、52において、左側の第1の再配線32のパッド部上に第2の突起電極37を設けるようにしてもよい。ただし、この場合、第3番目の半導体装置53は、例えば、図1(C)に示すような第2の再配線36および第2の突起電極37のみを有し、第1の再配線32および第1の突起電極33を備えていないものからなっている。この場合、第2番目の半導体装置52の突起電極27と第3番目の突起電極27とを接続するための半田ボール34は、第2番目の半導体装置52の突起電極27上または第3番目の半導体装置53の突起電極27下に予め形成しておく。
【0047】
さらに、例えば、図17において、第1番目の半導体装置51の第1の突起電極33下および第2の突起電極37上にそれぞれ半田ボール34を予め形成しておくようにしてもよい。この場合、実装形態等に応じて、回路基板54の接続端子55に接合される半田ボール34の高さをやや高くし、第2番目の半導体装置52の第1の突起電極33に接合される半田ボール34の高さをやや低くするようにしてもよい。
【0048】
なお、図1(A)において、第1の突起電極33を半導体チップ21の相対向する一対の辺に配列し、第2の突起電極37を半導体チップ21の相対向する他の一対の辺に配列したものとしているが、第1の突起電極33および第2の突起電極37を半導体チップ21の隣接する辺に配列したり、全ての辺に配列することも可能である。
【0049】
また、機器への実装の都合で、半導体装置を細長状にするために、第1の突起電極33および第2の突起電極37を一対の辺にのみ配列し、他の辺には配列しないようにしたり、あるいはボンディング時に各突起電極にかかる荷重を均一にするため、各半導体装置に内蔵される半導体チップ21のいずれの接続パッド23にも接続されない、あるいは他の突起電極と共通の接続パッドに接続されるダミーの突起電極を形成してもよい。
【0050】
さらに、各半導体装置に内蔵される半導体チップ21はその底面が露出された状態で第1の突起電極33に第1の半田ボール34を接合したが、第1の半田ボール34を接合する前に半導体チップ21の底面を絶縁膜(封止材)で被覆し、該絶縁膜の各第1の突起電極33と対応する領域にスルーホールを形成し、必要に応じ、該スルーホール内にメッキをした上、第1の半田ボール34を接合してもよく、本発明の趣旨を逸脱しない範囲内で適宜変形することが可能である。
【0051】
【発明の効果】
以上説明したように、この発明によれば、上面、該上面に対向する下面および前記上面および前記下面間に介在された周側面を有し且つ前記上面上に接続パッドを有する半導体チップと、該半導体チップの少なくとも前記上面および前記周側面を覆うように設けられ、前記接続パッドに対応する第1の開口部と、前記半導体チップの前記周側面より外側に前記半導体チップの下面側に向けて開口する第2の開口部を有する絶縁膜と、該絶縁膜の上面に設けられ、前記第1の開口部内に前記半導体チップの接続パッドに接続されて設けられた第1のパッド部、前記絶縁膜に形成された第2の開口部内に該第2の開口部の底部を塞いで設けられた突起電極に接続された第2のパッド部を有し、前記両パッド部および前記突起電極が同一材料により一体的に形成された再配線と、前記突起電極の下面に設けられた半田ボールとを備えているので、中継基板を用いることなく、半導体チップと再配線とを確実に導電接続することができるという効果を奏する。また、この発明によれば、一面、該一面に対向する他面および前記一面および前記他面間に介在された周側面を有し且つ前記一面上に接続パッドを有する複数の半導体チップをベース板に固着する工程と、前記複数の半導体チップを含む前記ベース板上に絶縁膜を形成する工程と、前記各半導体チップの周側面より外側における前記絶縁膜に前記半導体チップの他面側に向けて開口する開口部を形成する工程と、前記絶縁膜の上面に、各々が前記各半導体チップの接続パッドに接続されて設けられたパッド部、前記絶縁膜に形成された開口部に対応するパッド部および前記半導体チップの他面側に露出する下面を有する突起電極を有する複数組の再配線を同一材料により一体的に形成する工程と、前記ベース板を剥がして、前記突起電極の下面に半田ボールを設ける工程と、前記各組の半導体チップ間における前記絶縁膜を切断して前記各半導体チップの周囲に前記突起電極が形成された半導体装置を複数個得る工程とを有するので、複数の半導体装置を一括して製造することができるという効果を奏する。
【図面の簡単な説明】
【図1】(A)はこの発明の一実施形態としての半導体装置の拡大平面図、(B)はそのIB−IBに沿う拡大断面図、(C)はそのIC−ICに沿う拡大断面図。
【図2】図1に示す半導体装置の製造方法の一例において、当初の製造工程の断面図。
【図3】図2に続く製造工程の断面図。
【図4】図3に続く製造工程の断面図。
【図5】図4に続く製造工程の断面図。
【図6】図5に続く製造工程の断面図。
【図7】図6に続く製造工程の断面図。
【図8】図7に続く製造工程の断面図。
【図9】図8に続く製造工程の断面図。
【図10】図9に続く製造工程の断面図。
【図11】図10に続く製造工程の断面図。
【図12】図11に続く製造工程の断面図。
【図13】図1に示す半導体装置の製造方法の他の例を説明するために示す断面図。
【図14】この発明の他の実施形態としての半導体装置の断面図。
【図15】この発明のさらに他の実施形態としての半導体装置の断面図。
【図16】複数の半導体装置を回路基板上に積層して実装した場合の一例の断面図。
【図17】複数の半導体装置を回路基板上に積層して実装した場合の他の例の断面図。
【図18】従来の半導体装置の一例の断面図。
【符号の説明】
21 半導体チップ
22 半導体基板
23 接続パッド
24 絶縁膜
26 絶縁膜
28 スルーホール
31 第1の下地金属層
32 第1の再配線
33 突起電極
34 第1の半田ボール
35 第2の下地金属層
36 第2の再配線
37 第2の突起電極
38 第2の半田ボール
39 絶縁膜
41 ベース板
42 接着層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device and a manufacturing method thereof.
