JP2007294832A - Integrated circuit chip component, and multi-chip module and its manufacturing method - Google Patents

Integrated circuit chip component, and multi-chip module and its manufacturing method Download PDF

Info

Publication number
JP2007294832A
JP2007294832A JP2006194792A JP2006194792A JP2007294832A JP 2007294832 A JP2007294832 A JP 2007294832A JP 2006194792 A JP2006194792 A JP 2006194792A JP 2006194792 A JP2006194792 A JP 2006194792A JP 2007294832 A JP2007294832 A JP 2007294832A
Authority
JP
Japan
Prior art keywords
integrated circuit
circuit chip
protective layer
wiring
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006194792A
Other languages
Japanese (ja)
Other versions
JP4699953B2 (en
Inventor
Makoto Takatsuki
良 高築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006194792A priority Critical patent/JP4699953B2/en
Publication of JP2007294832A publication Critical patent/JP2007294832A/en
Application granted granted Critical
Publication of JP4699953B2 publication Critical patent/JP4699953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Abstract

<P>PROBLEM TO BE SOLVED: To achieve integration comparable to a silicon process at a low cost by a process and structure other than a silicon process. <P>SOLUTION: An integrated circuit chip component has at least either an integrated circuit chip component of terminal section forming area expansion type in which the terminal section forming surface of the integrated circuit chip is covered by a protection layer and an extending wiring section and a terminal section are formed in the protection layer, or an integrated circuit chip component of terminal section forming area identical type. One or a plurality of integrated circuit chip components of the terminal section forming area expansion type and the terminal section forming area identical type are arranged two-dimensionally or three-dimensionally in a further protection layer and horizontal wiring or vertical wiring for arbitrarily connecting the plurality of integrated circuit chip components in the further protection layer is formed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、シリコンプロセス技術における多層配線、平坦化技術、チップの3次元化技術とSIP(システムインパッケージ)、POP(パッケージオンパッケージ)又はマルチチップパッケージ等の3次元化パッケージ技術に関するものである。   The present invention relates to a multilayer wiring technique in a silicon process technique, a planarization technique, a three-dimensional chip technique, and a three-dimensional package technique such as SIP (system in package), POP (package on package), or multichip package. .

従来及び現在において半導体の集積化はシリコンプロセスによって為されてきており、パッケージ技術とは役割区分が明確にされてきた。例えば、半導体の集積化、機能の追加、価値創造は主としてシリコンプロセスによって為されてきた。しかし、集積回路プロセスの開発費、製造費用は巨額の一途をたどり、例えば65nmノードの開発費は世界全体で90億ドルに達し、一部のメーカーしか負担できなくなってきており、一部メーカーの寡占化の傾向に拍車がかかっている。
シリコンプロセスの微細化はいわゆるムーアの法則で示されているように、1シリコンテクノロジーノード(30%の微細化即ちセルサイズは半分になりチップ集積は倍となる集積)を2年毎に更新し、過去10年間で10分の1.7に縮小されてきているのに対し、パッケージ技術はワイアボンドの径について言えば100μmピッチが30μmピッチに、フリップチップ接続について言えば250μmピッチが150μmピッチに、配線板技術においては75μm幅が25μm幅程度であり、せいぜい10分の3程度であって縮小スピードに差があり、将来トレンドは更に縮小の度合いの差が開くものと推定されている。
Conventionally and at present, semiconductor integration has been performed by a silicon process, and the role classification has been clarified from the package technology. For example, integration of semiconductors, addition of functions, and value creation have been performed mainly by silicon processes. However, development costs and manufacturing costs for integrated circuit processes have been enormous. For example, development costs for 65nm nodes have reached 9 billion dollars worldwide, and only some manufacturers can bear them. The trend toward oligopoly is spurring.
As shown in Moore's Law, silicon process miniaturization is updated every two years for one silicon technology node (30% miniaturization, ie, cell size is halved and chip integration is doubled). While the package technology has been reduced to 1.7 / 10 over the past 10 years, the package technology is 100 μm pitch is 30 μm pitch for wire bond diameter, and 250 μm pitch is 150 μm pitch for flip chip connection. In the wiring board technology, the width of 75 μm is about 25 μm, which is about 3/10 at most and there is a difference in reduction speed, and it is estimated that the future trend will further open the difference in the degree of reduction.

集積化について、従来のパッケージ技術においてもSIPやPOPに見られる小規模の集積化技術はあっても、その技術の延長上に現在の数倍以上の高密度集積化を目標とする事は極めて困難である。又、最終製品の中におけるチップの集積化はパッケージ、実装技術によって限定されているのが現状である。今、時代はより高度な情報化技術、携帯化、小型化、低コスト化を具現化できる、シリコンプロセス以外の大規模集積化、実装の配線接続微細化のブレイクスルーを望んでいると思われる。   With regard to integration, even in the conventional packaging technology, even if there are small-scale integration technologies found in SIP and POP, it is extremely important to aim at higher density integration several times or more on the extension of the technology. Have difficulty. In addition, the integration of chips in the final product is currently limited by the packaging and mounting technology. Nowadays, it seems that we want a breakthrough of large-scale integration other than silicon process and miniaturization of wiring connection that can realize more advanced information technology, portability, miniaturization, and cost reduction. .

従来のSIP、POP、3次元チップモジュールに見られる技術は以下の文献において特徴付けられている。
従来技術の第1の例として、チップを接続した薄い配線フィルムと接着フィルムを交互に積層し、両フィルムに形成したバイアホールを接続してなる構成が知られている。(特許文献1、図4参照)
従来技術の第2の例として、ビア接続電極を備えたPTP(Paper Thin Package)基板上に半導体チップを搭載し、これをビア接続電極を備えたコア基板に接合したものを重ね合わせ熱プレスにより積層した構成が開示されている。(特許文献2、図5参照)
従来技術の第3の例として導電回路や層間導通部を備えた基板を複数用意し、基板に形成しておいた穴にICチップを搭載し、これらを重ね合わせ圧着積層してなる構成が開示されている。(特許文献3:図6、図9、図12参照)
従来技術の第4の例として、複数のチップに貫通孔を空け、導電性樹脂を埋め接続して積層化する構成が知られている。(特許文献4:図1参照)
また、他に、チップに作られた電極貫通孔の上下にバンプを形成し、複数チップの積層をバンプの接合によって行う方法、あるいは、配線基板の中に複数のWLP(Wafer Level Package)を1層埋め込み、モジュール実装密度を上げる構成が知られている。
特開平9−232503号公報 特開2002−343934号公報 特開2003−303938号公報 特許第2871636号公報
Technologies found in conventional SIP, POP, and 3D chip modules are characterized in the following documents.
As a first example of the prior art, a configuration is known in which thin wiring films and adhesive films to which chips are connected are alternately laminated and via holes formed in both films are connected. (See Patent Document 1 and FIG. 4)
As a second example of the prior art, a semiconductor chip is mounted on a PTP (Paper Thin Package) substrate provided with via connection electrodes, and this is joined to a core substrate provided with via connection electrodes by superposition hot pressing. A stacked configuration is disclosed. (See Patent Document 2 and FIG. 5)
As a third example of the prior art, there is disclosed a configuration in which a plurality of substrates having conductive circuits and interlayer conductive portions are prepared, IC chips are mounted in holes formed in the substrate, and these are stacked and pressure-bonded and laminated. Has been. (Patent Document 3: see FIGS. 6, 9, and 12)
As a fourth example of the prior art, a configuration is known in which through holes are formed in a plurality of chips, and conductive resins are buried and connected to form a stack. (See Patent Document 4: FIG. 1)
In addition, bumps are formed above and below the electrode through-holes formed in the chip, and a plurality of chips are laminated by bonding the bumps, or a plurality of WLPs (Wafer Level Packages) are provided in the wiring board. A configuration is known in which layer embedding and module mounting density are increased.
JP-A-9-232503 JP 2002-343934 A JP 2003-303938 A Japanese Patent No. 2871636

従来技術の特徴、限界、問題点について、下記の如く要約することができる。
(1)ベアチップ使用の問題点
従来技術の積層構造においては、ウエハー上でプローブテストされたベアチップを単に基板に装着して積層構造としたものが主流である。また、近年の小型化、薄型化の要求から、ベアチップは薄型化される傾向にあり、ベアチップに形成されている端子群においても狭ピッチ化される傾向にある。しかしながら、近年のウエハーレベルの電気特性テスト、バーンインテスト技術の発達は目覚ましくも、未だ未完成品(パッケージ品)に適応される電気特性テスト、及びバーンインテスト技術に比べて不完全である。例えば、半導体検査装置のプローバは、その検査用針の長さ、小径、小ピッチの制約のため、量産では数100MHz以上の高周波測定が困難な問題があり、また、ロジック品に見られる千ピン以上の多ピンテストも対応するプローバが高価格になる等の問題があり、ベアチップの電気特性良品の選別性能及びコストによる検査限界の問題がある。更に、バーンインテストによる初期不良除去にも限界がある。
そのような電気特性及び信頼性において不完全な部品で大きな集積化を行えば、集積された製品の歩留まり、最終テストの負担で、コスト上の大きな問題を持つことになり、集積化密度が限られているのが現状のSIP、マルチチップモジュールの最大の問題となっている。
The features, limitations and problems of the prior art can be summarized as follows.
(1) Problems of using bare chips In the conventional laminated structure, a laminated structure in which bare chips probe-tested on a wafer are simply mounted on a substrate is the mainstream. In addition, due to recent demands for miniaturization and thinning, bare chips tend to be thinned, and terminal groups formed on bare chips tend to be narrowed. However, the recent development of wafer-level electrical property test and burn-in test technology is remarkable, but is still incomplete compared to the electrical property test and burn-in test technology applied to incomplete products (package products). For example, a prober of a semiconductor inspection apparatus has a problem that it is difficult to measure a high frequency of several hundred MHz or more in mass production due to restrictions on the length, small diameter, and small pitch of the inspection needle, and a thousand pins found in logic products. There is a problem that the prober corresponding to the above-mentioned multi-pin test is expensive, and there is a problem of inspection limit due to sorting performance and cost of products with good electrical characteristics of bare chips. Furthermore, there is a limit to the removal of initial defects by the burn-in test.
Large integration with imperfect components in such electrical characteristics and reliability would have a significant cost problem due to the yield of the integrated product and the burden of final testing, limiting the integration density. This is the biggest problem of current SIP and multichip modules.

また、高集積化の為には集積回路チップの厚みを極薄(近年厚さ100μm以下から、更に10μm以下に進化する方向にある)にしなければならないが、薄くすると機械強度不足、集積回路チップにかかる応力及び表裏面の応力の不均等の問題によりベアチップ自体にソリ、ユガミ、ワレ、ヒビ等の問題が発生し、また、むき出しのベアダイの弱耐湿性、弱耐化学性等の問題もあり、製造、ハンドリングの際のチップの品質劣化のリスクが生じる。   In addition, for high integration, the thickness of the integrated circuit chip must be made extremely thin (in recent years, the thickness has evolved from 100 μm or less to 10 μm or less). Due to the uneven stress on the surface and the stress on the front and back surfaces, problems such as warping, cracks, cracks and cracks occur on the bare chip itself, and there are also problems such as weak moisture resistance and weak chemical resistance of the bare bare die. There is a risk of chip quality degradation during manufacturing and handling.

(2)パッケージした製品を構成要素として使用する場合の問題点
パッケージとした製品を構成要素として使う場合、上記問題を解決する為、パッケージして最終テストを行い選別した素子を集積化に使えばベアチップのテストに関する問題は解決するが、別の問題として、インターポーザー(再配線基板)自体の厚み(数10μm以上)、チップのインターポーザーの配線接続に微細化の限界があり、(下記(3)参照)小型化、薄型化、高集積化に障害となる。又パッケージするベアチップ自体も上述した如く極薄化に限界があり、又コスト的にもパッケージとした製品を更にパッケージ化するので2重にコストがかかる問題がある。また、パッケージした製品を配線基板に埋め込む構造の例も知られているが、パッケージ製品では基本的に1層のみしか埋め込めず、埋め込んだパッケージした製品間を配線することは難しく、その配線コストを考えると、他の既存技術(SiP:System in Package)に比べ競争力にかける問題がある。
(2) Problems when using a packaged product as a component When using a packaged product as a component, in order to solve the above problem, if a device that has been packaged, final tested and selected is used for integration Although the problems related to the bare chip test are solved, there are other problems such as the thickness of the interposer (rewiring board) itself (several tens of μm or more) and the wiring connection of the chip interposer. Refer to)) Obstacles to miniaturization, thinning, and high integration. Further, the bare chip to be packaged itself has a limit on the ultrathinning as described above, and there is a problem that the cost is doubled because the packaged product is further packaged. In addition, there is an example of a structure in which a packaged product is embedded in a wiring board. However, in a packaged product, basically only one layer can be embedded, and it is difficult to wire between embedded packaged products. Considering this, there is a problem that is more competitive than other existing technologies (SiP: System in Package).

(3)配線接続技術、ワイヤボンド、バンプの限界
ワイアボンドはキャピラリーの制約から15μm以下のワイアー径には出来ず、又ボンディングパッドも25μmピッチ以下は実現困難な問題がある。配線は基本的に上下のチップ間、チップとインターポーザー間の接続のみであるから、大きな集積化(10層以上)は難しくなる問題がある。
また、バンプ形成はコストが高く、20μmピッチ、10μm径以下にすることは困難な問題がある。
積層構造の場合、いずれも配線は基本的に積層のみ上下のチップ間、チップとインターポーザー間の接続のみであるから、配線されるベアチップに加工も必要であり、配線は複雑になるという制約をもっていて、水平方向にも直接配線接続を行うことは途中配線基板無しに困難な為、大規模な3次元集積化は限られる問題がある。
(4)ベアチップを配線基板内又は上に配置して配線基板を接着又は熱圧着によって積層する技術の限界
ベアチップ集積には前述の基本的な問題があり、ベアチップを実装した個別基板を重ねて接着による結合は、重ね合わせ精度、基板のそり、ゆがみ等の限界から微細パターンには限界があり、熱圧着は更に特に薄いベアチップに対する応力ダメージが発生するから、小型、薄型の集積モジュールには適さず、適応分野は限られる。
(3) Limitations of wiring connection technology, wire bonds, and bumps Wire bonds cannot be made with a wire diameter of 15 μm or less due to capillary restrictions, and bonding pads with a pitch of 25 μm or less are difficult to realize. Since the wiring is basically only the connection between the upper and lower chips and between the chip and the interposer, there is a problem that large integration (10 layers or more) becomes difficult.
In addition, bump formation is expensive, and there is a problem that it is difficult to make the pitch 20 μm or less and 10 μm diameter or less.
In the case of the laminated structure, wiring is basically only the connection between the upper and lower chips, and the connection between the chip and the interposer. Therefore, it is necessary to process the bare chip to be wired, and the wiring becomes complicated. In addition, since direct wiring connection in the horizontal direction is difficult without a wiring substrate on the way, there is a problem that large-scale three-dimensional integration is limited.
(4) Limitations of technology for placing bare chips in or on the wiring board and laminating the wiring boards by bonding or thermocompression Bare chip integration has the basic problems described above, and the individual substrates on which the bare chips are mounted are stacked and bonded. There is a limit to fine patterns due to limitations such as overlay accuracy, substrate warpage, distortion, etc., and thermocompression is particularly unsatisfactory for small and thin integrated modules because stress damage occurs even on thin bare chips. Application fields are limited.

(5)ベアチップに貫通孔を空け、導電性樹脂等で埋め、上下チップの接着でチップ積層を行う場合、形状を小さくして高集積化は可能になるが、ベアチップとして基本的な問題を持っていて、更にベアチップに貫通孔を設けることによる歩留まり低下、品質低下、コスト上昇の問題を持ち、接着による位置合わせ精度、接着の信頼性の問題もあり、高集積化には限界がある。また、貫通電極上下にバンプを形成し、バンプ接続によってチップ積層をする場合は多層バンプの信頼性、製造コストが問題となる。更に、基本的にチップ内貫通孔を経由して積層する場合、配線が限られチップの選択性が確保できない為、選択性を確保する為の追加回路を別途チップに作成するコストも問題となり、制限された配線機能ではモジュールの集積度向上に限界がある。その為の専用チップ製造も大きなコスト増になる。
(6)従来技術では、集積回路チップを組み込む応用製品の短期的要求を満たす観点から構造、製造方法も種々あり、将来の微細化、集積化まで含んだ一貫した統一された構造、製造方法が提供されていない。その為、技術目標設定、開発量産の工程、装置、材料、治工具の開発、標準化、改善等に無駄が多く、開発速度は遅くコスト高となるという問題も抱えている。
(5) When a through hole is made in a bare chip, filled with a conductive resin, etc., and chip stacking is performed by bonding the upper and lower chips, the shape can be reduced and high integration can be achieved, but there is a basic problem as a bare chip In addition, there are problems in yield reduction, quality reduction, and cost increase due to the provision of through holes in the bare chip, and there are also problems in alignment accuracy and adhesion reliability due to adhesion, and there is a limit to high integration. In addition, when bumps are formed above and below the through electrodes and chip stacking is performed by bump connection, the reliability and manufacturing cost of the multilayer bumps become a problem. Furthermore, when stacking basically through the through-holes in the chip, the wiring is limited and the selectivity of the chip cannot be secured, so the cost of separately creating an additional circuit for securing the selectivity becomes a problem, The limited wiring function limits the improvement of module integration. For this purpose, the production of dedicated chips also greatly increases costs.
(6) In the prior art, there are various structures and manufacturing methods from the viewpoint of satisfying the short-term requirements of application products incorporating integrated circuit chips, and there is a consistent and unified structure and manufacturing method including future miniaturization and integration. Not provided. For this reason, there is a lot of waste in the technical target setting, development mass production process, development of equipment, materials, jigs, standardization, improvement, etc., and the development speed is slow and the cost is high.

以上の背景から、現状では、集積回路チップの超集積を行う為の、インターポーザーを使わず、KGD(Known Good Die)即ち完成品に匹敵する電気特性及び信頼性の保証を示し、ベアチップの極薄化(200μm以下から、数μmまで)に対応できる基本素子構造及びその基本素子を高密度配線を有して3次元に配置し、将来更なる極薄化、微細化の技術進化に対して基本的に同じ構造、製造方法を維持出来る方法が提供されていないのが実情である。
本発明は、シリコンプロセスに匹敵する集積をシリコンプロセス以外のプロセスと構造で、しかも低コストで実現できるものであり、同時にシリコンプロセスの集積と相乗して更に高度な集積をなし、集積回路チップの高密度集積分野において価値創造を加速するブレイクスルーを実現するものである。
Based on the above background, the current state of electrical characteristics and reliability is comparable to that of a finished product without using an interposer for super-integration of integrated circuit chips. Basic element structure that can cope with thinning (from 200 μm to several μm) and its basic elements are arranged in three dimensions with high-density wiring, and for further ultra-thinning and miniaturization technology evolution in the future The fact is that no method has been provided that can basically maintain the same structure and manufacturing method.
The present invention is capable of realizing integration comparable to a silicon process with a process and structure other than the silicon process at a low cost, and at the same time, synthesizing with the integration of the silicon process to achieve a higher level of integration, It is a breakthrough that accelerates value creation in the high-density integration field.

本発明は、以上のような従来技術に鑑み、新知見に基づいて構築された、従来にはない全く新規な構造とその製造方法であり、その要旨とするところは以下の通りである。
1).本発明は端子部を備えた集積回路チップの少なくとも端子部形成面が、該端子部形成面よりも面積の大きな絶縁材からなる保護層により覆われ、前記保護層に、前記端子部を接続する拡張配線部及び再配置された端子部が形成され、該拡張配線部が、前記端子部から前記保護層の厚さ方向に延出形成された内部側上下導体部と、前記内部側上下導体部から前記保護層の面方向に延出形成された導体部と該導体部を前記保護層の外部側に引き出すための外部側上下導体部と、前記保護層の外部側に前記外部側上下導体部に接続されて設けられた再配置端子部とを具備した端子部形成面積拡張型にされてなることを特徴とする。
2).本発明のマルチチップモジュールは、端子部を備えた集積回路チップの少なくとも端子部形成面が、該端子部形成面よりも面積の大きな絶縁材からなる保護層により覆われ、前記保護層に、前記端子部を接続する拡張配線部及び再配置された端子部が形成され、該拡張配線部が、前記端子部から前記保護層の厚さ方向に延出形成された内部側上下導体部と、前記内部側上下導体部から前記保護層の面方向に延出形成された導体部と該導体部を前記保護層の外部側に引き出すための外部側上下導体部と、前記保護層の外部側に前記外部側上下導体部に接続されて設けられた再配置端子部とを具備してなる端子部形成面積拡張型の集積回路チップ部品と、
端子部を備えた集積回路チップの端子部形成面が、該端子部形成面と同一面積の絶縁材からなる保護層により覆われ、前記保護層に前記集積回路チップの端子部から前記保護層の外部側に設けられた端子部に接続された配線部が設けられてなる端子部形成面積同一型の集積回路チップ部品の少なくとも一方を備え、
前記端子部形成面積拡張型と前記端子部形成面積同一型の1つまたは複数の集積回路チップ部品が、更なる保護層の中に、2次元的又は3次元的に配置されてなり、前記更なる保護層中に2次元的又は3次元的に配置された前記複数の集積回路チップ部品を任意に接続するための水平配線又は垂直配線が形成されてなることを特徴とする。
The present invention is a completely new structure and a manufacturing method therefor, which has been constructed based on new knowledge in view of the conventional technology as described above, and the gist of the invention is as follows.
1). In the present invention, at least a terminal portion forming surface of an integrated circuit chip having a terminal portion is covered with a protective layer made of an insulating material having a larger area than the terminal portion forming surface, and the terminal portion is connected to the protective layer. An extension wiring portion and a rearranged terminal portion are formed, and the extension wiring portion extends from the terminal portion in the thickness direction of the protective layer, and the inner side upper and lower conductor portions A conductor portion extending in the surface direction of the protective layer, an outer upper and lower conductor portion for drawing the conductor portion to the outside of the protective layer, and the outer upper and lower conductor portion on the outer side of the protective layer And a repositioning terminal portion provided to be connected to the terminal portion forming area expansion type.
2). In the multichip module of the present invention, at least the terminal part forming surface of the integrated circuit chip provided with the terminal part is covered with a protective layer made of an insulating material having a larger area than the terminal part forming surface, An extended wiring portion for connecting the terminal portion and a rearranged terminal portion are formed, and the extended wiring portion is formed to extend from the terminal portion in the thickness direction of the protective layer; A conductor part formed to extend from the inner side upper and lower conductor part in the surface direction of the protective layer, an outer side upper and lower conductor part for pulling out the conductor part to the outside of the protective layer, and the outer side of the protective layer A terminal portion forming area expansion type integrated circuit chip component comprising a rearrangement terminal portion provided connected to the outer side upper and lower conductor portions;
A terminal portion forming surface of an integrated circuit chip having a terminal portion is covered with a protective layer made of an insulating material having the same area as the terminal portion forming surface, and the protective layer is covered with the protective layer from the terminal portion of the integrated circuit chip. Provided with at least one of integrated circuit chip parts of the same type of terminal part formation area provided with a wiring part connected to a terminal part provided on the outside side,
One or a plurality of integrated circuit chip components of the terminal part formation area expansion type and the terminal part formation area same type are arranged two-dimensionally or three-dimensionally in a further protective layer. A horizontal wiring or a vertical wiring for arbitrarily connecting the plurality of integrated circuit chip components arranged two-dimensionally or three-dimensionally in the protective layer is formed.

3).本発明のマルチチップモジュールは、前記更なる保護層中に2次元的又は3次元的に配置された前記複数の集積回路チップ部品のいずれかに対し、前記水平配線又は垂直配線を介して外部から接続自在に構成されることを特徴とする。
4).本発明のマルチチップモジュールは、前記保護層中に単一の集積回路チップ部品を配置してなるシングルチップモジュール又は前記マルチチップモジュールが配線基板上に形成され、前記シングルチップモジュール又はマルチチップモジュールと前記配線基板の電極接合が、電気メッキにより行われ、前記シングルチップモジュール又はマルチチップモジュールの保護層が前記配線基板に密着され、前記シングルチップモジュール又はマルチチップモジュールが配線基板と一体化されてなることを特徴とする。
5).本発明のマルチチップモジュールは、前記集積回路チップ部品が、更なる保護層の中に並列配置又は積層配置されて被覆され、内部側の集積回路チップ部品の端子を互いに接続する配線が該更なる保護層の中に設けられ、該更なる保護層上に接続延長して別の端子が配置され、互いの保護層が一体化されて該更なる保護層内に前記複数の集積回路チップ部品が離間配置されてなることを特徴とする。
6).本発明のマルチチップモジュールは、前記集積回路チップ部品が、集積回路チップ又は受動素子と混在状態で、複数、互いの保護層を一体化し、内部側の集積回路チップに配線された状態で集合されてなることを特徴とする。
7).本発明のマルチチップモジュールは、前記端子部形成面積拡張型の集積回路チップ部品の端子部を介して必要要求を満たす、100MHz以上の高周波、機能、AC、パラメータ等の電気特性テスト及びバーンインテスト合格済み、又は、同等の品質信頼性の集積回路チップ部品の保護層どうしが更なる保護層と一体化されてなることを特徴とする。
8).本発明のマルチチップモジュールは、2)〜7)のいずれかに記載のマルチチップモジュールにおいて、前記保護層の内部の集積回路チップ部品と集積回路チップと受動部品のいずれかの端子を選択的に接続する垂直配線または水平配線が、前記集積回路チップ部品と集積回路チップと受動部品のいずれかの外側の保護層に配置されてなることを特徴とする。
3). The multichip module of the present invention is externally connected to any one of the plurality of integrated circuit chip components arranged two-dimensionally or three-dimensionally in the further protective layer via the horizontal wiring or vertical wiring. It is configured to be connectable.
4). In the multichip module of the present invention, a single chip module in which a single integrated circuit chip component is arranged in the protective layer or the multichip module is formed on a wiring board, and the single chip module or the multichip module Electrode bonding of the wiring board is performed by electroplating, a protective layer of the single chip module or multichip module is in close contact with the wiring board, and the single chip module or multichip module is integrated with the wiring board. It is characterized by that.
5). In the multichip module of the present invention, the integrated circuit chip component is covered with a further protective layer arranged in parallel or stacked, and wiring for connecting the terminals of the integrated circuit chip components on the inner side to each other is provided. Provided in the protective layer, connected to and extended on the further protective layer, another terminal is disposed, the mutual protective layers are integrated, and the plurality of integrated circuit chip components are arranged in the further protective layer. It is characterized by being spaced apart.
6). In the multichip module of the present invention, the integrated circuit chip components are assembled in a state in which the integrated circuit chip components are mixed with the integrated circuit chip or the passive element, and a plurality of protective layers are integrated with each other and wired to the internal integrated circuit chip. It is characterized by.
7). The multi-chip module of the present invention satisfies the required requirements via the terminal part of the terminal part forming area expansion type integrated circuit chip part, and passes the electrical characteristics test and burn-in test of high frequency, function, AC, parameter, etc. of 100 MHz or higher. In other words, the protective layers of the integrated circuit chip components having the same quality and reliability are integrated with a further protective layer.
8). The multichip module of the present invention is the multichip module according to any one of 2) to 7), wherein the integrated circuit chip component, the integrated circuit chip, and the passive component inside the protective layer are selectively connected. A vertical wiring or a horizontal wiring to be connected is arranged in a protective layer outside any one of the integrated circuit chip component, the integrated circuit chip, and the passive component.

9).本発明のマルチチップモジュールは、前記内部の集積回路チップ部品の外側脇の保護層を上下導通した上下導体部により下層側の前記マルチチップモジュール内の積層回路チップ部品用のテスト端子と上層側の前記マルチチップモジュールの集積回路チップ用のテスト端子とが電気的に接続されてなることを特徴とする。
10).本発明のマルチチップモジュールは、2)〜9)のいずれかに記載のマルチチップモジュールにおいて、前記マルチチップモジュールの外部端子と、マルチチップモジュール内の任意の集積回路チップ部品又は集積回路チップ又は受動部品の任意の接続端子より、前記マルチチップモジュール内の任意の集積回路チップ部品と集積回路チップと受動部品のいずれかの接続端子への接続が該集積回路チップ部品と集積回路チップと受動部品以外の接続端子に経由接続されるか否か選択できる配線を有することを特徴とする。
11).本発明のマルチチップモジュールの製造方法は、基盤又は配線基板上に、請求項1または請求項2に記載の集積回路チップ部品、前記集積回路チップ部品を覆う保護層及び前記保護層中に前期集積回路チップ部品の端子に接続される配線及び配線端子と層間を接続するビア配線と同層の集積回路チップ部品を接続する水平配線の形成によって1層のチップモジュールを造り、前記1層のチップモジュールの製造工程の繰り返しによって積層製造することを特徴とする。
12).本発明のマルチチップモジュールの製造方法は、請求項1または請求項2に記載の集積回路チップ部品を前記端子部を上に向けて基盤上の絶縁材下部保護層上に設置した後、前記下部保護層上に前記集積回路チップ部品を覆うように絶縁材の上部保護層を形成し、前記上部保護層に前記集積回路チップ部品の端子部に接続して前記上部保護層上に露出する内部側上下導体部を形成し、この後、前記下部保護層の上面に前記内部側上下導体部に接続する拡張配線部を形成し、次いで前記下部保護層の上に前記拡張配線部を覆う上部保護層を形成するとともに、前記上部保護層に前記拡張配線部に接続して前記上部保護層の上面側に達する外部側上下導体部を形成し、その後、前記外部側上下導体部の上部側に前記上部保護層の上面に位置する端子部を形成することを特徴とする。
13).請求項1または請求項2に記載の集積回路チップ部品を、配線基板上に形成された絶縁材下部保護層上に前記集積回路チップ部品の端子部を上に向けて設置した後、前記下部保護層に配線基板端子に連結するビア配線及び端子を形成し、さらに、前記集積回路チップ部品を覆うように絶縁材の上部保護層を形成し、前記上部保護層に前記下部保護層上端子に連結するビア配線及び前記上部保護層上に露出する端子を形成し、前記端子に前記集積回路チップ部品の端子部が接続される内部側上下導体部及び前記上部保護層の上面に前記内部側上下導体部に接続する拡張配線部を形成することを特徴とする。
14).本発明のマルチチップモジュールの製造方法は、前記下部保護層上に水平方向に並ぶ複数の集積回路チップ部品を配置するとともに、これら複数の集積回路チップ部品の前記拡張配線部どうしを水平方向に接続する水平配線を形成することを特徴とする。
15).本発明のマルチチップモジュールの製造方法は、前記端子部形成面積拡張型又は前記端子部拡張面積同一型の集積回路チップ部品の端子部を介して必要要求を満たす、100MHz以上の高周波、機能、AC、パラメータ等の電気特性テスト及びバーンインテスト合格済みの集積回路チップ部品の保護層どうしが一体化されてなることを特徴とする。
16).本発明のマルチチップモジュールの製造方法は、端子部を有する集積回路チップを前記端子部を上に向けて基盤上の絶縁材下部保護層上に設置した後、前記下部保護層上に前記集積回路チップを覆うように絶縁材の上部保護層を形成し、前記上部保護層に前記集積回路チップの端子部に接続して前記上部保護層上に露出する内部側上下導体部を形成し、この後、前記上部保護層の上面に前記内部側上下導体部に接続する拡張配線部を形成し、次いで前記下部保護層の上に前記拡張配線部を覆う上部保護層を形成するとともに、前記上部保護層に前記拡張配線部に接続して前記上部保護層の上面側に達する外部側上下導体部を形成し、その後、前記外部側上下導体部の上部側に前記上部保護層の上面に位置する端子部を形成することを特徴とする。
9). The multichip module of the present invention includes a test terminal for the multilayer circuit chip component in the multichip module on the lower layer side and an upper layer side by the upper and lower conductor portions that vertically conduct the protective layer on the outer side of the internal integrated circuit chip component. A test terminal for an integrated circuit chip of the multichip module is electrically connected.
10). The multichip module of the present invention is the multichip module according to any one of 2) to 9), wherein an external terminal of the multichip module and any integrated circuit chip component or integrated circuit chip or passive in the multichip module. Connection from any connection terminal of the component to any connection terminal of any integrated circuit chip component, integrated circuit chip, and passive component in the multichip module is other than the integrated circuit chip component, integrated circuit chip, and passive component. It is characterized by having a wiring capable of selecting whether or not to be connected via a connection terminal.
11). A method for manufacturing a multichip module according to the present invention includes an integrated circuit chip component according to claim 1, a protective layer covering the integrated circuit chip component, and a previous integration in the protective layer on a substrate or a wiring board. A one-layer chip module is formed by forming a wiring connected to the terminal of the circuit chip component and a horizontal wiring connecting the integrated circuit chip component in the same layer as the via wiring connecting the wiring terminal and the layer, and the one-layer chip module It is characterized by being laminated and manufactured by repeating the manufacturing process.
12). According to a method of manufacturing a multichip module of the present invention, the integrated circuit chip component according to claim 1 or 2 is placed on an insulating material lower protective layer on a base with the terminal portion facing upward, and then the lower portion. An upper protective layer made of an insulating material is formed on the protective layer so as to cover the integrated circuit chip component, and is connected to a terminal portion of the integrated circuit chip component on the upper protective layer and exposed on the upper protective layer. Upper and lower conductor portions are formed, and thereafter, an extended wiring portion connected to the inner upper and lower conductor portions is formed on the upper surface of the lower protective layer, and then the upper protective layer covering the extended wiring portion on the lower protective layer And forming an external upper and lower conductor portion that reaches the upper surface side of the upper protective layer by connecting to the extended wiring portion in the upper protective layer, and then the upper portion on the upper side of the outer upper and lower conductor portion Edge located on top of protective layer And forming a section.
13). The integrated circuit chip component according to claim 1 or 2 is placed on an insulating material lower protective layer formed on a wiring board with a terminal portion of the integrated circuit chip component facing upward, and then the lower protection Form via wiring and terminals to be connected to the wiring board terminals in the layer, and further form an upper protective layer of an insulating material so as to cover the integrated circuit chip component, and connect to the upper protective layer to the lower protective layer upper terminal Forming via wiring and a terminal exposed on the upper protective layer, and connecting the terminal portion of the integrated circuit chip component to the terminal, and an inner upper and lower conductor on the upper surface of the upper protective layer An extended wiring portion connected to the portion is formed.
14). In the method for manufacturing a multichip module of the present invention, a plurality of integrated circuit chip components arranged in a horizontal direction are arranged on the lower protective layer, and the extension wiring portions of the plurality of integrated circuit chip components are connected in a horizontal direction. The horizontal wiring to be formed is formed.
15). The manufacturing method of the multichip module of the present invention satisfies the required requirements via the terminal portion of the integrated circuit chip component of the terminal portion formation area extended type or the terminal portion extended area same type, high frequency of 100 MHz or more, function, AC The protective layers of the integrated circuit chip parts that have passed the electrical characteristics test such as parameters and the burn-in test are integrated.
16). According to the method of manufacturing a multichip module of the present invention, an integrated circuit chip having a terminal portion is placed on an insulating material lower protective layer on a base with the terminal portion facing upward, and then the integrated circuit is formed on the lower protective layer. An upper protective layer made of an insulating material is formed so as to cover the chip, and internal upper and lower conductor portions that are connected to terminal portions of the integrated circuit chip and exposed on the upper protective layer are formed on the upper protective layer, and then Forming an extension wiring part connected to the inner upper and lower conductors on the upper surface of the upper protection layer, and then forming an upper protection layer covering the extension wiring part on the lower protection layer, and the upper protection layer And forming an external upper and lower conductor portion that is connected to the extended wiring portion and reaches the upper surface side of the upper protective layer, and then a terminal portion located on the upper surface of the upper protective layer on the upper side of the outer upper and lower conductor portion It is characterized by forming .

17).本発明のチップモジュールの製造方法は、11)〜16)のいずれかに記載の製造方法により得られたチップモジュールを複数積層し、上層側のチップモジュールの配線部と下層側のチップモジュールの配線部とを上下導体部により接続することを特徴とする。 17). The chip module manufacturing method of the present invention includes a stack of a plurality of chip modules obtained by the manufacturing method according to any one of 11) to 16), and wiring between an upper layer chip module wiring layer and a lower layer chip module wiring. The parts are connected by upper and lower conductor parts.

18).本発明のチップモジュールの製造方法は、11)〜17)のいずれかに記載の製造方法により、チップモジュールを複数得るとともに、これらのチップモジュールを積層し、上層側のチップモジュールの配線部と下層側のチップモジュールの配線部との接続は、最終的なチップモジュール内の任意のチップモジュールの任意の接続端子と該チップモジュール内の任意のチップモジュールの任意の接続端子又は該チップモジュールの外部端子とが該チップモジュール内の他のチップモジュールの任意の接続端子に接続することを選択して行うことを特徴とする。
19).本発明のチップモジュールの製造方法は、複数の集積回路チップを絶縁体の中に該複数集積回路チップ間を任意に接続する配線と共に3次元的に配置し、該絶縁体中に一体化されたマルチチップモジュールを作る方法として、集積回路チップ部品又は各種のチップモジュールを絶縁体の中に埋め込み又は絶縁体で覆い、該絶縁体に配線パターンを形成する前に、該集積回路チップ部品またはチップモジュールを該覆った絶縁体の硬化によってこれらを結合、一体化し、集積化することを特徴とする。
20).本発明のチップモジュールの製造方法は、11)〜19)のいずれかに記載のチップモジュールを構成する全ての素子が電気特性、信頼性が保証されたものであり、その場合に、チップモジュールの電気的機能、特性を保証する方法として、チップモジュール内の配線機能、特性のみをテストすることを特徴とする。
18). The chip module manufacturing method of the present invention is obtained by obtaining a plurality of chip modules by the manufacturing method described in any one of 11) to 17), and laminating these chip modules, and the wiring portion and lower layer of the upper layer side chip module. The connection with the wiring part of the chip module on the side is made by connecting any connection terminal of any chip module in the final chip module and any connection terminal of any chip module in the chip module or an external terminal of the chip module. Is selected and connected to an arbitrary connection terminal of another chip module in the chip module.
19). According to the chip module manufacturing method of the present invention, a plurality of integrated circuit chips are three-dimensionally arranged in an insulator together with wiring for arbitrarily connecting the plurality of integrated circuit chips, and integrated into the insulator. As a method of making a multichip module, an integrated circuit chip component or various chip modules are embedded in an insulator or covered with an insulator, and a wiring pattern is formed on the insulator before the integrated circuit chip component or chip module is formed. These are combined, integrated, and integrated by curing the insulating material covering them.
20). The chip module manufacturing method of the present invention is such that all elements constituting the chip module according to any one of 11) to 19) are guaranteed in electrical characteristics and reliability. As a method for guaranteeing the electrical function and characteristics, only the wiring function and characteristics in the chip module are tested.

本発明によれば、以下に説明する効果を得ることができる。
1).集積回路チップを集積する為の素子を、微小、極薄かつKGD(Known Good Die)として保証し、即ちパッケージ品並みに数百MHz以上の高周波、多ピンテストを可能にして電気特性テスト適用範囲を上げ、初期信頼性不良を除去するバーンインテストも適用できて、素子の良品性を判別し、従来パッケージ品よりはるかに小型で、インターポーザーなく薄く作ることが出来る。該素子のテスト端子ピッチは従来パッケージ品の300μmに対しソケット技術に合わせて最適なピッチを例えば80μm〜150μmの間で、又、最適径レイアウトと共に選択できる。また、将来の技術の進展に合わせて現状ボンディングやバンプ接合の制約のための20〜30μmレベルの端子ピッチを更に縮小し、チップ面外に端子を配置し、テスト接触時のチップに対する機械的圧力を回避することも可能になる。
2).前記素子は集積回路チップ表裏面にかかる応力を絶縁体で緩和、集積回路チップを保護する為、集積回路チップの薄型化100μm以下より数μmまでに対応出来、集積製造過程での損傷が極めて少ない。即ち、極めて薄い素子を損傷なく製造できる。
3).3次元集積製造工程は、埋没される素子の保護層と埋没する絶縁体とが1層毎に素子間を接続する配線と共に積み上げ密着一体化される為、重ね合わせ圧着による積層より素子に与える応力が少なく、高密度高集積が可能となる。又集積する集積回路チップは薄くても保護層で被覆、保護されているので機械的強度に加えて耐化学性、耐湿性も増し、製造工程中の品質低下を防止できる。
According to the present invention, the effects described below can be obtained.
1). Devices for integrating integrated circuit chips are guaranteed to be very small, ultra-thin, and KGD (Known Good Die). The burn-in test that removes the initial reliability failure can be applied, the quality of the device can be determined, and it is much smaller than the conventional package product and can be made thin without an interposer. The test terminal pitch of the device can be selected from 80 μm to 150 μm, for example, in accordance with the socket technology with the conventional package product of 300 μm, and with the optimal diameter layout. In addition, according to future technological progress, the terminal pitch of 20-30 μm level for current bonding and bump bonding restrictions is further reduced, terminals are arranged outside the chip surface, and the mechanical pressure on the chip at the time of test contact Can also be avoided.
2). Since the element relaxes the stress applied to the front and back surfaces of the integrated circuit chip with an insulator and protects the integrated circuit chip, the integrated circuit chip can be made thinner to less than 100 μm to several μm, and the damage in the integrated manufacturing process is extremely small. . That is, an extremely thin element can be manufactured without damage.
3). In the three-dimensional integrated manufacturing process, the protective layer of the buried element and the buried insulator are stacked and closely integrated together with the wiring connecting the elements for each layer. Therefore, high density and high integration are possible. Even if the integrated circuit chip to be integrated is thin, it is covered and protected by a protective layer, so that chemical resistance and moisture resistance are increased in addition to mechanical strength, and quality deterioration during the manufacturing process can be prevented.

4).3次元集積工程のパターニングはリソグラフィーにより、配線は基本的にメッキによる為、重ね合わせの場合の合わせ精度の問題なく、配線にボンディング、半田等の金属接合がなく、配線の微細化がシリコンプロセスの技術の展開で容易に進行できる。
配線基板上にメッキ配線によってモジュールが配線接続でき、絶縁層が密着一体化できるから、極薄の集積回路チップ部品に熱ストレスを与えなく微細加工が精度良くできる。また、モジュール製造過程で配線基板に一体化されるから、実装工程を省略でき、コスト品質上有利となる。
5).又、配線微細化による高密度配線能力を図ることができ、複数電源ラインが可能であり、グランド線を自在に作ることができ、配線パターンの精度向上を図ることができ、コンデンサー、コイル等の受動素子も容易に組み込める。また、モジュール内配線能力も、構成する素子を配線基板上に1層に配置した状態(平置き)と同レベル、即ちモジュール内外よりモジュール内素子に対して、他の素子の経由配線無く接続出来、モジュールの能力が一段と増す。モジュールの形状は小さく高周波要求に対応できるから、モジュールの高周波時の要求SI(シグナルインテグリティー)に対応出来、モジュールの高性能化、高機能化を図ることができる。
6).発熱の放熱も放熱用ラインの形成によりある程度熱拡散を行うことができる。
7).3次元集積工程を構成する集積回路チップを覆う絶縁体の面積及び該絶縁体上に形成される接続端子の面積がいずれも該チップの面積及びチップ上の接続端子より大きい、即ちチップ上の端子が拡張配線された素子も、高周波テスト、多ピン等のテスト要求を必要としない該絶縁体の面積及び絶縁体上の接続端子の面積が同一の素子、即ちチップ上の端子が同一面積型で延出配線された素子も同様に組み込むことが出きるので様々な集積回路チップを集積でき、モジュールの自由度、汎用性が増す。
4). Patterning in the three-dimensional integration process is performed by lithography, and the wiring is basically plated, so there is no problem of alignment accuracy in the case of superposition, there is no metal bonding such as bonding or soldering in the wiring, and miniaturization of the wiring is a process of silicon process. It can easily be advanced with the development of technology.
Since the module can be connected to the wiring board by the plated wiring and the insulating layer can be tightly integrated, fine processing can be performed with high accuracy without applying thermal stress to the extremely thin integrated circuit chip component. Moreover, since it is integrated with the wiring board in the module manufacturing process, the mounting process can be omitted, which is advantageous in terms of cost quality.
5). Also, high-density wiring capability can be achieved by miniaturization of wiring, multiple power supply lines are possible, ground lines can be made freely, wiring pattern accuracy can be improved, capacitors, coils, etc. Passive elements can be easily incorporated. In addition, the wiring capacity in the module is the same level as the state in which the constituent elements are arranged in a single layer on the wiring board (flat placement), that is, it can be connected to the elements in the module from inside and outside the module without passing through other elements. , The module's ability will increase further. Since the module has a small shape and can respond to high frequency requirements, it can meet the required SI (signal integrity) of the module at high frequencies, and can improve the performance and functionality of the module.
6). Heat can be dissipated to some extent by forming heat dissipating lines.
7). The area of the insulator covering the integrated circuit chip constituting the three-dimensional integration process and the area of the connection terminal formed on the insulator are both larger than the area of the chip and the connection terminal on the chip, that is, the terminal on the chip Elements with extended wiring are also elements having the same area of the insulator and the area of the connection terminal on the insulator that do not require a test request such as a high-frequency test and multiple pins, that is, the terminals on the chip are of the same area type. Since the extended wiring elements can be incorporated in the same manner, various integrated circuit chips can be integrated, and the degree of freedom and versatility of the module increases.

8).マルチチップモジュールの構造も、集積回路チップを、集積回路チップ間を取り囲み接続する配線と共に絶縁体の中に3次元的に整列配置出来るので、チップの薄型化、リソグラフィー、平坦化技術の進展に合わせ、同一形状で高密度の集積が出来、開発、量産の無駄がない。従って仕様の標準化形成が容易となり、設計、製造、製品の応用に寄与する。
9).マルチチップモジュールを構成する素子が完全に良品性を保証されているので、組み込まれる該素子に歩留まりの問題が無く、高集積化が出来る。従来マルチチップモジュールの電気特性を保証する電気特性テストは構成する素子のテストも含め素子の増える毎に莫大な工数を要して高コストの一因をなしていたが、今回の発明によればマルチチップモジュールの量産時における電気特性保証は、一旦システム評価を行った後、配線の機能及び品質検査を中心に行うことが出来るのでテスト負担コストが大幅に軽減できる。
10).従来技術よりはるかに高密度なマルチチップモジュール、例えば1mm厚の中に16−32以上の積層、3次元的に集積すればその水平個数倍の集積が先端集積回路チップを構成素子として使え、この事はシリコンテクノロジーのノード数世代先以上の集積を意味してその開発、製造コストはシリコンプロセス開発及び製造に比べはるかに少ない。
8). The structure of the multi-chip module also allows the integrated circuit chips to be three-dimensionally aligned in the insulator together with the wiring that surrounds and connects the integrated circuit chips, so that the thinning of the chip, lithography, and flattening technology can be matched. , High density integration with the same shape and no waste of development and mass production. Therefore, standardization of specifications is facilitated, contributing to design, manufacturing, and product application.
9). Since the elements constituting the multichip module are completely guaranteed good quality, there is no problem of yield in the incorporated elements, and high integration can be achieved. Conventionally, the electrical characteristic test for guaranteeing the electrical characteristics of the multichip module has been one of the causes of high cost because it requires enormous man-hours for each increase in the elements including the test of the constituent elements, but according to the present invention, The electrical characteristic guarantee for mass production of multichip modules can be performed mainly after the system evaluation and then the wiring function and quality inspection, so the test burden cost can be greatly reduced.
10). Much higher density multi-chip module than the prior art, for example, stacking 16-32 or more in 1 mm thickness, if integrated three-dimensionally, the integration of the horizontal number of times can use the advanced integrated circuit chip as a component, This means integration of silicon technology more than several generations of nodes, and its development and manufacturing costs are much lower than silicon process development and manufacturing.

11).応用製品として例えばDRAM,FLASHメモリーのような一般メモリーチップの大規模集積はそれだけで大きな用途がある。又、高性能であるがセルの微細化の困難なMRAMやFRAMの様なメモリーチップはセル部分と周辺回路を別チップに分けて高密度集積することによってメモリーの高集積化が効率良くなされる。同一シリコンプロセスで作るのが技術上又は経済上困難集積回路チップの集積は非常に効果的なモジュールとなる。携帯電話等の携帯機器の高機能化、フラッシュメモリーの大容量化かつHDDの代替等においてモバイルPCの進展に大きく寄与する。基本的に、アナログICやデジタルICの混在等、同一シリコンプロセスで製造困難が、高コスト又は製造困難な製品要求を満たす。高性能CPUも大きなキャッシュメモリーをモジュールの中で別分離する事ができれば、高性能CPUの大きなコスト削減となる。又階層的大規模集積の可能性から現状の相当の部分の配線ボード上の集積回路チップその他受動部品も含めて小型一体化出来、携帯製品のみならず全ての集積回路チップを必要としている機器に高性能化、高機能化、低コスト化をもたらす。
12).集積モジュールは、配線基盤上に形成して、マルチチップモジュールとして、又マルチチップモジュールの最外部上に接続端子を生成しより高集積かつ高機能のデバイスに出来る。又該マルチチップモジュールを更に複数個集積して更なる高集積化が可能となるから、即ちマルチチップモジュールの階層化が行え、異なる厚さの集積回路チップや受動素子も一体化してモジュールにできるから、自由度、汎用性が一段と増す。
13).マルチチップモジュール内の配線機能は、外部配線又はモジュール内の任意のチップの任意の接続端子より、任意のチップの任意の接続端子に、他のチップの接続端子に接続すること無く直接接続できるので、積層構造ながら平置き配線機能を有し柔軟性がある。
11). As application products, large scale integration of general memory chips such as DRAM and FLASH memory has a great use by itself. In addition, memory chips such as MRAM and FRAM, which have high performance but difficult to miniaturize cells, can be efficiently integrated by dividing the cell portion and peripheral circuits into separate chips and integrating them at high density. . Integration of integrated circuit chips is a very effective module because it is technically or economically difficult to make by the same silicon process. It will greatly contribute to the advancement of mobile PCs in the enhancement of functions of portable devices such as mobile phones, the increase of flash memory capacity and the replacement of HDDs. Basically, difficult to manufacture in the same silicon process, such as a mixture of analog ICs and digital ICs, satisfies product requirements that are expensive or difficult to manufacture. If a high performance CPU can separate a large cache memory in a module, the cost of the high performance CPU will be greatly reduced. In addition, because of the possibility of hierarchical large-scale integration, it can be integrated in a small size including integrated circuit chips and other passive components on a considerable portion of the current wiring board, and it can be used not only for portable products but also for devices that require all integrated circuit chips. High performance, high functionality, low cost.
12). An integrated module can be formed on a wiring board to form a multi-chip module or a connection terminal on the outermost part of the multi-chip module to make a highly integrated and highly functional device. Further, since a plurality of multichip modules can be further integrated to achieve higher integration, that is, the multichip modules can be hierarchized, and integrated circuit chips and passive elements having different thicknesses can be integrated into a module. Therefore, the degree of freedom and versatility are further increased.
13). The wiring function in the multi-chip module can be directly connected from any connection terminal of any chip in the module to any connection terminal of any chip without connecting to the connection terminals of other chips. Although it has a laminated structure, it has a flat wiring function and is flexible.

以下に本発明の最良の形態について説明する。
なお、以下に説明する実施形態は、本発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り、本発明を限定するものではない。
図1〜図9は本発明の端子部形成面積拡張型の集積回路チップ部品を製造する方法を工程順に説明するための断面図であり、図4〜図7は単一の集積回路チップ部品製造工程を拡大図として示す。図面における符号10は、図1〜図9に示す工程を経て製造される本発明の第1実施形態の端子部形成面積拡張型の集積回路チップ部品の断面図である。なお、これらの断面図あるいは後に示す断面図においては、内部配線や内部構造などが見やすいように各部の縮尺や寸法比、配線本数などを適宜調整して示す。
「集積回路チップ部品の構成」
図7に示す本発明の第1実施形態の端子部形成面積拡張型の集積回路チップ部品(Integrated Circuit Chip Component)Aは、基盤1の上に絶縁材からなる保護層2が積層形成され、この保護層2の内上部側に基盤1にほぼ並行に集積回路チップ(Integrated Circuit Chip Module)3が埋設され、該集積回路チップ3の上部側に集積回路チップ3よりも縦幅または横幅の拡張された拡張配線部5が前記集積回路チップ3の端子部3aに電気的に接続するように形成され、保護層2の上面に先の拡張配線部5を介して集積回路チップ3の端子部3aに電気的に接続する面拡張端子部(再配置端子部)6が形成されている。
The best mode of the present invention will be described below.
In addition, since embodiment described below is described in detail in order to make the meaning of this invention understand better, unless otherwise specified, this invention is not limited.
FIGS. 1 to 9 are cross-sectional views for explaining a method of manufacturing an integrated circuit chip component of the terminal area forming area expansion type according to the present invention in the order of steps, and FIGS. 4 to 7 are steps for manufacturing a single integrated circuit chip component. The process is shown as an enlarged view. Reference numeral 10 in the drawing is a cross-sectional view of the integrated circuit chip component of the terminal portion formation area expansion type according to the first embodiment of the present invention manufactured through the steps shown in FIGS. Note that in these cross-sectional views or the cross-sectional views shown later, the scales, dimensional ratios, the number of wires, and the like of each part are appropriately adjusted so that the internal wires and the internal structure can be easily seen.
"Configuration of integrated circuit chip parts"
An integrated circuit chip component A of the terminal portion forming area expansion type integrated circuit chip component A according to the first embodiment of the present invention shown in FIG. 7 is formed by laminating a protective layer 2 made of an insulating material on a substrate 1. An integrated circuit chip module (Integrated Circuit Chip Module) 3 is embedded substantially in parallel with the substrate 1 on the inner upper side of the protective layer 2, and the integrated circuit chip 3 is expanded on the upper side of the integrated circuit chip 3 in the vertical or horizontal width. The extended wiring portion 5 is formed so as to be electrically connected to the terminal portion 3a of the integrated circuit chip 3, and is connected to the terminal portion 3a of the integrated circuit chip 3 via the extended wiring portion 5 on the upper surface of the protective layer 2. A surface expansion terminal portion (relocation terminal portion) 6 to be electrically connected is formed.

図7に示す集積回路チップ3とは、内部に各種の半導体素子を利用した集積回路を備え、該集積回路の各入出力端子をワイヤボンディング、バンプなどの接合部材により端子部3aに接続したものを絶縁材の封止樹脂で封止してなる構造のLSI、ICなどのベアチップである。このような集積回路チップ3の一例としてはCPU(中央演算装置)と称される高機能型の集積回路を備えたものから、メモリと称される記憶素子まで種々のものを採用できるが、1000を超えるような端子数の大規模なCPUから、メモリにおいて端子数100以下程度のものまで種々のものを使用することができる。従って図7においては説明の簡略化のために集積回路チップ3の上面(端子部形成面)側に6個の端子部3aが記載された例を示しているが、実際に適用する集積回路チップにおいては少ないものでも数10、多いものでは1000以上の端子部3aを備えたものが適用される。勿論、本発明においてこの範囲外の端子数を有するものを適用しても良い。   The integrated circuit chip 3 shown in FIG. 7 includes an integrated circuit using various semiconductor elements inside, and each input / output terminal of the integrated circuit is connected to the terminal portion 3a by a bonding member such as wire bonding or bump. Is a bare chip such as an LSI or an IC having a structure in which is sealed with an insulating sealing resin. As an example of such an integrated circuit chip 3, a variety of devices can be employed, from those having a high-function integrated circuit called a CPU (central processing unit) to storage elements called a memory. Various CPUs can be used, ranging from a large-scale CPU having more terminals than the above to a memory having about 100 terminals or less in the memory. Accordingly, FIG. 7 shows an example in which six terminal portions 3a are described on the upper surface (terminal portion forming surface) side of the integrated circuit chip 3 for the sake of simplification. In the case of a small number, the number of terminals is several tens, and in the case of a large number, those having 1000 or more terminal portions 3a are applied. Of course, in the present invention, one having a number of terminals outside this range may be applied.

前記基盤1は絶縁性のものあるいは導電性のもの、いずれのものを用いても差し支えないが、ハンドリングが可能な程度の強度及び平坦性を有し、その上に形成される保護層2を塗布又は貼り付け、ある程度の密着性を有しかつ剥離できるものが必要となる。
前記保護層2は、PI(ポリイミド)樹脂、フェノール樹脂、BCB、OXAZOLE等の光感光熱硬化性樹脂あるいは一般の光非感光有機系、熱又は光等の硬化性樹脂などの絶縁材から、SOG(スピンオングラス)等に代表される無機系材料、及び、有機系、無機系の混合材料またはTEOS系、その他のCVD用絶縁材料からCVD工程にて、または、塗布系材料の硬化との混合により生成されるものなどからなり、内部に集積回路チップ3を埋設することができる程度の厚さに形成されている。従って保護層2の厚さは集積回路チップ3の厚さに応じて適宜変更可能である。保護層2を構成する樹脂は前述した光感光熱硬化性樹脂、光火感光熱硬化性樹脂などに限るものではないが、熱硬化性樹脂では熱収縮率が大きく、100μm程度あるいはそれよりも薄いタイプの集積回路チップ3を適用した場合に熱硬化性樹脂の熱収縮により集積回路チップ3に熱応力が作用し、チップ割れや欠けの原因となるおそれがあるので、極薄型の集積回路チップ3を用いる場合は収縮率の小さい樹脂を用いることが好ましい。又、この点、該集積回路チップ部品Aにおいてはチップの上下面に保護層が被覆され、チップにかかる応力のバランスが取られ、チップの薄型対策になっている。
The substrate 1 may be either insulating or conductive, but has a strength and flatness that can be handled, and a protective layer 2 formed thereon is applied. Alternatively, it is necessary to attach, have a certain degree of adhesion and can be peeled off.
The protective layer 2 is made of an insulating material such as a photo-sensitive thermosetting resin such as PI (polyimide) resin, phenol resin, BCB, OXAZOLE, or a general photo-non-photosensitive organic type, curable resin such as heat or light, and SOG. (Spin-on-glass) and other inorganic materials, and organic and inorganic mixed materials or TEOS and other insulating materials for CVD in the CVD process or by mixing with curing of coating materials The thickness of the integrated circuit chip 3 can be embedded therein. Accordingly, the thickness of the protective layer 2 can be appropriately changed according to the thickness of the integrated circuit chip 3. The resin constituting the protective layer 2 is not limited to the above-described photothermographic resin, photofire photosensitive thermosetting resin, etc., but the thermosetting resin has a large thermal shrinkage and is about 100 μm or thinner. When the integrated circuit chip 3 is applied, thermal stress acts on the integrated circuit chip 3 due to thermal shrinkage of the thermosetting resin, which may cause chip cracking or chipping. When used, it is preferable to use a resin having a small shrinkage rate. In this respect, in the integrated circuit chip component A, the upper and lower surfaces of the chip are covered with protective layers to balance the stress applied to the chip, which is a measure for reducing the thickness of the chip.

前記保護層2は下部保護層7と上部保護層8からなり、下部保護層7は集積回路チップ3の全体を覆うとともに、集積回路チップ3の上面および上面側に設けられている端子部3上に数μm程度の厚さで被さる被覆部7aを有するように形成されている。集積回路チップ3の上に位置する被覆部7aには該被覆層7aをその厚さ方向に貫通するビアホールが形成され、該ビアホールの内部に集積回路チップ3の端子部3aに接続し被覆部7aの上面側に達する導電材料製の下部ビア配線(内部側上下導体部)7bが各端子部3aに位置を合わせて形成され、更に被覆部7aの上面側には先の複数の下部ビア配線7bに個々に接続される配線部7cが複数形成された拡張配線部5が形成されている。これらの配線部7cは集積回路チップ3の端子部3aが形成された領域の平面形状の縦幅または横幅よりも広く形成されている。図7の例では集積回路チップ3の横幅の2倍程度に拡張した例として示したが、拡張する大きさは高周波テストも含めて全ての電気特性電気試験が出来るテスト及びバーンインテストのソケット又はプローバの端子に合わせて任意で良く、例えば現状の先端のテスト及びバーンインテストのソケットの端子のピッチは現状80−90μmであり、これは現状パッケージ品の最狭ピッチ300μmよりはるかに小さいがチップ上の最狭ピッチ20μmよりは大きい。   The protective layer 2 includes a lower protective layer 7 and an upper protective layer 8. The lower protective layer 7 covers the entire integrated circuit chip 3, and is provided on the upper surface and the terminal portion 3 provided on the upper surface side of the integrated circuit chip 3. Is formed so as to have a covering portion 7a covering with a thickness of about several μm. A via hole penetrating through the covering layer 7a in the thickness direction is formed in the covering portion 7a located on the integrated circuit chip 3, and the via hole is connected to the terminal portion 3a of the integrated circuit chip 3 in the via hole. A lower via wiring (inner upper and lower conductor portions) 7b made of a conductive material reaching the upper surface side of each of the first and second lower conductor wirings 7b is formed on the upper surface side of the covering portion 7a. An extended wiring portion 5 is formed in which a plurality of wiring portions 7c that are individually connected to each other are formed. These wiring portions 7c are formed wider than the vertical width or the horizontal width of the planar shape of the region where the terminal portion 3a of the integrated circuit chip 3 is formed. In the example of FIG. 7, an example in which the width of the integrated circuit chip 3 is expanded to about twice the width is shown. However, the expanded size is a socket or prober for test and burn-in test that can perform all electrical characteristics and electrical tests including high frequency tests. For example, the current terminal test and burn-in test socket terminal pitch is 80-90 μm, which is much smaller than the narrowest pitch 300 μm of the current package product, but on the chip. The narrowest pitch is larger than 20 μm.

前記上部保護層8は、前記下部保護層7とその上に形成されている拡張配線部5を覆って形成され、その厚さが数μm程度とされている。拡張配線部5の上に位置する上部保護層8には該上部保護層8をその厚さ方向に貫通して拡張配線部5の配線部7cに接続し上部保護層8の上面側に達するビアホールが形成され、該ビアホール内に導電材料製の上部ビア配線(外部側上下導体部)9が各配線部7cに合わせて複数形成され、更に上部保護層8の上面側には先の複数の上部ビア配線9に個々に接続された端子部(面拡張端子部)10が複数形成されている。   The upper protective layer 8 is formed to cover the lower protective layer 7 and the extended wiring portion 5 formed thereon, and has a thickness of about several μm. The upper protective layer 8 located on the extended wiring portion 5 is connected to the wiring portion 7c of the extended wiring portion 5 through the upper protective layer 8 in the thickness direction and reaches the upper surface side of the upper protective layer 8. In the via hole, a plurality of upper via wires (outer side upper and lower conductor portions) 9 made of a conductive material are formed in accordance with each wiring portion 7c, and the upper protective layer 8 has a plurality of upper portions on the upper surface side. A plurality of terminal portions (surface expansion terminal portions) 10 individually connected to the via wiring 9 are formed.

前記構成の端子部形成面積拡張型の集積回路チップ部品Aにあっては、内部に収容されている集積回路チップ3が薄型、小型のものであり、その端子部3aが、一般的な検査装置のプローバの探触針が低コスト、量産性を目的には配置できないような微細な領域または微細ピッチに、例えば、数100MHz以上の高周波域の検査ができる汎用の検査装置のプローバの探触針が配置できない、又は、バーンインテストができないような微細な領域または微細ピッチに配置されている構造であっても、面積拡張して広い領域に形成し、それ自身も面積を大きくした端子部10を用いて十分な電気特性及びバーンイン検査ができる。又、将来のソケット技術の進展に合わせ集積回路チップ3の端子面積よりも小さくも出来、ソケット接触時の集積回路チップ3上にかかる機械的圧力を避ける為、集積回路チップ3周辺に端子を配置する事も出来る。
なお、集積回路チップ3の端子部3aの配置レイアウトと部品の端子部10の配置レイアウトは必ずしも同一とは限らない。部品の端子部10の配置レイアウトは電気特性テスト及び集積する集積回路チップ部品Aの配線に最適になるよう決められる。
集積回路チップ部品Aのサイズについては、薄いほど積層の集積密度が上がる。例えば全体合わせて30μm以下ではモジュールの集積工程におけるビア配線部の太さ15μm程度以下とすることが可能であり、エッチングが出来なくともビア配線部形成用のホールはレーザにて容易に形成できる。更に薄くなれば全てのパターンニングがヴィア配線部分を含めて現像(光感光樹脂の場合)又はエッチングで出来るようになる。なお、集積回路チップ部品Aの形状は、図14に示されるように側面が樹脂によって完全に覆われるように側面に若干の勾配、テーパーをつけている。
In the integrated circuit chip component A of the terminal part formation area expansion type having the above-described configuration, the integrated circuit chip 3 accommodated therein is thin and small, and the terminal part 3a is a general inspection device. The prober probe of a general-purpose inspection apparatus capable of inspecting a high frequency range of several hundred MHz or more, for example, in a fine region or a fine pitch that cannot be arranged for low cost and mass productivity. Even if the structure is arranged in a fine region or a fine pitch that cannot be arranged or burn-in test, it is formed in a wide region by expanding the area, and the terminal portion 10 that itself has a large area is also formed. It can be used for sufficient electrical characteristics and burn-in inspection. Further, the terminal area of the integrated circuit chip 3 can be made smaller than the terminal area of the integrated circuit chip 3 in accordance with the progress of the socket technology in the future. You can also do it.
The layout of the terminal portions 3a of the integrated circuit chip 3 and the layout of the component terminal portions 10 are not necessarily the same. The layout of the component terminal portion 10 is determined so as to be optimal for the electrical characteristic test and the wiring of the integrated circuit chip component A to be integrated.
As for the size of the integrated circuit chip component A, the integration density of the stack increases as the thickness decreases. For example, if the total thickness is 30 μm or less, the thickness of the via wiring portion in the module integration process can be about 15 μm or less, and the hole for forming the via wiring portion can be easily formed by a laser even if etching cannot be performed. If the thickness is further reduced, all patterning including via wiring portions can be performed by development (in the case of a photosensitive resin) or etching. The shape of the integrated circuit chip component A is slightly inclined and tapered on the side surface so that the side surface is completely covered with resin as shown in FIG.

前記構成の端子部形成面積拡張型の集積回路チップ部品Aにあっては、検査工程が最終工程となるため、検査工程後の損傷及び歩留まりロスがなく、集積回路チップ3を更に絶縁材の保護層2で覆っているので、集積回路チップ3の内部に設けられている半導体回路や部品は2重に封止された構造となっており、信頼性に優れ、その製品テストも面積拡張した端子部10により容易に汎用の検査装置で高周波特性まで含めて検査できるので、完全に良品と判定できる状態の集積回路チップ3を備えた良品の集積回路チップ部品Aを提供できる。そして、この良品と判定できる集積回路チップ部品Aのみを後述の集積化に用いることで、不良の発生する確率の極めて低い後述のマルチチップモジュールを得ることができる。
また、これらのモジュールを更に集積化することができるが、その構成については後述する。
In the integrated circuit chip part A with the terminal part formation area expansion type configured as described above, since the inspection process is the final process, there is no damage and yield loss after the inspection process, and the integrated circuit chip 3 is further protected by an insulating material. Since it is covered with the layer 2, the semiconductor circuit and components provided in the integrated circuit chip 3 have a double-sealed structure, which is excellent in reliability and has an expanded product test area. Since the unit 10 can easily inspect even the high frequency characteristics with a general-purpose inspection apparatus, it is possible to provide a non-defective integrated circuit chip component A including the integrated circuit chip 3 that can be completely determined as non-defective. Further, by using only the integrated circuit chip component A that can be determined as a non-defective product for the integration described later, it is possible to obtain a later-described multichip module that has a very low probability of occurrence of defects.
Further, these modules can be further integrated, and the configuration will be described later.

「集積回路チップ部品の製造方法」
次に、図7に示す構成の端子部形成面積拡張型の集積回路チップ部品Aの製造方法について、図1〜図9を基に説明する。
前記集積回路チップ部品Aを製造するには、基盤1の上に図1に示す如くインシュレーターとしての樹脂フィルムあるいは塗布型の樹脂絶縁層12を形成し、その上に集積回路チップ3を所定の間隔で端子部が上を向くようにして必要個数設置する。ここで用いる集積回路チップ3は予め通常の検査装置によるプローブテストを経て一般的な通電テストなどの検査を行い、良品と判定されたものを用いる。ただしここで、数100MHz以上の高周波域におけるテストは、検査装置のプローバが高周波対応できない、または高周波対応の検査装置が高価すぎて通常使用は難しいものとして、高周波テスト及びその他プローバで困難なテストやウェハ上で困難なバーンインテストは行っていない状態の集積回路チップ3で良い。なお、集積回路チップ3は通常バックグラインダー又はエッチング液で薄くされるが、厚さが100μm以下になるとソリ等が大きくなる為裏面にフィルムか樹脂を張りつける場合もある。
なお、図1〜図3においては説明の簡略化のために集積回路チップ3の端子部を略し、基盤1上に集積回路チップ3を3つ製造する場合について説明するが、基盤1上には基盤1の面積の大きさに応じて製造しようとする必要個数の集積回路チップ3を設置することができる。
次に、樹脂絶縁層12の上と集積回路チップ3の上を覆うようにフェノール系の感光性樹脂などの樹脂を塗布して図2に示すように被覆絶縁層13を形成する。
ここで形成する被覆絶縁層13は集積回路チップ3の上面(端子部形成面)を数μm程度覆うような厚さとすることができる。例えば、フェノール系の光感光樹脂を用いるならば、H、G、I線にて感光させることができる。この系の樹脂であるならば、高温耐性300℃、誘電率3.7、キュア温度190℃、硬化時の収縮率10%、アスペクト比1.0〜2.0、ケミカル耐性に優れ、厚みの範囲は3〜25μmの範囲で容易に調整できるので、本発明の目的に好適に用いることができる。
被覆絶縁層13をプリベーク及び熱処理して硬化させることにより、その下部側の樹脂絶縁層12との接合一体化を行い、集積回路チップ3を覆う保護層7を形成し、この保護層7を加工して拡張配線部5を形成する。また、先の被覆部7aの厚さは後述する上下導通用のビア配線を形成できる程度の厚さに形成する。
"Manufacturing method of integrated circuit chip parts"
Next, a manufacturing method of the integrated circuit chip component A of the terminal part formation area expansion type having the configuration shown in FIG. 7 will be described with reference to FIGS.
In order to manufacture the integrated circuit chip component A, a resin film as an insulator or a coating type resin insulating layer 12 is formed on a substrate 1 as shown in FIG. Install the required number with the terminal part facing up. The integrated circuit chip 3 used here is one that has been inspected in advance, such as a general energization test through a probe test by a normal inspection device, and has been determined to be non-defective. However, the test in the high frequency range of several hundred MHz or higher is not possible because the prober of the inspection device cannot handle high frequency, or the inspection device compatible with high frequency is too expensive to be used normally. The integrated circuit chip 3 may be in a state where a difficult burn-in test is not performed on the wafer. The integrated circuit chip 3 is usually thinned with a back grinder or an etching solution. However, when the thickness is 100 μm or less, the warp or the like becomes large, and thus a film or a resin may be attached to the back surface.
In FIG. 1 to FIG. 3, the terminal portion of the integrated circuit chip 3 is omitted for simplification of description, and a case where three integrated circuit chips 3 are manufactured on the substrate 1 will be described. The required number of integrated circuit chips 3 to be manufactured can be installed according to the size of the area of the substrate 1.
Next, a resin such as a phenol-based photosensitive resin is applied to cover the resin insulating layer 12 and the integrated circuit chip 3 to form a coating insulating layer 13 as shown in FIG.
The covering insulating layer 13 formed here can be formed to a thickness that covers the upper surface (terminal portion forming surface) of the integrated circuit chip 3 by about several μm. For example, if a phenol-based photosensitive resin is used, it can be exposed to H, G, and I lines. If this type of resin is used, high temperature resistance of 300 ° C., dielectric constant of 3.7, cure temperature of 190 ° C., curing shrinkage of 10%, aspect ratio of 1.0 to 2.0, excellent chemical resistance, Since the range can be easily adjusted in the range of 3 to 25 μm, it can be suitably used for the purpose of the present invention.
The covering insulating layer 13 is pre-baked and heat-treated to be hardened, thereby joining and integrating with the lower resin insulating layer 12 to form a protective layer 7 that covers the integrated circuit chip 3, and processing the protective layer 7 Thus, the extended wiring portion 5 is formed. Further, the thickness of the covering portion 7a is set to such a thickness that a via wiring for vertical conduction described later can be formed.

先の状態から図3に示すように各集積回路チップ3の上部側に拡張配線部5を形成するが、この拡張配線部5の形成方法について図4〜図6に示す部分拡大図を基に以下に説明する。
拡張配線部5を形成するには、図4に1つの集積回路チップ3の周囲部分を拡大して示すように、集積回路チップ3の周囲の保護層7において、集積回路チップ3の端子部3aの上方側にこれを覆うように被覆部7aが形成されているので、被覆部7aに図示略のマスクを施し、露光とエッチングを行うフォトリソ工程を施して、図5に示すように各端子部3aに連通するビアホール15を形成し、このビアホール15内にシード層スパッタ及びメッキあるいは蒸着などの成膜法により、あるいはメッキにより導電材料層を形成して下部ビア配線(内部側上下導体部)7bを形成する。例えば1つの例として、下部ビア配線7bを形成する際、ビアホール15とその周囲に成膜後、あるいはメッキした後、これらの膜やメッキ層の上にレジスト材を被覆形成し、レジスト材を部分露光して現像し、ビアホール15に導電材料を充填した部分を除く部分のレジスト材をエッチングにより除去することでビアホール15の内部側のみに導電材料製の下部ビア配線7bを形成することができる。
前記フェノール系の樹脂を用いた場合の典型的なフォトリソグラフィ工程を述べると、保護層7を構成する樹脂層を塗布後、プリベーク110℃/3分、光照射300mJ/cm、ポストエクスポージャーベーク110℃/3分、現像2.38%/60分、リンス30秒、ポストベーク190℃/60分の一連の工程により環境対策混みで低温プロセスにて実現できる。以下に述べるフォトリソグラフィ工程においても用いるベアチップの厚みによって時間が変わる程度であり、基本的には同じ工程で処理できる。
As shown in FIG. 3, the extended wiring portion 5 is formed on the upper side of each integrated circuit chip 3 from the previous state. The method for forming the extended wiring portion 5 is based on the partial enlarged views shown in FIGS. This will be described below.
In order to form the extended wiring portion 5, the terminal portion 3 a of the integrated circuit chip 3 is formed in the protective layer 7 around the integrated circuit chip 3 as shown in FIG. Since the cover portion 7a is formed on the upper side of the cover portion 7a, a mask (not shown) is provided on the cover portion 7a, and a photolithography process for performing exposure and etching is performed. As shown in FIG. A via hole 15 communicating with 3a is formed, and a conductive material layer is formed in the via hole 15 by a film formation method such as seed layer sputtering and plating or vapor deposition, or by plating to form a lower