JP2004072032A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2004072032A
JP2004072032A JP2002232737A JP2002232737A JP2004072032A JP 2004072032 A JP2004072032 A JP 2004072032A JP 2002232737 A JP2002232737 A JP 2002232737A JP 2002232737 A JP2002232737 A JP 2002232737A JP 2004072032 A JP2004072032 A JP 2004072032A
Authority
JP
Japan
Prior art keywords
semiconductor
insulating film
semiconductor device
rewiring
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002232737A
Other languages
Japanese (ja)
Other versions
JP3951854B2 (en
Inventor
Ichiro Mihara
三原 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32018047&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2004072032(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2002232737A priority Critical patent/JP3951854B2/en
Priority to PCT/JP2003/009958 priority patent/WO2004015771A2/en
Priority to CA2464078A priority patent/CA2464078C/en
Priority to AU2003253425A priority patent/AU2003253425C1/en
Priority to CN038012693A priority patent/CN1568546B/en
Priority to KR1020047005322A priority patent/KR100593049B1/en
Priority to EP03784529A priority patent/EP1527480A2/en
Priority to TW092121811A priority patent/TWI231551B/en
Publication of JP2004072032A publication Critical patent/JP2004072032A/en
Priority to US10/826,039 priority patent/US7294922B2/en
Priority to HK05105873.6A priority patent/HK1073389A1/en
Priority to US11/671,318 priority patent/US7547967B2/en
Priority to US11/671,268 priority patent/US7618886B2/en
Publication of JP3951854B2 publication Critical patent/JP3951854B2/en
Application granted granted Critical
Priority to US12/415,782 priority patent/US7737543B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To electrically connect a semiconductor chip and a solder ball without undergoing a bonding step, for example, upon manufacturing a semiconductor device called the BGA (ball grid array). <P>SOLUTION: A plurality of semiconductor structures 22 having a rewiring pattern 30 formed on a silicon substrate (semiconductor chip) 24 are bonded on an adhesive layer 21 on a base plate 20 corresponding to a plurality of semiconductor devices. A sealing film 31 is formed on the structures 22 and on the adhesive layer 21. An upper rewiring pattern 34, an insulating film 35, a solder ball 37, etc. are formed. When the mutually adjacent semiconductor structures are cut therebetween, a plurality of semiconductor devices having the solder ball 37 are obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
例えばBGA(ball grid array)と呼ばれる半導体装置には、LSIなどからなる半導体チップを該半導体チップのサイズよりもやや大きいサイズの中継基板(インターポーザ)の上面中央部に搭載し、中継基板の下面に半田ボールによる接続端子をマトリクス状に配置したものがある。
【0003】
図26は従来のこのような半導体装置の一例の断面図を示したものである。半導体チップ1は、シリコン基板2の周辺部に銅などからなる複数のバンプ電極3が設けられた構造となっている。
【0004】
中継基板4は、サイズが半導体チップ1のシリコン基板2のサイズよりもやや大きいベースフィルム5を備えている。ベースフィルム5の上面には、半導体チップ1のバンプ電極3に接続される再配線6が設けられている。
【0005】
再配線6は、半導体チップ1のバンプ電極3に対応して設けられた第1の接続パッド7と、マトリクス状に設けられた第2の接続パッド8と、第1と第2の接続パッド7、8を接続する引き回し線9とからなっている。第2の接続パッド8の中央部に対応する部分におけるベースフィルム5には円孔10が設けられている。
【0006】
そして、半導体チップ1は中継基板4の上面中央部に異方性導電接着剤11を介して搭載されている。異方性導電接着剤11は、熱硬化性樹脂12中に多数の導電性粒子13を含有させたものからなっている。
【0007】
半導体チップ1を中継基板4上に搭載する場合には、まず、中継基板4の上面中央部にシート状の異方性導電接着剤11を介して半導体チップ1を位置合わせしてただ単に載置する。
【0008】
次に、熱硬化性樹脂12が硬化する温度にて所定の圧力を加えてボンディングする。すると、バンプ電極3が熱硬化性樹脂12を押し退けて第1の接続パッド7の上面に導電性粒子13を介して導電接続され、且つ、半導体チップ1の下面が中継基板4の上面に熱硬化性樹脂12を介して接着される。
【0009】
次に、半導体チップ1を含む中継基板4の上面全体にエポキシ系樹脂からなる封止膜14を形成する。次に、円孔10内およびその下方に半田ボール15を第2の接続パッド8に接続させて形成する。この場合、第2の接続パッド8はマトリクス状に配置されているため、半田ボール15もマトリクス状に配置される。
【0010】
ここで、半田ボール15のサイズは半導体チップ1のバンプ電極3のサイズより大きく、また、各半田ボール15相互の接触を避けるため、その配置間隔をバンプ電極3の配置間隔より大きくする必要がある。そこで、半導体チップ1のバンプ電極3の数が増大した場合、各半田ボール15に必要な配置間隔を得るため、その配置領域を半導体チップ1のサイズより大きくすることが必要となり、そのために、中継基板4のサイズを半導体チップ1のサイズよりもやや大きくしている。したがって、マトリクス状に配置された半田ボール15のうち、周辺部の半田ボール15は半導体チップ1の周囲に配置されている。
【0011】
【発明が解決しようとする課題】
ところで、上記従来の半導体装置では、再配線6が形成された中継基板4を用い、位置合わせした後のボンディングにより、半導体チップ1のバンプ電極3の下面を中継基板4の再配線6の第1の接続パッド7の上面に導電接続する構成としているので、半導体チップ1のバンプ電極3の数が増大し、バンプ電極3のサイズおよび配置間隔が小さくなると、位置合わせが極めて大変であるという問題があった。この場合、半導体チップ1のサイズを大きくすれば、バンプ電極3のサイズおよび配置間隔を大きくすることができることは当然であるが、そのようにすると、ウエハ状態からの半導体チップの取り数が激減し、極めて高価なものとなってしまう。また、半導体チップ1を1つずつ中継基板4上にボンディングして搭載しなければならず、製造工程が煩雑であるという問題があった。このようなことは、半導体チップを複数個備えたマルチチップモジュール型の半導体装置の場合も同様である。
【0012】
そこで、この発明は、ボンディングによることなく外部接続電極の配置間隔を大きくすることができる半導体装置およびその製造方法を提供することを目的とする。
また、この発明は、複数の半導体装置を一括して製造することができる半導体装置の製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1に記載の発明は、半導体基板上に、それぞれが、パッド部を有する複数の再配線を設けてなる半導体構成体と、前記各パッド部を除いて前記再配線を含む前記半導体構成体の上面全体および前記半導体構成体の周側面より外側の延出部に設けられた絶縁膜と、該絶縁膜上に、前記再配線のパッド部に接続されて設けられ且つ接続パッド部を有する少なくとも一層の上層再配線とを備え、前記上層再配線の中、最上層の上層再配線の少なくとも一部は、前記接続パッド部が、前記半導体構成体の周側面より外側の前記絶縁膜の延出部上に配置されていることを特徴とするものである。
請求項2に記載の発明は、各々が、半導体基板と、該半導体基板の上面に設けられ且つパッド部を有する複数の再配線を有し、互いに離間して配置された複数の半導体構成体と、前記各半導体構成体のパッド部を除いて前記再配線を含む上面全体および前記各半導体構成体の周側面より外側の延出部に設けられた絶縁膜と、該絶縁膜上に、前記パッド部に接続されて設けられ且つ接続パッド部を有する少なくとも一層の上層再配線とを備え、前記上層再配線の中、最上層の上層再配線の少なくとも一部は、前記接続パッド部が前記いずれかの半導体構成体の周側面より外側の前記延出部上に配置されていることを特徴とするものである。
請求項3に記載の発明は、請求項1または2に記載の発明において、前記絶縁膜は前記半導体構成体の周側面を覆って設けられていることを特徴とするものである。
請求項4に記載の発明は、請求項1または2に記載の発明において、前記複数の再配線は、前記半導体基板上に設けられた保護膜上に形成されていることを特徴とするものである。
請求項5に記載の発明は、請求項4に記載の発明において、前記半導体構成体の周側面を覆う前記絶縁膜の下面は前記半導体構成体の下面とほぼ同一の平面上に配置されていることを特徴とするものである。
請求項6に記載の発明は、請求項4に記載の発明において、前記半導体構成体およびその周囲における前記絶縁膜の下面に放熱層が設けられていることを特徴とするものである。
請求項7に記載の発明は、請求項1または2に記載の発明において、前記絶縁膜の延出部の下方には、埋込材が配置されていることを特徴とするものである。請求項8に記載の発明は、請求項7に記載の発明において、前記埋込材は前記半導体基板とほぼ同じ厚さを有することを特徴とするものである。
請求項9に記載の発明は、請求項8に記載の発明において、前記埋込材と前記半導体構成体との間に絶縁膜が充填されていることを特徴とするものである。
請求項10に記載の発明は、請求項1または2に記載の発明において、前記半導体構成体はベース板上に設けられていることを特徴とするものである。
請求項11に記載の発明は、請求項1または2に記載の発明において、前記絶縁膜は複数層であり、その層間に、前記半導体構成体の再配線と前記上層再配線とを接続する層間再配線が設けられていることを特徴とするものである。
請求項12に記載の発明は、請求項1または2に記載の発明において、前記上層再配線を含む前記絶縁膜の上面において前記上層再配線の接続パッド部を除く部分に最上層絶縁膜が設けられていることを特徴とするものである。
請求項13に記載の発明は、請求項12に記載の発明において、前記上層再配線の接続パッド部上に突起状の接続端子が設けられていることを特徴とするものである。
請求項14に記載の発明は、請求項14に記載の発明において、前記突起状の接続端子は半田ボールであることを特徴とするものである。
請求項15に記載の発明は、半導体基板上に、それぞれ、パッド部を有する複数の再配線が形成された複数の半導体構成体を相互に離間してベース板上に配置する工程と、前記複数の半導体構成体上を含む前記ベース板の上面全体に絶縁膜を形成する工程と、前記絶縁膜の上面に、接続パッド部を有し且ついずれかの前記半導体構成体の対応する前記パッド部に接続される上層再配線を、少なくともいずれかの前記上層再配線の接続パッド部が前記半導体構成体間に形成された前記絶縁膜上に配置されるように形成する工程と、前記各半導体構成体間における前記絶縁膜を切断して少なくともいずれかの前記上層再配線の接続パッド部が前記半導体構成体より外側の領域の前記絶縁膜上に形成された前記半導体構成体を少なくとも1つ有する半導体装置を複数個得る工程とを有することを特徴とするものである。
請求項16に記載の発明は、請求項15に記載の発明において、前記絶縁膜を切断する工程は、前記半導体構成体が複数個含まれるように切断することを特徴とするものである。
請求項17に記載の発明は、請求項15に記載の発明において、前記半導体構成体を相互に離間してベース板上に配置する工程は、前記半導体構成体間に埋込材を配置する工程を含むことを特徴とするものである。
請求項18に記載の発明は、請求項15に記載の発明において前記複数の再配線は、前記半導体基板上に設けられた保護膜上に形成されていることを特徴とするものである。
請求項19に記載の発明は、請求項15に記載の発明において、前記絶縁膜は複数層であり、その層間に、前記各半導体構成体の再配線とそれに対応する前記各組の上層再配線とを接続する複数組の層間再配線を形成する工程を有することを特徴とするものである。
請求項20に記載の発明は、請求項15に記載の発明において、前記上層再配線を含む前記絶縁膜の上面において前記上層再配線のパッド部を除く部分に最上層絶縁膜を形成する工程を有することを特徴とするものである。
請求項21に記載の発明は、請求項20に記載の発明において、前記上層再配線のパッド部上に突起状の接続端子を形成する工程を有することを特徴とするものである。
請求項22に記載の発明は、請求項21に記載の発明において、前記突起状の接続端子は半田ボールであることを特徴とするものである。
請求項23に記載の発明は、請求項15に記載の発明において、前記絶縁膜を切断するとともに前記ベース板を切断する工程を有することを特徴とするものである。
請求項24に記載の発明は、請求項23に記載の発明において、切断前の前記ベース板下に別のベース板を配置し、前記ベース板を切断した後に、前記別のベース板を取り除く工程を有することを特徴とするものである。
請求項25に記載の発明は、請求項15に記載の発明において、 前記半導体構成体を相互に離間してベース板上に配置する工程は、前記半導体構成体間に埋込材を配置する工程を含み、前記各半導体構成体間における前記絶縁膜を切断する工程は、前記埋込材を切断する工程を含むことを特徴とするものである。
請求項26に記載の発明は、請求項25に記載の発明において、前記各半導体構成体間における前記絶縁膜を切断する工程は、前記ベース板を切断する工程を含むことを特徴とするものである。
請求項27に記載の発明は、請求項15に記載の発明において、前記各半導体構成体間における前記絶縁膜を切断する工程の前に、前記ベース板を取り除く工程を有することを特徴とするものである。
請求項28に記載の発明は、請求項26に記載の発明において、前記ベース板を取り除く工程に引き続き、前記半導体基板を薄くする工程を有することを特徴とするものである。
そして、この発明によれば、半導体基板上に再配線を設けてなる複数または複数組の半導体構成体をベース板上に配置し、半導体構成体を含むベース板の上面全体に絶縁膜を形成し、絶縁膜の上面に上層再配線を半導体構成体の再配線に接続させて形成し、絶縁膜を少なくとも切断することにより、半導体構成体を1つまたは1組有し、その周囲に絶縁膜を有するとともに、周囲の絶縁膜上に上層再配線の一部が配置されてなる半導体装置を複数個一括して得ることができ、従来のようなボンディング工程がなく、したがってボンディングによることなく外部接続電極の配置間隔を大きくすることができ、また複数または複数組の半導体構成体に対して絶縁膜および上層再配線の形成を一括して行うことができるので、製造工程を簡略化することができる。
【0014】
【発明の実施の形態】
(第1実施形態)
図1はこの発明の第1実施形態としての半導体装置の断面図を示したものである。この半導体装置は、シリコン、ガラス、セラミックス、樹脂、金属などからなる平面正方形状のベース板20を備えている。ベース板20の上面には、接着剤、粘着シート、両面接着テープなどからなる接着層21が設けられている。接着層21の上面中央部には、ベース板20のサイズよりもやや小さいサイズの平面正方形状の半導体構成体22の下面が接着されている。
【0015】
半導体構成体22は半導体チップ23を含んでいる。半導体チップ23は、接着層21の上面中央部に接着されたシリコン基板24の上面周辺部にアルミニウムなどからなる複数の接続パッド25が設けられ、接続パッド25の中央部を除くシリコン基板24の上面に酸化シリコンなどからなる絶縁膜26および感光性ポリイミドなどからなる保護膜27が設けられ、接続パッド25の中央部が絶縁膜26および保護膜27に形成された開口部28を介して露出されたものからなっている。
【0016】
ここで、半導体チップ23は、通常、ウエハ状態の半導体基板をダイシングして個々の半導体チップとなした場合に得られるものである。しかしながら、この発明では、ウエハ状態の半導体基板上に接続パッド25、絶縁膜26および保護膜27が形成された状態では、ダイシングを行わず、以下に説明するように、再配線を有する半導体構成体22が得られる状態でウエハ状態の半導体基板をダイシングする。
【0017】
半導体チップ23の保護膜27上には、保護膜27に形成された開口部28を介して露出された接続パッド25の上面から保護膜27の上面の所定の箇所にかけて下地金属層29aが設けられている。下地金属層29aの上面には上層金属層29bが設けられ、下地金属層29aおよび上層金属層29bにより再配線30が形成されている。
【0018】
このように、半導体構成体22は、接続パッド25、絶縁膜26および保護膜27を有する導体チップ23を含み、さらに、下地金属層29aおよび上層金属層29bからなる封止膜31を含んで構成されている。図1において、保護膜27の開口部28内には下地金属層29aのみが形成されているが、これは図示の都合上であって、実際には、上層金属層29bも形成される。
【0019】
半導体構成体22の再配線30を含む保護膜27の上面および半導体構成体22の周囲における接着層21の上面にはエポキシ系樹脂からなる封止膜(絶縁膜)31が設けられている。封止膜31の再配線30のパッド部に対応する部分には開口部32が設けられている。開口部32を介して露出された再配線30のパッド部の上面から封止膜31の上面の所定の箇所にかけて上層下地金属層33aが設けられている。上層下地金属層33aの上面全体には上層金属層39bが設けられ、上層下地金属層33aおよび上層金属層39bにより再配線34が形成されている。
【0020】
上層再配線34を含む封止膜31の上面全体にはソルダーレジストなどからなる絶縁膜35が設けられている。絶縁膜35の上層再配線34の接続パッド部34aに対応する部分には開口部36が設けられている。開口部36内およびその上方には半田ボール(突起状の接続端子)37が上層再配線34の接続パッド部34aに接続されて設けられている。複数の半田ボール37は、絶縁膜35上にマトリクス状に配置されている。
【0021】
ところで、ベース板20のサイズを半導体構成体22のサイズよりもやや大きくしているのは、半導体チップ23の接続パッド25の数の増加に応じて、半田ボール37の配置領域を半導体構成体22のサイズよりもやや大きくし、これにより、接続パッド34aのサイズおよび配置間隔を接続パッド25のサイズおよび配置間隔よりも大きくするためである。
【0022】
このため、マトリクス状に配置された上層再配線34の接続パッド部34aは、半導体構成体22に対応する領域のみでなく、半導体構成体22の周側面に設けられた絶縁膜31に対応する領域上にも配置されている。つまり、マトリクス状に配置された半田ボール47のうち、少なくとも最外周の半田ボール47は半導体構成体22よりも外側に位置する周囲に配置されている。
【0023】
次に、この半導体装置の製造方法の一例について説明するに、まず、半導体構成体22の製造方法の一例について説明する。まず、図2に示すように、ウエハ状態のシリコン基板(半導体基板)24上にアルミニウムからなる接続パッド25、酸化シリコンからなる絶縁膜26および感光性ポリイミドからなる保護膜27が設けられ、接続パッド25の中央部が絶縁膜26および保護膜27に形成された開口部28を介して露出されたものを用意する。
【0024】
次に、図3に示すように、開口部28を介して露出された接続パッド25の上面を含む保護膜27の上面全体に下地金属層29aを形成する。この場合、下地金属層29aは、無電解メッキにより形成された銅層のみからなっているが、スパッタにより形成された銅層のみであってもよく、またスパッタにより形成されたチタンなどの薄膜層上にスパッタにより銅層を形成したものであってもよい。これは、後述する上層下地金属層33aの場合も同様である。
【0025】
次に、下地金属層29のa上面にメッキレジスト膜41をパターン形成する。この場合、再配線30形成領域に対応する部分におけるメッキレジスト膜41には開口部42が形成されている。次に、下地金属層29aをメッキ電流路として銅の電解メッキを行うことにより、メッキレジスト膜41の開口部42内の下地金属層29aの上面に上層金属層29bを形成する。
【0026】
次に、メッキレジスト膜41を剥離し、次いで、上層金属層29bをマスクとして下地金属層29aの不要な部分をエッチングして除去すると、図4に示すように、上層金属層29b下にのみ下地金属層29aが残存され再配線30が形成される。次に、図5に示すように、ダンシング工程を経ると、半導体チップ23上に再配線30を設けてなる半導体構成体22が複数個得られる。
【0027】
次に、このようにして得られた半導体構成体22を用いて、図1に示す半導体装置を製造する場合の一例について説明する。まず、図6に示すように、図1に示すベース板20を複数枚採取することができるベース板20の上面全体に接着層21が設けられたものを用意する。そして、接着層21の上面の所定の複数箇所にそれぞれ半導体構成体22のシリコン基板24の下面を接着する。
【0028】
次に、図7に示すように、複数の半導体構成体22を含む接着層21の上面全体にエポキシ系樹脂からなる封止膜31を印刷法やモールド法などによりその厚さが半導体構成体22の高さよりもやや厚くなるように形成する。したがって、この状態では、半導体構成体22の上面は封止膜31によって覆われている。次に、必要に応じて、封止膜31の上面側を適宜に研磨して、封止膜31の上面を平滑化する。次に、封止膜31の再配線30のパッド部に対応する部分に、フォトリソグラフィあるいはCO2レーザの照射により、開口部32を形成する。
【0029】
次に、図8に示すように、開口部32を介して露出された再配線30のパッド部を含む封止膜31の上面全体に銅の無電解メッキにより上層下地金属層33aを形成する。次に、上層下地金属層33aの上面にメッキレジスト膜43をパターン形成する。この場合、上層再配線34形成領域に対応する部分におけるメッキレジスト膜43には開口部44が形成されている。次に、上層下地金属層33aをメッキ電流路として銅の電解メッキを行うことにより、メッキレジスト膜43の開口部44内の上層下地金属層33aの上面に上層金属層33bを形成する。
【0030】
次に、メッキレジスト膜43を剥離し、次いで、上層金属層33bをマスクとして上層下地金属層33aの不要な部分をエッチングして除去すると、図9に示すように、上層金属層33b下にのみ上層下地金属層33aが残存された上層再配線34が形成される。
【0031】
次に、図10に示すように、上層再配線34を含む封止膜31の上面全体にソルダーレジストからなる絶縁膜35をパターン形成する。この場合、絶縁膜35の上層再配線34の接続パッド部34aに対応する部分には開口部36が形成されている。次に、開口部36内およびその上方に半田ボール37を上層再配線34の接続パッド部34aに接続させて形成する。
【0032】
次に、図11に示すように、互いに隣接する半導体構成体22間において、絶縁膜35、封止膜31、接着層21およびベース板20を切断すると、図1に示す半導体装置が複数個得られる。
【0033】
このようにして得られた半導体装置では、半導体構成体22の再配線30に接続される上層下地金属層33aおよび上層金属層33bを無電解メッキ(またはスパッタ)および電解メッキにより形成しているので、ボンディングによらないで、半導体構成体22の再配線30と上層再配線34との間を導電接続することができる。
【0034】
このように、上層再配線34が半導体構成体22の再配線30のパッド部にメッキにより直接接合されるものであるため、上層絶縁膜31の開口部32は、10μm×10μmの方形または同面積の円形の面積を有していれば強度的に十分である。
【0035】
これに対し、図26に示す従来の半導体チップでは、バンプ電極3の直径は100〜150μm程度(ピッチは、通常、この2倍)であるので、従来の、バンプ電極と再配線とをボンディングにより接合する方法と比較すると、接続パッド部34aのサイズおよび配置間隔が遙かにすることができ、且つ、プロセスも効率的である。
【0036】
このように、接続パッド部34aのサイズおよび配置間隔を小さいものとすることができるので、上層の再配線を有する本発明の半導体装置のサイズを小さいものとすることができる。
【0037】
また、上記製造方法では、ベース板20上の接着層21上の所定の複数箇所にそれぞれ半導体構成体22を接着して配置し、複数の半導体構成体22に対して封止膜31、上層下地金属層33、上層再配線34、絶縁膜35および半田ボール37の形成を一括して行い、その後に分断して複数個の半導体装置を得ているので、製造工程を簡略化することができる。
【0038】
また、ベース板20と共に複数の半導体構成体22を搬送することができるので、これによっても製造工程を簡略化することができる。さらに、ベース板20の外形寸法を一定にすると、製造すべき半導体装置の外形寸法に関係なく、搬送系を共有化することができる。
【0039】
さらに、図1に示す半導体装置では、シリコン基板24上に感光性ポリイミドなどからなる保護膜27、エポキシ系樹脂などからなる封止膜31および感光性ポリイミドなどからなる絶縁膜35を積層しているので、この3層の樹脂層により、この半導体装置を半田ボール37を介して回路基板(図示せず)上に搭載した後において、シリコン基板24と回路基板との熱膨張係数差に起因する応力をある程度緩和することができる。
【0040】
次に、図1に示す半導体装置の製造方法の他の例について説明する。まず、図12に示すように、紫外線透過性の透明樹脂板やガラス板などからなる別のベース板51の上面全体に紫外線硬化型の粘着シートなどからなる接着層52を接着し、接着層52の上面に上述のベース板20および接着層21を接着したものを用意する。
【0041】
そして、図6〜図10にそれぞれ示す製造工程を経た後に、図13に示すように、絶縁膜35、封止膜31、接着層21、ベース板20および接着層52を切断し、別のベース板51を切断しない。次に、別のベース板51の下面側から紫外線を照射し、接着層52を硬化させる。すると、分断されたベース板20の下面に対する接着層52による接着性が低下する。そこで、接着層52上に存在する個片化されたものを1つずつ剥がしてピックアップすると、図1に示す半導体装置が複数個得られる。
【0042】
この製造方法では、図13に示す状態において、接着層52上に存在する個片化された半導体装置がバラバラとならないので、専用の半導体装置載置用トレーを用いることなく、そのまま、図示しない回路基板上への実装時に1つずつ剥がしてピックアップすることができる。また、別のベース板51の上面に残存する接着性が低下した接着層52を剥離すると、別のベース板51を再利用することができる。さらに、別のベース板51の外形寸法を一定にすると、製造すべき半導体装置の外形寸法に関係なく、搬送系を共有化することができる。
【0043】
なお、別のベース板55として、膨張させることにより半導体装置を取り外す、通常のダイシングテープなどを用いることも可能であり、その場合には、接着層は紫外線硬化型でなくてもよい。また、別のベース板55を研磨やエッチングにより除去するようにしてもよい。
【0044】
次に、図1に示す半導体装置の製造方法のさらに他の例について説明する。この製造方法では、図7に示す製造工程後に、図14に示すように、開口部32を介して露出された再配線30の上面を含む封止膜31の上面全体に銅の無電解メッキにより上層下地金属層33aを形成する。次に、上層下地金属層33aをメッキ電流路として銅の電解メッキを行うことにより、上層下地金属層33の上面全体に上層金属層33cを形成する。次に、上層金属層層33cの上面の上層再配線形成領域に対応する部分にレジスト膜53をパターン形成する。
【0045】
次に、レジスト膜53をマスクとして上層金属層33cおよび上層下地金属層33aの不要な部分をエッチングして除去すると、図15に示すように、レジスト膜53下にのみ上層金属層33cおよび上層下地金属層33aが残存され、上層再配線34が形成される。この後、レジスト膜53を剥離する。なお、これと同様の形成方法により、半導体構成体22の上層金属層29bおよび下地金属層29aを形成するようにしてもよい。
【0046】
(第2実施形態)
図6に示す製造工程において、接着層21を半導体構成体22のシリコン基板24の下面に設け、この接着層21をベース板20の上面の各所定の箇所に接着した場合には、図16に示すこの発明の第2実施形態としての半導体装置が得られる。
【0047】
このようにして得られた半導体装置では、シリコン基板24の下面が接着層21を介してベース板20の上面に接着されているほかに、シリコン基板24の側面などが封止膜36を介してベース板20の上面に接続されているので、半導体構成体22のベース板20に対する接合強度をある程度強くすることができる。
【0048】
(第3、第4実施形態)
図17はこの発明の第3実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図1に示す半導体装置と異なる点は、ベース板20および接着層21を備えていないことである。
【0049】
この第3実施形態の半導体装置を製造する場合には、例えば図10に示すように、半田ボール37を形成した後に、ベース板20を接着層21から剥がしたりまたはベース板20および接着層21を研磨やエッチングなどにより除去するなどして取り除いた後に、互いに隣接する半導体構成体22間において、絶縁膜35および封止膜31を切断すると、図17に示す半導体装置が複数個得られる。このようにして得られた半導体装置では、ベース板20および接着層21を備えていないので、その分だけ、薄型化することができる。
【0050】
また、ベース板20および接着層21を取り除いた後に、シリコン基板24および封止膜31の下面側を適宜に研磨し、次いで互いに隣接する半導体構成体22間において、絶縁膜35および封止膜31を切断すると、図18に示すこの発明の第4実施形態としての半導体装置が複数個得られる。このようにして得られた半導体装置では、さらに薄型化することができる。
【0051】
なお、半田ボール37を形成する前に、ベース板20および接着層21を研磨やエッチングなどにより除去し(必要に応じてさらにシリコン基板24および封止膜31の下面側を適宜に研磨し)、次いで半田ボール37を形成し、次いで互いに隣接する半導体構成体22間において、絶縁膜35および封止膜31を切断するようにしてもよい。
【0052】
(第5実施形態)
図19はこの発明の第5実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図1に示す半導体装置と異なる点は、接着層21の下面に放熱用の金属層61が接着されていることである。金属層61は、厚さ数十μmの銅箔などからなっている。
【0053】
この第5実施形態の半導体装置を製造する場合には、例えば図10に示すように、半田ボール37を形成した後に、ベース板20を研磨やエッチングなどにより除去し、次いで接着層21の下面全体に金属層61を接着し、次いで互いに隣接する半導体構成体22間において、絶縁膜35、封止膜31、接着層21および金属層61を切断すると、図18に示す半導体装置が複数個得られる。
【0054】
なお、接着層21も研磨やエッチングなどにより除去し(必要に応じてさらにシリコン基板24および封止膜31の下面側を適宜に研磨し)、シリコン基板24および封止膜31の下面に新たな接着層を介して金属層61を接着するようにしてもよい。
【0055】
(第6実施形態)
図11に示す場合には、互いに隣接する半導体構成体22間において切断したが、これに限らず、2個またはそれ以上の半導体構成体22を1組として切断し、例えば、図20に示すこの発明の第6実施形態のように、3個の半導体構成体22を1組として切断し、マルチチップモジュール型の半導体装置を得るようにしてもよい。この場合、3個で1組の半導体構成体22は同種、異種のいずれであってもよい。
【0056】
(第7実施形態)
図21はこの発明の第7実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図1に示す半導体装置と異なる点は、半導体構成体22は、再配線30を含む保護膜27の上面に感光性ポリイミドなどからなる上層保護膜62が設けられ、上層保護膜62の再配線30のパッド部に対応する部分に開口部63が設けられたものからなっていることである。
【0057】
この第7実施形態の半導体装置を製造する場合には、図4に示す製造工程後に、図22に示すように、再配線30を含む保護膜27の上面に感光性ポリイミドなどからなる上層保護膜62を形成し、上層保護膜62の再配線30のパッド部に対応する部分に開口部63を形成し、以下、図5〜図11に示す場合と同様の製造工程を経ると、図21に示す半導体装置が複数個得られる。
【0058】
このようにして得られた半導体装置では、シリコン基板24上に感光性ポリイミドなどからなる保護膜27、感光性ポリイミドなどからなる上層保護膜62、エポキシ系樹脂などからなる封止膜31および感光性ポリイミドなどからなる絶縁膜35を積層しているので、この4層の樹脂層により、この半導体装置を半田ボール37を介して回路基板(図示せず)上に搭載した後において、シリコン基板24と回路基板との熱膨張係数差に起因する応力をより一層緩和することができる。なお、封止膜31の上面が上層保護膜62の上面と面一となるようにしてもよい。
【0059】
(第8実施形態)
図23はこの発明の第8実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図1に示す半導体装置と異なる点は、半導体構成体22の周囲における接着層21の上面に方形枠状の埋込材71が設けられていることである。
【0060】
この場合、埋込材71の厚さは、シリコン基板24の厚さと同じであってもよく、さらに絶縁膜25の厚さを加えた厚さと同じであってもよく、さらに保護膜26の厚さを加えた厚さと同じであってもよく、さらに再配線30の厚さを加えた厚さと同じであってもよい。したがって、埋込材71の上面は封止膜31によって覆われている。また、半導体構成体22と埋込材71との間には封止膜31が充填されている。
【0061】
この第8実施形態の半導体装置を製造する場合には、図6に示す製造工程おいて、図24に示すように、接着層21の上面の所定の複数箇所にそれぞれ半導体構成体22のシリコン基板24の下面を接着するとともに、互いに隣接する半導体構成体22間における接着層21の上面に格子状の埋込材71の下面を接着する。
【0062】
埋込材71の材料は、ベース板20と同じであってもよく、また別であってもよい。また、ベース板20および埋込材71の材料が熱可塑性樹脂である場合、接着層21を用いずに、両者を熱圧着し、次いで半導体構成体22のシリコン基板24の下面に設けられた接着層21(図16参照)をベース板20の上面に接着するようにしてもよい。また、シート状の埋込材71を接着層21の上面全体に接着し(またはベース板20上に熱圧着し)、座ぐり加工により、格子状の埋込材71を形成するようにしてもよい。
【0063】
次に、図25に示すように、複数の半導体構成体22および格子状の埋込材71を含む接着層21の上面全体にエポキシ系樹脂などからなる封止膜31を印刷法やモールド法などにより、その厚さが半導体構成体22の高さよりもやや厚くなるように形成する。次に、必要に応じて、封止膜31の上面側を適宜に研磨して、封止膜31の上面を平滑化する。次に、封止膜31の再配線30のパッド部に対応する部分に、フォトリソグラフィあるいはCO2レーザの照射により、開口部32を形成する。以下、図8〜図11に示す場合と同様の製造工程を経ると、図23に示す半導体装置が複数個得られる。
【0064】
このようにして得られた半導体装置では、図25に示すように、互いに隣接する半導体構成体22間における封止膜31の量を埋込材71の体積の分だけ少なくすることができる。この結果、エポキシ系樹脂などからなる封止膜31の硬化時の収縮による応力を小さくすることができる。
【0065】
(その他の実施形態)
ところで、上記各実施形態では、封止膜31上に設けた絶縁膜35上に上層再配線34を設けた場合について説明したが、これに限らず、封止膜31上に設ける絶縁膜を複数層とし、その層間に、半導体構成体22の再配線30と上層再配線34とを接続する層間再配線を設けるようにしてもよい。
【0066】
【発明の効果】
以上説明したように、この発明によれば、半導体基板上に再配線を設けてなる複数または複数組の半導体構成体をベース板上に配置し、半導体構成体を含むベース板の上面全体に絶縁膜を形成し、絶縁膜の上面に上層再配線を半導体構成体の再配線に接続させて形成し、絶縁膜を少なくとも切断することにより、半導体構成体を1つまたは1組有し、その周囲に絶縁膜を有するとともに、周囲の絶縁膜上に上層再配線の一部が配置されてなる半導体装置を複数個一括して得ることができ、従来のようなボンディング工程がなく、したがってボンディングによることなく外部接続電極の配置間隔を大きくすることができ、また複数または複数組の半導体構成体に対して絶縁膜および上層再配線の形成を一括して行うことができるので、製造工程を簡略化することができる。
【図面の簡単な説明】
【図1】この発明の第1実施形態としての半導体装置の断面図。
【図2】図1に示す半導体装置の製造方法の一例において、当初用意したものの断面図。
【図3】図2に続く製造工程の断面図。
【図4】図3に続く製造工程の断面図。
【図5】図4に続く製造工程の断面図。
【図6】図5に続く製造工程の断面図。
【図7】図6に続く製造工程の断面図。
【図8】図7に続く製造工程の断面図。
【図9】図8に続く製造工程の断面図。
【図10】図9に続く製造工程の断面図。
【図11】図10に続く製造工程の断面図。
【図12】図1に示す半導体装置の製造方法の他の例において、当初用意したものの断面図。
【図13】同他の例において、所定の製造工程の断面図。
【図14】図1に示す半導体装置の製造方法のさらに他の例において、所定の製造工程の断面図。
【図15】図14に続く製造工程の断面図。
【図16】この発明の第2実施形態としての半導体装置の断面図。
【図17】この発明の第3実施形態としての半導体装置の断面図。
【図18】この発明の第4実施形態としての半導体装置の断面図。
【図19】この発明の第5実施形態としての半導体装置の断面図。
【図20】この発明の第6実施形態としての半導体装置の断面図。
【図21】この発明の第7実施形態としての半導体装置の断面図。
【図22】図21に示す半導体装置の製造方法の一例において、所定の製造工程の断面図。
【図23】この発明の第8実施形態としての半導体装置の断面図。
【図24】図23に示す半導体装置の製造方法の一例において、所定の製造工程の断面図。
【図25】図24に続く製造工程の断面図。
【図26】従来の半導体装置の一例の断面図。
【符号の説明】
20 ベース板
21 接着層
22 半導体構成体
23 半導体チップ
24 シリコン基板
25 接続パッド
29 下地金属層
30 再配線
31 封止膜
33 上層下地金属層
34 上層再配線
35 絶縁膜
37 半田ボール
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device and a method for manufacturing the same.
[0002]
[Prior art]
For example, in a semiconductor device called a BGA (ball grid array), a semiconductor chip composed of an LSI or the like is mounted on the center of the upper surface of a relay substrate (interposer) slightly larger than the size of the semiconductor chip, and is mounted on the lower surface of the relay substrate. There is one in which connection terminals using solder balls are arranged in a matrix.
[0003]
FIG. 26 is a sectional view showing an example of such a conventional semiconductor device. The semiconductor chip 1 has a structure in which a plurality of bump electrodes 3 made of copper or the like are provided on a peripheral portion of a silicon substrate 2.
[0004]
The relay substrate 4 includes a base film 5 whose size is slightly larger than the size of the silicon substrate 2 of the semiconductor chip 1. On the upper surface of the base film 5, a rewiring 6 connected to the bump electrode 3 of the semiconductor chip 1 is provided.
[0005]
The rewiring 6 includes a first connection pad 7 provided corresponding to the bump electrode 3 of the semiconductor chip 1, a second connection pad 8 provided in a matrix, and first and second connection pads 7. , 8 are connected. A circular hole 10 is provided in the base film 5 at a portion corresponding to the center of the second connection pad 8.
[0006]
The semiconductor chip 1 is mounted on the center of the upper surface of the relay board 4 via the anisotropic conductive adhesive 11. The anisotropic conductive adhesive 11 is made of a thermosetting resin 12 containing a large number of conductive particles 13.
[0007]
When the semiconductor chip 1 is mounted on the relay substrate 4, first, the semiconductor chip 1 is positioned at the center of the upper surface of the relay substrate 4 via the sheet-like anisotropic conductive adhesive 11 and simply placed. I do.
[0008]
Next, bonding is performed by applying a predetermined pressure at a temperature at which the thermosetting resin 12 is cured. Then, the bump electrode 3 pushes away the thermosetting resin 12 and is conductively connected to the upper surface of the first connection pad 7 through the conductive particles 13, and the lower surface of the semiconductor chip 1 is thermoset to the upper surface of the relay substrate 4. It is bonded via the conductive resin 12.
[0009]
Next, a sealing film 14 made of an epoxy resin is formed on the entire upper surface of the relay substrate 4 including the semiconductor chip 1. Next, a solder ball 15 is formed in and below the circular hole 10 so as to be connected to the second connection pad 8. In this case, since the second connection pads 8 are arranged in a matrix, the solder balls 15 are also arranged in a matrix.
[0010]
Here, the size of the solder balls 15 is larger than the size of the bump electrodes 3 of the semiconductor chip 1, and the interval between the solder balls 15 needs to be larger than the interval between the bump electrodes 3 to avoid contact between the solder balls 15. . Therefore, when the number of the bump electrodes 3 of the semiconductor chip 1 increases, it is necessary to make the arrangement area larger than the size of the semiconductor chip 1 in order to obtain a necessary arrangement interval between the solder balls 15. The size of the substrate 4 is slightly larger than the size of the semiconductor chip 1. Therefore, among the solder balls 15 arranged in a matrix, the peripheral solder balls 15 are arranged around the semiconductor chip 1.
[0011]
[Problems to be solved by the invention]
By the way, in the above-described conventional semiconductor device, the lower surface of the bump electrode 3 of the semiconductor chip 1 is bonded to the first surface of the rewiring 6 of the relay substrate 4 by bonding after alignment using the relay substrate 4 on which the rewiring 6 is formed. Is electrically conductively connected to the upper surface of the connection pad 7, the number of bump electrodes 3 of the semiconductor chip 1 increases, and if the size and arrangement interval of the bump electrodes 3 are reduced, the alignment is extremely difficult. there were. In this case, if the size of the semiconductor chip 1 is increased, it is natural that the size and the arrangement interval of the bump electrodes 3 can be increased. However, in this case, the number of semiconductor chips to be removed from the wafer state is drastically reduced. Would be extremely expensive. In addition, the semiconductor chips 1 must be bonded and mounted one by one on the relay substrate 4, and there is a problem that the manufacturing process is complicated. The same applies to a multi-chip module type semiconductor device including a plurality of semiconductor chips.
[0012]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor device and a method of manufacturing the semiconductor device, which can increase the interval between external connection electrodes without using bonding.
Another object of the present invention is to provide a method of manufacturing a semiconductor device, which can manufacture a plurality of semiconductor devices collectively.
[0013]
[Means for Solving the Problems]
The invention according to claim 1, wherein the semiconductor structure includes a plurality of rewirings each having a pad portion on a semiconductor substrate, and the semiconductor structure including the rewiring except for the pad portions. An insulating film provided on the entire upper surface of the semiconductor device and an extension portion outside the peripheral side surface of the semiconductor structure; and at least a connection pad portion provided on the insulating film so as to be connected to the pad portion of the rewiring. One upper layer redistribution, wherein at least a part of the uppermost layer upper redistribution is such that the connection pad portion extends from the insulating film outside the peripheral side surface of the semiconductor structure. It is characterized by being arranged on a part.
According to a second aspect of the present invention, there is provided a semiconductor device, comprising: a semiconductor substrate; and a plurality of semiconductor structures provided on an upper surface of the semiconductor substrate and having a plurality of rewirings each having a pad portion, which are arranged apart from each other. An insulating film provided on the entire upper surface including the rewiring except for the pad portion of each of the semiconductor structures and an extension portion outside the peripheral side surface of each of the semiconductor structures; and the pad on the insulating film. At least one layer of upper-layer rewiring connected to the portion and having a connection pad portion, wherein at least part of the upper-layer upper-layer rewiring in the upper-layer rewiring is such that the connection pad portion is one of the above-described ones. The semiconductor component is disposed on the extension portion outside the peripheral side surface.
According to a third aspect of the present invention, in the first or second aspect of the invention, the insulating film is provided so as to cover a peripheral side surface of the semiconductor structure.
According to a fourth aspect of the present invention, in the first or second aspect of the invention, the plurality of rewirings are formed on a protective film provided on the semiconductor substrate. is there.
According to a fifth aspect of the present invention, in the invention of the fourth aspect, a lower surface of the insulating film covering a peripheral side surface of the semiconductor structure is disposed on substantially the same plane as a lower surface of the semiconductor structure. It is characterized by the following.
According to a sixth aspect of the present invention, in the fourth aspect of the present invention, a heat dissipation layer is provided on a lower surface of the semiconductor structure and the insulating film around the semiconductor structure.
According to a seventh aspect of the present invention, in the first or second aspect, an embedding material is disposed below the extension of the insulating film. According to an eighth aspect of the present invention, in the seventh aspect of the invention, the embedding material has substantially the same thickness as the semiconductor substrate.
According to a ninth aspect of the present invention, in the eighth aspect of the present invention, an insulating film is filled between the burying material and the semiconductor structure.
According to a tenth aspect of the present invention, in the first or second aspect, the semiconductor structure is provided on a base plate.
According to an eleventh aspect of the present invention, in the first or second aspect of the present invention, the insulating film has a plurality of layers, and an interlayer connecting the rewiring of the semiconductor structure and the upper rewiring between the layers. A rewiring is provided.
According to a twelfth aspect of the present invention, in the first or second aspect of the present invention, an uppermost insulating film is provided on a portion of the upper surface of the insulating film including the upper redistribution wiring except a connection pad portion of the upper redistribution wiring. It is characterized by being carried out.
According to a thirteenth aspect, in the twelfth aspect, a protruding connection terminal is provided on the connection pad portion of the upper layer rewiring.
According to a fourteenth aspect, in the fourteenth aspect, the projecting connection terminal is a solder ball.
The invention according to claim 15, wherein a plurality of semiconductor components on which a plurality of rewirings each having a pad portion are formed on a semiconductor substrate are arranged on a base plate at a distance from each other; Forming an insulating film over the entire upper surface of the base plate including the semiconductor structure, and connecting a pad portion on the upper surface of the insulating film and forming a connection pad portion on the corresponding pad portion of any of the semiconductor structures. Forming an upper-layer rewiring to be connected such that at least one of the connection pad portions of the upper-layer rewiring is disposed on the insulating film formed between the semiconductor structures; and At least one of the semiconductor components formed on the insulating film in a region outside the semiconductor component by cutting at least one of the upper layer rewirings by cutting the insulating film between them It is characterized in that a step of obtaining a plurality of conductor device.
According to a sixteenth aspect of the present invention, in the invention according to the fifteenth aspect, in the step of cutting the insulating film, the semiconductor structure is cut so as to include a plurality of the semiconductor structures.
According to a seventeenth aspect of the present invention, in the invention according to the fifteenth aspect, the step of arranging the semiconductor components on the base plate so as to be separated from each other includes the step of arranging an embedding material between the semiconductor components. It is characterized by including.
According to an eighteenth aspect of the present invention, in the semiconductor device according to the fifteenth aspect, the plurality of rewirings are formed on a protective film provided on the semiconductor substrate.
The invention according to claim 19 is the invention according to claim 15, wherein the insulating film has a plurality of layers, and between the layers, the rewiring of each of the semiconductor structures and the upper rewiring of each of the sets corresponding thereto. And a step of forming a plurality of sets of interlayer rewirings for connecting
According to a twentieth aspect of the present invention, in the invention according to the fifteenth aspect, a step of forming an uppermost insulating film on a portion of the upper surface of the insulating film including the upper layer redistribution except for a pad portion of the upper layer redistribution is performed. It is characterized by having.
According to a twenty-first aspect, in the twenty-second aspect, a step of forming a projecting connection terminal on a pad portion of the upper layer rewiring is provided.
According to a twenty-second aspect, in the twenty-first aspect, the projecting connection terminal is a solder ball.
According to a twenty-third aspect of the present invention, the method according to the fifteenth aspect, further comprising the step of cutting the insulating film and cutting the base plate.
According to a twenty-fourth aspect of the present invention, in the invention of the twenty-third aspect, a step of disposing another base plate below the base plate before cutting, and removing the another base plate after cutting the base plate. Which is characterized by having
According to a twenty-fifth aspect of the present invention, in the invention according to the fifteenth aspect, the step of arranging the semiconductor components on a base plate while separating from each other is a step of arranging an embedding material between the semiconductor components. Wherein the step of cutting the insulating film between the semiconductor structures includes the step of cutting the burying material.
The invention according to claim 26 is the invention according to claim 25, wherein the step of cutting the insulating film between the respective semiconductor structures includes a step of cutting the base plate. is there.
According to a twenty-seventh aspect of the present invention, in the invention of the fifteenth aspect, a step of removing the base plate is provided before the step of cutting the insulating film between the semiconductor structures. It is.
The invention according to claim 28 is the invention according to claim 26, characterized by further comprising a step of thinning the semiconductor substrate, following the step of removing the base plate.
According to the present invention, a plurality of or a plurality of sets of semiconductor components provided with rewiring on a semiconductor substrate are arranged on a base plate, and an insulating film is formed on the entire upper surface of the base plate including the semiconductor components. Forming an upper layer rewiring on the upper surface of the insulating film by connecting to the rewiring of the semiconductor structure, and cutting at least the insulating film to have one or a set of the semiconductor structure and surrounding the insulating film with the insulating film. And a plurality of semiconductor devices in which a part of the upper layer rewiring is arranged on the surrounding insulating film can be obtained in a lump. Can be increased, and an insulating film and an upper layer rewiring can be formed collectively on a plurality or a plurality of sets of semiconductor structures, thereby simplifying a manufacturing process. Door can be.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
FIG. 1 is a sectional view of a semiconductor device according to a first embodiment of the present invention. The semiconductor device includes a square base plate 20 made of silicon, glass, ceramics, resin, metal, or the like. An adhesive layer 21 made of an adhesive, a pressure-sensitive adhesive sheet, a double-sided adhesive tape, or the like is provided on an upper surface of the base plate 20. At the center of the upper surface of the adhesive layer 21, the lower surface of a planar square semiconductor component 22 slightly smaller than the size of the base plate 20 is bonded.
[0015]
The semiconductor component 22 includes a semiconductor chip 23. In the semiconductor chip 23, a plurality of connection pads 25 made of aluminum or the like are provided around the upper surface of the silicon substrate 24 bonded to the center of the upper surface of the adhesive layer 21, and the upper surface of the silicon substrate 24 excluding the center of the connection pad 25 is provided. Is provided with an insulating film 26 made of silicon oxide or the like and a protective film 27 made of photosensitive polyimide or the like, and a central portion of the connection pad 25 is exposed through an opening 28 formed in the insulating film 26 and the protective film 27. Is made of things.
[0016]
Here, the semiconductor chip 23 is usually obtained when a semiconductor substrate in a wafer state is diced into individual semiconductor chips. However, according to the present invention, in a state where the connection pads 25, the insulating film 26, and the protective film 27 are formed on the semiconductor substrate in a wafer state, dicing is not performed, and as described below, The semiconductor substrate in a wafer state is diced in a state where 22 is obtained.
[0017]
On the protective film 27 of the semiconductor chip 23, a base metal layer 29a is provided from the upper surface of the connection pad 25 exposed through the opening 28 formed in the protective film 27 to a predetermined portion of the upper surface of the protective film 27. ing. An upper metal layer 29b is provided on the upper surface of the base metal layer 29a, and the rewiring 30 is formed by the base metal layer 29a and the upper metal layer 29b.
[0018]
As described above, the semiconductor structure 22 includes the conductor chip 23 having the connection pad 25, the insulating film 26, and the protective film 27, and further includes the sealing film 31 including the base metal layer 29a and the upper metal layer 29b. Have been. In FIG. 1, only the base metal layer 29a is formed in the opening 28 of the protective film 27, but this is for convenience of illustration, and the upper metal layer 29b is actually formed.
[0019]
A sealing film (insulating film) 31 made of an epoxy resin is provided on the upper surface of the protective film 27 including the rewiring 30 of the semiconductor structure 22 and the upper surface of the adhesive layer 21 around the semiconductor structure 22. An opening 32 is provided in a portion of the sealing film 31 corresponding to the pad portion of the rewiring 30. An upper base metal layer 33a is provided from the upper surface of the pad portion of the rewiring 30 exposed through the opening 32 to a predetermined location on the upper surface of the sealing film 31. An upper metal layer 39b is provided on the entire upper surface of the upper base metal layer 33a, and a redistribution line 34 is formed by the upper base metal layer 33a and the upper metal layer 39b.
[0020]
An insulating film 35 made of a solder resist or the like is provided on the entire upper surface of the sealing film 31 including the upper layer rewiring 34. An opening 36 is provided in a portion corresponding to the connection pad portion 34a of the upper layer rewiring 34 of the insulating film 35. Inside and above the opening 36, a solder ball (projection-like connection terminal) 37 is provided so as to be connected to the connection pad 34a of the upper layer rewiring 34. The plurality of solder balls 37 are arranged on the insulating film 35 in a matrix.
[0021]
By the way, the reason why the size of the base plate 20 is made slightly larger than the size of the semiconductor component 22 is that the arrangement area of the solder balls 37 is changed according to the increase in the number of connection pads 25 of the semiconductor chip 23. This is because the size and the arrangement interval of the connection pads 34a are made larger than the size and the arrangement interval of the connection pads 25.
[0022]
For this reason, the connection pad portions 34 a of the upper layer rewirings 34 arranged in a matrix form not only the region corresponding to the semiconductor structure 22 but also the region corresponding to the insulating film 31 provided on the peripheral side surface of the semiconductor structure 22. It is also located above. That is, of the solder balls 47 arranged in a matrix, at least the outermost solder balls 47 are arranged around the outside of the semiconductor structure 22.
[0023]
Next, an example of a method of manufacturing the semiconductor device will be described. First, an example of a method of manufacturing the semiconductor structure 22 will be described. First, as shown in FIG. 2, a connection pad 25 made of aluminum, an insulating film 26 made of silicon oxide, and a protective film 27 made of photosensitive polyimide are provided on a silicon substrate (semiconductor substrate) 24 in a wafer state. 25 is prepared by exposing a central portion of the insulating film 25 through an opening 28 formed in the insulating film 26 and the protective film 27.
[0024]
Next, as shown in FIG. 3, a base metal layer 29a is formed on the entire upper surface of the protective film 27 including the upper surface of the connection pad 25 exposed through the opening 28. In this case, the base metal layer 29a consists of only a copper layer formed by electroless plating, but may be a copper layer formed only by sputtering, or a thin film layer of titanium or the like formed by sputtering. A copper layer may be formed thereon by sputtering. This is the same in the case of an upper base metal layer 33a to be described later.
[0025]
Next, a plating resist film 41 is pattern-formed on the upper surface a of the base metal layer 29. In this case, an opening 42 is formed in the plating resist film 41 in a portion corresponding to the region where the rewiring 30 is formed. Next, an upper metal layer 29b is formed on the upper surface of the base metal layer 29a in the opening 42 of the plating resist film 41 by performing copper electrolytic plating using the base metal layer 29a as a plating current path.
[0026]
Next, the plating resist film 41 is peeled off, and then unnecessary portions of the base metal layer 29a are removed by etching using the upper metal layer 29b as a mask. As shown in FIG. The metal layer 29a remains, and the rewiring 30 is formed. Next, as shown in FIG. 5, through a dancing step, a plurality of semiconductor components 22 each having the rewiring 30 provided on the semiconductor chip 23 are obtained.
[0027]
Next, an example of manufacturing the semiconductor device shown in FIG. 1 using the semiconductor component 22 obtained in this manner will be described. First, as shown in FIG. 6, a base plate 20 from which a plurality of base plates 20 shown in FIG. 1 can be obtained is provided with an adhesive layer 21 provided on the entire upper surface thereof. Then, the lower surface of the silicon substrate 24 of the semiconductor structure 22 is bonded to a plurality of predetermined locations on the upper surface of the adhesive layer 21.
[0028]
Next, as shown in FIG. 7, a sealing film 31 made of an epoxy resin is formed on the entire upper surface of the adhesive layer 21 including the plurality of semiconductor structures 22 by a printing method, a molding method, or the like so that the thickness of the semiconductor film 22 is reduced. It is formed so as to be slightly thicker than the height. Therefore, in this state, the upper surface of the semiconductor structure 22 is covered with the sealing film 31. Next, if necessary, the upper surface of the sealing film 31 is appropriately polished to smooth the upper surface of the sealing film 31. Next, an opening 32 is formed in a portion of the sealing film 31 corresponding to the pad portion of the rewiring 30 by photolithography or irradiation of a CO2 laser.
[0029]
Next, as shown in FIG. 8, an upper base metal layer 33a is formed on the entire upper surface of the sealing film 31 including the pad portion of the rewiring 30 exposed through the opening 32 by electroless plating of copper. Next, a plating resist film 43 is pattern-formed on the upper surface of the upper underlying metal layer 33a. In this case, an opening 44 is formed in the plating resist film 43 in a portion corresponding to the region where the upper layer rewiring 34 is formed. Next, the upper metal layer 33b is formed on the upper surface of the upper metal layer 33a in the opening 44 of the plating resist film 43 by performing copper electrolytic plating using the upper metal layer 33a as a plating current path.
[0030]
Next, the plating resist film 43 is peeled off, and then unnecessary portions of the upper base metal layer 33a are removed by etching using the upper metal layer 33b as a mask. As shown in FIG. 9, only the portion under the upper metal layer 33b is removed. An upper layer rewiring with the upper layer underlying metal layer 33a remaining is formed.
[0031]
Next, as shown in FIG. 10, an insulating film 35 made of a solder resist is pattern-formed on the entire upper surface of the sealing film 31 including the upper layer rewiring 34. In this case, an opening 36 is formed in a portion corresponding to the connection pad portion 34a of the upper layer rewiring 34 of the insulating film 35. Next, a solder ball 37 is formed in and above the opening 36 so as to be connected to the connection pad 34a of the upper layer rewiring 34.
[0032]
Next, as shown in FIG. 11, the insulating film 35, the sealing film 31, the adhesive layer 21, and the base plate 20 are cut between the adjacent semiconductor structures 22 to obtain a plurality of semiconductor devices shown in FIG. Can be
[0033]
In the semiconductor device thus obtained, the upper metal layer 33a and the upper metal layer 33b connected to the rewiring 30 of the semiconductor structure 22 are formed by electroless plating (or sputtering) and electrolytic plating. In addition, the conductive connection between the rewiring 30 of the semiconductor structure 22 and the upper rewiring 34 can be made without using bonding.
[0034]
As described above, since the upper layer redistribution line 34 is directly bonded to the pad portion of the redistribution line 30 of the semiconductor structure 22 by plating, the opening 32 of the upper layer insulation film 31 has a square or the same area of 10 μm × 10 μm. It is sufficient in terms of strength to have a circular area of.
[0035]
On the other hand, in the conventional semiconductor chip shown in FIG. 26, the diameter of the bump electrode 3 is about 100 to 150 μm (the pitch is usually twice this), so that the conventional bump electrode and the rewiring are bonded by bonding. Compared with the joining method, the size and arrangement interval of the connection pad portions 34a can be made far more, and the process is more efficient.
[0036]
As described above, since the size and the arrangement interval of the connection pad portions 34a can be reduced, the size of the semiconductor device of the present invention having the upper layer rewiring can be reduced.
[0037]
Further, in the above-described manufacturing method, the semiconductor structure 22 is bonded and arranged at a plurality of predetermined locations on the adhesive layer 21 on the base plate 20, and the sealing film 31 and the upper layer underlayer are applied to the plurality of semiconductor structures 22. Since the formation of the metal layer 33, the upper layer redistribution wiring 34, the insulating film 35, and the solder balls 37 is collectively performed, and thereafter, a plurality of semiconductor devices are obtained by dividing, the manufacturing process can be simplified.
[0038]
In addition, since the plurality of semiconductor components 22 can be transported together with the base plate 20, the manufacturing process can be simplified. Furthermore, if the external dimensions of the base plate 20 are made constant, the transport system can be shared regardless of the external dimensions of the semiconductor device to be manufactured.
[0039]
Further, in the semiconductor device shown in FIG. 1, a protective film 27 made of photosensitive polyimide or the like, a sealing film 31 made of epoxy resin or the like, and an insulating film 35 made of photosensitive polyimide or the like are stacked on the silicon substrate 24. Therefore, after the semiconductor device is mounted on a circuit board (not shown) via the solder balls 37 by the three resin layers, the stress caused by the difference in thermal expansion coefficient between the silicon substrate 24 and the circuit board is reduced. Can be alleviated to some extent.
[0040]
Next, another example of the method for manufacturing the semiconductor device shown in FIG. 1 will be described. First, as shown in FIG. 12, an adhesive layer 52 made of an ultraviolet-curable pressure-sensitive adhesive sheet or the like is adhered to the entire upper surface of another base plate 51 made of a transparent resin plate or a glass plate that is transparent to ultraviolet light. A base plate having the above-mentioned base plate 20 and adhesive layer 21 adhered to the upper surface thereof is prepared.
[0041]
Then, after passing through the manufacturing steps shown in FIGS. 6 to 10, as shown in FIG. 13, the insulating film 35, the sealing film 31, the adhesive layer 21, the base plate 20 and the adhesive layer 52 are cut, and another base is cut. The plate 51 is not cut. Next, ultraviolet rays are irradiated from the lower surface side of another base plate 51 to cure the adhesive layer 52. Then, the adhesiveness of the adhesive layer 52 to the lower surface of the divided base plate 20 is reduced. Then, when individual pieces existing on the adhesive layer 52 are peeled off one by one and picked up, a plurality of semiconductor devices shown in FIG. 1 are obtained.
[0042]
In this manufacturing method, in the state shown in FIG. 13, the individualized semiconductor devices existing on the adhesive layer 52 do not fall apart, so that a circuit (not shown) is used without using a dedicated semiconductor device mounting tray. At the time of mounting on a substrate, it can be peeled off and picked up one by one. Further, when the adhesive layer 52 remaining on the upper surface of another base plate 51 and having reduced adhesiveness is peeled off, another base plate 51 can be reused. Furthermore, if the external dimensions of another base plate 51 are made constant, the transport system can be shared regardless of the external dimensions of the semiconductor device to be manufactured.
[0043]
It is also possible to use a normal dicing tape or the like for removing the semiconductor device by expanding it as another base plate 55, and in that case, the adhesive layer does not need to be an ultraviolet curing type. Further, another base plate 55 may be removed by polishing or etching.
[0044]
Next, still another example of the method for manufacturing the semiconductor device shown in FIG. 1 will be described. In this manufacturing method, after the manufacturing process shown in FIG. 7, as shown in FIG. 14, the entire upper surface of the sealing film 31 including the upper surface of the rewiring 30 exposed through the opening 32 is formed by electroless plating of copper. An upper base metal layer 33a is formed. Next, the upper metal layer 33c is formed on the entire upper surface of the upper metal layer 33 by performing copper electrolytic plating using the upper metal layer 33a as a plating current path. Next, a resist film 53 is pattern-formed on a portion of the upper surface of the upper metal layer 33c corresponding to the upper layer rewiring formation region.
[0045]
Next, unnecessary portions of the upper metal layer 33c and the upper base metal layer 33a are removed by etching using the resist film 53 as a mask, and as shown in FIG. The metal layer 33a remains, and the upper layer redistribution wiring 34 is formed. After that, the resist film 53 is peeled off. Note that the upper metal layer 29b and the base metal layer 29a of the semiconductor structure 22 may be formed by the same forming method.
[0046]
(2nd Embodiment)
In the manufacturing process shown in FIG. 6, when the adhesive layer 21 is provided on the lower surface of the silicon substrate 24 of the semiconductor structure 22 and the adhesive layer 21 is bonded to each predetermined position on the upper surface of the base plate 20, FIG. A semiconductor device as a second embodiment of the present invention as shown is obtained.
[0047]
In the semiconductor device thus obtained, the lower surface of the silicon substrate 24 is bonded to the upper surface of the base plate 20 via the adhesive layer 21, and the side surface of the silicon substrate 24 is bonded via the sealing film 36. Since the semiconductor structure 22 is connected to the upper surface of the base plate 20, the bonding strength of the semiconductor structure 22 to the base plate 20 can be increased to some extent.
[0048]
(Third and fourth embodiments)
FIG. 17 is a sectional view of a semiconductor device according to a third embodiment of the present invention. This semiconductor device is different from the semiconductor device shown in FIG. 1 in that it does not include a base plate 20 and an adhesive layer 21.
[0049]
In the case of manufacturing the semiconductor device of the third embodiment, for example, as shown in FIG. 10, after the solder balls 37 are formed, the base plate 20 is peeled off from the adhesive layer 21 or the base plate 20 and the adhesive layer 21 are removed. After removal by polishing or etching or the like, the insulating film 35 and the sealing film 31 are cut between the adjacent semiconductor structures 22 to obtain a plurality of semiconductor devices shown in FIG. Since the semiconductor device thus obtained does not include the base plate 20 and the adhesive layer 21, the thickness can be reduced accordingly.
[0050]
After removing the base plate 20 and the adhesive layer 21, the lower surfaces of the silicon substrate 24 and the sealing film 31 are appropriately polished, and then the insulating film 35 and the sealing film 31 are interposed between the adjacent semiconductor structures 22. Is cut, a plurality of semiconductor devices as the fourth embodiment of the present invention shown in FIG. 18 are obtained. The semiconductor device thus obtained can be further reduced in thickness.
[0051]
Before the formation of the solder balls 37, the base plate 20 and the adhesive layer 21 are removed by polishing, etching, or the like (if necessary, the lower surfaces of the silicon substrate 24 and the sealing film 31 are appropriately polished). Next, the solder balls 37 may be formed, and then the insulating film 35 and the sealing film 31 may be cut between the adjacent semiconductor structures 22.
[0052]
(Fifth embodiment)
FIG. 19 is a sectional view of a semiconductor device according to a fifth embodiment of the present invention. This semiconductor device differs from the semiconductor device shown in FIG. 1 in that a metal layer 61 for heat dissipation is adhered to the lower surface of the adhesive layer 21. The metal layer 61 is made of a copper foil having a thickness of several tens of μm or the like.
[0053]
In the case of manufacturing the semiconductor device of the fifth embodiment, for example, as shown in FIG. 10, after the solder balls 37 are formed, the base plate 20 is removed by polishing or etching, and then the entire lower surface of the adhesive layer 21 is formed. 18 is obtained by cutting the insulating film 35, the sealing film 31, the adhesive layer 21, and the metal layer 61 between the adjacent semiconductor structures 22. Thus, a plurality of semiconductor devices shown in FIG. 18 are obtained. .
[0054]
The adhesive layer 21 is also removed by polishing, etching, or the like (if necessary, the lower surfaces of the silicon substrate 24 and the sealing film 31 are appropriately polished), and a new surface is formed on the lower surfaces of the silicon substrate 24 and the sealing film 31. The metal layer 61 may be bonded via an adhesive layer.
[0055]
(Sixth embodiment)
In the case shown in FIG. 11, the cutting is performed between the semiconductor components 22 adjacent to each other. However, the present invention is not limited to this, and two or more semiconductor components 22 are cut as one set. As in the sixth embodiment of the present invention, three semiconductor components 22 may be cut into one set to obtain a multi-chip module type semiconductor device. In this case, the set of three semiconductor components 22 may be the same or different.
[0056]
(Seventh embodiment)
FIG. 21 is a sectional view of a semiconductor device according to a seventh embodiment of the present invention. This semiconductor device is different from the semiconductor device shown in FIG. 1 in that the semiconductor structure 22 is provided with an upper protective film 62 made of photosensitive polyimide or the like on the upper surface of the protective film 27 including the rewiring 30. This is that an opening 63 is provided in a portion of the rewiring 62 corresponding to the pad portion.
[0057]
In the case of manufacturing the semiconductor device of the seventh embodiment, after the manufacturing process shown in FIG. 4, an upper protective film made of photosensitive polyimide or the like is formed on the upper surface of the protective film 27 including the rewiring 30, as shown in FIG. 21. An opening 63 is formed in a portion of the upper protective film 62 corresponding to the pad portion of the rewiring 30. After the same manufacturing steps as those shown in FIGS. A plurality of the semiconductor devices shown are obtained.
[0058]
In the semiconductor device thus obtained, the protective film 27 made of photosensitive polyimide or the like, the upper protective film 62 made of photosensitive polyimide or the like, the sealing film 31 made of epoxy resin or the like, and the photosensitive film 27 are formed on the silicon substrate 24. Since the insulating film 35 made of polyimide or the like is laminated, the semiconductor device is mounted on a circuit board (not shown) via the solder balls 37 by the four resin layers. The stress caused by the difference in the coefficient of thermal expansion from the circuit board can be further reduced. The upper surface of the sealing film 31 may be flush with the upper surface of the upper protective film 62.
[0059]
(Eighth embodiment)
FIG. 23 is a sectional view of a semiconductor device according to an eighth embodiment of the present invention. This semiconductor device is different from the semiconductor device shown in FIG. 1 in that a rectangular frame-shaped embedding material 71 is provided on the upper surface of an adhesive layer 21 around a semiconductor structure 22.
[0060]
In this case, the thickness of the embedding material 71 may be the same as the thickness of the silicon substrate 24, and may be the same as the sum of the thickness of the insulating film 25 and the thickness of the protective film 26. The thickness may be the same as the added thickness, or may be the same as the added thickness of the rewiring 30. Therefore, the upper surface of the embedding material 71 is covered with the sealing film 31. Further, the sealing film 31 is filled between the semiconductor structure 22 and the embedding material 71.
[0061]
In the case of manufacturing the semiconductor device of the eighth embodiment, in the manufacturing process shown in FIG. 6, the silicon substrate of the semiconductor structure 22 is provided at a plurality of predetermined locations on the upper surface of the adhesive layer 21 as shown in FIG. The lower surface of the embedding material 71 is bonded to the upper surface of the adhesive layer 21 between the semiconductor structures 22 adjacent to each other.
[0062]
The material of the embedding material 71 may be the same as that of the base plate 20, or may be different. When the material of the base plate 20 and the embedding material 71 is a thermoplastic resin, the two are thermocompression-bonded without using the adhesive layer 21, and then the adhesive provided on the lower surface of the silicon substrate 24 of the semiconductor structure 22. The layer 21 (see FIG. 16) may be adhered to the upper surface of the base plate 20. Alternatively, the sheet-shaped embedding material 71 may be bonded to the entire upper surface of the adhesive layer 21 (or may be thermocompression-bonded onto the base plate 20), and the grid-shaped embedding material 71 may be formed by spot facing. Good.
[0063]
Next, as shown in FIG. 25, a sealing film 31 made of an epoxy resin or the like is formed on the entire upper surface of the adhesive layer 21 including the plurality of semiconductor structures 22 and the lattice-shaped embedding material 71 by a printing method, a molding method, or the like. Accordingly, the thickness is formed to be slightly thicker than the height of the semiconductor structure 22. Next, if necessary, the upper surface of the sealing film 31 is appropriately polished to smooth the upper surface of the sealing film 31. Next, an opening 32 is formed in a portion of the sealing film 31 corresponding to the pad portion of the rewiring 30 by photolithography or irradiation of a CO2 laser. Thereafter, through the same manufacturing steps as those shown in FIGS. 8 to 11, a plurality of semiconductor devices shown in FIG. 23 are obtained.
[0064]
In the semiconductor device obtained in this manner, as shown in FIG. 25, the amount of the sealing film 31 between the semiconductor structures 22 adjacent to each other can be reduced by the volume of the embedding material 71. As a result, stress due to shrinkage of the sealing film 31 made of an epoxy resin or the like during curing can be reduced.
[0065]
(Other embodiments)
By the way, in each of the above embodiments, the case where the upper layer rewiring 34 is provided on the insulating film 35 provided on the sealing film 31 is described. However, the present invention is not limited to this. Layers may be provided, and interlayer rewiring connecting the rewiring 30 of the semiconductor structure 22 and the upper rewiring 34 may be provided between the layers.
[0066]
【The invention's effect】
As described above, according to the present invention, a plurality or a plurality of sets of semiconductor components formed by providing rewiring on a semiconductor substrate are arranged on a base plate, and the entire upper surface of the base plate including the semiconductor components is insulated. A film is formed, an upper layer rewiring is formed on the upper surface of the insulating film so as to be connected to the rewiring of the semiconductor structure, and at least one of the semiconductor structures is cut by cutting the insulating film. A plurality of semiconductor devices having an insulating film at the same time and a part of the upper layer rewiring disposed on the surrounding insulating film can be obtained in a lump, and there is no bonding process as in the related art. In addition, the arrangement interval of the external connection electrodes can be increased, and the insulating film and the upper layer rewiring can be collectively formed on a plurality or a plurality of sets of the semiconductor structures. It can be simplified.
[Brief description of the drawings]
FIG. 1 is a sectional view of a semiconductor device according to a first embodiment of the present invention;
FIG. 2 is a cross-sectional view of an example of a method for manufacturing the semiconductor device shown in FIG. 1 which is initially prepared.
FIG. 3 is a sectional view of the manufacturing process following FIG. 2;
FIG. 4 is a sectional view of the manufacturing process following FIG. 3;
FIG. 5 is a sectional view of the manufacturing process following FIG. 4;
FIG. 6 is a sectional view of the manufacturing process following FIG. 5;
FIG. 7 is a sectional view of the manufacturing process following FIG. 6;
FIG. 8 is a sectional view of the manufacturing process following FIG. 7;
FIG. 9 is a sectional view of the manufacturing process following FIG. 8;
FIG. 10 is a sectional view of the manufacturing process following FIG. 9;
FIG. 11 is a sectional view of the manufacturing process continued from FIG. 10;
FIG. 12 is a cross-sectional view of another example of the method of manufacturing the semiconductor device shown in FIG. 1, which is initially prepared.
FIG. 13 is a sectional view of a predetermined manufacturing process in the other example.
14 is a cross-sectional view of a predetermined manufacturing step in still another example of the method of manufacturing the semiconductor device shown in FIG. 1;
FIG. 15 is a sectional view of the manufacturing process continued from FIG. 14;
FIG. 16 is a sectional view of a semiconductor device as a second embodiment of the present invention.
FIG. 17 is a sectional view of a semiconductor device according to a third embodiment of the present invention;
FIG. 18 is a sectional view of a semiconductor device according to a fourth embodiment of the present invention.
FIG. 19 is a sectional view of a semiconductor device according to a fifth embodiment of the present invention.
FIG. 20 is a sectional view of a semiconductor device according to a sixth embodiment of the present invention;
FIG. 21 is a sectional view of a semiconductor device according to a seventh embodiment of the present invention;
FIG. 22 is a sectional view of a predetermined manufacturing step in the example of the method for manufacturing the semiconductor device shown in FIG. 21;
FIG. 23 is a sectional view of a semiconductor device as an eighth embodiment of the present invention.
24 is a cross-sectional view of a predetermined manufacturing process in the example of the method for manufacturing a semiconductor device shown in FIG. 23;
FIG. 25 is a sectional view of the manufacturing process continued from FIG. 24;
FIG. 26 is a cross-sectional view of an example of a conventional semiconductor device.
[Explanation of symbols]
20 Base plate
21 Adhesive layer
22 Semiconductor components
23 Semiconductor Chip
24 Silicon substrate
25 connection pads
29 Base metal layer
30 Rewiring
31 sealing film
33 Upper Underlying Metal Layer
34 Upper layer rewiring
35 Insulating film
37 Solder Ball

Claims (28)

半導体基板上に、それぞれが、パッド部を有する複数の再配線を設けてなる半導体構成体と、前記各パッド部を除いて前記再配線を含む前記半導体構成体の上面全体および前記半導体構成体の周側面より外側の延出部に設けられた絶縁膜と、該絶縁膜上に、前記再配線のパッド部に接続されて設けられ且つ接続パッド部を有する少なくとも一層の上層再配線とを備え、前記上層再配線の中、最上層の上層再配線の少なくとも一部は、前記接続パッド部が、前記半導体構成体の周側面より外側の前記絶縁膜の延出部上に配置されていることを特徴とする半導体装置。On a semiconductor substrate, a semiconductor structure formed by providing a plurality of rewirings each having a pad portion, and the entire top surface of the semiconductor structure including the rewiring except for the pad portions and the semiconductor structure An insulating film provided on the extension portion outside the peripheral side surface, and at least one upper layer rewiring provided on the insulating film and connected to the pad portion of the rewiring and having a connection pad portion; In the upper layer rewiring, at least a part of the upper layer rewiring, the connection pad portion is arranged on an extension of the insulating film outside a peripheral side surface of the semiconductor structure. Characteristic semiconductor device. 各々が、半導体基板と、該半導体基板の上面に設けられ且つパッド部を有する複数の再配線を有し、互いに離間して配置された複数の半導体構成体と、前記各半導体構成体のパッド部を除いて前記再配線を含む上面全体および前記各半導体構成体の周側面より外側の延出部に設けられた絶縁膜と、該絶縁膜上に、前記パッド部に接続されて設けられ且つ接続パッド部を有する少なくとも一層の上層再配線とを備え、前記上層再配線の中、最上層の上層再配線の少なくとも一部は、前記接続パッド部が前記いずれかの半導体構成体の周側面より外側の前記延出部上に配置されていることを特徴とする半導体装置。A plurality of semiconductor components each having a semiconductor substrate, a plurality of rewirings provided on the upper surface of the semiconductor substrate and having a pad portion, and arranged at a distance from each other; and a pad portion of each of the semiconductor components An insulating film provided on the entire upper surface including the rewiring except for the rewiring and an extension portion outside the peripheral side surface of each of the semiconductor structures; and provided on the insulating film and connected to the pad portion and connected At least one upper layer rewiring having a pad portion, wherein at least a part of the uppermost layer upper rewiring in the upper layer rewiring is such that the connection pad portion is located outside the peripheral side surface of any of the semiconductor structures. Wherein the semiconductor device is disposed on the extending portion. 請求項1または2に記載の発明において、前記絶縁膜は前記半導体構成体の周側面を覆って設けられていることを特徴とする半導体装置。3. The semiconductor device according to claim 1, wherein the insulating film is provided to cover a peripheral side surface of the semiconductor structure. 4. 請求項1または2に記載の発明において、前記複数の再配線は、前記半導体基板上に設けられた保護膜上に形成されていることを特徴とする半導体装置。3. The semiconductor device according to claim 1, wherein the plurality of rewirings are formed on a protective film provided on the semiconductor substrate. 請求項4に記載の発明において、前記半導体構成体の周側面を覆う前記絶縁膜の下面は前記半導体構成体の下面とほぼ同一の平面上に配置されていることを特徴とする半導体装置。5. The semiconductor device according to claim 4, wherein a lower surface of the insulating film covering a peripheral side surface of the semiconductor structure is disposed on substantially the same plane as a lower surface of the semiconductor structure. 請求項4に記載の発明において、前記半導体構成体およびその周囲における前記絶縁膜の下面に放熱層が設けられていることを特徴とする半導体装置。5. The semiconductor device according to claim 4, wherein a heat radiation layer is provided on a lower surface of the semiconductor structure and the insulating film around the semiconductor structure. 請求項1または2に記載の発明において、前記絶縁膜の延出部の下方には、埋込材が配置されていることを特徴とする半導体装置。3. The semiconductor device according to claim 1, wherein an embedding material is arranged below the extension of the insulating film. 請求項7に記載の発明において、前記埋込材は前記半導体基板とほぼ同じ厚さを有することを特徴とする半導体装置。8. The semiconductor device according to claim 7, wherein the embedding material has substantially the same thickness as the semiconductor substrate. 請求項8に記載の発明において、前記埋込材と前記半導体構成体との間に絶縁膜が充填されていることを特徴とする半導体装置。9. The semiconductor device according to claim 8, wherein an insulating film is filled between the embedding material and the semiconductor structure. 請求項1または2に記載の発明において、前記半導体構成体はベース板上に設けられていることを特徴とする半導体装置。3. The semiconductor device according to claim 1, wherein the semiconductor structure is provided on a base plate. 請求項1または2に記載の発明において、前記絶縁膜は複数層であり、その層間に、前記半導体構成体の再配線と前記上層再配線とを接続する層間再配線が設けられていることを特徴とする半導体装置。3. The invention according to claim 1, wherein the insulating film has a plurality of layers, and an interlayer rewiring connecting the rewiring of the semiconductor structure and the upper rewiring is provided between the layers. 4. Characteristic semiconductor device. 請求項1または2に記載の発明において、前記上層再配線を含む前記絶縁膜の上面において前記上層再配線の接続パッド部を除く部分に最上層絶縁膜が設けられていることを特徴とする半導体装置。3. The semiconductor according to claim 1, wherein an uppermost insulating film is provided on a portion of the upper surface of the insulating film including the upper layer redistribution except for a connection pad portion of the upper layer redistribution. 4. apparatus. 請求項12に記載の発明において、前記上層再配線の接続パッド部上に突起状の接続端子が設けられていることを特徴とする半導体装置。13. The semiconductor device according to claim 12, wherein a protruding connection terminal is provided on the connection pad portion of the upper layer rewiring. 請求項14に記載の発明において、前記突起状の接続端子は半田ボールであることを特徴とする半導体装置。15. The semiconductor device according to claim 14, wherein the projecting connection terminals are solder balls. 半導体基板上に、それぞれ、パッド部を有する複数の再配線が形成された複数の半導体構成体を相互に離間してベース板上に配置する工程と、
前記複数の半導体構成体上を含む前記ベース板の上面全体に絶縁膜を形成する工程と、
前記絶縁膜の上面に、接続パッド部を有し且ついずれかの前記半導体構成体の対応する前記パッド部に接続される上層再配線を、少なくともいずれかの前記上層再配線の接続パッド部が前記半導体構成体間に形成された前記絶縁膜上に配置されるように形成する工程と、
前記各半導体構成体間における前記絶縁膜を切断して少なくともいずれかの前記上層再配線の接続パッド部が前記半導体構成体より外側の領域の前記絶縁膜上に形成された前記半導体構成体を少なくとも1つ有する半導体装置を複数個得る工程とを有することを特徴とする半導体装置の製造方法。
A step of arranging a plurality of semiconductor structures on which a plurality of rewirings each having a pad portion are formed on a base plate, apart from each other, on a semiconductor substrate,
Forming an insulating film over the entire top surface of the base plate including the plurality of semiconductor structures;
On the upper surface of the insulating film, a connection pad portion, and an upper layer rewiring connected to the corresponding pad portion of any of the semiconductor structures, at least one of the connection pad portions of the upper layer rewiring is the Forming it so as to be disposed on the insulating film formed between the semiconductor components,
By cutting the insulating film between the semiconductor structures, at least one of the connection pads of the upper layer rewiring is formed on the insulating film in a region outside the semiconductor structure at least by the semiconductor structure. Obtaining a plurality of semiconductor devices having one semiconductor device.
請求項15に記載の発明において、前記絶縁膜を切断する工程は、前記半導体構成体が複数個含まれるように切断することを特徴とする半導体装置の製造方法。16. The method of manufacturing a semiconductor device according to claim 15, wherein the step of cutting the insulating film includes cutting the plurality of semiconductor components. 請求項15に記載の発明において、前記半導体構成体を相互に離間してベース板上に配置する工程は、前記半導体構成体間に埋込材を配置する工程を含むことを特徴とする半導体装置の製造方法。16. The semiconductor device according to claim 15, wherein the step of arranging the semiconductor components on the base plate so as to be separated from each other includes a step of arranging an embedding material between the semiconductor components. Manufacturing method. 請求項15に記載の発明において前記複数の再配線は、前記半導体基板上に設けられた保護膜上に形成されていることを特徴とする半導体装置の製造方法。16. The method according to claim 15, wherein the plurality of rewirings are formed on a protective film provided on the semiconductor substrate. 請求項15に記載の発明において、前記絶縁膜は複数層であり、その層間に、前記各半導体構成体の再配線とそれに対応する前記各組の上層再配線とを接続する複数組の層間再配線を形成する工程を有することを特徴とする半導体装置の製造方法。The invention according to claim 15, wherein the insulating film has a plurality of layers, and between the layers, a plurality of sets of interlayer wirings for connecting the rewiring of each semiconductor structure and the corresponding upper rewiring of each set. A method for manufacturing a semiconductor device, comprising a step of forming a wiring. 請求項15に記載の発明において、前記上層再配線を含む前記絶縁膜の上面において前記上層再配線のパッド部を除く部分に最上層絶縁膜を形成する工程を有することを特徴とする半導体装置の製造方法。16. The semiconductor device according to claim 15, further comprising a step of forming an uppermost insulating film on a portion of the upper surface of the insulating film including the upper redistribution wiring except for a pad portion of the upper redistribution wiring. Production method. 請求項20に記載の発明において、前記上層再配線のパッド部上に突起状の接続端子を形成する工程を有することを特徴とする半導体装置の製造方法。21. The method of manufacturing a semiconductor device according to claim 20, further comprising a step of forming a protruding connection terminal on a pad portion of the upper layer rewiring. 請求項21に記載の発明において、前記突起状の接続端子は半田ボールであることを特徴とする半導体装置の製造方法。22. The method according to claim 21, wherein the projecting connection terminals are solder balls. 請求項15に記載の発明において、前記絶縁膜を切断するとともに前記ベース板を切断する工程を有することを特徴とする半導体装置の製造方法。16. The method according to claim 15, further comprising a step of cutting the insulating film and cutting the base plate. 請求項23に記載の発明において、切断前の前記ベース板下に別のベース板を配置し、前記ベース板を切断した後に、前記別のベース板を取り除く工程を有することを特徴とする半導体装置の製造方法。24. The semiconductor device according to claim 23, further comprising a step of disposing another base plate below the base plate before cutting, and removing the another base plate after cutting the base plate. Manufacturing method. 請求項15に記載の発明において、 前記半導体構成体を相互に離間してベース板上に配置する工程は、前記半導体構成体間に埋込材を配置する工程を含み、前記各半導体構成体間における前記絶縁膜を切断する工程は、前記埋込材を切断する工程を含むことを特徴とする半導体装置の製造方法。16. The semiconductor device according to claim 15, wherein the step of disposing the semiconductor components on the base plate so as to be spaced apart from each other includes the step of disposing an embedding material between the semiconductor components. The method of manufacturing a semiconductor device according to claim 1, wherein the step of cutting the insulating film includes the step of cutting the embedding material. 請求項25に記載の発明において、前記各半導体構成体間における前記絶縁膜を切断する工程は、前記ベース板を切断する工程を含むことを特徴とする半導体装置の製造方法。26. The method of manufacturing a semiconductor device according to claim 25, wherein the step of cutting the insulating film between the respective semiconductor structures includes a step of cutting the base plate. 請求項15に記載の発明において、前記各半導体構成体間における前記絶縁膜を切断する工程の前に、前記ベース板を取り除く工程を有することを特徴とする半導体装置の製造方法。16. The method of manufacturing a semiconductor device according to claim 15, further comprising a step of removing the base plate before the step of cutting the insulating film between the semiconductor components. 請求項27に記載の発明において、前記ベース板を取り除く工程に引き続き、前記半導体基板を薄くする工程を有することを特徴とする半導体装置の製造方法。28. The method according to claim 27, further comprising, after the step of removing the base plate, a step of thinning the semiconductor substrate.
JP2002232737A 2002-08-09 2002-08-09 Semiconductor device and manufacturing method thereof Expired - Lifetime JP3951854B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2002232737A JP3951854B2 (en) 2002-08-09 2002-08-09 Semiconductor device and manufacturing method thereof
PCT/JP2003/009958 WO2004015771A2 (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
CA2464078A CA2464078C (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
AU2003253425A AU2003253425C1 (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
CN038012693A CN1568546B (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
KR1020047005322A KR100593049B1 (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
EP03784529A EP1527480A2 (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
TW092121811A TWI231551B (en) 2002-08-09 2003-08-08 Semiconductor device and method of manufacturing the same
US10/826,039 US7294922B2 (en) 2002-08-09 2004-04-16 Semiconductor device and method of manufacturing the same
HK05105873.6A HK1073389A1 (en) 2002-08-09 2005-07-11 Semiconductor device and method of manufacturing the same
US11/671,318 US7547967B2 (en) 2002-08-09 2007-02-05 Semiconductor device and method of manufacturing the same
US11/671,268 US7618886B2 (en) 2002-08-09 2007-02-05 Semiconductor device and method of manufacturing the same
US12/415,782 US7737543B2 (en) 2002-08-09 2009-03-31 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232737A JP3951854B2 (en) 2002-08-09 2002-08-09 Semiconductor device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006276723A Division JP4297154B2 (en) 2006-10-10 2006-10-10 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004072032A true JP2004072032A (en) 2004-03-04
JP3951854B2 JP3951854B2 (en) 2007-08-01

Family

ID=32018047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232737A Expired - Lifetime JP3951854B2 (en) 2002-08-09 2002-08-09 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3951854B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071998A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
US7459340B2 (en) 2004-12-14 2008-12-02 Casio Computer Co., Ltd. Semiconductor device and manufacturing method thereof
JP2009032823A (en) * 2007-07-25 2009-02-12 Tdk Corp Electronic component-embedded board and method of manufacturing the same
JP2009032824A (en) * 2007-07-25 2009-02-12 Tdk Corp Electronic component-embedded board and method of manufacturing the same
JP2010219489A (en) * 2009-02-20 2010-09-30 Toshiba Corp Semiconductor device and manufacturing method thereof
US8742589B2 (en) 2008-07-18 2014-06-03 Tdk Corporation Semiconductor embedded module and method for producing the same
US8779573B2 (en) 2010-06-29 2014-07-15 Shinko Electric Industries Co., Ltd. Semiconductor package having a silicon reinforcing member embedded in resin
JP2018152537A (en) * 2017-03-15 2018-09-27 アオイ電子株式会社 Semiconductor device and semiconductor device manufacturing method
DE112017001101T5 (en) 2016-03-01 2018-11-29 Sony Corporation Semiconductor device, electronic module, electronic device and semiconductor device manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027786A1 (en) * 2000-09-25 2002-04-04 Ibiden Co., Ltd. Semiconductor element, method of manufacturing semiconductor element, multi-layer printed circuit board, and method of manufacturing multi-layer printed circuit board
JP2004071998A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004095836A (en) * 2002-08-30 2004-03-25 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004207306A (en) * 2002-12-24 2004-07-22 Casio Comput Co Ltd Semiconductor device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027786A1 (en) * 2000-09-25 2002-04-04 Ibiden Co., Ltd. Semiconductor element, method of manufacturing semiconductor element, multi-layer printed circuit board, and method of manufacturing multi-layer printed circuit board
JP2004071998A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004095836A (en) * 2002-08-30 2004-03-25 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004207306A (en) * 2002-12-24 2004-07-22 Casio Comput Co Ltd Semiconductor device and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071998A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
US7459340B2 (en) 2004-12-14 2008-12-02 Casio Computer Co., Ltd. Semiconductor device and manufacturing method thereof
JP2009032823A (en) * 2007-07-25 2009-02-12 Tdk Corp Electronic component-embedded board and method of manufacturing the same
JP2009032824A (en) * 2007-07-25 2009-02-12 Tdk Corp Electronic component-embedded board and method of manufacturing the same
JP4518113B2 (en) * 2007-07-25 2010-08-04 Tdk株式会社 Electronic component built-in substrate and manufacturing method thereof
JP4518114B2 (en) * 2007-07-25 2010-08-04 Tdk株式会社 Electronic component built-in substrate and manufacturing method thereof
US8742589B2 (en) 2008-07-18 2014-06-03 Tdk Corporation Semiconductor embedded module and method for producing the same
JP2010219489A (en) * 2009-02-20 2010-09-30 Toshiba Corp Semiconductor device and manufacturing method thereof
US8779573B2 (en) 2010-06-29 2014-07-15 Shinko Electric Industries Co., Ltd. Semiconductor package having a silicon reinforcing member embedded in resin
DE112017001101T5 (en) 2016-03-01 2018-11-29 Sony Corporation Semiconductor device, electronic module, electronic device and semiconductor device manufacturing method
US11355444B2 (en) 2016-03-01 2022-06-07 Sony Corporation Semiconductor device, electronic module, electronic apparatus each having stacked embedded active components in multilayer wiring board and method for producing the semiconductor device having the same
US11916021B2 (en) 2016-03-01 2024-02-27 Sony Group Corporation Semiconductor device, electronic module and electronic apparatus each having stacked embedded active components in a multilayer wiring board
JP2018152537A (en) * 2017-03-15 2018-09-27 アオイ電子株式会社 Semiconductor device and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP3951854B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP3888267B2 (en) Semiconductor device and manufacturing method thereof
JP3918681B2 (en) Semiconductor device
US7618886B2 (en) Semiconductor device and method of manufacturing the same
KR100548668B1 (en) Semiconductor device and method of manufacturing the same
JP3888302B2 (en) Semiconductor device
US7042081B2 (en) Semiconductor device having heat dissipation layer
TWI239581B (en) Semiconductor device and method of manufacturing the same
JP2003298005A (en) Semiconductor device and method of manufacturing thereof
JP4349376B2 (en) Semiconductor device and manufacturing method thereof
JP3951854B2 (en) Semiconductor device and manufacturing method thereof
JP4135390B2 (en) Semiconductor device and manufacturing method thereof
JP2005005632A (en) Chip-like electronic component, its manufacturing method, and its packaging structure
JP4297154B2 (en) Manufacturing method of semiconductor device
JP2004165193A (en) Semiconductor device and its manufacturing method
JP4337859B2 (en) Semiconductor device
JP4337858B2 (en) Semiconductor device
JP4337860B2 (en) Semiconductor device
JP4316623B2 (en) Manufacturing method of semiconductor device
JP4297153B2 (en) Manufacturing method of semiconductor device
JP2004221418A (en) Semiconductor device and its producing process
JP4561079B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Ref document number: 3951854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term