[0002]
[Prior art]
For example, in a semiconductor device called a BGA (ball grid array), a semiconductor chip made of LSI or the like is mounted on the center of the upper surface of a relay substrate (interposer) that is slightly larger than the size of the semiconductor chip, and is mounted on the lower surface of the relay substrate. There is one in which connection terminals by solder balls are arranged in a matrix.
[0003]
FIG. 18 shows a sectional view of an example of such a conventional semiconductor device. The semiconductor chip 1 has a structure in which a plurality of bump electrodes 3 are provided around the upper surface of a semiconductor substrate 2.
[0004]
The relay substrate 4 includes a base film 5 whose size is slightly larger than the size of the semiconductor substrate 2 of the semiconductor chip 1. A rewiring 6 connected to the bump electrode 3 of the semiconductor chip 1 is provided on the upper surface of the base film 5.
[0005]
The rewiring 6 includes a first connection pad 7 provided corresponding to the bump electrode 3 of the semiconductor chip 1, a second connection pad 8 provided in a matrix, and the first and second connection pads 7. , 8 and a lead-out line 9 connecting them. A circular hole 10 is provided in the base film 5 in a portion corresponding to the central portion of the second connection pad 8.
[0006]
  The semiconductor chip 1 is mounted on the center of the upper surface of the relay substrate 4 via an anisotropic conductive adhesive 11. The anisotropic conductive adhesive 11 is made of a thermosetting resin 12 containing a large number of conductive particles 13.
[0007]
When the semiconductor chip 1 is mounted on the relay substrate 4, first, the semiconductor chip 1 is simply placed on the center of the upper surface of the relay substrate 4 with the sheet-like anisotropic conductive adhesive 11 being positioned. To do.
[0008]
Next, bonding is performed by applying a predetermined pressure at a temperature at which the thermosetting resin 12 is cured. Then, the bump electrode 3 pushes away the thermosetting resin 12 and is conductively connected to the upper surface of the first connection pad 7 via the conductive particles 13, and the lower surface of the semiconductor chip 1 is thermoset to the upper surface of the relay substrate 4. It adheres via the adhesive resin 12.
[0009]
Next, a resin sealing film 14 made of an epoxy resin is formed on the entire top surface of the relay substrate 4 including the semiconductor chip 1. Next, solder balls 15 are formed in the circular hole 10 and below the circular holes 10 by being connected to the second connection pads 8. In this case, since the second connection pads 8 are arranged in a matrix, the solder balls 15 are also arranged in a matrix.
[0010]
Here, the size of the solder balls 15 is larger than the size of the bump electrodes 3 of the semiconductor chip 1, and it is necessary to make the arrangement interval larger than the arrangement interval of the bump electrodes 3 in order to avoid contact between the solder balls 15. . Therefore, when the number of bump electrodes 3 of the semiconductor chip 1 is increased, it is necessary to make the arrangement region larger than the size of the semiconductor chip 1 in order to obtain a necessary arrangement interval for each solder ball 15, and for this reason, The size of 4 is slightly larger than the size of the semiconductor chip 1. Therefore, among the solder balls 15 arranged in a matrix, the peripheral solder balls 15 are arranged around the semiconductor chip 1.
[0011]
[Problems to be solved by the invention]
By the way, in the conventional semiconductor device having the connection terminals by the solder balls 15 also around the semiconductor chip 1 as described above, the bump electrode 3 of the semiconductor chip 1 is bonded by using the relay substrate 4 on which the rewiring 6 is formed. Is connected to the upper surface of the first connection electrode 7 of the rewiring 6 of the relay substrate 4 through the conductive particles 13 of the anisotropic conductive adhesive 11, so that connection failure occurs depending on the bonding state. There was a problem that could be. In addition, the semiconductor chips 1 must be bonded and mounted on the relay substrate 4 one by one, resulting in a problem that the manufacturing process is complicated.
[0012]
  Accordingly, the present invention provides a semiconductor device having a connection terminal also around the semiconductor chip, and reliably connects the semiconductor chip and the rewiring without using a relay substrate.InIt is an object of the present invention to provide a semiconductor device and a manufacturing method thereof that can be conductively connected. Another object of the present invention is to provide a semiconductor device manufacturing method capable of manufacturing a plurality of semiconductor devices at once.
[0013]
[Means for Solving the Problems]
  A semiconductor device according to the invention of claim 1 is provided.An upper surface, a lower surface facing the upper surface, and a peripheral side surface interposed between the upper surface and the lower surface;A semiconductor chip having connection pads on the surface, and at least the semiconductor chip;UpProvided to cover the surface and the peripheral side surface,A first opening corresponding to the connection pad, and a second opening that opens outward from the peripheral side surface of the semiconductor chip toward the lower surface side of the semiconductor chip.An insulating film having an opening and an upper surface of the insulating film;Provided in the first opening.Provided connected to the connection pad of the semiconductor chipA first pad portion, and a second pad portion connected to a protruding electrode provided by closing a bottom portion of the second opening portion in a second opening portion formed in the insulating film, A rewiring in which both pad portions and the protruding electrode are integrally formed of the same material, and a solder ball provided on the lower surface of the protruding electrodeIt is characterized by havingThe
Claim2In the semiconductor device according to claim 1, in the invention according to claim 1, a second protruding electrode protruding in a direction opposite to the protruding electrode is formed on the rewiring on which the protruding electrode is formed. It is characterized byThe
   Claim3The semiconductor device according to the invention described in claim 1, in the invention according to claim 1,The rewiring is connected to the connection pad that is not connectedThe second rewiringOn top of the insulating filmA second protruding electrode formed and protruding in a direction opposite to the protruding electrode is formed on the pad portion of the second rewiring.
   Claim4A semiconductor device according to the invention described in claim2Or3In the invention described in item 2, a second insulating film covering the periphery of the second protruding electrode is formed on the insulating film.
   Claim5The semiconductor device according to the invention described in claim 1 further includes a protruding electrode that is not connected to the connection pad.The
   Claim6A method for manufacturing a semiconductor device according to the invention described in 1The other surface opposite to the one surface and the peripheral surface interposed between the one surface and the other surface, and the one surfaceA step of fixing a plurality of semiconductor chips having connection pads thereon to a base plate; a step of forming an insulating film on the base plate including the plurality of semiconductor chips; and the outside of a peripheral side surface of each semiconductor chip. Insulating filmOpening toward the other side of the semiconductor chipA step of forming an opening; and an upper surface of the insulating film, each connected to a connection pad of each semiconductor chip.Pad part,Pad portion corresponding to the opening formed in the insulating filmAnd a protruding electrode having a lower surface exposed on the other surface side of the semiconductor chip.Multiple sets of rewiringIntegrated with the same materialForming, andPeeling the base plate and providing solder balls on the lower surface of the protruding electrodes;And cutting the insulating film between the semiconductor chips of each set to obtain a plurality of semiconductor devices in which the protruding electrodes are formed around the semiconductor chips.
   Claim7A method of manufacturing a semiconductor device according to the invention described in claim6In the invention described inRemoving the foreign matter adhering to the lower surface of the projecting electrode after forming the solder ball on the lower surface of the projecting electrode of each rewiring after peeling the semiconductor chip from the base plate;It is characterized by having.
   A method of manufacturing a semiconductor device according to the invention described in claim 8 is provided.6In the invention described in the above,Forming a second protruding electrode protruding in a direction opposite to the protruding electrode on a pad portion of the rewiring not having a protruding electrode having a lower surface exposed on the other surface side of the semiconductor chip;Forming a second insulating film covering the periphery of the protruding electrode on the insulating filmWhenIt is characterized by having.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
1A to 1C show a semiconductor device as an embodiment of the present invention. FIG. 1A is an enlarged plan view of the semiconductor device, and FIG. This is for explaining the wiring state on the back surface side, and is shown by I in FIG.B-IBFIG. 1C is an enlarged cross-sectional view taken along the line A and FIG. 1C is for explaining a wiring state on the surface side of the semiconductor device.C-ICFIG.
[0015]
This semiconductor device includes a semiconductor chip 11 made of an LSI or the like. The semiconductor chip 21 is provided with a plurality of connection pads 23 on the periphery of the upper surface of a semiconductor substrate 22 made of silicon or the like, and an insulating film 24 made of silicon oxide or the like is provided on the upper surface of the semiconductor substrate 22 excluding the central portion of the connection pads 23. Thus, the central portion of the connection pad 23 is exposed through an opening 25 provided in the insulating film 24.
[0016]
The semiconductor chip 21 is covered with an insulating film 26 made of polyimide resin, epoxy resin, PBO (polybenzoxide) resin or the like on the upper surface and the peripheral side surface except for the lower surface. The insulating film 26 is provided such that its upper surface is flat and its lower surface is flush with the lower surface of the semiconductor substrate 22. In this case, an opening 27 is provided in a portion of the insulating film 26 corresponding to the opening 25 of the semiconductor chip 21. In addition, through holes (openings) 28 are provided at predetermined plural positions of the insulating film 26 outside the peripheral side surface of the semiconductor chip 21.
[0017]
As shown in FIGS. 1A and 1B, the insulating film 26 is arranged from the upper surface of the connection pad 23 that is arranged on a pair of opposite sides of the semiconductor chip 21 and exposed through both openings 25 and 27. A first base metal layer 31 is provided across the top surface of the through hole 28 and the inner wall surface and inner bottom portion of the through hole 28. In this case, the lower surface of the first base metal layer 31 provided on the inner bottom portion of the through hole 28 is flush with the lower surface of the insulating film 26. A first rewiring 32 is provided on the upper surface of the first base metal layer 31.
[0018]
Here, the first base metal layer 31 and the first rewiring 32 provided in the through hole 28 are, as will be described later, a first protruding electrode 33 having a function of a connection terminal portion connected to an external circuit. Is configured. Accordingly, the first rewiring 32 includes a pad portion formed of a portion connected to the connection pad 23 of the semiconductor chip 21 and a portion disposed on the through hole 28 and integrally connected to the first protruding electrode 33. And a lead line connecting the two pad portions. A first solder ball 34 is provided on the lower surface of the first base metal layer 31 provided at the inner bottom of the through hole 28, that is, on the lower surface of the first protruding electrode 33.
[0019]
As shown in FIGS. 1A and 1C, the semiconductor chip 21 is insulated from the upper surface of the connection pad 23 arranged on the other pair of sides facing each other and exposed through the openings 25 and 27. A second base metal layer 35 is provided over another portion of the upper surface of the film 26. A second rewiring 36 is provided on the upper surface of the second base metal layer 35. A columnar second protruding electrode 37 is provided on the tip of the second rewiring 36. Here, the second rewiring 36 includes a pad portion formed of a portion connected to the connection pad 23 of the semiconductor chip 21, a pad portion formed of a portion connected to the second protruding electrode 37, and both pad portions. It consists of a lead wire to connect. As will be described later, the second base metal layer 35 and the second rewiring 36 are formed in the same process as the first base metal layer 31 and the first rewiring 32, respectively. Are the same.
[0020]
A second solder ball 38 is provided on the upper surface of the second protruding electrode 37. An insulating film (sealing film) 39 made of polyimide resin, epoxy resin, PBO resin or the like is formed on the upper surface of the insulating film 26 including both the rewirings 32 and 36 except for the second protruding electrode 37. The second protrusion electrode 37 is provided so as to be flush with the upper surface.
[0021]
As described above, in this semiconductor device, the first and second protruding electrodes 33 and 37 are formed on the upper and lower surfaces, and the first and second protruding electrodes 33 and 37 joined to the first and second protruding electrodes 33 and 37, respectively. Therefore, the first solder ball 34 on the one surface side of the semiconductor device is joined to the circuit board or other electronic component, and the second solder ball 38 on the other surface side is connected to the other solder balls 34, 38. It becomes possible to directly bond to a circuit board or an electronic component, which is advantageous not only in terms of production efficiency and cost but also in improving the mounting density.
[0022]
In the above embodiment, since the first and second solder balls 34 and 38 on the upper and lower surfaces are arranged on the outer periphery of the semiconductor chip 21, the pitch between the first and second solder balls 34 and 38 is set. Therefore, even when the pitch of the connection pads 23 of the semiconductor chip 21 is small, a short circuit between the connection portions can be prevented.
[0023]
In the above embodiment, the first and second solder balls 34 and 38 arranged on the upper and lower surfaces of the semiconductor device are arranged in one row on the outer peripheral portion of the semiconductor chip 21. You can also Further, the second solder balls 38 arranged on the upper surface side of the semiconductor device are formed not only on the outer peripheral portion of the semiconductor chip 21 but also on an area corresponding to the semiconductor chip 21 in an array such as a matrix. be able to.
[0024]
Next, an example of a method for manufacturing this semiconductor device will be described. First, as shown in FIG. 2, a base plate 41 made of an ultraviolet transmissive glass plate, a transparent metal plate, a transparent resin plate, or the like is provided with an adhesive layer 42 whose adhesive strength is reduced by irradiation of ultraviolet rays. prepare. Then, the lower surface of the semiconductor substrate 22 constituting the semiconductor chip 21 is bonded to a plurality of predetermined positions on the upper surface of the adhesive layer 42. The thickness of the semiconductor chip 21 is about 20 to 50 μm. In this case, instead of the method of mounting the individual semiconductor chips 21 separated by dicing on the base plate 41, the semiconductor wafer is bonded to the base plate 41 and the semiconductor chips 21 are separated by a blade or the like. May be excised. In each drawing explaining the following manufacturing method, the region of the semiconductor chip 21 in the center is I in FIG.B-IBThe cross section taken along the line and the region of the semiconductor chip 21 on both sides thereof are indicated by I in FIG.C-ICA cross section along the line is shown.
[0025]
Next, an insulating film 26 made of polyimide resin, epoxy resin, PBO resin, or the like is applied to the upper surface of the adhesive layer 42 including the plurality of semiconductor chips 21 by spin coating or printing, and dried. Then, a photoresist is applied, and the insulating film 26 is patterned as shown in FIG. 3 by photolithography. In this case, the upper surface of the insulating film 26 is flat, an opening 27 is formed in a portion corresponding to the opening 25 of the semiconductor chip 21, and a predetermined portion of the insulating film 26 around the semiconductor chip 21 in the central portion is formed. Through holes 28 are formed at a plurality of locations. After patterning the insulating film 26, the photoresist is peeled off.
[0026]
Next, as shown in FIG. 4, a base metal layer 43 is formed on the upper surface of the insulating film 26 including the upper surfaces of the connection pads 23 exposed in the through holes 28 and through the openings 25 and 27. The underlying metal layer 43 may be, for example, only a copper layer formed by sputtering, or may be a copper layer formed by sputtering on a thin film layer such as titanium formed by sputtering.
[0027]
Next, a plating resist film 44 is patterned on the upper surface of the base metal layer 43. In this case, an opening 45 is formed in the plating resist film 44 in a portion corresponding to the region where the first and second rewirings 32 and 36 are formed. Next, the first and second rewirings 32 and 36 are formed on the upper surface of the base metal layer 43 in the opening 45 of the plating resist film 44 by performing electrolytic plating of copper or the like using the base metal layer 43 as a plating current path. Form.
[0028]
As a result, the first rewiring 32 is integrally connected to the first protruding electrode 33 disposed on the through hole 28 and the pad portion formed of the portion connected to the connection pad 23 of the semiconductor chip 21. The second rewiring 36 is composed of a pad portion formed of a portion connected to the connection pad 23 of the semiconductor chip 21 and a second portion to be described later. The pad portion is composed of a portion connected to the protruding electrode 37, and a lead line connecting the two pad portions. Next, the plating resist film 44 is peeled off.
[0029]
In the formation of the first rewiring 32, the pad portion corresponding to the opening 27 of the insulating film 26 is provided integrally with the first protruding electrode 33, so that the production is very efficient. However, the upper side of the pad portion of the first rewiring 32 constituting the first protruding electrode 33 is formed to be depressed during plating. If it is desired to form the upper side of the first protruding electrode 33 so as to be flat with the lead line, the through hole 28 is not formed in the insulating film 26 in FIG. In the portion corresponding to 25, only the opening 27 is formed, the base metal layer 43 is formed, the plating resist film 44 is patterned, and electrolytic plating such as copper is performed using the base metal layer 43 as a plating current path. After the first and second rewirings 32 and 36 are formed, the through hole 28 is formed in the insulating film 26 (performed by removing the base plate 41), and the first re-wiring in the through hole 28 is formed by plating or the like. The first protruding electrode 33 may be formed on the pad portion of the wiring 32.
[0030]
Next, as shown in FIG. 5, a plating resist film 46 is patterned on the upper surface of the base metal layer 43 including the first and second rewirings 32 and 36. In this case, an opening 47 is formed in the plating resist film 46 in a portion corresponding to the pad portion of the second rewiring 36. Next, the second protruding electrode 37 is formed on the upper surface of the pad portion of the second rewiring 36 in the opening 47 of the plating resist film 46 by performing electrolytic plating of copper or the like using the base metal layer 43 as a plating current path. Is formed to a height of about 100 to 150 μm. Next, the plating resist film 46 is peeled off.
[0031]
Next, unnecessary portions of the base metal layer 43 are removed by etching using the first and second rewirings 32 and 36 as a mask (in this case, the first and second rewirings 32 and 36 serving as masks are also removed). Etching is performed at the same time, but since the thickness is larger than that of the base metal layer 43, the etching should be stopped when the base metal layer 43 is etched). As shown in FIG. The first and second base metal layers 31 and 35 remain only under the rewirings 32 and 36.
[0032]
Here, the height of the first protruding electrode 33 formed of the first base metal layer 31 and the first rewiring 32 formed in the through hole 28 is the thickness of the semiconductor chip 21 (about 20 to 50 μm). And the thickness of the insulating film 26 (for example, about 10 μm on the semiconductor chip 21), which is lower than the height of the second protruding electrode 37 (about 100 to 150 μm). ing.
[0033]
Next, as shown in FIG. 7, the upper surface of the insulating film 26 including the second protruding electrode 37 and the first and second rewirings 32 and 36 is made of polyimide resin, epoxy resin, PBO resin, or the like. The insulating film 39 is formed by a dispenser method, a printing method, a transfer mold method or the like so that its thickness is slightly larger than the height of the second protruding electrode 37. Therefore, in this state, the upper surface of the second protruding electrode 37 is covered with the insulating film 39.
[0034]
Next, the upper surface side of the insulating film 39 is appropriately polished to expose the upper surface of the second protruding electrode 37 as shown in FIG. Next, as shown in FIG. 9, the second solder ball 38 is formed on the upper surface of the second protruding electrode 37. The second solder ball 38 is formed by adsorbing the second solder ball 38 with an adsorbing tool and placing the second solder ball 38 on the second protruding electrode 37, performing reflow, printing, or the like. For example, a solder layer is deposited on the upper surface and the second solder balls 38 are formed by reflow.
[0035]
Next, when ultraviolet rays are irradiated from the lower surface side of the base plate 41 to reduce the adhesive force of the adhesive layer 42 and the base plate 41 and the adhesive layer 42 are peeled off, the result is as shown in FIG. In this state, the lower surface of the insulating film 26 and the lower surface of the first protruding electrode 33 are flush with the lower surface of the semiconductor substrate 22. Here, when an adhesive or a foreign substance adheres to the lower surface of the first protruding electrode 33, it is removed by plasma etching or the like.
[0036]
Next, as shown in FIG. 11, a first solder ball 34 is formed under the first protruding electrode 33. Next, as shown in FIG. 12, when the insulating film 26 and the insulating film 39 are cut between the adjacent semiconductor chips 21, 21, a plurality of semiconductor devices shown in FIGS. 1A, 1B, 1C are obtained. Can be obtained.
[0037]
In the semiconductor device thus obtained, the first and second base metal layers 31 and 35 and the first and second rewirings 32 and 36 connected to the connection pads 23 of the semiconductor chip 21 are sputtered and electrolyzed. Since it is formed by plating, the conductive connection between the connection pad 23 of the semiconductor chip 21 and the first and second rewirings 32 and 36 can be ensured.
[0038]
Further, in the manufacturing method of the present embodiment, the semiconductor chip 21 is adhered and arranged at a plurality of predetermined positions on the adhesive layer 42 on the base plate 41, and the insulating films 16, 39, Formation of first and second base metal layers 31 and 35, first and second rewirings 32 and 36, first and second protruding electrodes 33 and 37, and first and second solder balls 34 and 38 Are performed in a lump and then divided into a plurality of semiconductor devices, so that the manufacturing process can be simplified.
[0039]
Moreover, since the several semiconductor chip 21 can be conveyed with the base plate 41, a manufacturing process can also be simplified by this. Furthermore, if the outer dimensions of the base plate 41 are made constant, the transport system can be shared regardless of the outer dimensions of the semiconductor device to be manufactured.
[0040]
In the above embodiment, for example, as shown in FIG. 9, the case where the adhesive layer 42 is provided on the entire upper surface of the base plate 41 has been described. However, the present invention is not limited to this. In addition, only the lower surface of the semiconductor substrate 22 of the semiconductor chip 21 may be bonded onto the base plate 41 via the adhesive layer 42. However, in this case, if the base plate 41 and the adhesive layer 42 are peeled off, the lower surface of the insulating film 26 and the lower surface of the first protruding electrode 33 protrude from the lower surface of the semiconductor substrate 22. You may grind | polish and remove the protrusion part. Further, instead of the adhesive layer 42, a material that is stretched like a dicing tape and peeled from the semiconductor substrate 22 or the like may be used.
[0041]
Moreover, in the said embodiment, as shown to FIG. 1 (A), (B), (C), the 1st protruding electrode 33 is formed under the pad part of the 1st rewiring 32, and 2nd rewiring is carried out. Although the case where the second protruding electrode 37 is formed on the pad portion 36 has been described, the present invention is not limited to this. For example, the second protruding electrode 37 may be formed on the pad portion of the first rewiring 32 as in another embodiment of the present invention shown in FIG. In this case, since the first protruding electrode 33 and the second protruding electrode 37 are formed at the same position, as shown in FIG. 15, the solder ball 34 is placed on one side of the semiconductor device, for example, the first protruding electrode. If it is formed only on the 33 side, a similar semiconductor device can be laminated on the second protruding electrode 37 on the other side without forming the second solder ball 38.
[0042]
Further, although not shown, a solder ball may be formed only on the second protruding electrode 37 without forming a solder ball under the first protruding electrode 33. Further, as a modification of the structure shown in FIGS. 14 and 15, the first and second protruding electrodes 33 and 37 are not formed on all the rewirings, but a part thereof is shown in FIG. As shown in FIG. 1B, a second rewiring 36 is formed and a second protruding electrode 37 is formed on the pad portion, or a first rewiring 32 is formed. Only the first protruding electrode 33 may be provided.
[0043]
Next, FIG. 16 shows a cross-sectional view of an example when a plurality of, for example, three semiconductor devices are stacked and mounted on a circuit board. In this example, the first semiconductor device 51 is mounted on the circuit board 54 by the solder balls 34 being bonded to the connection terminals 55 on the circuit board 54. The second semiconductor device 52 is mounted on the first semiconductor device 51 by bonding the solder balls 34 onto the protruding electrodes 37 of the first semiconductor device 51. The third semiconductor device 53 is mounted on the second semiconductor device 52 by the solder ball 34 being bonded onto the protruding electrode 37 of the second semiconductor device 52.
[0044]
In this case, the uppermost third semiconductor device 53 has only the first rewiring 32 and the first protruding electrode 33 as shown in FIG. 1B, for example, and the second rewiring. 36 and the second protruding electrode 37 are not provided. In the case where four or more semiconductor devices are stacked and mounted on the circuit board 54, the third semiconductor device 53 is provided with the second protruding electrode 37 as a matter of course.
[0045]
In addition, the first and second semiconductor devices 51 and 52 have several protruding electrodes having only a function of a relay terminal to the third semiconductor device 53. That is, as shown on the left side in FIG. 16, the first protruding electrode 33 and the second protruding electrode 37 are not connected to any connection pad 23 of the semiconductor chip 21 incorporated in the semiconductor device. The structure is connected via the underlying metal layer 56 and the relay pad portion 57 in the state. In this case, in FIG. 16, the select signal and reset of the third semiconductor device 53 are connected to the connection terminal 55 (the left side in FIG. 16) of the circuit board 54 connected to the protruding electrode having the function of the relay terminal. A control signal such as a signal, and in some cases a drive voltage is supplied.
[0046]
Further, as in the other example shown in FIG. 17, when the left connection terminal 55 of the circuit board 54 is a GND terminal, the first and second semiconductor devices 51 and 52 have the left first A second protruding electrode 37 may be provided on the pad portion of the rewiring 32. However, in this case, the third semiconductor device 53 has only the second rewiring 36 and the second protruding electrode 37 as shown in FIG. 1C, for example, and the first rewiring 32 and The first protrusion electrode 33 is not provided. In this case, the solder ball 34 for connecting the protruding electrode 27 of the second semiconductor device 52 and the third protruding electrode 27 is on the protruding electrode 27 of the second semiconductor device 52 or the third one. It is formed in advance under the bump electrode 27 of the semiconductor device 53.
[0047]
Further, for example, in FIG. 17, solder balls 34 may be formed in advance under the first protruding electrode 33 and the second protruding electrode 37 of the first semiconductor device 51, respectively. In this case, the height of the solder ball 34 bonded to the connection terminal 55 of the circuit board 54 is slightly increased according to the mounting form and the like, and is bonded to the first protruding electrode 33 of the second semiconductor device 52. The height of the solder ball 34 may be slightly lowered.
[0048]
In FIG. 1A, the first protruding electrodes 33 are arranged on a pair of opposite sides of the semiconductor chip 21, and the second protruding electrodes 37 are arranged on the other pair of opposite sides of the semiconductor chip 21. Although the arrangement is such that the first protruding electrode 33 and the second protruding electrode 37 are arranged on adjacent sides of the semiconductor chip 21 or arranged on all sides.
[0049]
Further, for the convenience of mounting on equipment, in order to make the semiconductor device elongated, the first protruding electrode 33 and the second protruding electrode 37 are arranged only on a pair of sides and not on the other sides. In order to make the load applied to each protruding electrode uniform during bonding, it is not connected to any connection pad 23 of the semiconductor chip 21 incorporated in each semiconductor device, or is connected to a common connection pad with other protruding electrodes A dummy protruding electrode to be connected may be formed.
[0050]
Further, the first solder ball 34 is bonded to the first protruding electrode 33 with the bottom surface of the semiconductor chip 21 incorporated in each semiconductor device exposed, but before the first solder ball 34 is bonded. The bottom surface of the semiconductor chip 21 is covered with an insulating film (sealing material), a through hole is formed in a region corresponding to each first protruding electrode 33 of the insulating film, and plating is performed in the through hole as necessary. In addition, the first solder balls 34 may be joined and can be appropriately modified without departing from the spirit of the present invention.
[0051]
【The invention's effect】
  As explained above, according to the present invention,A semiconductor chip having an upper surface, a lower surface facing the upper surface, a peripheral side surface interposed between the upper surface and the lower surface, and having a connection pad on the upper surface, and covering at least the upper surface and the peripheral side surface of the semiconductor chip A first opening corresponding to the connection pad, and an insulating film having a second opening that opens outward from the peripheral side surface of the semiconductor chip toward the lower surface side of the semiconductor chip; A first pad portion provided on an upper surface of the insulating film and connected to a connection pad of the semiconductor chip in the first opening portion; and a second opening portion formed in the insulating film. A re-wiring having a second pad portion connected to a protruding electrode provided by closing a bottom portion of the two opening portions, wherein both the pad portion and the protruding electrode are integrally formed of the same material; Bump Since a solder ball provided on the lower surface of an effect that it is possible to reliably connect the conductive and without the semiconductor chip and the rewiring using relay substrate. Further, according to the present invention, a base plate includes a plurality of semiconductor chips having one surface, another surface facing the one surface, a peripheral side surface interposed between the one surface and the other surface, and having connection pads on the one surface. Fixing to the base plate, forming the insulating film on the base plate including the plurality of semiconductor chips, and facing the other side of the semiconductor chip toward the insulating film outside the peripheral side surface of each semiconductor chip. A step of forming an opening to be opened; a pad portion provided on the upper surface of the insulating film, each connected to a connection pad of each semiconductor chip; and a pad portion corresponding to the opening formed in the insulating film And a step of integrally forming a plurality of sets of rewirings having a protruding electrode having a lower surface exposed on the other surface side of the semiconductor chip from the same material; Providing a plurality of semiconductor devices in which the protruding electrodes are formed around the semiconductor chips by cutting the insulating film between the semiconductor chips of each set. Manufacturing of all semiconductor devicesThere is an effect that can be done.
[Brief description of the drawings]
FIG. 1A is an enlarged plan view of a semiconductor device as an embodiment of the present invention, and FIG.B-IB(C) is the IC-ICFIG.
2 is a cross-sectional view of an initial manufacturing process in the example of the method for manufacturing the semiconductor device shown in FIG. 1;
FIG. 3 is a cross-sectional view of the manufacturing process following FIG. 2;
FIG. 4 is a cross-sectional view of the manufacturing process following FIG. 3;
FIG. 5 is a cross-sectional view of the manufacturing process following FIG. 4;
6 is a cross-sectional view of the manufacturing process following FIG. 5. FIG.
7 is a cross-sectional view of a manufacturing step that follows FIG. 6. FIG.
FIG. 8 is a cross-sectional view of the manufacturing process following FIG. 7;
FIG. 9 is a cross-sectional view of the manufacturing process following FIG. 8;
10 is a cross-sectional view of a manufacturing step that follows FIG. 9; FIG.
FIG. 11 is a cross-sectional view of the manufacturing process following FIG. 10;
FIG. 12 is a cross-sectional view of the manufacturing process following FIG. 11;
13 is a cross-sectional view for explaining another example of the method for manufacturing the semiconductor device shown in FIG. 1. FIG.
FIG. 14 is a cross-sectional view of a semiconductor device as another embodiment of the present invention.
FIG. 15 is a sectional view of a semiconductor device as still another embodiment of the present invention.
FIG. 16 is a cross-sectional view of an example when a plurality of semiconductor devices are stacked and mounted on a circuit board.
FIG. 17 is a cross-sectional view of another example when a plurality of semiconductor devices are stacked and mounted on a circuit board.
FIG. 18 is a cross-sectional view of an example of a conventional semiconductor device.
[Explanation of symbols]
21 Semiconductor chip
22 Semiconductor substrate
23 connection pads
24 Insulating film
26 Insulating film
28 Through hole
31 First base metal layer
32 First rewiring
33 Projection electrode
34 First solder ball
35 Second base metal layer
36 Second rewiring
37 Second protruding electrode
38 Second solder ball
39 Insulating film
41 Base plate
42 Adhesive layer

Claims (8)

面、該面に対向する面および前記面および前記面間に介在された周側面を有し且つ前記面上に接続パッドを有する半導体チップと、該半導体チップの少なくとも前記面および前記周側面を覆うように設けられ、前記接続パッドに対応する第1の開口部と、前記半導体チップの前記周側面より外側に前記半導体チップの面側に向けて開口する第2の開口部を有する絶縁膜と、該絶縁膜の上面に設けられ、前記第1の開口部内に前記半導体チップの接続パッドに接続されて設けられた第1のパッド部、前記絶縁膜に形成された第2の開口部内に該第2の開口部の底部を塞いで設けられた突起電極に接続された第2のパッド部を有し、前記両パッド部および前記突起電極が同一材料により一体的に形成された再配線と、前記突起電極の下面に設けられた半田ボールとを備えていることを特徴とする半導体装置。 Upper surface, a semiconductor chip having connection pads on the lower surface and having interposed a peripheral side surface between the upper surface and the lower surface and on the upper surface opposed to the upper surface, the semiconductor chip of at least the upper provided so as to cover the surface and the peripheral side surface, and a first opening corresponding to the connection pad, a second which opens toward the lower surface side of the semiconductor chip from outside the peripheral side surface of said semiconductor chip an insulating film having an opening, provided on the upper surface of the insulating film, a first pad portion connected provided the connection pads of the semiconductor chip to the first opening portion, formed in the insulating film A second pad portion connected to a protruding electrode provided by closing the bottom of the second opening in the second opening , and the two pad portions and the protruding electrode are integrally formed of the same material; The rewiring formed on the A semiconductor device characterized by comprising a solder ball provided on the lower surface of the. 請求項1に記載の発明において、前記突起電極が形成された前記再配線に、前記突起電極とは反対方向に突き出す第2の突起電極が形成されていることを特徴とする半導体装置。 2. The semiconductor device according to claim 1, wherein a second protruding electrode protruding in a direction opposite to the protruding electrode is formed on the rewiring on which the protruding electrode is formed. 請求項1に記載の発明において、さらに、前記再配線が接続されていない前記接続パッドに接続された第2の再配線が前記絶縁膜の上面に形成され、該第2の再配線のパッド部上に前記突起電極とは反対方向に突き出す第2の突起電極が形成されていることを特徴とする半導体装置。The second rewiring connected to the connection pad to which the rewiring is not connected is formed on the upper surface of the insulating film, and the pad portion of the second rewiring is further provided. A semiconductor device, wherein a second protruding electrode protruding in a direction opposite to the protruding electrode is formed thereon. 請求項2または3に記載の発明において、前記絶縁膜上に前記第2の突起電極の周囲を覆う第2の絶縁膜が形成されていることを特徴とする半導体装置。 4. The semiconductor device according to claim 2, wherein a second insulating film that covers the periphery of the second protruding electrode is formed on the insulating film. 請求項1に記載の発明において、さらに、前記接続パッドに接続されない突起電極を有することを特徴とする半導体装置。 2. The semiconductor device according to claim 1, further comprising a protruding electrode that is not connected to the connection pad. 一面、該一面に対向する他面および前記一面および前記他面間に介在された周側面を有し且つ前記一面上に接続パッドを有する複数の半導体チップをベース板に固着する工程と、前記複数の半導体チップを含む前記ベース板上に絶縁膜を形成する工程と、前記各半導体チップの周側面より外側における前記絶縁膜に前記半導体チップの他面側に向けて開口する開口部を形成する工程と、前記絶縁膜の上面に、各々が前記各半導体チップの接続パッドに接続されて設けられたパッド部、前記絶縁膜に形成された開口部に対応するパッド部および前記半導体チップの他面側に露出する下面を有する突起電極を有する複数組の再配線を同一材料により一体的に形成する工程と、前記ベース板を剥がして、前記突起電極の下面に半田ボールを設ける工程と、前記各組の半導体チップ間における前記絶縁膜を切断して前記各半導体チップの周囲に前記突起電極が形成された半導体装置を複数個得る工程とを有することを特徴とする半導体装置の製造方法。 Fixing a plurality of semiconductor chips having one surface, another surface opposite to the one surface, a peripheral side surface interposed between the one surface and the other surface, and having a connection pad on the one surface to the base plate; Forming an insulating film on the base plate including the semiconductor chip, and forming an opening that opens toward the other surface of the semiconductor chip in the insulating film outside the peripheral side surface of each semiconductor chip. And a pad portion provided on the upper surface of the insulating film so as to be connected to a connection pad of each semiconductor chip, a pad portion corresponding to an opening formed in the insulating film, and the other surface side of the semiconductor chip A step of integrally forming a plurality of sets of rewirings having protruding electrodes having lower surfaces exposed on the same material, and a step of peeling the base plate and providing solder balls on the lower surfaces of the protruding electrodes And a step of cutting the insulating film between the semiconductor chips of each set to obtain a plurality of semiconductor devices in which the protruding electrodes are formed around the semiconductor chips. Method. 請求項6に記載の発明において、前記半導体チップを前記ベース板から剥がした後、前記各配線の突起電極の下面に半田ボールを形成する前に前記突起電極の下面に付着している異物を除去する工程を有することを特徴とする半導体装置の製造方法。In the invention according to claim 6, after peeling off the semiconductor chip from the base plate, the foreign matter adhered to the lower surface of the protruding electrode before forming the solder ball the the lower surface of the bump electrode of the rewiring A method for manufacturing a semiconductor device, comprising a step of removing. 請求項6に記載の発明において、さらに、前記半導体チップの他面側に露出する下面を有する突起電極を有していない前記再配線のパッド部上に、前記突起電極とは反対方向に突き出す第2の突起電極を形成する工程と、前記絶縁膜上に前記突起電極の周囲を覆う第2の絶縁膜を形成する工程を有することを特徴とする半導体装置の製造方法。7. The method according to claim 6, further comprising a step of protruding in a direction opposite to the protruding electrode on the pad portion of the rewiring not having the protruding electrode having a lower surface exposed on the other surface side of the semiconductor chip. forming a second protruding electrode, a method of manufacturing a semiconductor device characterized by a step of forming a second insulating film covering the periphery of the protruding electrode on the insulating film.
JP2002117307A 2002-02-04 2002-04-19 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4135390B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2002117307A JP4135390B2 (en) 2002-04-19 2002-04-19 Semiconductor device and manufacturing method thereof
TW092102111A TW577160B (en) 2002-02-04 2003-01-30 Semiconductor device and manufacturing method thereof
AU2003244348A AU2003244348A1 (en) 2002-02-04 2003-02-03 Semiconductor device and method of manufacturing the same
PCT/JP2003/001061 WO2003067648A2 (en) 2002-02-04 2003-02-03 Semiconductor device and method of manufacturing the same
KR1020037012972A KR100548668B1 (en) 2002-02-04 2003-02-03 Semiconductor device and method of manufacturing the same
EP03737462A EP1472724A2 (en) 2002-02-04 2003-02-03 Semiconductor device and method of manufacturing the same
CNB038001284A CN100358118C (en) 2002-02-04 2003-02-03 Semiconductor device and method of manufacturing the same
CA002443149A CA2443149C (en) 2002-02-04 2003-02-03 Semiconductor device and method of manufacturing the same
US10/472,803 US7190064B2 (en) 2002-02-04 2003-02-03 Semiconductor device and method of manufacturing the same
MXPA03009043A MXPA03009043A (en) 2002-02-04 2003-02-03 Semiconductor device and method of manufacturing the same.
NO20034441A NO20034441L (en) 2002-02-04 2003-10-03 Semiconductor device and method for manufacturing the same
US11/429,368 US20060202353A1 (en) 2002-02-04 2006-05-05 Semiconductor device and method of manufacturing the same
US11/588,647 US7514335B2 (en) 2002-02-04 2006-10-27 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002117307A JP4135390B2 (en) 2002-04-19 2002-04-19 Semiconductor device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006037375A Division JP4349376B2 (en) 2006-02-15 2006-02-15 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003318323A JP2003318323A (en) 2003-11-07
JP4135390B2 true JP4135390B2 (en) 2008-08-20

Family

ID=29534559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002117307A Expired - Fee Related JP4135390B2 (en) 2002-02-04 2002-04-19 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4135390B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07225643A (en) * 1994-02-09 1995-08-22 Kokuyo Co Ltd Input pen of pen input type electronic stationery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2464078C (en) * 2002-08-09 2010-01-26 Casio Computer Co., Ltd. Semiconductor device and method of manufacturing the same
JP4271590B2 (en) * 2004-01-20 2009-06-03 新光電気工業株式会社 Semiconductor device and manufacturing method thereof
JP2006041438A (en) 2004-07-30 2006-02-09 Shinko Electric Ind Co Ltd Semiconductor chip built-in substrate, and its manufacturing method
JP4759981B2 (en) * 2004-11-02 2011-08-31 大日本印刷株式会社 Manufacturing method of electronic component built-in module
JP4602208B2 (en) 2004-12-15 2010-12-22 新光電気工業株式会社 Electronic component mounting structure and manufacturing method thereof
KR100914977B1 (en) * 2007-06-18 2009-09-02 주식회사 하이닉스반도체 Method for fabricating stack package
JP4489821B2 (en) * 2008-07-02 2010-06-23 新光電気工業株式会社 Semiconductor device and manufacturing method thereof
JP5535494B2 (en) * 2009-02-23 2014-07-02 新光電気工業株式会社 Semiconductor device
JP5188426B2 (en) * 2009-03-13 2013-04-24 新光電気工業株式会社 Semiconductor device, manufacturing method thereof, and electronic device
DE102009001932A1 (en) * 2009-03-27 2010-09-30 Robert Bosch Gmbh Chip module and method for producing a chip module
JP6317629B2 (en) 2014-06-02 2018-04-25 株式会社東芝 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07225643A (en) * 1994-02-09 1995-08-22 Kokuyo Co Ltd Input pen of pen input type electronic stationery

Also Published As

Publication number Publication date
JP2003318323A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
TW577160B (en) Semiconductor device and manufacturing method thereof
JP3918681B2 (en) Semiconductor device
US6770971B2 (en) Semiconductor device and method of fabricating the same
JP3888267B2 (en) Semiconductor device and manufacturing method thereof
JP3455948B2 (en) Semiconductor device and manufacturing method thereof
JP5942823B2 (en) Electronic component device manufacturing method, electronic component device, and electronic device
JP2004349361A (en) Semiconductor device and its manufacturing method
JP4349376B2 (en) Semiconductor device and manufacturing method thereof
JP4135390B2 (en) Semiconductor device and manufacturing method thereof
JP2003298005A (en) Semiconductor device and method of manufacturing thereof
JP3951854B2 (en) Semiconductor device and manufacturing method thereof
KR20220030005A (en) Semiconductor package and method of manufacturing the semiconductor package
JP4577316B2 (en) Manufacturing method of semiconductor device
JP2004165193A (en) Semiconductor device and its manufacturing method
JP4513302B2 (en) Semiconductor device
JP4297154B2 (en) Manufacturing method of semiconductor device
JP4337859B2 (en) Semiconductor device
JP4337860B2 (en) Semiconductor device
JP4337858B2 (en) Semiconductor device
TWI399839B (en) Interposer connector for embedding in semiconductor packages
JP2005116714A (en) Semiconductor device and its manufacturing method
JP4297153B2 (en) Manufacturing method of semiconductor device
KR20010003211A (en) wafer level package and method of fabricating the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees