JP2004071998A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2004071998A
JP2004071998A JP2002232289A JP2002232289A JP2004071998A JP 2004071998 A JP2004071998 A JP 2004071998A JP 2002232289 A JP2002232289 A JP 2002232289A JP 2002232289 A JP2002232289 A JP 2002232289A JP 2004071998 A JP2004071998 A JP 2004071998A
Authority
JP
Japan
Prior art keywords
insulating film
semiconductor
semiconductor device
rewiring
upper layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002232289A
Other languages
Japanese (ja)
Other versions
JP3918681B2 (en
Inventor
Hiroyasu Sadabetto
定別当 裕康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002232289A priority Critical patent/JP3918681B2/en
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to CN038012693A priority patent/CN1568546B/en
Priority to CA2464078A priority patent/CA2464078C/en
Priority to EP03784529A priority patent/EP1527480A2/en
Priority to AU2003253425A priority patent/AU2003253425C1/en
Priority to PCT/JP2003/009958 priority patent/WO2004015771A2/en
Priority to KR1020047005322A priority patent/KR100593049B1/en
Priority to TW092121811A priority patent/TWI231551B/en
Publication of JP2004071998A publication Critical patent/JP2004071998A/en
Priority to US10/826,039 priority patent/US7294922B2/en
Priority to HK05105873.6A priority patent/HK1073389A1/en
Priority to US11/671,268 priority patent/US7618886B2/en
Priority to US11/671,318 priority patent/US7547967B2/en
Application granted granted Critical
Publication of JP3918681B2 publication Critical patent/JP3918681B2/en
Priority to US12/415,782 priority patent/US7737543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/15321Connection portion the connection portion being formed on the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize conductive connection between a silicon substrate and a solder ball without through a bonding process, when manufacturing a semiconductor device called BGA for example. <P>SOLUTION: Onto a bonding layer 22 on a base plate 21 of a size dealing with a plurality of semiconductor devices, semiconductor elements 23 formed by providing a rewiring 32, a columnar electrode 33 and a sealing film 34 on a silicon substrate 24 are bonded with spaces from one another. Then a sealing film 35 is formed on a peripheral side surface of the semiconductor element. Then a first upper insulation film 36, a first upper rewiring 39, a second upper insulation film 41, a second upper rewiring 44 and a third upper insulation film 45 are laminated in this order. At the last, a solder ball 47 is formed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
例えばBGA(ball grid array)と呼ばれる半導体装置には、LSIなどからなる半導体チップを該半導体チップのサイズよりもやや大きいサイズの中継基板(インターポーザ)の上面中央部に搭載し、中継基板の下面に半田ボールによる接続端子をマトリクス状に配置したものがある。ここで、中継基板は、半導体チップ上に形成された外部接続電極を他の回路基板にボンディングする際、接続強度および信頼性を得るために、再配線によりそのサイズおよびピッチを充分大きなものとするために用いられる。
【0003】
図30は従来のこのような半導体装置の一例の断面図を示したものである。半導体チップ1は、シリコン基板2の周辺部に銅などからなる複数のバンプ電極3が設けられた構造となっている。
【0004】
中継基板4は、サイズが半導体チップ1のシリコン基板2のサイズよりもやや大きいベースフィルム5を備えている。ベースフィルム5の上面には、半導体チップ1のバンプ電極3に接続される再配線6が設けられている。
【0005】
再配線6は、半導体チップ1のバンプ電極3に対応して設けられた第1の接続パッド7と、マトリクス状に設けられた第2の接続パッド8と、第1と第2の接続パッド7、8を接続する引き回し線9とからなっている。第2の接続パッド8の中央部に対応する部分におけるベースフィルム5には円孔10が設けられている。
【0006】
そして、半導体チップ1は中継基板4の上面中央部に異方性導電接着剤11を介して搭載されている。異方性導電接着剤11は、熱硬化性樹脂12中に多数の導電性粒子13を含有させたものからなっている。
【0007】
半導体チップ1を中継基板4上に搭載する場合には、まず、中継基板4の上面中央部にシート状の異方性導電接着剤11を介して半導体チップ1を位置合わせしてただ単に載置する。
【0008】
次に、熱硬化性樹脂12が硬化する温度にて所定の圧力を加えてボンディングする。すると、バンプ電極3が熱硬化性樹脂12を押し退けて第1の接続パッド7の上面に導電性粒子13を介して導電接続され、且つ、半導体チップ1の下面が中継基板4の上面に熱硬化性樹脂12を介して接着される。
【0009】
次に、半導体チップ1を含む中継基板4の上面全体にエポキシ系樹脂からなる樹脂封止膜14を形成する。次に、円孔10内およびその下方に半田ボール15を第2の接続パッド8に接続させて形成する。この場合、第2の接続パッド8はマトリクス状に配置されているため、半田ボール15もマトリクス状に配置される。
【0010】
ここで、半田ボール15のサイズは半導体チップ1のバンプ電極3のサイズより大きく、また、各半田ボール15相互の接触を避けるため、その配置間隔をバンプ電極3の配置間隔より大きくする必要がある。そこで、半導体チップ1のバンプ電極3の数が増大した場合、各半田ボール15に必要な配置間隔を得るため、その配置領域を半導体チップ1のサイズより大きくすることが必要となり、そのために、中継基板4のサイズを半導体チップ1のサイズよりもやや大きくしている。したがって、マトリクス状に配置された半田ボール15のうち、周辺部の半田ボール15は半導体チップ1の周囲に配置されている。
【0011】
【発明が解決しようとする課題】
ところで、上記従来の半導体装置では、再配線6が形成された中継基板4を用い、位置合わせした後のボンディングにより、半導体チップ1のバンプ電極3の下面を中継基板4の再配線6の第1の接続パッド7の上面に異方性導電接着剤11の導電性粒子13を介して導電接続する構成としているので、半導体チップ1のバンプ電極3の数が増大し、バンプ電極3のサイズおよび配置間隔が小さくなると、位置合わせが極めて大変であるという問題があった。この場合、半導体チップ1のサイズを大きくすれば、バンプ電極3のサイズおよび配置間隔を大きくすることができることは当然であるが、そのようにすると、ウエハ状態からの半導体チップの取り数が激減し、極めて高価なものとなってしまう。また、半導体チップ1を1つずつ中継基板4上にボンディングして搭載しなければならず、製造工程が煩雑であるという問題があった。このようなことは、半導体チップを複数個備えたマルチチップモジュール型の半導体装置の場合も同様である。
【0012】
そこで、この発明は、ボンディングによることなく外部接続電極の配置間隔を大きくすることができる半導体装置およびその製造方法を提供することを目的とする。
また、この発明は、複数の半導体装置を一括して製造することができる半導体装置の製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1に記載の発明は、半導体基板の上面に設けられた複数の再配線および前記各再配線の一端部上に形成された柱状電極を有する半導体構成体と、該半導体構成体の前記柱状電極を除く上面全体および前記半導体構成体の周側面より外側の延出部に設けられた絶縁膜と、該絶縁膜上に、前記柱状電極に接続されて設けられ且つ接続パッドを有する少なくとも一層の上層再配線とを備え、前記上層再配線の中、最上層の上層再配線の少なくとも一部は、前記接続パッドが前記絶縁膜上の前記半導体構成体の周側面より外側の前記延出部上に配置されていることを特徴とするものである。
請求項2に記載の発明は、各々が、半導体基板と、該半導体基板の上面に設けられた複数の再配線および前記各再配線の一端部上に形成された柱状電極を有し、互いに離間して配置された複数の半導体構成体と、該各半導体構成体の柱状電極を除く上面全体および前記各半導体構成体の周側面より外側の延出部に設けられた絶縁膜と、該絶縁膜上に、前記柱状電極に接続されて設けられ且つ接続パッドを有する少なくとも一層の上層再配線とを備え、前記上層再配線の中、最上層の上層再配線の少なくとも一部は、前記接続パッドが前記絶縁膜上の前記いずれかの半導体構成体の周側面より外側の前記延出部上に配置されていることを特徴とするものである。
請求項3に記載の発明は、請求項1または2に記載の発明において、前記絶縁膜は前記半導体構成体の周側面を覆って設けられていることを特徴とするものである。
請求項4に記載の発明は、請求項3に記載の発明において、前記半導体構成体の周側面を覆って設けられた前記絶縁膜の下面は前記半導体構成体の下面とほぼ同一の平面上に配置されていることを特徴とするものである。
請求項5に記載の発明は、請求項1または2に記載の発明において、前記上層再配線の中、最下層の上層再配線は前記記絶縁膜に形成された開口を介して直接前記柱状電極に電気的に接続され、前記絶縁膜に形成された前記開口は前記柱状電極の幅の1/2以下の幅を有することを特徴とするものである。
請求項6に記載の発明は、請求項1または2に記載の発明において、前記上層再配線の中、最下層の上層再配線は前記各柱状電極上および前記最下層の絶縁膜上に形成されためっき層を含むことを特徴とするものである。
請求項7に記載の発明は、請求項1または2に記載の発明において、前記絶縁膜は複数層であり、その層間に、前記半導体構成体の柱状電極と前記上層再配線とを接続する層間再配線が設けられていることを特徴とするものである。
請求項8に記載の発明は、請求項1または2に記載の発明において、前記柱状電極は50μm以上の高さを有することを特徴とするものである。
請求項9に記載の発明は、請求項1または2に記載の発明において、前記上層再配線を含む前記絶縁膜の上面に前記上層再配線の前記接続パッドの少なくとも一部を除く部分に最上層絶縁膜が設けられていることを特徴とするものである。
請求項10に記載の発明は、請求項9に記載の発明において、前記上層再配線の前記接続パッド上に突起状の接続端子が設けられていることを特徴とするものである。
請求項11に記載の発明は、請求項9に記載の発明において、前記最上層絶縁膜上に電子部品がいずれかの前記上層再配線の接続パッド部に接続されて設けられていることを特徴とするものである。
請求項12に記載の発明は、請求項9〜11のいずれかに記載の発明において、前記半導体構成体およびその周側面に設けられた前記絶縁膜の下面に放熱層が設けられていることを特徴とするものである。
請求項13に記載の発明は、請求項1または2に記載の発明において、前記絶縁膜は前記半導体構成体の周側面を覆って設けられ、該半導体構成体の周側面に設けられた前記絶縁膜はベース板上に設けられていることを特徴とするものである。
請求項14に記載の発明は、請求項1または2に記載の発明において、前記絶縁膜は前記半導体構成体の周側面を覆って設けられ、該半導体構成体の周側面に設けられた前記絶縁膜上にフレキシブル配線板が配置され、該フレキシブル配線板に形成された接続端子がいずれかの前記上層再配線の前記接続パッドに接続されていることを特徴とするものである。
請求項15に記載の発明は、請求項1または2に記載の発明において、前記半導体構成体上にフレキシブル配線板が配置され、前記フレキシブル配線板に形成された接続端子がいずれかの前記上層再配線の前記接続パッドに接続されていることを特徴とするものである。
請求項16に記載の発明は、請求項15に記載の発明において、前記フレキシブル配線板上に突起状の接続端子が導電接続されて設けられていることを特徴とするものである。
請求項17に記載の発明は、請求項1または2に記載の発明において、前記絶縁膜は前記半導体構成体の周側面を覆って設けられ、該半導体構成体の周側面に形成された前記絶縁膜を覆って最外周絶縁膜が設けられていることを特徴とするものである。
請求項18に記載の発明は、請求項17に記載の発明において、前記最外周絶縁膜は前記半導体構成体の周側面に形成された前記絶縁膜よりも厚く形成されていることを特徴とするものである。
請求項19に記載の発明は、請求項17に記載の発明において、前記最外周絶縁膜は前記半導体構成体の周側面に形成された前記絶縁膜よりも薄く形成されていることを特徴とするものである。
請求項20に記載の発明は、請求項9に記載の発明において、前記最上層絶縁膜上に電子部品がいずれかの前記上層再配線の接続パッドに接続されて設けられ、他のいずれかの前記上層再配線の外部端子ににフレキシブル配線板に形成された接続端子が接続されていることを特徴とするものである。
請求項21に記載の発明は、請求項1または2に記載の発明において、上面に前記絶縁膜および前記上層再配線が設けられた前記半導体構成体を複数個有し、前記各半導体構成体上面の上層再配線がフレキシブル配線板により接続されていることを特徴とするものである。
請求項22に記載の発明は、請求項21に記載の発明において、前記半導体構成体が互いの下面を対向して積層されていることを特徴とするものである。
請求項23に記載の発明は、各々が、複数の再配線および前記各再配線上に設けられた柱状電極を有する複数の半導体構成体を相互に離間してベース板上に配置する工程と、前記複数の半導体構成体上を含む前記ベース板の上面全体に絶縁膜を形成する工程と、前記絶縁膜の上面に、接続パッドを有し且ついずれかの前記半導体構成体の対応する前記柱状電極に接続される上層再配線を、少なくともいずれかの前記上層再配線の接続パッドが前記半導体構成体間に形成された前記絶縁膜上に配置されるように形成する工程と、前記各半導体構成体間における前記絶縁膜を切断して少なくともいずれかの前記上層再配線の接続パッドが前記半導体構成体の周側面を覆う前記絶縁膜上に形成された前記半導体構成体を少なくとも1つ有する半導体装置を複数個得る工程とを有することを特徴とするものである。
請求項24に記載の発明は、請求項23に記載の発明において、前記絶縁膜を切断する工程は、前記半導体構成体が複数個含まれるように切断することを特徴とするものである。
請求項25に記載の発明は、請求項23に記載の発明において、前記絶縁膜は複数層であり、その層間に、前記各半導体構成体の柱状電極とそれに対応する前記上層再配線とを接続する複数組の層間再配線を形成する工程を有することを特徴とするものである。
請求項26に記載の発明は、請求項23に記載の発明において、前記上層再配線を含む前記絶縁膜の上面において前記上層再配線の接続パッド部を除く部分に最上層絶縁膜を形成する工程を有することを特徴とするものである。
請求項27に記載の発明は、請求項26に記載の発明において、前記上層再配線の接続パッド部上に突起状の接続端子を形成する工程を有することを特徴とするものである。
請求項28に記載の発明は、請求項26に記載の発明において、前記最上層絶縁膜上に電子部品を前記上層再配線の接続パッド部に接続させて設ける工程を有することを特徴とするものである。
請求項29に記載の発明は、請求項23に記載の発明において、前記絶縁膜を切断する工程は前記絶縁膜を切断するとともに前記ベース板を切断し、前記半導体装置としてベース板を備えたものを得ることを特徴とするものである。
請求項30に記載の発明は、請求項29に記載の発明において、切断前の前記ベース板下に別のベース板を配置し、前記ベース板を切断した後に、前記別のベース板を取り除く工程を有することを特徴とするものである。
請求項31に記載の発明は、請求項23に記載の発明において、前記各半導体構成体間における前記絶縁膜を切断する工程の前に、前記ベース板を取り除く工程を有することを特徴とするものである。
請求項32に記載の発明は、請求項31に記載の発明において、前記ベース板を取り除く工程に引き続き、前記半導体基板を薄くする工程を有することを特徴とするものである。
そして、この発明によれば、半導体基板上に再配線および柱状電極を有する複数または複数組の半導体構成体をベース板上に配置し、半導体構成体を含むベース板の上面全体に絶縁膜を形成し、絶縁膜の上面に上層再配線を半導体構成体の柱状電極に接続させて形成し、絶縁膜を少なくとも切断することにより、半導体構成体を1つまたは1組有し、その周囲に絶縁膜を有するとともに、周囲の絶縁膜上に上層再配線の一部が配置されてなる半導体装置を複数個一括して得ることができ、従来のようなボンディング工程がなく、したがってボンディングによることなく外部接続電極の配置間隔を大きくすることができ、また複数または複数組の半導体構成体に対して絶縁膜および上層再配線の形成を一括して行うことができるので、製造工程を簡略化することができる。
【0014】
【発明の実施の形態】
(第1実施形態)
図1はこの発明の第1実施形態としての半導体装置の断面図を示したものである。この半導体装置は、シリコン、ガラス、セラミックス、樹脂、金属などからなる平面正方形状のベース板21を備えている。ベース板21の上面には、接着剤、粘着シート、両面接着テープなどからなる接着層22が設けられている。
【0015】
接着層22の上面中央部には、ベース板21のサイズよりもやや小さいサイズの平面正方形状の半導体構成体23の下面が接着されている。この場合、半導体構成体23は、CSP(chip size package)と呼ばれるものであり、接着層22の上面中央部に接着されたシリコン基板(半導体基板)24を備えている。シリコン基板24の上面周辺部にはアルミニウムなどからなる複数の接続パッド25が設けられ、接続パッド25の中央部を除くシリコン基板24の上面には酸化シリコンなどからなる絶縁膜26が設けられている。
【0016】
シリコン基板24上に接続パッド25および絶縁膜26を設けてなるものは、通常、ウエハ状態の半導体基板をダイシングして個々のチップとなした場合に得られるものである。しかしながら、この発明では、ウエハ状態の半導体基板上に接続パッド25および絶縁膜26が形成された状態では、ダイシングを行わず、以下に説明するように、再配線を有する半導体構成体23が得られる状態でウエハ状態の半導体基板をダイシングする。まず、半導体構成体23の構成について説明する。
【0017】
シリコン基板24上に形成された絶縁膜26上にはポリイミドなどからなる保護膜27が設けられている。接続パッド25の中央部は、絶縁膜26および保護膜27に形成された開口部28を介して露出されている。開口部28を介して露出された接続パッド25の上面から保護膜27の上面の所定の箇所にかけて銅からなる下地金属層31aが設けられている。下地金属層31aの上面には銅からなる上層金属層31bが設けられており、下地金属層31aおよび上層金属層31bにより再配線32が構成される。
【0018】
再配線32のパッド部上面には銅からなる柱状電極33が設けられている。再配線32を含む保護膜27の上面にはエポキシ系樹脂からなる封止膜(絶縁膜)34がその上面が柱状電極33の上面と面一となるように設けられている。このように、半導体構成体23は、シリコン基板24、接続パッド25、絶縁膜26を含み、さらに、保護膜27、再配線32、柱状電極33、封止膜34を含んで構成されている。
【0019】
半導体構成体23の周囲における接着層22の上面にはエポキシ系樹脂からなる封止膜(絶縁膜)35がその上面が封止膜34の上面と面一となるように設けられている。両封止膜34、35および柱状電極33の上面には感光性ポリイミドなどからなる第1の上層絶縁膜36が設けられている。第1の上層絶縁膜36の柱状電極33の上面中央部に対応する部分には開口部37が設けられている。開口部37を介して露出された柱状電極33の上面から第1の上層絶縁膜36の上面の所定の箇所にかけて第1の下地金属層38aおよび該第1の下地金属層38a上に設けられた第1の上層金属層38bからなる第1の上層再配線39が設けられている。
【0020】
第1の上層再配線39を含む第1の上層絶縁膜36の上面全体には感光性ポリイミドなどからなる第2の上層絶縁膜41が設けられている。第2の上層絶縁膜41の第1の上層再配線39の接続パッド部に対応する部分には開口部42が設けられている。開口部42を介して露出された第1の上層再配線39の接続パッド部の上面から第2の上層絶縁膜41の上面の所定の箇所にかけて第2の下地金属層43aおよびおよび該第2の下地金属層43a上に設けられた第2の上層金属層43bからなる第2の上層再配線44が設けられている。
【0021】
第2の上層再配線44を含む第2の上層絶縁膜41の上面全体には感光性ポリイミドなどからなる第3の上層絶縁膜45が設けられている。第3の上層絶縁膜45の第2の上層再配線44の接続パッド部に対応する部分には開口部46が設けられている。開口部46内およびその上方には半田ボール(突起状の接続端子)47が第2の上層再配線44の接続パッド部に接続されて設けられている。複数の半田ボール47は、第3の上層絶縁膜45上にマトリクス状に配置されている。
【0022】
ところで、ベース板21のサイズを半導体構成体23のサイズよりもやや大きくしているのは、シリコン基板24上の接続パッド25の数の増加に応じて、半田ボール47の配置領域を半導体構成体23のサイズよりもやや大きくし、これにより、接続パッド25のサイズおよび配置間隔を柱状電極33のサイズおよび配置間隔よりも大きくするためである。
【0023】
このため、マトリクス状に配置された第2の上層再配線44の接続パッド部(第3の上層絶縁膜45の開口部46内の部分)は、半導体構成体23に対応する領域のみでなく、半導体構成体23の周側面に設けられた絶縁膜35の領域上にも配置されている。つまり、マトリクス状に配置された半田ボール47のうち、少なくとも最外周の半田ボール47は半導体構成体23よりも外側に位置する周囲に配置されている。
【0024】
この場合、変形例として、第2の上層再配線44の接続パッド部を全て半導体構成体23よりも外側に位置する周囲に配置するようにしてもよい。また、上層の再配線を1層として、つまり第1の再配線39のみとして、少なくとも、最外周の接続パッド部を半導体構成体23よりも外側に位置する周囲に配置することもできる。
【0025】
このように、この発明は、シリコン基板24上に、接続パッド25、絶縁膜26を有するのみでなく、保護膜27、再配線32、柱状電極33、封止膜34などをも形成した半導体構成体23に、上面を覆う第1の上層絶縁膜36および該第1の上層絶縁膜36上に形成された開口部37を介して柱状電極33に接続される第1の上層再配線39、および周側面を覆う封止膜35を設ける構成を特徴としている。
【0026】
通常、シリコン基板と回路基板の熱膨張係数の相違に起因して柱状電極に作用する応力を緩和するため、柱状電極の高さは100〜200μm必要であるが、上記の如く、この発明では、柱状電極33上に第1の上層再配線39および該第1の上層絶縁膜36が形成されており、該第1の上層再配線39および第1の上層絶縁膜36が応力を緩和する作用を有するので、柱状電極33の高さを50〜100μm程度と低いものにすることができる。勿論、柱状電極33の高さを大きくするほど、応力緩和作用が大きくなるので、ボンディングする回路基板によっては、従来と同様の高さとしても差し支えない。
【0027】
次に、この半導体装置の製造方法の一例について説明する。まず、図2に示すように、図1に示すベース板21を複数枚採取することができるベース板21の上面全体に接着層22が設けられたものを用意する。そして、接着層22の上面の所定の複数箇所にそれぞれ半導体構成体23のシリコン基板24の下面を接着する。
【0028】
半導体構成体23は、上述の如く、CSPと呼ばれるものであり、予め製造されている。ここで、半導体構成体23の製造方法の一例について簡単に説明する。まず、ウエハ状態の半導体基板(切断前のシリコン基板24)上に接続パッド25、絶縁膜26および保護膜27が設けられたものを用意する。次に、開口部28を介して露出された接続パッド25の上面を含む保護膜27の上面全体に下地金属層31aを形成する。
【0029】
次に、下地金属層31aの上面の所定の箇所に電解メッキにより上層金属層31bを形成する。次に、再配線32の接続パッド部上面に電解メッキにより柱状電極33を形成する。次に、柱状電極33および上層金属層31bをマスクとして下地金属層31aの不要な部分をエッチングにより除去し、上層金属層31b下にのみ下地金属層31aを残存させ、該残存した下地金属層31aおよびこの下地金属層31a上全面に形成された上層金属層31bからなる再配線32を形成する。
【0030】
次に、柱状電極33および再配線32を含む保護膜27の上面全体に封止膜34をその厚さが柱状電極33の高さよりも厚くなるように形成する。したがって、この状態では、柱状電極33の上面は封止膜34によって覆われている。次に、封止膜34および柱状電極33の上面側を適宜に研磨し、柱状電極33の上面を露出させる。次に、ダンシング工程を経ると、図2に示す半導体構成体23が複数個得られる。
【0031】
さて、図2に示すように、接着層22の上面の所定の複数箇所にそれぞれ半導体構成体23のシリコン基板24の下面を接着したら、次に、図3に示すように、複数の半導体構成体23を含む接着層22の上面にポリイミドやエポキシ系樹脂などからなる封止膜35を印刷によりその厚さが半導体構成体23の高さよりもやや厚くなるように形成する。したがって、この状態では、半導体構成体23の上面は封止膜35によって覆われている。次に、封止膜35および半導体構成体23の上面側を適宜に研磨することにより、図4に示すように、柱状電極33の上面を露出させる。
【0032】
ここで、図2に示す半導体構成体23を製造する場合も、上述の如く、柱状電極33および再配線32を含む保護膜27の上面に封止膜34をその厚さが柱状電極33の高さよりもやや厚くなるように形成し、次いで封止膜34および柱状電極33の上面側を適宜に研磨することにより、柱状電極33の上面を露出させている。したがって、研磨工程は2回となる。
【0033】
そこで、次に、研磨工程を1回とすることができる場合について説明する。図2に示す状態において、半導体構成体23として封止膜34を備えていないものを用意する。つまり、接続パッド25および絶縁膜26が形成されたウエハ状態の半導体基板上に保護膜27、再配線32、柱状電極33を形成した後、封止膜34を形成することなく、これをダイシングする。
【0034】
そして、図3に示す工程において、封止膜34、35を形成すべき領域に同一の封止材料によって同時に封止膜34、35を形成し、該封止膜34、35(但し、封止膜は一体化されており境界はない)と共に柱状電極33の上面側を研磨すればよい。つまり、封止膜形成工程を1回とすることにより、研磨工程は1回とすることができる。
【0035】
ただし、研磨工程を1回とする場合には、図2に示す状態における半導体構成体23の柱状電極33の高さに電解メッキによる形成に伴うばらつきが生じるのに対し、研磨工程を2回とする場合には、図2に示す状態における半導体構成体23の高さが均一となり、図2に示す状態における半導体構成体23の高さを予め揃えておくことができる。
【0036】
さて、図4に示す研磨工程が終了したら、次に、図5に示すように、面一となった両封止膜34、35および柱状電極33の上面に第1の上層絶縁膜36を形成する。この第1の上層絶縁膜36は、感光性ポリイミド、感光性ポリベンザオキサゾール、感光性エポキシ樹脂、感光性ノボラック樹脂、感光性アクリル系かカルゾ樹脂などからなり、ドライフィルム化されている。したがって、このドライフィルム化されたものをラミネータによりラミネートすると、第1の上層絶縁膜36が形成される。なお、後述する第2および第3の上層絶縁膜41、45の場合も同様であるが、印刷などの塗布法により形成するようにしてもよい。
【0037】
次に、第1の上層絶縁膜36の柱状電極33の上面中央部に対応する部分に、フォトリソグラフィにより、開口部37を形成する。次に、図6に示すように、開口部37を介して露出された柱状電極33の上面を含む第1の上層絶縁膜36の上面全体に第1の下地金属層38aを形成する。この場合、第1の下地金属層38aは、無電解メッキにより形成された銅層のみからなっているが、スパッタにより形成された銅層のみであってもよく、またスパッタにより形成されたチタンなどの薄膜層上にスパッタにより銅層を形成したものであってもよい。これは、後述する第2の下地金属層43aの場合も同様である。
【0038】
次に、第1の下地金属層38aの上面にメッキレジスト膜51をパターン形成する。この場合、第1の上層再配線39形成領域に対応する部分におけるメッキレジスト膜51には開口部52が形成されている。次に、第1の下地金属層38aをメッキ電流路として銅の電解メッキを行うことにより、メッキレジスト膜51の開口部52内の第1の下地金属層38aの上面に第1の上層金属層38b第1の上層再配線39を形成する。図1および図6において、第1の上層絶縁膜36の開口部37内には第1の下地金属層38aのみが形成されているが、これは図示の都合上であって、実際には、第1の上層金属層38bも形成される。
【0039】
ここで、第1の上層再配線39は柱状電極33上にメッキにより直接接合されるものであるため、第1の上層絶縁膜36の開口部37は、10μm×10μmの方形または同面積の円形の面積を有していれば強度的に十分である。この種の露光機は数μmの位置合わせ精度を有しており、通常、柱状電極33の直径は100〜150μm程度(ピッチは、通常、この2倍)であるので、従来の、柱状電極と再配線の接合をボンディングによる方法と比較すると、柱状電極のサイズおよび配置間隔が遙かに小さい場合にも適用でき、且つ、プロセスも効率的である。
【0040】
このように、この発明の方法によれば、柱状電極に上層の再配線を接合するための絶縁膜の開口部の幅を柱状電極の幅の1/2以下とすることが可能であり、これにより半導体構成体の柱状電極のサイズおよび配置間隔も小さいものとすることができるので、上層の再配線を有する本発明の半導体装置のサイズを一層小さいものとすることができる。
【0041】
次に、メッキレジスト膜51を剥離し、次いで、第1の上層金属層38bをマスクとして第1の下地金属層38aの不要な部分をエッチングして除去すると、図7に示すように、第1の下地金属層38aおよび第1の上層金属層38bからなる第1の上層再配線39が形成される。
【0042】
次に、図8に示すように、第1の上層再配線39を含む第1の上層絶縁膜36の上面全体に感光性ポリイミドなどからなる第2の上層絶縁膜41をパターン形成する。この場合、第2の上層絶縁膜41の第1の上層再配線39の接続パッド部に対応する部分には開口部42が形成されている。次に、開口部42を介して露出された第1の上層再配線39の接続パッド部を含む第2の上層絶縁膜41の上面全体に第2の下地金属層43aを無電解メッキにより形成する。
【0043】
次に、第2の下地金属層43aの上面にメッキレジスト膜53をパターン形成する。この場合、第2の上層再配線44形成領域に対応する部分におけるメッキレジスト膜53には開口部54が形成されている。次に、第2の下地金属層43aをメッキ電流路として銅の電解メッキを行うことにより、メッキレジスト膜53の開口部54内の第2の下地金属層43aの上面に第2の上層金属層43bを形成する。
【0044】
次に、メッキレジスト膜53を剥離し、次いで、第2の上層再配線44をマスクとして第2の下地金属層43の不要な部分をエッチングして除去すると、図9に示すように、第2の下地金属層43および第2の上層金属層43bからなる第2の上層再配線44が形成される。
【0045】
次に、図10に示すように、第2の上層再配線44を含む第2の上層絶縁膜41の上面全体に感光性ポリイミドなどからなる第3の上層絶縁膜45をパターン形成する。この場合、第3の上層絶縁膜45の第2の上層再配線44の接続パッド部に対応する部分には開口部46が形成されている。次に、開口部46内およびその上方に半田ボール47を第2の上層再配線44の接続パッド部に接続させて形成する。
【0046】
次に、図11に示すように、互いに隣接する半導体構成体23間において、3層の絶縁膜45、41、36、封止膜35、接着層22およびベース板21を切断すると、図1に示す半導体装置が複数個得られる。
【0047】
このようにして得られた半導体装置では、半導体構成体23の柱状電極33に接続される第1の下地金属層38および第1の上層再配線39を無電解メッキ(またはスパッタ)および電解メッキにより形成し、第1の上層再配線39の接続パッド部に接続される第2の下地金属層43および第2の上層再配線44を無電解メッキ(またはスパッタ)および電解メッキにより形成しているので、ボンディングによらないで、半導体構成体23の柱状電極33と第1の上層再配線39との間および第1の上層再配線39と第2の上層再配線44との間を導電接続することができる。
【0048】
また、上記製造方法では、ベース板21上の接着層22上の所定の複数箇所にそれぞれ半導体構成体23を接着して配置し、複数の半導体構成体23に対して第1〜第3の上層絶縁膜36、41、45、第1、第2の下地金属層38、43、第1、第2の上層再配線39、44および半田ボール47の形成を一括して行い、その後に分断して複数個の半導体装置を得ているので、製造工程を簡略化することができる。
【0049】
また、ベース板21と共に複数の半導体構成体23を搬送することができるので、これによっても製造工程を簡略化することができる。さらに、ベース板21の外形寸法を一定にすると、製造すべき半導体装置の外形寸法に関係なく、搬送系を共有化することができる。
【0050】
さらに、上記製造方法では、図2に示すように、再配線32および柱状電極33を備えたCSPタイプの半導体構成体23を接着層22上に接着しているので、例えば、シリコン基板24上に接続パッド25、絶縁膜26および保護膜27を設けてなる通常の半導体チップを接着層22上に接着して、半導体チップの周囲に設けられた封止膜上に再配線および柱状電極を形成する場合と比較して、コストを低減することができる。
【0051】
例えば、切断前のベース板21がシリコンウエハのように一定のサイズのほぼ円形状である場合、接着層22上に接着された半導体チップの周囲に設けられた封止膜上に再配線および柱状電極を形成すると、処理面積が増大する。換言すれば、低密度処理になるため、一回当たりの処理枚数が低減し、スループットが低下するので、コストアップとなる。
【0052】
これに対し、上記製造方法では、再配線32および柱状電極33を備えたCSPタイプの半導体構成体23を接着層22上に接着した後に、ビルドアップしているので、プロセス数は増大するが、柱状電極33を形成するまでは高密度処理のため、効率が良く、プロセス数の増大を考慮しても、全体の価格を低減することができる。
【0053】
次に、図1に示す半導体装置の製造方法の他の例について説明する。まず、図12に示すように、紫外線透過性の透明樹脂板やガラス板などからなる別のベース板55の上面全体に紫外線硬化型の粘着シートなどからなる接着層56を接着し、接着層56の上面に上述のベース板21および接着層22を接着したものを用意する。
【0054】
そして、図2〜図10にそれぞれ示す製造工程を経た後に、図13に示すように、3層の絶縁膜45、41、36、封止膜35、接着層22、ベース板21および接着層56を切断し、別のベース板55を切断しない。次に、別のベース板55の下面側から紫外線を照射し、接着層56を硬化させる。すると、分断されたベース板21の下面に対する接着層56による接着性が低下する。そこで、接着層56上に存在する個片化されたものを1つずつ剥がしてピックアップすると、図1に示す半導体装置が複数個得られる。
【0055】
この製造方法では、図13に示す状態において、接着層56上に存在する個片化された半導体装置がバラバラとならないので、専用の半導体装置載置用トレーを用いることなく、そのまま、図示しない回路基板上への実装時に1つずつ剥がしてピックアップすることができる。また、別のベース板55の上面に残存する接着性が低下した接着層56を剥離すると、別のベース板55を再利用することができる。さらに、別のベース板55の外形寸法を一定にすると、製造すべき半導体装置の外形寸法に関係なく、搬送系を共有化することができる。
【0056】
なお、別のベース板55として、膨張させることにより半導体装置を取り外す、通常のダイシングテープなどを用いることも可能であり、その場合には、接着層は紫外線硬化型でなくてもよい。また、別のベース板55を研磨やエッチングにより除去するようにしてもよい。
【0057】
次に、図1に示す半導体装置の製造方法のさらに他の例について説明する。この製造方法では、図5に示す工程後に、図14に示すように、開口部37を介して露出された柱状電極33の上面を含む第1の上層絶縁膜36の上面全体に銅の無電解メッキにより第1の下地金属層38aを形成する。次に、第1の下地金属層38aをメッキ電流路として銅の電解メッキを行うことにより、第1の下地金属層38aの上面全体に第1の上層金属形成用層38cを形成する。次に、第1の上層金属形成用層38cの上面の第1の上層再配線形成領域に対応する部分にレジスト膜57をパターン形成する。
【0058】
次に、レジスト膜57をマスクとして第1の上層金属形成用層38cおよび第1の下地金属層38aの不要な部分をエッチングして除去すると、図15に示すように、レジスト膜57下にのみ第1の上層配線層39が残存される。この後、レジスト膜57を剥離する。なお、これと同様の形成方法により、第2の上層再配線44を形成するようにしてもよい。
【0059】
ところで、図2に示すベース板21あるいは図12に示す別のベース板55をトレイ状とすることもできる。つまり、ベース板を、半導体構成体23を配列する領域が周囲より陥没した受け皿のような形状とする。そして、このトレイ状のベース板の半導体構成体23配列領域を囲む周囲の上面にメッキ電流路用金属層を設け、このメッキ電流路用金属層とメッキ電流路用の下地金属層(38、43)とを導電部材で接続して、電解メッキを行うようにしてもよい。この場合、トレイの外形サイズを同一としておくことにより、製造する半導体装置のサイズが異なる場合でも、同一の製造装置の使用が可能となり効率的となる。
【0060】
(第2実施形態)
図3に示す製造工程において、接着層22を半導体構成体23のシリコン基板24の下面に設け、この接着層22をベース板21の上面の各所定の箇所に接着した場合には、図16に示すこの発明の第2実施形態としての半導体装置が得られる。
【0061】
このようにして得られた半導体装置では、シリコン基板24の下面が接着層22を介してベース板21の上面に接着されているほかに、シリコン基板24の側面などが封止膜36を介してベース板21の上面に接続されているので、半導体構成体23のベース板21に対する接合強度をある程度強くすることができる。
【0062】
(第3、第4実施形態)
図17はこの発明の第3実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図1に示す半導体装置と異なる点は、ベース板21および接着層22を備えていないことである。
【0063】
この第3実施形態の半導体装置を製造する場合には、例えば図10に示すように、半田ボール47を形成した後に、ベース板21を接着層22から剥がしたりまたはベース板21および接着層22を研磨やエッチングなどにより除去するなどして取り除いた後に、互いに隣接する半導体構成体23間において、3層の絶縁膜45、41、36および封止膜35を切断すると、図17に示す半導体装置が複数個得られる。このようにして得られた半導体装置では、ベース板21および接着層22を備えていないので、その分だけ、薄型化することができる。
【0064】
また、ベース板21および接着層22を研磨やエッチングなどにより除去した後に、シリコン基板24および封止膜35の下面側を適宜に研磨し、次いで互いに隣接する半導体構成体23間において、3層の絶縁膜45、41、36および封止膜35を切断すると、図18に示すこの発明の第4実施形態としての半導体装置が複数個得られる。このようにして得られた半導体装置では、さらに薄型化することができる。
【0065】
なお、半田ボール47を形成する前に、ベース板21および接着層22を研磨やエッチングなどにより除去し(必要に応じてさらにシリコン基板24および封止膜35の下面側を適宜に研磨し)、次いで半田ボール47を形成し、次いで互いに隣接する半導体構成体23間において、3層の絶縁膜45、41、36および封止膜35を切断するようにしてもよい。
【0066】
(第5実施形態)
図19はこの発明の第5実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図1に示す半導体装置と異なる点は、接着層22の下面に放熱用の金属層61が接着されていることである。金属層61は、厚さ数十μmの銅箔などからなっている。
【0067】
この第5実施形態の半導体装置を製造する場合には、例えば図10に示すように、半田ボール47を形成した後に、ベース板21を研磨やエッチングなどにより除去し、次いで接着層22の下面全体に金属層61を接着し、次いで互いに隣接する半導体構成体23間において、3層の絶縁膜45、41、36、封止膜35、接着層22および金属層61を切断すると、図19に示す半導体装置が複数個得られる。
【0068】
なお、接着層22も研磨やエッチングなどにより除去し(必要に応じてさらにシリコン基板24および封止膜35の下面側を適宜に研磨し)、シリコン基板24および封止膜35の下面に新たな接着層を介して金属層61を接着するようにしてもよい。
【0069】
(第6実施形態)
図11に示す場合には、互いに隣接する半導体構成体23間において切断したが、これに限らず、2個またはそれ以上の半導体構成体23を1組として切断し、例えば、図20に示すこの発明の第6実施形態のように、3個の半導体構成体23を1組として切断し、マルチチップモジュール型の半導体装置を得るようにしてもよい。この場合、3個で1組の半導体構成体23は同種、異種のいずれであってもよい。
【0070】
なお、図20では、再配線32、39、44下の下地金属層は、図示の都合上、省略している。また、第2の上層再配線44の接続パッド部(半田ボール47)が半導体構成体23の周囲における封止膜35上に配置されているか否か不明であるが、これは図示の都合上であり、実際には封止膜35上に配置されている。このようなことは、後述する実施形態においても同様である。
【0071】
ただし、例えば、図20では、半導体構成体23を接着層22の上面に接着しているので、従来のようなボンディングと異なり、接着する際の位置合わせとしては高い精度は要求されず、したがって半導体構成体23の配置間隔を可及的に小さくすることが可能となる。そこで、半導体構成体23の配置間隔を可及的に小さくした場合には、第2の上層再配線44の少なくとも一部が封止膜35上に配置されるようにしてもよい。
【0072】
(第7実施形態)
図20に示す場合には、第2の上層再配線44の接続パッド部上に半田ボール47のみを設けているが、これに限らず、例えば、図21に示すこの発明の第7実施形態のように、第2の上層再配線44の接続パッド部上に接続パッド62を形成し、その上に半田ボール47、LSIなどからなる半導体チップ63、コンデンサや抵抗などからなるチップ部品64を設けるようにしてもよい。
【0073】
この場合、半導体チップ63およびチップ部品64は第3の上層絶縁膜45の上面中央部に配置され、半田ボール47は第3の上層絶縁膜45の上面周辺部に配置されている。半導体チップ63は、チップ本体63aの下面周辺部に複数のバンプ電極63bが設けられた構造となっている。そして、半導体チップ63のバンプ電極63bは接続パッド62に半田(図示せず)を介して導電接続されている。また、チップ本体63aと第3の上層絶縁膜45との間には封止材65が充填されている。チップ部品64の両側の電極は接続パッド62上に半田66で接続されている。
【0074】
(第8実施形態)
図21では、3個の半導体構成体23を1組としたものの中央部上にチップ部品64などを搭載し、周辺部上に半田ボール47を形成しているが、これに限らず、例えば図22に示すこの発明の第8実施形態のように、1個の半導体構成体23の周囲における封止膜35のサイズをある程度大きくし、第3の上層絶縁膜45の中央部上に配置された接続パッド62上にチップ部品64などを搭載し、周辺部上に配置された接続パッド62上に接続ピン67の下部を半田(図示せず)を介して接続するようにしてもよい。この接続ピン67は、接続パッド62に半田付けされており、図示はしないが、回路基板に形成されたスルーホール内に挿入され、裏面側でスルーホールの周囲に形成されたパッド部に半田付けされるものである。
【0075】
(第9実施形態)
図23はこの発明の第9実施形態としての半導体装置の断面図を示したものである。次に、この半導体装置の構造についてその製造方法と併せ説明する。まず、図20を参照して説明すると、図20において、半田ボール47を形成せず、ベース板21を除去してなるものを用意する。以下、この用意したものを半導体ブロック71という。
【0076】
次に、半導体ブロック71の接着層22の下面に、半導体ブロック71よりもある程度大きめの放熱用の金属板72の上面中央部を接着する。次に、半導体ブロック71の周囲における金属板72の上面に封止膜73をモールド法や印刷法によりその上面が半導体ブロック71の第3の上層絶縁膜45の上面と面一となるように形成する。なお、接着層22を除去し、モールド用の金型内に金属板72を配置し、その上面中央部に半導体ブロック71を配置するようにしてもよい。
【0077】
次に、第3の上層絶縁膜45および封止膜73の上面に第3の上層再配線(第3の下地金属層を含む)74を第2の上層再配線44の接続パッド部に接続させて形成する。次に、第3の上層再配線74を含む第3の上層絶縁膜45の上面に第4の上層絶縁膜75を形成する。次に、第4の上層絶縁膜75の第3の上層再配線74の接続パッド部に対応する部分に開口部76を形成する。次に、開口部76内およびその周囲における第4の上層絶縁膜75上に接続パッド77を第3の上層再配線74の接続パッド部に接続させて形成する。
【0078】
次に、半導体ブロック71上における接続パッド77の上面にコンデンサや抵抗などからなるチップ部品78の両側の電極を半田79を介して接続する。また、封止膜73上における接続パッド77の上面に接続ピン80の下部を半田(図示せず)を介して接続する。かくして、図23に示す半導体装置が得られる。
【0079】
(第10実施形態)
図24はこの発明の第10実施形態としての半導体装置の断面図を示したものである。次に、この半導体装置の構造についてその製造方法と併せ説明する。まず、この場合も、図20を参照して説明すると、図20において、半田ボール47を形成せず、ベース板21および接着層22を除去してなるものを用意する。以下、この用意したものを半導体ブロック81という。ただし、第2の上層再配線(第2の下地金属層を含む)44の配置は、図示の都合上、図20と図24とでは異なっている。また、図24では、第3の上層絶縁膜45の上面の各所定の箇所に接続パッド82が第2の上層再配線44の接続パッド部に接続されて形成されている。
【0080】
次に、フレキシブル配線板83を用意する。このフレキシブル配線板83は、中央部に半導体ブロック81よりもやや大きめの開口部84を有するフィルム基板85を備えている。フィルム基板85の上面には配線86が設けられている。配線86の一端部は開口部84内に突出され、接続端子86aとなっている。配線86を含むフィルム基板85の上面には保護膜87が設けられている。保護膜87の配線86の他端部に対応する部分には開口部88が設けられている。開口部88を介して露出された配線86の他端部上には半田ボール89が設けられているが、フレキシブル配線板83を用意した時点では半田ボール89は形成されていない。
【0081】
そして、フレキシブル配線板83の接続端子86aを半導体ブロック81上の周辺部に配置された接続パッド82に半田(図示せず)を介して接続する。次に、半導体ブロック81の周囲におけるフレキシブル配線板83の下面に封止膜90をモールド法や印刷法によりその下面が半導体ブロック71のシリコン基板24などの下面と面一となるように形成する。次に、半導体ブロック71のシリコン基板24などの下面および封止膜90の下面に接着層91を介して放熱用の金属板92を接着する。
【0082】
次に、半導体ブロック81上の中央部に配置された接続パッド82の上面にコンデンサや抵抗などからなるチップ部品93の両側の電極を半田94を介して接続する。また、フレキシブル配線板83の開口部88を介して露出された配線86の他端部上に半田ボール89を形成する。かくして、図24に示す半導体装置が得られる。
【0083】
(第11実施形態)
なお、図24に示す場合において、図25に示すこの発明の第10実施形態のように、周辺部の封止膜90の厚さが半導体ブロック81の周面近傍の封止膜90の厚さよりも薄くなるようにしてもよい。この場合、封止膜90はモールド法により形成する。
【0084】
(第12実施形態)
図26はこの発明の第12実施形態としての半導体装置の断面図を示したものである。次に、この半導体装置の構造についてその製造方法と併せ説明する。まず、この場合も、図20を参照して説明すると、図20において、ベース板21および接着層22を除去してなるものを用意する。以下、この用意したものを半導体ブロック101という。この場合、半田ボール47は形成されているが、図20に示す場合よりも径がやや小さい半田ボール(47A)が形成されている。
【0085】
次に、フレキシブル配線板102を用意する。このフレキシブル配線板102は、半導体ブロック81よりもある程度大きめのフィルム基板103を備えている。フィルム基板103の上面には配線104が設けられている。フィルム基板103の配線104の一端部に対応する部分にはスルーホール104が設けられている。配線104を含むフィルム基板103の上面には保護膜106が設けられている。保護膜106の配線104の他端部に対応する部分には開口部107が設けられている。開口部107を介して露出された配線106の他端部上には半田ボール108が設けられているが、フレキシブル配線板102を用意した時点では半田ボール108は形成されていない。
【0086】
そして、半導体ブロック101の半田ボール(47A)をフレキシブル配線板102のスルーホール105内に挿入し、リフロー処理により、半田47Aをスルーホール105内の配線104の一端部下面に接続させる。次に、半導体ブロック101の周囲におけるフレキシブル配線板102の下面に封止膜109をモールド法や印刷法によりその下面が半導体ブロック101のシリコン基板24などの下面と面一となるように形成する。
【0087】
次に、半導体ブロック101のシリコン基板24などの下面および封止膜109の下面に接着層110を介して放熱用の金属板111を接着する。次に、フレキシブル配線板8102の開口部107を介して露出された配線104の他端部上に半田ボール108を形成する。かくして、図26に示す半導体装置が得られる。
【0088】
(第13実施形態)
図27はこの発明の第13実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図20に示す半導体装置と大きく異なる点は、半田ボール47を1つも備えておらず、その代わりに、フレキシブル配線板121を備えていることである。
【0089】
この場合のフレキシブル配線板121は、フィルム基板122の一面に配線123が設けられ、配線123の両端部からなる接続端子123a(他方は図示せず)を除く部分を含むフィルム基板122の一面に保護膜124が設けられた構造となっている。一方、第3の上層絶縁膜45の上面の一端部には複数の接続端子125が所定の第2の上層再配線44の接続パッド部に接続されて形成されている。そして、フレキシブル配線板121の一方の接続端子123aは接続端子125に図示しない異方性導電接着剤または半田を介して接続されている。
【0090】
また、残りの第2の上層再配線44の接続パッド部上には接続パッド126が形成され、その上にはコンデンサや抵抗などからなるチップ部品127、CSPタイプの半導体構成体128が搭載されている。この場合、半導体構成体128は半導体構成体23とほぼ同じような構造となっている。そして、半導体構成体128の柱状電極129の下面は接続パッド126の上面に半田(図示せず)を介して接続されている。
【0091】
(第14実施形態)
図28はこの発明の第14実施形態としての半導体装置の断面図を示したものである。この半導体装置では、例えば図20に示すものにおいてベース板21を除去したものからなる半導体ブロック131と、例えば図21に示すものにおいてベース板21および接着層22を除去し且つ半田ボール47を形成しないものからなる半導体ブロック132とが接着層22を介して接着されている。この場合、上側の半導体ブロック132上には複数の半導体チップ63のみが搭載されている。
【0092】
また、両半導体ブロック131は、例えば図23に示す場合とほぼ同じフレキシブル配線板121を介して互いに接続されている。すなわち、上側の半導体ブロック132の第3の上層絶縁膜45の上面の一端部には複数の接続端子125が所定の第2の上層再配線44Aの接続パッド部に接続されて形成されている。そして、フレキシブル配線板121の一方の接続端子123aは接続端子125に図示しない異方性導電接着剤または半田を介して接続されている。
【0093】
また、下側の半導体ブロック131の第3の上層絶縁膜45の下面の一端部には所定の第2の上層再配線44Bからなる接続端子が設けられている。そして、フレキシブル配線板121の他方の接続端子123bは所定の第2の上層再配線44Bからなる接続端子に異方性導電接着剤(または半田)133を介して接続されている。
【0094】
(第15実施形態)
図29はこの発明の第15実施形態としての半導体装置の断面図を示したものである。この半導体装置において、図28に示す場合と大きく異なる点は、フレキシブル配線板121を長くして下側の半導体ブロック131の第3の上層絶縁膜45の下面に接着層151を介して接着したことである。
【0095】
この場合、半田ボール47は、接着層151、保護膜124およびフィルム基板122に形成された開口部152を介してフィルム基板122の外側に突出されている。また、フレキシブル配線板121の他方の接続端子123bは、他方の半導体ブロック131の両端部の所定の第2の上層再配線44Bからなる接続端子に、接着層151および保護膜124に形成された開口部153内に配置された半田154を介して接続されている。
【0096】
【発明の効果】
以上説明したように、この発明によれば、半導体基板上に再配線および柱状電極を有する複数または複数組の半導体構成体をベース板上に配置し、半導体構成体を含むベース板の上面全体に絶縁膜を形成し、絶縁膜の上面に上層再配線を半導体構成体の柱状電極に接続させて形成し、絶縁膜を少なくとも切断することにより、半導体構成体を1つまたは1組有し、その周囲に絶縁膜を有するとともに、周囲の絶縁膜上に上層再配線の一部が配置されてなる半導体装置を複数個一括して得ることができ、従来のようなボンディング工程がなく、したがってボンディングによることなく外部接続電極の配置間隔を大きくすることができ、また複数または複数組の半導体構成体に対して絶縁膜および上層再配線の形成を一括して行うことができるので、製造工程を簡略化することができる。
【図面の簡単な説明】
【図1】この発明の第1実施形態としての半導体装置の断面図。
【図2】図1に示す半導体装置の製造方法の一例において、当初の製造工程の断面図。
【図3】図2に続く製造工程の断面図。
【図4】図3に続く製造工程の断面図。
【図5】図4に続く製造工程の断面図。
【図6】図5に続く製造工程の断面図。
【図7】図6に続く製造工程の断面図。
【図8】図7に続く製造工程の断面図。
【図9】図8に続く製造工程の断面図。
【図10】図9に続く製造工程の断面図。
【図11】図10に続く製造工程の断面図。
【図12】図1に示す半導体装置の製造方法の他の例において、当初用意したものの断面図。
【図13】同他の例において、所定の製造工程の断面図。
【図14】図1に示す半導体装置の製造方法のさらに他の例において、所定の製造工程の断面図。
【図15】図14に続く製造工程の断面図。
【図16】この発明の第2実施形態としての半導体装置の断面図。
【図17】この発明の第3実施形態としての半導体装置の断面図。
【図18】この発明の第4実施形態としての半導体装置の断面図。
【図19】この発明の第5実施形態としての半導体装置の断面図。
【図20】この発明の第6実施形態としての半導体装置の断面図。
【図21】この発明の第7実施形態としての半導体装置の断面図。
【図22】この発明の第8実施形態としての半導体装置の断面図。
【図23】この発明の第9実施形態としての半導体装置の断面図。
【図24】この発明の第10実施形態としての半導体装置の断面図。
【図25】この発明の第11実施形態としての半導体装置の断面図。
【図26】この発明の第12実施形態としての半導体装置の断面図。
【図27】この発明の第13実施形態としての半導体装置の断面図。
【図28】この発明の第14実施形態としての半導体装置の断面図。
【図29】この発明の第15実施形態としての半導体装置の断面図。
【図30】従来の半導体装置の一例の断面図。
【符号の説明】
21 ベース板
22 接着層
23 半導体構成体
24 シリコン基板
25 接続パッド
31 下地金属層
32 再配線
33 柱状電極
34 封止膜
35 封止膜
36 第1の上層絶縁膜
38 第1の下地金属層
39 第1の上層再配線
41 第2の上層絶縁膜
43 第2の下地金属層
44 第2の上層再配線
45 第3の上層絶縁膜
47 半田ボール
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device and a method for manufacturing the same.
[0002]
[Prior art]
For example, in a semiconductor device called a BGA (ball grid array), a semiconductor chip composed of an LSI or the like is mounted on the center of the upper surface of a relay substrate (interposer) slightly larger than the size of the semiconductor chip, and is mounted on the lower surface of the relay substrate. There is one in which connection terminals using solder balls are arranged in a matrix. Here, when bonding the external connection electrodes formed on the semiconductor chip to another circuit board, the relay board has a sufficiently large size and pitch by rewiring in order to obtain connection strength and reliability. Used for
[0003]
FIG. 30 is a sectional view showing an example of such a conventional semiconductor device. The semiconductor chip 1 has a structure in which a plurality of bump electrodes 3 made of copper or the like are provided on a peripheral portion of a silicon substrate 2.
[0004]
The relay substrate 4 includes a base film 5 whose size is slightly larger than the size of the silicon substrate 2 of the semiconductor chip 1. On the upper surface of the base film 5, a rewiring 6 connected to the bump electrode 3 of the semiconductor chip 1 is provided.
[0005]
The rewiring 6 includes a first connection pad 7 provided corresponding to the bump electrode 3 of the semiconductor chip 1, a second connection pad 8 provided in a matrix, and first and second connection pads 7. , 8 are connected. A circular hole 10 is provided in the base film 5 at a portion corresponding to the center of the second connection pad 8.
[0006]
The semiconductor chip 1 is mounted on the center of the upper surface of the relay board 4 via the anisotropic conductive adhesive 11. The anisotropic conductive adhesive 11 is made of a thermosetting resin 12 containing a large number of conductive particles 13.
[0007]
When the semiconductor chip 1 is mounted on the relay substrate 4, first, the semiconductor chip 1 is positioned at the center of the upper surface of the relay substrate 4 via the sheet-like anisotropic conductive adhesive 11 and simply placed. I do.
[0008]
Next, bonding is performed by applying a predetermined pressure at a temperature at which the thermosetting resin 12 is cured. Then, the bump electrode 3 pushes away the thermosetting resin 12 and is conductively connected to the upper surface of the first connection pad 7 through the conductive particles 13, and the lower surface of the semiconductor chip 1 is thermoset to the upper surface of the relay substrate 4. It is bonded via the conductive resin 12.
[0009]
Next, a resin sealing film 14 made of an epoxy resin is formed on the entire upper surface of the relay substrate 4 including the semiconductor chip 1. Next, a solder ball 15 is formed in and below the circular hole 10 so as to be connected to the second connection pad 8. In this case, since the second connection pads 8 are arranged in a matrix, the solder balls 15 are also arranged in a matrix.
[0010]
Here, the size of the solder balls 15 is larger than the size of the bump electrodes 3 of the semiconductor chip 1, and the interval between the solder balls 15 needs to be larger than the interval between the bump electrodes 3 to avoid contact between the solder balls 15. . Therefore, when the number of the bump electrodes 3 of the semiconductor chip 1 increases, it is necessary to make the arrangement area larger than the size of the semiconductor chip 1 in order to obtain a necessary arrangement interval between the solder balls 15. The size of the substrate 4 is slightly larger than the size of the semiconductor chip 1. Therefore, among the solder balls 15 arranged in a matrix, the peripheral solder balls 15 are arranged around the semiconductor chip 1.
[0011]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional semiconductor device, the lower surface of the bump electrode 3 of the semiconductor chip 1 is bonded to the first wiring of the relay substrate 4 by bonding after the alignment using the relay substrate 4 on which the redistribution 6 is formed. Is electrically connected to the upper surface of the connection pad 7 via the conductive particles 13 of the anisotropic conductive adhesive 11, the number of the bump electrodes 3 of the semiconductor chip 1 increases, and the size and arrangement of the bump electrodes 3 are increased. When the interval is small, there is a problem that alignment is extremely difficult. In this case, if the size of the semiconductor chip 1 is increased, it is natural that the size and the arrangement interval of the bump electrodes 3 can be increased. However, in this case, the number of semiconductor chips to be removed from the wafer state is drastically reduced. Would be extremely expensive. In addition, the semiconductor chips 1 must be bonded and mounted one by one on the relay substrate 4, and there is a problem that the manufacturing process is complicated. The same applies to a multi-chip module type semiconductor device including a plurality of semiconductor chips.
[0012]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor device and a method of manufacturing the semiconductor device, which can increase the interval between external connection electrodes without using bonding.
Another object of the present invention is to provide a method of manufacturing a semiconductor device, which can manufacture a plurality of semiconductor devices collectively.
[0013]
[Means for Solving the Problems]
The invention according to claim 1 is a semiconductor structure having a plurality of rewirings provided on an upper surface of a semiconductor substrate and a columnar electrode formed on one end of each of the rewirings, and the columnar structure of the semiconductor structure. An insulating film provided on the entire upper surface excluding the electrodes and on an extended portion outside the peripheral side surface of the semiconductor structure, and at least one layer provided on the insulating film so as to be connected to the columnar electrode and having a connection pad; An upper layer redistribution, wherein at least a part of an uppermost layer upper layer redistribution is formed on the extension portion outside the peripheral side surface of the semiconductor structure on the insulating film. Is characterized by being arranged in a.
The invention according to claim 2 has a semiconductor substrate, a plurality of rewirings provided on the upper surface of the semiconductor substrate, and columnar electrodes formed on one end of each of the rewirings, and are separated from each other. A plurality of semiconductor structures arranged in a manner as described above, an insulating film provided on the entire upper surface of each of the semiconductor structures excluding the columnar electrode, and an extension portion outside the peripheral side surface of each of the semiconductor structures, and the insulating film And at least one layer of upper-layer rewiring provided on the column electrode and having a connection pad, wherein at least a part of the upper-layer rewiring of the uppermost layer includes the connection pad. The semiconductor device is disposed on the extension portion outside a peripheral side surface of any of the semiconductor structures on the insulating film.
According to a third aspect of the present invention, in the first or second aspect of the invention, the insulating film is provided so as to cover a peripheral side surface of the semiconductor structure.
According to a fourth aspect of the present invention, in the third aspect of the present invention, the lower surface of the insulating film provided to cover the peripheral side surface of the semiconductor structure is substantially flush with the lower surface of the semiconductor structure. It is characterized by being arranged.
According to a fifth aspect of the present invention, in the first or second aspect of the present invention, in the upper layer redistribution, the lower layer upper layer redistribution is directly provided through the opening formed in the insulating film. And the opening formed in the insulating film has a width equal to or less than half the width of the columnar electrode.
According to a sixth aspect of the present invention, in the first or second aspect of the invention, among the upper layer redistributions, the lower layer upper layer redistribution is formed on each of the columnar electrodes and the lowermost layer insulating film. Characterized in that it includes a plated layer that has been formed.
According to a seventh aspect of the present invention, in the first or second aspect, the insulating film has a plurality of layers, and an interlayer connecting the columnar electrode of the semiconductor structure and the upper layer rewiring is provided between the layers. A rewiring is provided.
The invention according to claim 8 is the invention according to claim 1 or 2, wherein the columnar electrode has a height of 50 μm or more.
According to a ninth aspect of the present invention, in the first or second aspect of the present invention, an uppermost layer is formed on an upper surface of the insulating film including the upper layer rewiring except for at least a part of the connection pad of the upper layer rewiring. An insulating film is provided.
According to a tenth aspect of the present invention, in the invention of the ninth aspect, a protruding connection terminal is provided on the connection pad of the upper layer rewiring.
According to an eleventh aspect of the present invention, in the ninth aspect of the invention, an electronic component is provided on the uppermost insulating film so as to be connected to one of the connection pad portions of the upper layer rewiring. It is assumed that.
According to a twelfth aspect of the present invention, in any one of the ninth to eleventh aspects, a heat radiation layer is provided on a lower surface of the semiconductor structure and the insulating film provided on a peripheral side surface thereof. It is a feature.
According to a thirteenth aspect of the present invention, in the first or second aspect, the insulating film is provided so as to cover a peripheral side surface of the semiconductor structure, and the insulating film provided on the peripheral side surface of the semiconductor structure. The film is provided on a base plate.
According to a fourteenth aspect of the present invention, in the first or second aspect, the insulating film is provided so as to cover a peripheral side surface of the semiconductor structure, and the insulating film provided on the peripheral side surface of the semiconductor structure. A flexible wiring board is disposed on the film, and connection terminals formed on the flexible wiring board are connected to the connection pads of any of the upper layer rewirings.
According to a fifteenth aspect of the present invention, in the first or the second aspect of the present invention, a flexible wiring board is disposed on the semiconductor structure, and a connection terminal formed on the flexible wiring board is connected to any one of the upper layers. It is characterized by being connected to the connection pad of a wiring.
According to a sixteenth aspect of the present invention, in the invention according to the fifteenth aspect, a protruding connection terminal is provided on the flexible wiring board in a conductive connection.
According to a seventeenth aspect, in the first or second aspect, the insulating film is provided to cover a peripheral side surface of the semiconductor structure, and the insulating film formed on the peripheral side surface of the semiconductor structure. An outermost peripheral insulating film is provided so as to cover the film.
The invention according to claim 18 is the invention according to claim 17, wherein the outermost peripheral insulating film is formed to be thicker than the insulating film formed on the peripheral side surface of the semiconductor structure. Things.
The invention according to claim 19 is characterized in that, in the invention according to claim 17, the outermost peripheral insulating film is formed thinner than the insulating film formed on the peripheral side surface of the semiconductor structure. Things.
According to a twentieth aspect of the present invention, in the ninth aspect, an electronic component is provided on the uppermost insulating film so as to be connected to one of the connection pads of the upper layer redistribution wiring. A connection terminal formed on a flexible wiring board is connected to an external terminal of the upper layer rewiring.
According to a twenty-first aspect of the present invention, in the first or second aspect of the present invention, a plurality of the semiconductor components having the insulating film and the upper-layer redistribution line provided on an upper surface thereof are provided. Are connected by a flexible wiring board.
The invention according to claim 22 is the invention according to claim 21, characterized in that the semiconductor structures are stacked with their lower surfaces facing each other.
An invention according to claim 23, wherein a plurality of semiconductor structures each having a plurality of rewirings and a columnar electrode provided on each of the rewirings are spaced apart from each other and arranged on a base plate; Forming an insulating film on the entire upper surface of the base plate including on the plurality of semiconductor structures; and connecting electrodes on the upper surface of the insulating film and corresponding columnar electrodes of any of the semiconductor structures Forming at least one of the connection pads of the upper layer rewiring connected to the insulating film formed between the semiconductor structures; and A semiconductor having at least one of the semiconductor components formed on the insulating film covering at least one of the connection pads of the upper layer rewiring by cutting off the insulating film between the semiconductor layers; It is characterized in that a step of obtaining a plurality of location.
According to a twenty-fourth aspect of the present invention, in the invention according to the twenty-third aspect, the step of cutting the insulating film is performed so as to include a plurality of the semiconductor structures.
According to a twenty-fifth aspect of the present invention, in the twenty-third aspect of the present invention, the insulating film has a plurality of layers, and a columnar electrode of each of the semiconductor structures and the corresponding upper layer rewiring are connected between the layers. A step of forming a plurality of sets of interlayer rewirings.
According to a twenty-sixth aspect of the present invention, in the invention according to the twenty-third aspect, a step of forming an uppermost-layer insulating film on a portion of the upper surface of the insulating film including the upper-layer rewiring except a connection pad portion of the upper-layer rewiring Which is characterized by having
The invention according to claim 27 is the invention according to claim 26, characterized by comprising a step of forming a protruding connection terminal on the connection pad portion of the upper layer rewiring.
The invention according to claim 28 is the invention according to claim 26, characterized by comprising a step of providing an electronic component on the uppermost insulating film by connecting the electronic component to the connection pad portion of the upper layer rewiring. It is.
The invention according to claim 29 is the invention according to claim 23, wherein the step of cutting the insulating film includes cutting the insulating film and cutting the base plate, and comprising a base plate as the semiconductor device. Is obtained.
According to a thirtieth aspect of the present invention, in the invention according to the twenty-ninth aspect, a step of disposing another base plate under the base plate before cutting, and removing the another base plate after cutting the base plate. Which is characterized by having
According to a thirty-first aspect of the present invention, in the twenty-third aspect of the present invention, before the step of cutting the insulating film between the respective semiconductor structures, a step of removing the base plate is provided. It is.
A thirty-second aspect of the present invention is characterized in that, in the thirty-first aspect, a step of thinning the semiconductor substrate is provided subsequent to the step of removing the base plate.
According to the present invention, a plurality or a plurality of sets of semiconductor components having rewiring and columnar electrodes are arranged on a semiconductor substrate, and an insulating film is formed on the entire upper surface of the base plate including the semiconductor components. Then, an upper layer rewiring is formed on the upper surface of the insulating film by connecting to the columnar electrode of the semiconductor structure, and at least the insulating film is cut to have one or one set of the semiconductor structure, and the insulating film is formed around the semiconductor structure. And a plurality of semiconductor devices in which a part of the upper-layer rewiring is arranged on the surrounding insulating film can be collectively obtained. Since the arrangement interval of the electrodes can be increased, and the insulating film and the upper layer rewiring can be collectively formed on a plurality or a plurality of sets of the semiconductor structures, the manufacturing process It can be simplified.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
FIG. 1 is a sectional view of a semiconductor device according to a first embodiment of the present invention. This semiconductor device includes a square base plate 21 made of silicon, glass, ceramics, resin, metal, or the like. An adhesive layer 22 made of an adhesive, a pressure-sensitive adhesive sheet, a double-sided adhesive tape, or the like is provided on the upper surface of the base plate 21.
[0015]
At the center of the upper surface of the adhesive layer 22, the lower surface of a planar square semiconductor structure 23 slightly smaller than the size of the base plate 21 is bonded. In this case, the semiconductor structure 23 is called a CSP (chip size package), and includes a silicon substrate (semiconductor substrate) 24 bonded to the center of the upper surface of the bonding layer 22. A plurality of connection pads 25 made of aluminum or the like are provided around the upper surface of the silicon substrate 24, and an insulating film 26 made of silicon oxide or the like is provided on the upper surface of the silicon substrate 24 except for the center of the connection pad 25. .
[0016]
The one in which the connection pads 25 and the insulating film 26 are provided on the silicon substrate 24 is usually obtained when a semiconductor substrate in a wafer state is diced into individual chips. However, in the present invention, in a state where the connection pads 25 and the insulating film 26 are formed on the semiconductor substrate in a wafer state, dicing is not performed, and the semiconductor structure 23 having rewiring is obtained as described below. In this state, the semiconductor substrate in a wafer state is diced. First, the configuration of the semiconductor component 23 will be described.
[0017]
On the insulating film 26 formed on the silicon substrate 24, a protective film 27 made of polyimide or the like is provided. The central portion of the connection pad 25 is exposed through an opening 28 formed in the insulating film 26 and the protective film 27. A base metal layer 31a made of copper is provided from the upper surface of the connection pad 25 exposed through the opening 28 to a predetermined position on the upper surface of the protective film 27. An upper metal layer 31b made of copper is provided on the upper surface of the base metal layer 31a, and a rewiring 32 is formed by the base metal layer 31a and the upper metal layer 31b.
[0018]
On the upper surface of the pad portion of the rewiring 32, a columnar electrode 33 made of copper is provided. A sealing film (insulating film) 34 made of epoxy resin is provided on the upper surface of the protective film 27 including the rewiring 32 so that the upper surface thereof is flush with the upper surface of the columnar electrode 33. As described above, the semiconductor structure 23 includes the silicon substrate 24, the connection pad 25, and the insulating film 26, and further includes the protective film 27, the rewiring 32, the columnar electrode 33, and the sealing film 34.
[0019]
A sealing film (insulating film) 35 made of an epoxy resin is provided on the upper surface of the adhesive layer 22 around the semiconductor structure 23 so that the upper surface thereof is flush with the upper surface of the sealing film 34. A first upper insulating film 36 made of photosensitive polyimide or the like is provided on the upper surfaces of the sealing films 34 and 35 and the columnar electrode 33. An opening 37 is provided in a portion of the first upper insulating film 36 corresponding to the center of the upper surface of the columnar electrode 33. The first base metal layer 38a and the first base metal layer 38a are provided on the first base metal layer 38a from the upper surface of the columnar electrode 33 exposed through the opening 37 to a predetermined portion of the upper surface of the first upper insulating film 36. A first upper layer redistribution line 39 made of a first upper layer metal layer 38b is provided.
[0020]
A second upper insulating film 41 made of photosensitive polyimide or the like is provided on the entire upper surface of the first upper insulating film 36 including the first upper wiring 39. An opening 42 is provided in a portion of the second upper insulating film 41 corresponding to the connection pad of the first upper rewiring 39. The second base metal layer 43a and the second base metal layer 43a extend from the upper surface of the connection pad portion of the first upper layer rewiring 39 exposed through the opening 42 to a predetermined portion of the upper surface of the second upper layer insulating film 41. A second upper layer redistribution layer 44 composed of a second upper layer metal layer 43b provided on the base metal layer 43a is provided.
[0021]
A third upper insulating film 45 made of photosensitive polyimide or the like is provided on the entire upper surface of the second upper insulating film 41 including the second upper wiring 44. An opening 46 is provided in a portion of the third upper insulating film 45 corresponding to the connection pad of the second upper wiring 44. Inside and above the opening 46, a solder ball (projection-like connection terminal) 47 is provided so as to be connected to the connection pad portion of the second upper layer rewiring 44. The plurality of solder balls 47 are arranged on the third upper insulating film 45 in a matrix.
[0022]
By the way, the reason why the size of the base plate 21 is made slightly larger than the size of the semiconductor component 23 is that the arrangement area of the solder balls 47 is changed according to the increase in the number of connection pads 25 on the silicon substrate 24. This is because the size and the arrangement interval of the connection pads 25 are made slightly larger than the size and the arrangement interval of the columnar electrodes 33.
[0023]
For this reason, the connection pad portions of the second upper layer rewirings 44 arranged in a matrix (portions in the openings 46 of the third upper layer insulating film 45) are not limited to the region corresponding to the semiconductor structure 23, It is also arranged on the region of the insulating film 35 provided on the peripheral side surface of the semiconductor structure 23. That is, among the solder balls 47 arranged in a matrix, at least the outermost solder balls 47 are arranged around the outside of the semiconductor structure 23.
[0024]
In this case, as a modified example, all the connection pad portions of the second upper layer rewiring 44 may be arranged around the outside located outside the semiconductor structure 23. Further, the upper layer rewiring may be formed as a single layer, that is, only the first rewiring 39, and at least the outermost connection pad portion may be disposed around the outer side of the semiconductor structure 23.
[0025]
As described above, the present invention provides a semiconductor configuration in which not only the connection pad 25 and the insulating film 26 but also the protective film 27, the rewiring 32, the columnar electrode 33, the sealing film 34, and the like are formed on the silicon substrate 24. A first upper layer rewiring 39 connected to the columnar electrode 33 via a first upper layer insulating film 36 covering the upper surface and an opening 37 formed on the first upper layer insulating film 36; It is characterized in that a sealing film 35 that covers the peripheral side surface is provided.
[0026]
Usually, the height of the columnar electrode is required to be 100 to 200 μm in order to reduce the stress acting on the columnar electrode due to the difference in the coefficient of thermal expansion between the silicon substrate and the circuit board. A first upper wiring layer 39 and the first upper insulating film 36 are formed on the columnar electrode 33. The first upper wiring layer 39 and the first upper insulating film 36 have a function of relaxing stress. Therefore, the height of the columnar electrode 33 can be reduced to about 50 to 100 μm. Of course, as the height of the columnar electrode 33 is increased, the stress relaxation effect is increased. Therefore, depending on the circuit board to be bonded, the height may be the same as the conventional height.
[0027]
Next, an example of a method for manufacturing the semiconductor device will be described. First, as shown in FIG. 2, a base plate 21 from which a plurality of base plates 21 shown in FIG. 1 can be obtained is provided with an adhesive layer 22 provided on the entire upper surface of the base plate 21. Then, the lower surface of the silicon substrate 24 of the semiconductor structure 23 is bonded to a plurality of predetermined locations on the upper surface of the bonding layer 22.
[0028]
As described above, the semiconductor structure 23 is called a CSP, and is manufactured in advance. Here, an example of a method of manufacturing the semiconductor structure 23 will be briefly described. First, a semiconductor substrate in which a connection pad 25, an insulating film 26, and a protective film 27 are provided on a semiconductor substrate in a wafer state (a silicon substrate 24 before cutting) is prepared. Next, a base metal layer 31a is formed on the entire upper surface of the protective film 27 including the upper surface of the connection pad 25 exposed through the opening 28.
[0029]
Next, an upper metal layer 31b is formed at a predetermined location on the upper surface of the base metal layer 31a by electrolytic plating. Next, a columnar electrode 33 is formed on the upper surface of the connection pad portion of the rewiring 32 by electrolytic plating. Next, unnecessary portions of the underlying metal layer 31a are removed by etching using the columnar electrode 33 and the upper metal layer 31b as a mask, and the underlying metal layer 31a is left only under the upper metal layer 31b. Then, a redistribution wiring 32 composed of an upper metal layer 31b formed on the entire surface of the base metal layer 31a is formed.
[0030]
Next, a sealing film 34 is formed on the entire upper surface of the protective film 27 including the columnar electrode 33 and the rewiring 32 so that the thickness thereof is larger than the height of the columnar electrode 33. Therefore, in this state, the upper surface of the columnar electrode 33 is covered with the sealing film 34. Next, the upper surfaces of the sealing film 34 and the columnar electrodes 33 are appropriately polished to expose the upper surfaces of the columnar electrodes 33. Next, through a dancing step, a plurality of semiconductor structures 23 shown in FIG. 2 are obtained.
[0031]
Now, as shown in FIG. 2, after bonding the lower surface of the silicon substrate 24 of the semiconductor structure 23 to a plurality of predetermined positions on the upper surface of the adhesive layer 22, respectively, as shown in FIG. A sealing film 35 made of polyimide, epoxy resin or the like is formed on the upper surface of the adhesive layer 22 including 23 by printing so that the thickness is slightly larger than the height of the semiconductor structure 23. Therefore, in this state, the upper surface of the semiconductor structure 23 is covered with the sealing film 35. Next, the upper surfaces of the sealing film 35 and the semiconductor structure 23 are appropriately polished to expose the upper surfaces of the columnar electrodes 33 as shown in FIG.
[0032]
Here, also when manufacturing the semiconductor structure 23 shown in FIG. 2, as described above, the sealing film 34 is formed on the upper surface of the protective film 27 including The upper surface of the columnar electrode 33 is exposed by appropriately forming the sealing film 34 and the columnar electrode 33 by polishing the sealing film 34 and the columnar electrode 33. Therefore, the polishing process is performed twice.
[0033]
Therefore, next, a case where the polishing step can be performed once will be described. In the state shown in FIG. 2, a semiconductor component 23 that does not include the sealing film 34 is prepared. That is, after the protective film 27, the rewiring 32, and the columnar electrode 33 are formed on the semiconductor substrate in a wafer state on which the connection pads 25 and the insulating film 26 are formed, the dicing is performed without forming the sealing film 34. .
[0034]
Then, in the step shown in FIG. 3, the sealing films 34 and 35 are simultaneously formed in the regions where the sealing films 34 and 35 are to be formed with the same sealing material, and the sealing films 34 and 35 (however, The film is integrated and has no boundary) and the upper surface of the columnar electrode 33 may be polished. That is, by performing the sealing film forming step once, the polishing step can be performed once.
[0035]
However, when the polishing step is performed once, the height of the columnar electrode 33 of the semiconductor structure 23 in the state shown in FIG. In this case, the height of the semiconductor structure 23 in the state shown in FIG. 2 becomes uniform, and the height of the semiconductor structure 23 in the state shown in FIG. 2 can be made uniform in advance.
[0036]
When the polishing step shown in FIG. 4 is completed, next, as shown in FIG. 5, a first upper insulating film 36 is formed on the upper surfaces of the sealing films 34 and 35 and the columnar electrode 33 which are flush with each other. I do. The first upper insulating film 36 is made of a photosensitive polyimide, a photosensitive polybenzoxazole, a photosensitive epoxy resin, a photosensitive novolak resin, a photosensitive acrylic resin or a calzo resin, and is formed into a dry film. Therefore, when this dry film is laminated by a laminator, the first upper insulating film 36 is formed. The same applies to the second and third upper insulating films 41 and 45 described later, but they may be formed by a coating method such as printing.
[0037]
Next, an opening 37 is formed in a portion of the first upper insulating film 36 corresponding to the center of the upper surface of the columnar electrode 33 by photolithography. Next, as shown in FIG. 6, a first base metal layer 38a is formed on the entire upper surface of the first upper insulating film 36 including the upper surface of the columnar electrode 33 exposed through the opening 37. In this case, the first base metal layer 38a is composed of only a copper layer formed by electroless plating, but may be composed of only a copper layer formed by sputtering, or a titanium layer formed by sputtering. A copper layer may be formed on the thin film layer by sputtering. This is the same in the case of a second base metal layer 43a to be described later.
[0038]
Next, a plating resist film 51 is pattern-formed on the upper surface of the first base metal layer 38a. In this case, an opening 52 is formed in the plating resist film 51 in a portion corresponding to the first upper layer rewiring 39 formation region. Next, copper electrolytic plating is performed using the first base metal layer 38a as a plating current path, so that the first upper metal layer 38a is formed on the upper surface of the first base metal layer 38a in the opening 52 of the plating resist film 51. 38b, a first upper layer rewiring 39 is formed. 1 and 6, only the first base metal layer 38a is formed in the opening 37 of the first upper insulating film 36, but this is for convenience of illustration, and actually, A first upper metal layer 38b is also formed.
[0039]
Here, since the first upper layer rewiring 39 is directly bonded to the columnar electrode 33 by plating, the opening 37 of the first upper layer insulating film 36 has a square shape of 10 μm × 10 μm or a circular shape having the same area. Is sufficient in terms of strength. This type of exposure machine has a positioning accuracy of several μm, and the diameter of the columnar electrode 33 is usually about 100 to 150 μm (the pitch is usually twice as large). Compared to the method of bonding by rewiring, the method can be applied even when the size and arrangement interval of the columnar electrodes are much smaller, and the process is more efficient.
[0040]
As described above, according to the method of the present invention, the width of the opening of the insulating film for joining the upper layer rewiring to the columnar electrode can be reduced to 以下 or less of the width of the columnar electrode. Accordingly, the size and arrangement interval of the columnar electrodes of the semiconductor structure can be reduced, so that the size of the semiconductor device of the present invention having the upper layer rewiring can be further reduced.
[0041]
Next, the plating resist film 51 is peeled off, and then unnecessary portions of the first base metal layer 38a are removed by etching using the first upper metal layer 38b as a mask. As shown in FIG. A first upper layer redistribution line 39 composed of the base metal layer 38a and the first upper layer metal layer 38b is formed.
[0042]
Next, as shown in FIG. 8, a second upper insulating film 41 made of photosensitive polyimide or the like is pattern-formed on the entire upper surface of the first upper insulating film 36 including the first upper wiring 39. In this case, an opening 42 is formed in a portion of the second upper insulating film 41 corresponding to the connection pad of the first upper wiring 39. Next, a second base metal layer 43a is formed by electroless plating over the entire upper surface of the second upper insulating film 41 including the connection pad portion of the first upper wiring layer 39 exposed through the opening. .
[0043]
Next, a plating resist film 53 is pattern-formed on the upper surface of the second base metal layer 43a. In this case, an opening 54 is formed in the plating resist film 53 in a portion corresponding to the second upper layer rewiring 44 forming region. Next, copper electrolytic plating is performed using the second base metal layer 43a as a plating current path, so that a second upper metal layer is formed on the upper surface of the second base metal layer 43a in the opening 54 of the plating resist film 53. 43b is formed.
[0044]
Next, the plating resist film 53 is peeled off, and then unnecessary portions of the second base metal layer 43 are removed by etching using the second upper layer redistribution mask as a mask, as shown in FIG. A second upper layer redistribution layer 44 composed of the base metal layer 43 and the second upper layer metal layer 43b is formed.
[0045]
Next, as shown in FIG. 10, a third upper insulating film 45 made of photosensitive polyimide or the like is pattern-formed on the entire upper surface of the second upper insulating film 41 including the second upper wiring 44. In this case, an opening 46 is formed in a portion of the third upper insulating film 45 corresponding to the connection pad portion of the second upper wiring 44. Next, a solder ball 47 is formed in and above the opening 46 so as to be connected to the connection pad portion of the second upper layer rewiring 44.
[0046]
Next, as shown in FIG. 11, when the three insulating films 45, 41, and 36, the sealing film 35, the adhesive layer 22, and the base plate 21 are cut between the semiconductor structures 23 adjacent to each other, FIG. A plurality of the semiconductor devices shown are obtained.
[0047]
In the semiconductor device thus obtained, the first base metal layer 38 and the first upper wiring 39 connected to the columnar electrodes 33 of the semiconductor structure 23 are formed by electroless plating (or sputtering) and electrolytic plating. Since the second base metal layer 43 and the second upper layer redistribution layer 44 to be connected to the connection pad portions of the first upper layer redistribution layer 39 are formed by electroless plating (or sputtering) and electrolytic plating. Conductive connection between the columnar electrode 33 of the semiconductor structure 23 and the first upper layer redistribution line 39 and between the first upper layer redistribution line 39 and the second upper layer redistribution line 44 without using bonding. Can be.
[0048]
Further, in the above-described manufacturing method, the semiconductor components 23 are respectively bonded and arranged at a plurality of predetermined locations on the adhesive layer 22 on the base plate 21, and the first to third upper layers are attached to the plurality of semiconductor components 23. The insulating films 36, 41, 45, the first and second base metal layers 38, 43, the first and second upper layer rewirings 39, 44, and the solder balls 47 are collectively formed, and then divided. Since a plurality of semiconductor devices are obtained, the manufacturing process can be simplified.
[0049]
In addition, since the plurality of semiconductor components 23 can be transported together with the base plate 21, the manufacturing process can be simplified. Furthermore, if the outer dimensions of the base plate 21 are made constant, the transport system can be shared regardless of the outer dimensions of the semiconductor device to be manufactured.
[0050]
Further, in the above manufacturing method, as shown in FIG. 2, the CSP type semiconductor structure 23 having the rewiring 32 and the columnar electrode 33 is bonded on the bonding layer 22. A normal semiconductor chip provided with the connection pad 25, the insulating film 26, and the protective film 27 is adhered on the adhesive layer 22 to form a rewiring and a columnar electrode on a sealing film provided around the semiconductor chip. As compared with the case, the cost can be reduced.
[0051]
For example, when the base plate 21 before cutting has a substantially circular shape with a certain size like a silicon wafer, rewiring and columnar formation are performed on a sealing film provided around a semiconductor chip bonded on the bonding layer 22. Forming the electrodes increases the processing area. In other words, low-density processing results in a reduction in the number of processed sheets at one time and a decrease in throughput, resulting in an increase in cost.
[0052]
On the other hand, in the above-described manufacturing method, since the CSP type semiconductor structure 23 having the rewiring 32 and the columnar electrode 33 is adhered on the adhesive layer 22 and then built up, the number of processes is increased. Since the high-density processing is performed until the columnar electrode 33 is formed, the efficiency is high, and the overall cost can be reduced even if the number of processes is increased.
[0053]
Next, another example of the method for manufacturing the semiconductor device shown in FIG. 1 will be described. First, as shown in FIG. 12, an adhesive layer 56 made of an ultraviolet-curable pressure-sensitive adhesive sheet or the like is adhered to the entire upper surface of another base plate 55 made of a transparent resin plate or a glass plate that is transparent to ultraviolet light. The base plate 21 and the adhesive layer 22 described above are bonded to the upper surface of the substrate.
[0054]
Then, after passing through the manufacturing steps shown in FIGS. 2 to 10, respectively, as shown in FIG. 13, three insulating films 45, 41, and 36, a sealing film 35, an adhesive layer 22, a base plate 21, and an adhesive layer 56. Is cut, and another base plate 55 is not cut. Next, ultraviolet rays are irradiated from the lower surface side of another base plate 55 to cure the adhesive layer 56. Then, the adhesiveness of the adhesive layer 56 to the separated lower surface of the base plate 21 is reduced. Then, when individual pieces existing on the adhesive layer 56 are peeled off one by one and picked up, a plurality of semiconductor devices shown in FIG. 1 are obtained.
[0055]
In this manufacturing method, in the state shown in FIG. 13, the individualized semiconductor devices existing on the adhesive layer 56 do not fall apart, so that a circuit (not shown) is used without using a dedicated semiconductor device mounting tray. At the time of mounting on a substrate, it can be peeled off and picked up one by one. In addition, when the adhesive layer 56 remaining on the upper surface of another base plate 55 and having reduced adhesiveness is peeled off, another base plate 55 can be reused. Furthermore, if the external dimensions of another base plate 55 are made constant, the transport system can be shared regardless of the external dimensions of the semiconductor device to be manufactured.
[0056]
It is also possible to use a normal dicing tape or the like for removing the semiconductor device by expanding it as another base plate 55, and in that case, the adhesive layer does not need to be an ultraviolet curing type. Further, another base plate 55 may be removed by polishing or etching.
[0057]
Next, still another example of the method for manufacturing the semiconductor device shown in FIG. 1 will be described. In this manufacturing method, after the step shown in FIG. 5, as shown in FIG. 14, the entire upper surface of the first upper insulating film 36 including the upper surface of the columnar electrode 33 exposed through the opening 37 is electrolessly coated with copper. The first base metal layer 38a is formed by plating. Next, a first upper metal forming layer 38c is formed on the entire upper surface of the first base metal layer 38a by performing copper electrolytic plating using the first base metal layer 38a as a plating current path. Next, a resist film 57 is pattern-formed on a portion of the upper surface of the first upper metal forming layer 38c corresponding to the first upper rewiring formation region.
[0058]
Next, unnecessary portions of the first upper metal forming layer 38c and the first base metal layer 38a are removed by etching using the resist film 57 as a mask, and as shown in FIG. The first upper wiring layer 39 remains. After that, the resist film 57 is peeled off. Note that the second upper layer rewiring 44 may be formed by a similar forming method.
[0059]
By the way, the base plate 21 shown in FIG. 2 or another base plate 55 shown in FIG. That is, the base plate is shaped like a saucer in which the region where the semiconductor components 23 are arranged is depressed from the surroundings. Then, a plating current path metal layer is provided on the upper surface of the tray-shaped base plate surrounding the semiconductor structure 23 arrangement region, and the plating current path metal layer and the plating current path base metal layer (38, 43) are provided. ) May be connected by a conductive member to perform electrolytic plating. In this case, by setting the outer dimensions of the trays to be the same, the same manufacturing apparatus can be used even when the sizes of the semiconductor devices to be manufactured are different, so that the efficiency is improved.
[0060]
(2nd Embodiment)
In the manufacturing process shown in FIG. 3, when the adhesive layer 22 is provided on the lower surface of the silicon substrate 24 of the semiconductor structure 23 and the adhesive layer 22 is bonded to each predetermined location on the upper surface of the base plate 21, FIG. A semiconductor device as a second embodiment of the present invention as shown is obtained.
[0061]
In the semiconductor device thus obtained, the lower surface of the silicon substrate 24 is bonded to the upper surface of the base plate 21 via the adhesive layer 22, and the side surface of the silicon substrate 24 is bonded via the sealing film 36. Since it is connected to the upper surface of the base plate 21, the bonding strength of the semiconductor structure 23 to the base plate 21 can be increased to some extent.
[0062]
(Third and fourth embodiments)
FIG. 17 is a sectional view of a semiconductor device according to a third embodiment of the present invention. This semiconductor device differs from the semiconductor device shown in FIG. 1 in that it does not include a base plate 21 and an adhesive layer 22.
[0063]
In the case of manufacturing the semiconductor device of the third embodiment, for example, as shown in FIG. 10, after forming the solder balls 47, the base plate 21 is peeled off from the adhesive layer 22 or the base plate 21 and the adhesive layer 22 are removed. After removal by polishing or etching or the like, three layers of insulating films 45, 41, and 36 and a sealing film 35 are cut between adjacent semiconductor structures 23, the semiconductor device shown in FIG. You can get more than one. Since the semiconductor device thus obtained does not include the base plate 21 and the adhesive layer 22, the thickness can be reduced accordingly.
[0064]
After the base plate 21 and the adhesive layer 22 are removed by polishing, etching, or the like, the lower surfaces of the silicon substrate 24 and the sealing film 35 are appropriately polished, and then three layers are formed between the semiconductor structures 23 adjacent to each other. By cutting the insulating films 45, 41, and 36 and the sealing film 35, a plurality of semiconductor devices according to the fourth embodiment of the present invention shown in FIG. 18 are obtained. The semiconductor device thus obtained can be further reduced in thickness.
[0065]
Before the formation of the solder balls 47, the base plate 21 and the adhesive layer 22 are removed by polishing, etching, or the like (if necessary, the lower surfaces of the silicon substrate 24 and the sealing film 35 are appropriately polished). Next, the solder balls 47 may be formed, and then the three layers of the insulating films 45, 41, 36 and the sealing film 35 may be cut between the adjacent semiconductor structures 23.
[0066]
(Fifth embodiment)
FIG. 19 is a sectional view of a semiconductor device according to a fifth embodiment of the present invention. This semiconductor device differs from the semiconductor device shown in FIG. 1 in that a metal layer 61 for heat dissipation is adhered to the lower surface of the adhesive layer 22. The metal layer 61 is made of a copper foil having a thickness of several tens of μm or the like.
[0067]
In the case of manufacturing the semiconductor device of the fifth embodiment, for example, as shown in FIG. 10, after the solder balls 47 are formed, the base plate 21 is removed by polishing or etching, and then the entire lower surface of the adhesive layer 22 is formed. FIG. 19 shows a state in which the three insulating films 45, 41, and 36, the sealing film 35, the adhesive layer 22, and the metal layer 61 are cut between the semiconductor structures 23 adjacent to each other. A plurality of semiconductor devices are obtained.
[0068]
The adhesive layer 22 is also removed by polishing, etching, or the like (if necessary, the lower surfaces of the silicon substrate 24 and the sealing film 35 are appropriately polished), and new surfaces are formed on the lower surfaces of the silicon substrate 24 and the sealing film 35. The metal layer 61 may be bonded via an adhesive layer.
[0069]
(Sixth embodiment)
In the case shown in FIG. 11, cutting is performed between the semiconductor components 23 adjacent to each other. However, the present invention is not limited to this, and two or more semiconductor components 23 are cut as one set. As in the sixth embodiment of the present invention, three semiconductor components 23 may be cut into one set to obtain a multi-chip module type semiconductor device. In this case, the set of three semiconductor components 23 may be the same or different.
[0070]
In FIG. 20, the underlying metal layers below the rewirings 32, 39, and 44 are omitted for convenience of illustration. It is not known whether the connection pad portion (solder ball 47) of the second upper layer rewiring 44 is disposed on the sealing film 35 around the semiconductor structure 23, but this is for convenience of illustration. Yes, it is actually disposed on the sealing film 35. This is the same in the embodiment described later.
[0071]
However, for example, in FIG. 20, since the semiconductor structure 23 is adhered to the upper surface of the adhesive layer 22, high accuracy is not required for the alignment at the time of bonding unlike the conventional bonding, It is possible to make the arrangement interval of the components 23 as small as possible. Therefore, when the arrangement interval of the semiconductor structures 23 is made as small as possible, at least a part of the second upper layer rewiring 44 may be arranged on the sealing film 35.
[0072]
(Seventh embodiment)
In the case shown in FIG. 20, only the solder balls 47 are provided on the connection pad portions of the second upper layer rewiring 44. However, the present invention is not limited to this. For example, in the seventh embodiment of the present invention shown in FIG. As described above, the connection pad 62 is formed on the connection pad portion of the second upper layer rewiring 44, and the solder ball 47, the semiconductor chip 63 composed of an LSI or the like, and the chip component 64 composed of a capacitor or a resistor are provided thereon. It may be.
[0073]
In this case, the semiconductor chip 63 and the chip component 64 are arranged at the center of the upper surface of the third upper insulating film 45, and the solder balls 47 are arranged at the periphery of the upper surface of the third upper insulating film 45. The semiconductor chip 63 has a structure in which a plurality of bump electrodes 63b are provided around the lower surface of a chip body 63a. The bump electrodes 63b of the semiconductor chip 63 are conductively connected to the connection pads 62 via solder (not shown). Further, a sealing material 65 is filled between the chip body 63a and the third upper insulating film 45. The electrodes on both sides of the chip component 64 are connected to the connection pads 62 by solder 66.
[0074]
(Eighth embodiment)
In FIG. 21, the chip component 64 and the like are mounted on the central portion and the solder ball 47 is formed on the peripheral portion of a set of three semiconductor components 23, but the present invention is not limited to this. As in the eighth embodiment of the present invention shown in FIG. 22, the size of the sealing film 35 around one semiconductor structure 23 is increased to some extent, and the sealing film 35 is disposed on the central portion of the third upper insulating film 45. A chip component 64 or the like may be mounted on the connection pad 62, and the lower part of the connection pin 67 may be connected to the connection pad 62 arranged on the peripheral portion via solder (not shown). The connection pins 67 are soldered to the connection pads 62, not shown, but inserted into through holes formed in the circuit board, and soldered to pad portions formed around the through holes on the back side. Is what is done.
[0075]
(Ninth embodiment)
FIG. 23 is a sectional view of a semiconductor device according to a ninth embodiment of the present invention. Next, the structure of this semiconductor device will be described together with its manufacturing method. First, a description will be given with reference to FIG. 20. In FIG. 20, a product is prepared in which the solder plate 47 is not formed and the base plate 21 is removed. Hereinafter, the prepared one is referred to as a semiconductor block 71.
[0076]
Next, the central part of the upper surface of the metal plate 72 for heat radiation, which is somewhat larger than the semiconductor block 71, is bonded to the lower surface of the adhesive layer 22 of the semiconductor block 71. Next, a sealing film 73 is formed on the upper surface of the metal plate 72 around the semiconductor block 71 by a molding method or a printing method so that the upper surface thereof is flush with the upper surface of the third upper insulating film 45 of the semiconductor block 71. I do. In addition, the adhesive layer 22 may be removed, the metal plate 72 may be arranged in a mold, and the semiconductor block 71 may be arranged in the center of the upper surface.
[0077]
Next, on the upper surfaces of the third upper-layer insulating film 45 and the sealing film 73, a third upper-layer rewiring (including a third base metal layer) 74 is connected to the connection pad portion of the second upper-layer rewiring 44. Formed. Next, a fourth upper insulating film 75 is formed on the upper surface of the third upper insulating film 45 including the third upper wirings 74. Next, an opening 76 is formed in a portion of the fourth upper insulating film 75 corresponding to the connection pad of the third upper rewiring 74. Next, a connection pad 77 is formed on the fourth upper insulating film 75 in and around the opening 76 so as to be connected to the connection pad portion of the third upper layer rewiring 74.
[0078]
Next, electrodes on both sides of a chip component 78 including a capacitor and a resistor are connected to the upper surface of the connection pad 77 on the semiconductor block 71 via solder 79. Further, the lower part of the connection pin 80 is connected to the upper surface of the connection pad 77 on the sealing film 73 via solder (not shown). Thus, the semiconductor device shown in FIG. 23 is obtained.
[0079]
(Tenth embodiment)
FIG. 24 is a sectional view of a semiconductor device according to a tenth embodiment of the present invention. Next, the structure of this semiconductor device will be described together with its manufacturing method. First, also in this case, referring to FIG. 20, a device prepared by removing the base plate 21 and the adhesive layer 22 without forming the solder balls 47 in FIG. 20 is prepared. Hereinafter, the prepared one is referred to as a semiconductor block 81. However, the arrangement of the second upper layer rewiring (including the second underlying metal layer) 44 is different between FIGS. 20 and 24 for convenience of illustration. In FIG. 24, connection pads 82 are formed at predetermined positions on the upper surface of the third upper layer insulating film 45 so as to be connected to the connection pad portions of the second upper layer rewiring 44.
[0080]
Next, a flexible wiring board 83 is prepared. The flexible wiring board 83 includes a film substrate 85 having an opening 84 which is slightly larger than the semiconductor block 81 at the center. The wiring 86 is provided on the upper surface of the film substrate 85. One end of the wiring 86 protrudes into the opening 84 and serves as a connection terminal 86a. On the upper surface of the film substrate 85 including the wiring 86, a protective film 87 is provided. An opening 88 is provided in a portion of the protective film 87 corresponding to the other end of the wiring 86. A solder ball 89 is provided on the other end of the wiring 86 exposed through the opening 88, but when the flexible wiring board 83 is prepared, the solder ball 89 is not formed.
[0081]
Then, the connection terminals 86a of the flexible wiring board 83 are connected to the connection pads 82 arranged on the periphery of the semiconductor block 81 via solder (not shown). Next, a sealing film 90 is formed on the lower surface of the flexible wiring board 83 around the semiconductor block 81 by a molding method or a printing method so that the lower surface is flush with the lower surface of the semiconductor block 71 such as the silicon substrate 24. Next, a metal plate 92 for heat dissipation is bonded to the lower surface of the silicon substrate 24 and the like of the semiconductor block 71 and the lower surface of the sealing film 90 via an adhesive layer 91.
[0082]
Next, electrodes on both sides of a chip component 93 composed of a capacitor, a resistor, and the like are connected to the upper surface of a connection pad 82 arranged at the center of the semiconductor block 81 via solder 94. Further, a solder ball 89 is formed on the other end of the wiring 86 exposed through the opening 88 of the flexible wiring board 83. Thus, the semiconductor device shown in FIG. 24 is obtained.
[0083]
(Eleventh embodiment)
In the case shown in FIG. 24, as in the tenth embodiment of the present invention shown in FIG. 25, the thickness of the sealing film 90 in the peripheral portion is larger than the thickness of the sealing film 90 near the peripheral surface of the semiconductor block 81. May also be made thinner. In this case, the sealing film 90 is formed by a molding method.
[0084]
(Twelfth embodiment)
FIG. 26 is a sectional view of a semiconductor device according to a twelfth embodiment of the present invention. Next, the structure of this semiconductor device will be described together with its manufacturing method. First, also in this case, referring to FIG. 20, a device prepared by removing the base plate 21 and the adhesive layer 22 in FIG. 20 is prepared. Hereinafter, the prepared one is referred to as a semiconductor block 101. In this case, although the solder ball 47 is formed, a solder ball (47A) having a slightly smaller diameter than the case shown in FIG. 20 is formed.
[0085]
Next, the flexible wiring board 102 is prepared. The flexible wiring board 102 includes a film substrate 103 that is somewhat larger than the semiconductor block 81. The wiring 104 is provided on the upper surface of the film substrate 103. A through hole 104 is provided in a portion of the film substrate 103 corresponding to one end of the wiring 104. On the upper surface of the film substrate 103 including the wiring 104, a protective film 106 is provided. An opening 107 is provided in a portion of the protective film 106 corresponding to the other end of the wiring 104. A solder ball 108 is provided on the other end of the wiring 106 exposed through the opening 107, but the solder ball 108 is not formed when the flexible wiring board 102 is prepared.
[0086]
Then, the solder ball (47A) of the semiconductor block 101 is inserted into the through hole 105 of the flexible wiring board 102, and the solder 47A is connected to the lower surface of one end of the wiring 104 in the through hole 105 by a reflow process. Next, a sealing film 109 is formed on the lower surface of the flexible wiring board 102 around the semiconductor block 101 by molding or printing so that the lower surface thereof is flush with the lower surface of the semiconductor substrate 101 such as the silicon substrate 24.
[0087]
Next, a metal plate 111 for heat dissipation is bonded to the lower surface of the silicon substrate 24 and the like of the semiconductor block 101 and the lower surface of the sealing film 109 via an adhesive layer 110. Next, a solder ball 108 is formed on the other end of the wiring 104 exposed through the opening 107 of the flexible wiring board 8102. Thus, the semiconductor device shown in FIG. 26 is obtained.
[0088]
(Thirteenth embodiment)
FIG. 27 is a sectional view of a semiconductor device according to a thirteenth embodiment of the present invention. This semiconductor device is significantly different from the semiconductor device shown in FIG. 20 in that it does not include any solder balls 47 but instead includes a flexible wiring board 121.
[0089]
In this case, the flexible wiring board 121 has the wiring 123 provided on one surface of the film substrate 122, and is protected on one surface of the film substrate 122 including a portion excluding the connection terminals 123 a formed at both ends of the wiring 123 (the other is not shown). The structure is such that a film 124 is provided. On the other hand, a plurality of connection terminals 125 are formed at one end of the upper surface of the third upper insulating film 45 so as to be connected to connection pad portions of predetermined second upper layer rewirings 44. The one connection terminal 123a of the flexible wiring board 121 is connected to the connection terminal 125 via an anisotropic conductive adhesive (not shown) or solder.
[0090]
A connection pad 126 is formed on the connection pad portion of the remaining second upper layer rewiring 44, and a chip component 127 including a capacitor and a resistor and a CSP type semiconductor structure 128 are mounted thereon. I have. In this case, the semiconductor component 128 has substantially the same structure as the semiconductor component 23. The lower surface of the columnar electrode 129 of the semiconductor structure 128 is connected to the upper surface of the connection pad 126 via solder (not shown).
[0091]
(14th embodiment)
FIG. 28 is a sectional view of a semiconductor device according to a fourteenth embodiment of the present invention. In this semiconductor device, for example, the semiconductor block 131 formed by removing the base plate 21 in the device shown in FIG. 20 and the base plate 21 and the adhesive layer 22 are removed and the solder ball 47 is not formed in the device shown in FIG. A semiconductor block 132 made of a material is bonded via an adhesive layer 22. In this case, only the plurality of semiconductor chips 63 are mounted on the upper semiconductor block 132.
[0092]
The two semiconductor blocks 131 are connected to each other via a flexible wiring board 121 substantially the same as that shown in FIG. 23, for example. That is, a plurality of connection terminals 125 are formed at one end of the upper surface of the third upper insulating film 45 of the upper semiconductor block 132 so as to be connected to the connection pad portion of the predetermined second upper layer rewiring 44A. The one connection terminal 123a of the flexible wiring board 121 is connected to the connection terminal 125 via an anisotropic conductive adhesive (not shown) or solder.
[0093]
At one end of the lower surface of the third upper insulating film 45 of the lower semiconductor block 131, a connection terminal including a predetermined second upper layer rewiring 44B is provided. The other connection terminal 123b of the flexible wiring board 121 is connected to a connection terminal formed of a predetermined second upper layer rewiring 44B via an anisotropic conductive adhesive (or solder) 133.
[0094]
(Fifteenth embodiment)
FIG. 29 is a sectional view of a semiconductor device according to a fifteenth embodiment of the present invention. This semiconductor device is significantly different from the case shown in FIG. 28 in that the flexible wiring board 121 is lengthened and adhered to the lower surface of the third upper insulating film 45 of the lower semiconductor block 131 via the adhesive layer 151. It is.
[0095]
In this case, the solder balls 47 protrude outside the film substrate 122 via the adhesive layer 151, the protective film 124, and the opening 152 formed in the film substrate 122. The other connection terminal 123b of the flexible wiring board 121 is connected to a connection terminal formed of a predetermined second upper layer redistribution 44B at both ends of the other semiconductor block 131 by an opening formed in the adhesive layer 151 and the protective film 124. The connection is made via a solder 154 arranged in the portion 153.
[0096]
【The invention's effect】
As described above, according to the present invention, a plurality or a plurality of sets of semiconductor components having rewiring and columnar electrodes are arranged on a semiconductor substrate, and the entire top surface of the base plate including the semiconductor components is arranged on the base plate. An insulating film is formed, an upper layer rewiring is formed on the upper surface of the insulating film by connecting to the columnar electrode of the semiconductor structure, and at least the insulating film is cut to have one or one set of the semiconductor structure. A plurality of semiconductor devices having a peripheral insulating film and a part of the upper layer rewiring disposed on the peripheral insulating film can be collectively obtained. It is possible to increase the arrangement interval of the external connection electrodes without the need, and to form the insulating film and the upper layer rewiring collectively on a plurality or a plurality of sets of semiconductor structures. , It is possible to simplify the manufacturing process.
[Brief description of the drawings]
FIG. 1 is a sectional view of a semiconductor device according to a first embodiment of the present invention;
FIG. 2 is a cross-sectional view of an initial manufacturing process in the example of the method for manufacturing the semiconductor device shown in FIG.
FIG. 3 is a sectional view of the manufacturing process following FIG. 2;
FIG. 4 is a sectional view of the manufacturing process following FIG. 3;
FIG. 5 is a sectional view of the manufacturing process following FIG. 4;
FIG. 6 is a sectional view of the manufacturing process following FIG. 5;
FIG. 7 is a sectional view of the manufacturing process following FIG. 6;
FIG. 8 is a sectional view of the manufacturing process following FIG. 7;
FIG. 9 is a sectional view of the manufacturing process following FIG. 8;
FIG. 10 is a sectional view of the manufacturing process following FIG. 9;
FIG. 11 is a sectional view of the manufacturing process continued from FIG. 10;
FIG. 12 is a cross-sectional view of another example of the method of manufacturing the semiconductor device shown in FIG. 1, which is initially prepared.
FIG. 13 is a sectional view of a predetermined manufacturing process in the other example.
14 is a cross-sectional view of a predetermined manufacturing step in still another example of the method of manufacturing the semiconductor device shown in FIG. 1;
FIG. 15 is a sectional view of the manufacturing process continued from FIG. 14;
FIG. 16 is a sectional view of a semiconductor device as a second embodiment of the present invention.
FIG. 17 is a sectional view of a semiconductor device according to a third embodiment of the present invention;
FIG. 18 is a sectional view of a semiconductor device according to a fourth embodiment of the present invention.
FIG. 19 is a sectional view of a semiconductor device according to a fifth embodiment of the present invention.
FIG. 20 is a sectional view of a semiconductor device according to a sixth embodiment of the present invention;
FIG. 21 is a sectional view of a semiconductor device according to a seventh embodiment of the present invention;
FIG. 22 is a sectional view of a semiconductor device according to an eighth embodiment of the present invention.
FIG. 23 is a sectional view of a semiconductor device according to a ninth embodiment of the present invention;
FIG. 24 is a sectional view of a semiconductor device according to a tenth embodiment of the present invention;
FIG. 25 is a sectional view of a semiconductor device according to an eleventh embodiment of the present invention;
FIG. 26 is a sectional view of a semiconductor device according to a twelfth embodiment of the present invention;
FIG. 27 is a sectional view of a semiconductor device according to a thirteenth embodiment of the present invention;
FIG. 28 is a sectional view of a semiconductor device according to a fourteenth embodiment of the present invention;
FIG. 29 is a sectional view of a semiconductor device according to a fifteenth embodiment of the present invention;
FIG. 30 is a cross-sectional view of an example of a conventional semiconductor device.
[Explanation of symbols]
21 Base plate
22 Adhesive layer
23 Semiconductor Structure
24 Silicon substrate
25 connection pads
31 Base metal layer
32 Rewiring
33 pillar electrode
34 sealing film
35 sealing film
36 First upper insulating film
38 First Underlying Metal Layer
39 1st upper layer rewiring
41 Second upper insulating film
43 Second Underlying Metal Layer
44 Second Upper Layer Rewiring
45 Third upper insulating film
47 Solder Ball

Claims (32)

半導体基板の上面に設けられた複数の再配線および前記各再配線の一端部上に形成された柱状電極を有する半導体構成体と、該半導体構成体の前記柱状電極を除く上面全体および前記半導体構成体の周側面より外側の延出部に設けられた絶縁膜と、該絶縁膜上に、前記柱状電極に接続されて設けられ且つ接続パッドを有する少なくとも一層の上層再配線とを備え、前記上層再配線の中、最上層の上層再配線の少なくとも一部は、前記接続パッドが前記絶縁膜上の前記半導体構成体の周側面より外側の前記延出部上に配置されていることを特徴とする半導体装置。A semiconductor structure having a plurality of rewirings provided on an upper surface of a semiconductor substrate and a columnar electrode formed on one end of each of the rewirings; the entire upper surface of the semiconductor structure excluding the columnar electrodes; and the semiconductor structure An insulating film provided on an extended portion outside the peripheral side surface of the body, and at least one upper layer rewiring provided on the insulating film and connected to the columnar electrode and having a connection pad; In the rewiring, at least a part of the upper layer rewiring of the uppermost layer is characterized in that the connection pad is arranged on the extension portion outside the peripheral side surface of the semiconductor structure on the insulating film. Semiconductor device. 各々が、半導体基板と、該半導体基板の上面に設けられた複数の再配線および前記各再配線の一端部上に形成された柱状電極を有し、互いに離間して配置された複数の半導体構成体と、該各半導体構成体の柱状電極を除く上面全体および前記各半導体構成体の周側面より外側の延出部に設けられた絶縁膜と、該絶縁膜上に、前記柱状電極に接続されて設けられ且つ接続パッドを有する少なくとも一層の上層再配線とを備え、前記上層再配線の中、最上層の上層再配線の少なくとも一部は、前記接続パッドが前記絶縁膜上の前記いずれかの半導体構成体の周側面より外側の前記延出部上に配置されていることを特徴とする半導体装置。A plurality of semiconductor structures each having a semiconductor substrate, a plurality of rewirings provided on the upper surface of the semiconductor substrate, and a columnar electrode formed on one end of each of the rewirings, and spaced apart from each other And an insulating film provided on the entire upper surface of each of the semiconductor structures except for the columnar electrodes and an extension outside the peripheral side surface of each of the semiconductor structures, and connected to the columnar electrodes on the insulating film. And at least one layer of upper-layer rewiring having connection pads, wherein at least a part of the upper-layer rewiring of the uppermost layer includes the connection pad on the insulating film. A semiconductor device, wherein the semiconductor device is disposed on the extension portion outside a peripheral side surface of a semiconductor structure. 請求項1または2に記載の発明において、前記絶縁膜は前記半導体構成体の周側面を覆って設けられていることを特徴とする半導体装置。3. The semiconductor device according to claim 1, wherein the insulating film is provided to cover a peripheral side surface of the semiconductor structure. 4. 請求項3に記載の発明において、前記半導体構成体の周側面を覆って設けられた前記絶縁膜の下面は前記半導体構成体の下面とほぼ同一の平面上に配置されていることを特徴とする半導体装置。4. The semiconductor device according to claim 3, wherein a lower surface of the insulating film provided to cover a peripheral side surface of the semiconductor structure is arranged on substantially the same plane as a lower surface of the semiconductor structure. Semiconductor device. 請求項1または2に記載の発明において、前記上層再配線の中、最下層の上層再配線は前記記絶縁膜に形成された開口を介して直接前記柱状電極に電気的に接続され、前記絶縁膜に形成された前記開口は前記柱状電極の幅の1/2以下の幅を有することを特徴とする半導体装置。3. The invention according to claim 1, wherein, of the upper layer redistribution, the lower layer upper layer redistribution is electrically connected directly to the columnar electrode through an opening formed in the insulating film, and The semiconductor device according to claim 1, wherein the opening formed in the film has a width equal to or less than half the width of the columnar electrode. 請求項1または2に記載の発明において、前記上層再配線の中、最下層の上層再配線は前記各柱状電極上および前記最下層の絶縁膜上に形成されためっき層を含むことを特徴とする半導体装置。3. The invention according to claim 1, wherein, in the upper layer rewiring, the lower layer upper rewiring includes a plating layer formed on each of the columnar electrodes and the lowermost insulating film. Semiconductor device. 請求項1または2に記載の発明において、前記絶縁膜は複数層であり、その層間に、前記半導体構成体の柱状電極と前記上層再配線とを接続する層間再配線が設けられていることを特徴とする半導体装置。3. The invention according to claim 1, wherein the insulating film has a plurality of layers, and an interlayer rewiring for connecting the columnar electrode of the semiconductor structure and the upper layer rewiring is provided between the layers. Characteristic semiconductor device. 請求項1または2に記載の発明において、前記柱状電極は50μm以上の高さを有することを特徴とする半導体装置。3. The semiconductor device according to claim 1, wherein the columnar electrode has a height of 50 μm or more. 請求項1または2に記載の発明において、前記上層再配線を含む前記絶縁膜の上面に前記上層再配線の前記接続パッドの少なくとも一部を除く部分に最上層絶縁膜が設けられていることを特徴とする半導体装置。3. The method according to claim 1, wherein an uppermost insulating film is provided on a portion of the insulating film including the upper layer rewiring except at least a part of the connection pad of the upper layer rewiring. 4. Characteristic semiconductor device. 請求項9に記載の発明において、前記上層再配線の前記接続パッド上に突起状の接続端子が設けられていることを特徴とする半導体装置。10. The semiconductor device according to claim 9, wherein a protruding connection terminal is provided on the connection pad of the upper layer rewiring. 請求項9に記載の発明において、前記最上層絶縁膜上に電子部品がいずれかの前記上層再配線の接続パッド部に接続されて設けられていることを特徴とする半導体装置。10. The semiconductor device according to claim 9, wherein an electronic component is provided on the uppermost insulating film so as to be connected to one of the connection pad portions of the upper rewiring. 請求項9〜11のいずれかに記載の発明において、前記半導体構成体およびその周側面に設けられた前記絶縁膜の下面に放熱層が設けられていることを特徴とする半導体装置。12. The semiconductor device according to claim 9, wherein a heat dissipation layer is provided on a lower surface of the semiconductor structure and the insulating film provided on a peripheral side surface thereof. 請求項1または2に記載の発明において、前記絶縁膜は前記半導体構成体の周側面を覆って設けられ、該半導体構成体の周側面に設けられた前記絶縁膜はベース板上に設けられていることを特徴とする半導体装置。3. The semiconductor device according to claim 1, wherein the insulating film is provided to cover a peripheral side surface of the semiconductor structure, and the insulating film provided on the peripheral side surface of the semiconductor structure is provided on a base plate. A semiconductor device. 請求項1または2に記載の発明において、前記絶縁膜は前記半導体構成体の周側面を覆って設けられ、該半導体構成体の周側面に設けられた前記絶縁膜上にフレキシブル配線板が配置され、該フレキシブル配線板に形成された接続端子がいずれかの前記上層再配線の前記接続パッドに接続されていることを特徴とする半導体装置。3. The invention according to claim 1, wherein the insulating film is provided to cover a peripheral side surface of the semiconductor structure, and a flexible wiring board is disposed on the insulating film provided on the peripheral side surface of the semiconductor structure. And a connection terminal formed on the flexible wiring board is connected to the connection pad of any of the upper layer rewirings. 請求項1または2に記載の発明において、前記半導体構成体上にフレキシブル配線板が配置され、前記フレキシブル配線板に形成された接続端子がいずれかの前記上層再配線の前記接続パッドに接続されていることを特徴とする半導体装置。3. The invention according to claim 1, wherein a flexible wiring board is disposed on the semiconductor structure, and a connection terminal formed on the flexible wiring board is connected to the connection pad of any of the upper layer rewirings. A semiconductor device. 請求項15に記載の発明において、前記フレキシブル配線板上に突起状の接続端子が導電接続されて設けられていることを特徴とする半導体装置。16. The semiconductor device according to claim 15, wherein a protruding connection terminal is provided on the flexible wiring board so as to be conductively connected. 請求項1または2に記載の発明において、前記絶縁膜は前記半導体構成体の周側面を覆って設けられ、該半導体構成体の周側面に形成された前記絶縁膜を覆って最外周絶縁膜が設けられていることを特徴とする半導体装置。3. The invention according to claim 1, wherein the insulating film is provided to cover a peripheral side surface of the semiconductor structure, and an outermost peripheral insulating film covers the insulating film formed on the peripheral side surface of the semiconductor structure. A semiconductor device, which is provided. 請求項17に記載の発明において、前記最外周絶縁膜は前記半導体構成体の周側面に形成された前記絶縁膜よりも厚く形成されていることを特徴とする半導体装置。18. The semiconductor device according to claim 17, wherein the outermost peripheral insulating film is formed thicker than the insulating film formed on a peripheral side surface of the semiconductor structure. 請求項17に記載の発明において、前記最外周絶縁膜は前記半導体構成体の周側面に形成された前記絶縁膜よりも薄く形成されていることを特徴とする半導体装置。18. The semiconductor device according to claim 17, wherein the outermost peripheral insulating film is formed thinner than the insulating film formed on a peripheral side surface of the semiconductor structure. 請求項9に記載の発明において、前記最上層絶縁膜上に電子部品がいずれかの前記上層再配線の接続パッドに接続されて設けられ、他のいずれかの前記上層再配線の外部端子ににフレキシブル配線板に形成された接続端子が接続されていることを特徴とする半導体装置。10. The invention according to claim 9, wherein an electronic component is provided on the uppermost insulating film so as to be connected to one of the connection pads of the upper layer rewiring, and is connected to an external terminal of the other upper layer rewiring. A semiconductor device, wherein connection terminals formed on a flexible wiring board are connected. 請求項1または2に記載の発明において、上面に前記絶縁膜および前記上層再配線が設けられた前記半導体構成体を複数個有し、前記各半導体構成体上面の上層再配線がフレキシブル配線板により接続されていることを特徴とする半導体装置。3. The invention according to claim 1, wherein a plurality of the semiconductor components provided with the insulating film and the upper layer redistribution on the upper surface are provided, and the upper layer redistribution on the upper surface of each semiconductor component is formed by a flexible wiring board. 4. A semiconductor device which is connected. 請求項21に記載の発明において、前記半導体構成体が互いの下面を対向して積層されていることを特徴とする半導体装置。22. The semiconductor device according to claim 21, wherein the semiconductor structures are stacked with their lower surfaces facing each other. 各々が、複数の再配線および前記各再配線上に設けられた柱状電極を有する複数の半導体構成体を相互に離間してベース板上に配置する工程と、
前記複数の半導体構成体上を含む前記ベース板の上面全体に絶縁膜を形成する工程と、
前記絶縁膜の上面に、接続パッドを有し且ついずれかの前記半導体構成体の対応する前記柱状電極に接続される上層再配線を、少なくともいずれかの前記上層再配線の接続パッドが前記半導体構成体間に形成された前記絶縁膜上に配置されるように形成する工程と、
前記各半導体構成体間における前記絶縁膜を切断して少なくともいずれかの前記上層再配線の接続パッドが前記半導体構成体の周側面を覆う前記絶縁膜上に形成された前記半導体構成体を少なくとも1つ有する半導体装置を複数個得る工程とを有することを特徴とする半導体装置の製造方法。
A step of arranging a plurality of semiconductor structures each having a plurality of rewirings and a columnar electrode provided on each of the rewirings on a base plate, separated from each other;
Forming an insulating film over the entire top surface of the base plate including the plurality of semiconductor structures;
On the upper surface of the insulating film, a connection pad is provided, and an upper layer rewiring connected to the corresponding columnar electrode of any of the semiconductor structures is connected to at least one of the connection pads of the upper layer rewiring. Forming it so as to be disposed on the insulating film formed between the bodies,
By cutting the insulating film between the respective semiconductor structures, at least one of the connection pads of the upper layer rewiring is formed on at least one of the semiconductor structures formed on the insulating film covering a peripheral side surface of the semiconductor structure. Obtaining a plurality of semiconductor devices having a plurality of semiconductor devices.
請求項23に記載の発明において、前記絶縁膜を切断する工程は、前記半導体構成体が複数個含まれるように切断することを特徴とする半導体装置の製造方法。24. The method of manufacturing a semiconductor device according to claim 23, wherein the step of cutting the insulating film is performed so as to include a plurality of the semiconductor components. 請求項23に記載の発明において、前記絶縁膜は複数層であり、その層間に、前記各半導体構成体の柱状電極とそれに対応する前記上層再配線とを接続する複数組の層間再配線を形成する工程を有することを特徴とする半導体装置の製造方法。24. The invention according to claim 23, wherein the insulating film has a plurality of layers, and a plurality of sets of interlayer rewirings for connecting the columnar electrodes of the respective semiconductor structures and the corresponding upper layer rewirings are formed between the layers. A method for manufacturing a semiconductor device, comprising: 請求項23に記載の発明において、前記上層再配線を含む前記絶縁膜の上面において前記上層再配線の接続パッド部を除く部分に最上層絶縁膜を形成する工程を有することを特徴とする半導体装置の製造方法。24. The semiconductor device according to claim 23, further comprising a step of forming an uppermost layer insulating film on a portion of the upper surface of the insulating film including the upper layer redistribution except a connection pad portion of the upper layer redistribution. Manufacturing method. 請求項26に記載の発明において、前記上層再配線の接続パッド部上に突起状の接続端子を形成する工程を有することを特徴とする半導体装置の製造方法。27. The method of manufacturing a semiconductor device according to claim 26, further comprising: forming a protruding connection terminal on the connection pad portion of the upper layer rewiring. 請求項26に記載の発明において、前記最上層絶縁膜上に電子部品を前記上層再配線の接続パッド部に接続させて設ける工程を有することを特徴とする半導体装置の製造方法。27. The method of manufacturing a semiconductor device according to claim 26, further comprising a step of providing an electronic component on the uppermost insulating film so as to be connected to a connection pad portion of the upper rewiring. 請求項23に記載の発明において、前記絶縁膜を切断する工程は前記絶縁膜を切断するとともに前記ベース板を切断し、前記半導体装置としてベース板を備えたものを得ることを特徴とする半導体装置の製造方法。24. The semiconductor device according to claim 23, wherein in the step of cutting the insulating film, the insulating film is cut and the base plate is cut to obtain a semiconductor device having a base plate. Manufacturing method. 請求項29に記載の発明において、切断前の前記ベース板下に別のベース板を配置し、前記ベース板を切断した後に、前記別のベース板を取り除く工程を有することを特徴とする半導体装置の製造方法。30. The semiconductor device according to claim 29, further comprising a step of disposing another base plate below the base plate before cutting, and removing the another base plate after cutting the base plate. Manufacturing method. 請求項23に記載の発明において、前記各半導体構成体間における前記絶縁膜を切断する工程の前に、前記ベース板を取り除く工程を有することを特徴とする半導体装置の製造方法。24. The method of manufacturing a semiconductor device according to claim 23, further comprising a step of removing the base plate before the step of cutting the insulating film between the semiconductor components. 請求項31に記載の発明において、前記ベース板を取り除く工程に引き続き、前記半導体基板を薄くする工程を有することを特徴とする半導体装置の製造方法。32. The method according to claim 31, further comprising, following the step of removing the base plate, a step of thinning the semiconductor substrate.
JP2002232289A 2002-08-09 2002-08-09 Semiconductor device Expired - Fee Related JP3918681B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2002232289A JP3918681B2 (en) 2002-08-09 2002-08-09 Semiconductor device
KR1020047005322A KR100593049B1 (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
CA2464078A CA2464078C (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
EP03784529A EP1527480A2 (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
AU2003253425A AU2003253425C1 (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
PCT/JP2003/009958 WO2004015771A2 (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
CN038012693A CN1568546B (en) 2002-08-09 2003-08-05 Semiconductor device and method of manufacturing the same
TW092121811A TWI231551B (en) 2002-08-09 2003-08-08 Semiconductor device and method of manufacturing the same
US10/826,039 US7294922B2 (en) 2002-08-09 2004-04-16 Semiconductor device and method of manufacturing the same
HK05105873.6A HK1073389A1 (en) 2002-08-09 2005-07-11 Semiconductor device and method of manufacturing the same
US11/671,268 US7618886B2 (en) 2002-08-09 2007-02-05 Semiconductor device and method of manufacturing the same
US11/671,318 US7547967B2 (en) 2002-08-09 2007-02-05 Semiconductor device and method of manufacturing the same
US12/415,782 US7737543B2 (en) 2002-08-09 2009-03-31 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232289A JP3918681B2 (en) 2002-08-09 2002-08-09 Semiconductor device

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP2006275656A Division JP4337858B2 (en) 2006-10-06 2006-10-06 Semiconductor device
JP2006275658A Division JP4297153B2 (en) 2006-10-06 2006-10-06 Manufacturing method of semiconductor device
JP2006275659A Division JP4337860B2 (en) 2006-10-06 2006-10-06 Semiconductor device
JP2006275657A Division JP4337859B2 (en) 2006-10-06 2006-10-06 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2004071998A true JP2004071998A (en) 2004-03-04
JP3918681B2 JP3918681B2 (en) 2007-05-23

Family

ID=32017747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232289A Expired - Fee Related JP3918681B2 (en) 2002-08-09 2002-08-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3918681B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072032A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2005317867A (en) * 2004-04-30 2005-11-10 Sony Corp Manufacturing method of semiconductor device
JP2006173232A (en) * 2004-12-14 2006-06-29 Casio Comput Co Ltd Semiconductor apparatus and its manufacturing method
JP2006303700A (en) * 2005-04-18 2006-11-02 Shinko Electric Ind Co Ltd Reader/writer and manufacturing method thereof
JP2007005810A (en) * 2005-06-24 2007-01-11 Megic Corp Manufacturing method of line device
WO2007010863A1 (en) * 2005-07-15 2007-01-25 Ryo Takatsuki Integrated circuit chip part, multi-chip module, their integration structure, and their fabrication method
JP2007043194A (en) * 2006-10-06 2007-02-15 Casio Comput Co Ltd Semiconductor device
KR100695321B1 (en) 2004-03-31 2007-03-14 가시오게산키 가부시키가이샤 Semiconductor device incorporating semiconductor constructing body and method of fabricating the same
US7256496B2 (en) 2004-06-02 2007-08-14 Casio Computer Co., Ltd. Semiconductor device having adhesion increasing film to prevent peeling
JP2007250595A (en) * 2006-03-13 2007-09-27 Nec Corp Semiconductor device and its manufacturing process
JP2007294832A (en) * 2005-07-15 2007-11-08 ▲高▼築 良 Integrated circuit chip component, and multi-chip module and its manufacturing method
JP2007318059A (en) * 2006-04-26 2007-12-06 Sony Corp Semiconductor device, and manufacturing method thereof
JP2008186941A (en) * 2007-01-29 2008-08-14 Cmk Corp Semiconductor device and its manufacturing method
JP2008306071A (en) * 2007-06-08 2008-12-18 Nec Corp Semiconductor device and method for manufacturing the same
JP2008547206A (en) * 2005-06-14 2008-12-25 キュービック・ウエハ・インコーポレーテッド Chip cross-linking
US7563640B2 (en) 2003-11-10 2009-07-21 Casio Computer Co., Ltd. Semiconductor device including semiconductor element surrounded by an insulating member and wiring structures on upper and lower surfaces of the semiconductor element and insulating member, and manufacturing method thereof
JP2009182202A (en) * 2008-01-31 2009-08-13 Casio Comput Co Ltd Method of manufacturing semiconductor device
JP2009260165A (en) * 2008-04-21 2009-11-05 Casio Comput Co Ltd Semiconductor device
US7615411B2 (en) 2003-06-03 2009-11-10 Casio Computer Co., Ltd. Semiconductor package including connected upper and lower interconnections, and manufacturing method thereof
JP2010118679A (en) * 2010-01-25 2010-05-27 Casio Computer Co Ltd Method of manufacturing semiconductor device
US7808073B2 (en) 2004-03-31 2010-10-05 Casio Computer Co., Ltd. Network electronic component, semiconductor device incorporating network electronic component, and methods of manufacturing both
JP2010245259A (en) * 2009-04-06 2010-10-28 Shinko Electric Ind Co Ltd Electronic device and method of manufacturing the same
JP2010251395A (en) * 2009-04-13 2010-11-04 Shinko Electric Ind Co Ltd Electronic device and method of manufacturing the same
KR101015704B1 (en) 2008-12-01 2011-02-22 삼성전기주식회사 Chip embedded printed circuit board and manufacturing method thereof
US7972903B2 (en) 2008-01-31 2011-07-05 Casio Computer Co., Ltd. Semiconductor device having wiring line and manufacturing method thereof
KR101053221B1 (en) 2008-01-31 2011-08-02 가시오게산키 가부시키가이샤 Semiconductor device and manufacturing method thereof
US8021922B2 (en) 2005-06-14 2011-09-20 Cufer Asset Ltd. L.L.C. Remote chip attachment
US8053903B2 (en) 2005-06-14 2011-11-08 Cufer Asset Ltd. L.L.C. Chip capacitive coupling
US8197626B2 (en) 2005-06-14 2012-06-12 Cufer Asset Ltd. L.L.C. Rigid-backed, membrane-based chip tooling
US8283778B2 (en) 2005-06-14 2012-10-09 Cufer Asset Ltd. L.L.C. Thermally balanced via
US8293574B2 (en) 2006-01-10 2012-10-23 Teramikros, Inc. Semiconductor device having a plurality of semiconductor constructs
US8456015B2 (en) 2005-06-14 2013-06-04 Cufer Asset Ltd. L.L.C. Triaxial through-chip connection
US8692391B2 (en) 2010-09-10 2014-04-08 Samsung Electro-Mechanics Co., Ltd. Embedded ball grid array substrate and manufacturing method thereof
KR20140043979A (en) * 2012-10-04 2014-04-14 엘지이노텍 주식회사 Semiconductor package substrate, package system using the same and method for manufacturing thereof
US8884433B2 (en) 2005-06-24 2014-11-11 Qualcomm Incorporated Circuitry component and method for forming the same
JP2018093221A (en) * 2016-09-26 2018-06-14 株式会社パウデック Semiconductor package, module, and electric device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326299A (en) * 2000-05-18 2001-11-22 Iep Technologies:Kk Semiconductor device and method for manufacturing the same
JP2001332643A (en) * 2000-05-19 2001-11-30 Iep Technologies:Kk Semiconductor device and its manufacturing method
JP2002016173A (en) * 2000-06-30 2002-01-18 Mitsubishi Electric Corp Semiconductor device
WO2002027786A1 (en) * 2000-09-25 2002-04-04 Ibiden Co., Ltd. Semiconductor element, method of manufacturing semiconductor element, multi-layer printed circuit board, and method of manufacturing multi-layer printed circuit board
JP2004072032A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004095836A (en) * 2002-08-30 2004-03-25 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004207306A (en) * 2002-12-24 2004-07-22 Casio Comput Co Ltd Semiconductor device and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326299A (en) * 2000-05-18 2001-11-22 Iep Technologies:Kk Semiconductor device and method for manufacturing the same
JP2001332643A (en) * 2000-05-19 2001-11-30 Iep Technologies:Kk Semiconductor device and its manufacturing method
JP2002016173A (en) * 2000-06-30 2002-01-18 Mitsubishi Electric Corp Semiconductor device
WO2002027786A1 (en) * 2000-09-25 2002-04-04 Ibiden Co., Ltd. Semiconductor element, method of manufacturing semiconductor element, multi-layer printed circuit board, and method of manufacturing multi-layer printed circuit board
JP2004072032A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004095836A (en) * 2002-08-30 2004-03-25 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004207306A (en) * 2002-12-24 2004-07-22 Casio Comput Co Ltd Semiconductor device and its manufacturing method

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072032A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
US7709942B2 (en) 2003-06-03 2010-05-04 Casio Computer Co., Ltd. Semiconductor package, including connected upper and lower interconnections
US7615411B2 (en) 2003-06-03 2009-11-10 Casio Computer Co., Ltd. Semiconductor package including connected upper and lower interconnections, and manufacturing method thereof
US7692282B2 (en) 2003-11-10 2010-04-06 Casio Computer Co., Ltd Semiconductor device including semiconductor element surrounded by an insulating member wiring structures on upper and lower surfaces of the semiconductor element and insulating member, and manufacturing method thereof
US7563640B2 (en) 2003-11-10 2009-07-21 Casio Computer Co., Ltd. Semiconductor device including semiconductor element surrounded by an insulating member and wiring structures on upper and lower surfaces of the semiconductor element and insulating member, and manufacturing method thereof
US7279750B2 (en) 2004-03-31 2007-10-09 Casio Computer Co., Ltd. Semiconductor device incorporating a semiconductor constructing body and an interconnecting layer which is connected to a ground layer via a vertical conducting portion
US7808073B2 (en) 2004-03-31 2010-10-05 Casio Computer Co., Ltd. Network electronic component, semiconductor device incorporating network electronic component, and methods of manufacturing both
US7608480B2 (en) 2004-03-31 2009-10-27 Casio Computer Co., Ltd. Method of fabricating a semiconductor device incorporating a semiconductor constructing body and an interconnecting layer which is connected to a ground layer via a vertical conducting portion
KR100695321B1 (en) 2004-03-31 2007-03-14 가시오게산키 가부시키가이샤 Semiconductor device incorporating semiconductor constructing body and method of fabricating the same
JP2005317867A (en) * 2004-04-30 2005-11-10 Sony Corp Manufacturing method of semiconductor device
US7910405B2 (en) 2004-06-02 2011-03-22 Casio Computer Co., Ltd. Semiconductor device having adhesion increasing film to prevent peeling
CN100459125C (en) * 2004-06-02 2009-02-04 卡西欧计算机株式会社 Semiconductor device and method of fabricating the same
US7256496B2 (en) 2004-06-02 2007-08-14 Casio Computer Co., Ltd. Semiconductor device having adhesion increasing film to prevent peeling
JP2006173232A (en) * 2004-12-14 2006-06-29 Casio Comput Co Ltd Semiconductor apparatus and its manufacturing method
US7550833B2 (en) 2004-12-14 2009-06-23 Casio Computer Co., Ltd. Semiconductor device having a second semiconductor construction mounted on a first semiconductor construction and a manufacturing method thereof
JP4630114B2 (en) * 2005-04-18 2011-02-09 新光電気工業株式会社 Reader / writer and manufacturing method thereof
JP2006303700A (en) * 2005-04-18 2006-11-02 Shinko Electric Ind Co Ltd Reader/writer and manufacturing method thereof
US8846445B2 (en) 2005-06-14 2014-09-30 Cufer Asset Ltd. L.L.C. Inverse chip connector
US9324629B2 (en) 2005-06-14 2016-04-26 Cufer Asset Ltd. L.L.C. Tooling for coupling multiple electronic chips
US8283778B2 (en) 2005-06-14 2012-10-09 Cufer Asset Ltd. L.L.C. Thermally balanced via
US10340239B2 (en) 2005-06-14 2019-07-02 Cufer Asset Ltd. L.L.C Tooling for coupling multiple electronic chips
US8197627B2 (en) 2005-06-14 2012-06-12 Cufer Asset Ltd. L.L.C. Pin-type chip tooling
US8197626B2 (en) 2005-06-14 2012-06-12 Cufer Asset Ltd. L.L.C. Rigid-backed, membrane-based chip tooling
US8053903B2 (en) 2005-06-14 2011-11-08 Cufer Asset Ltd. L.L.C. Chip capacitive coupling
JP2008547206A (en) * 2005-06-14 2008-12-25 キュービック・ウエハ・インコーポレーテッド Chip cross-linking
US8021922B2 (en) 2005-06-14 2011-09-20 Cufer Asset Ltd. L.L.C. Remote chip attachment
US9754907B2 (en) 2005-06-14 2017-09-05 Cufer Asset Ltd. L.L.C. Tooling for coupling multiple electronic chips
US8456015B2 (en) 2005-06-14 2013-06-04 Cufer Asset Ltd. L.L.C. Triaxial through-chip connection
US9147635B2 (en) 2005-06-14 2015-09-29 Cufer Asset Ltd. L.L.C. Contact-based encapsulation
JP2007005810A (en) * 2005-06-24 2007-01-11 Megic Corp Manufacturing method of line device
JP2016195263A (en) * 2005-06-24 2016-11-17 クゥアルコム・インコーポレイテッドQualcomm Incorporated Method of manufacturing circuitry device
JP2019047129A (en) * 2005-06-24 2019-03-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated Method of manufacturing circuitry device
US8884433B2 (en) 2005-06-24 2014-11-11 Qualcomm Incorporated Circuitry component and method for forming the same
JP2007005809A (en) * 2005-06-24 2007-01-11 Megic Corp Manufacturing method of line device
JP2022019819A (en) * 2005-06-24 2022-01-27 クゥアルコム・インコーポレイテッド Method of manufacturing circuitry device
JP2013232671A (en) * 2005-06-24 2013-11-14 Megica Corp Manufacturing method of line device
US7977801B2 (en) 2005-07-15 2011-07-12 Ryo Takatsuki Integrated circuit chip component, multi-chip module, their integration structure, and their fabrication method
JP4699953B2 (en) * 2005-07-15 2011-06-15 ▲高▼築 良 Multichip module and manufacturing method thereof
US8076179B2 (en) 2005-07-15 2011-12-13 Ryo Takatsuki Fabrication method for integrated circuit chip component, multi-chip module, and their integration structure
JP2007294832A (en) * 2005-07-15 2007-11-08 ▲高▼築 良 Integrated circuit chip component, and multi-chip module and its manufacturing method
WO2007010863A1 (en) * 2005-07-15 2007-01-25 Ryo Takatsuki Integrated circuit chip part, multi-chip module, their integration structure, and their fabrication method
US8293574B2 (en) 2006-01-10 2012-10-23 Teramikros, Inc. Semiconductor device having a plurality of semiconductor constructs
JP2007250595A (en) * 2006-03-13 2007-09-27 Nec Corp Semiconductor device and its manufacturing process
JP2007318059A (en) * 2006-04-26 2007-12-06 Sony Corp Semiconductor device, and manufacturing method thereof
JP2007043194A (en) * 2006-10-06 2007-02-15 Casio Comput Co Ltd Semiconductor device
JP2008186941A (en) * 2007-01-29 2008-08-14 Cmk Corp Semiconductor device and its manufacturing method
JP2008306071A (en) * 2007-06-08 2008-12-18 Nec Corp Semiconductor device and method for manufacturing the same
US8975150B2 (en) 2007-06-08 2015-03-10 Renesas Electronics Corporation Semiconductor device manufacturing method
US8004089B2 (en) 2008-01-31 2011-08-23 Casio Computer Co., Ltd. Semiconductor device having wiring line and manufacturing method thereof
KR101053221B1 (en) 2008-01-31 2011-08-02 가시오게산키 가부시키가이샤 Semiconductor device and manufacturing method thereof
US7972903B2 (en) 2008-01-31 2011-07-05 Casio Computer Co., Ltd. Semiconductor device having wiring line and manufacturing method thereof
US7843071B2 (en) 2008-01-31 2010-11-30 Casio Computer Co., Ltd. Semiconductor device including wiring and manufacturing method thereof
JP2009182202A (en) * 2008-01-31 2009-08-13 Casio Comput Co Ltd Method of manufacturing semiconductor device
JP2009260165A (en) * 2008-04-21 2009-11-05 Casio Comput Co Ltd Semiconductor device
US8351215B2 (en) 2008-12-01 2013-01-08 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing a chip embedded printed circuit board
KR101015704B1 (en) 2008-12-01 2011-02-22 삼성전기주식회사 Chip embedded printed circuit board and manufacturing method thereof
JP2010245259A (en) * 2009-04-06 2010-10-28 Shinko Electric Ind Co Ltd Electronic device and method of manufacturing the same
JP2010251395A (en) * 2009-04-13 2010-11-04 Shinko Electric Ind Co Ltd Electronic device and method of manufacturing the same
JP2010118679A (en) * 2010-01-25 2010-05-27 Casio Computer Co Ltd Method of manufacturing semiconductor device
US8692391B2 (en) 2010-09-10 2014-04-08 Samsung Electro-Mechanics Co., Ltd. Embedded ball grid array substrate and manufacturing method thereof
KR20140043979A (en) * 2012-10-04 2014-04-14 엘지이노텍 주식회사 Semiconductor package substrate, package system using the same and method for manufacturing thereof
KR101996935B1 (en) 2012-10-04 2019-07-08 엘지이노텍 주식회사 Semiconductor package substrate, Package system using the same and method for manufacturing thereof
JP2018093221A (en) * 2016-09-26 2018-06-14 株式会社パウデック Semiconductor package, module, and electric device

Also Published As

Publication number Publication date
JP3918681B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
JP3918681B2 (en) Semiconductor device
JP3888267B2 (en) Semiconductor device and manufacturing method thereof
US7618886B2 (en) Semiconductor device and method of manufacturing the same
JP2004207306A (en) Semiconductor device and its manufacturing method
TW200303609A (en) Semiconductor device and manufacturing method thereof
JP2003298005A (en) Semiconductor device and method of manufacturing thereof
JP4135390B2 (en) Semiconductor device and manufacturing method thereof
JP3951854B2 (en) Semiconductor device and manufacturing method thereof
JP2005005632A (en) Chip-like electronic component, its manufacturing method, and its packaging structure
JP3618330B2 (en) Semiconductor device and manufacturing method thereof
JP4337859B2 (en) Semiconductor device
JP2004165193A (en) Semiconductor device and its manufacturing method
CN113725096B (en) Semiconductor packaging method and semiconductor packaging structure
JP4337860B2 (en) Semiconductor device
JP4337858B2 (en) Semiconductor device
JP4297154B2 (en) Manufacturing method of semiconductor device
JP4297153B2 (en) Manufacturing method of semiconductor device
CN113725097B (en) Semiconductor packaging method and semiconductor packaging structure
JP2004356649A (en) Method of manufacturing semiconductor device
JP2004320059A (en) Method for manufacturing semiconductor device
JP2005011856A (en) Chip-like electronic part, its manufacturing method, and its mounting structure
JP4214968B2 (en) Semiconductor device and manufacturing method thereof
JP2020113613A (en) Semiconductor device and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees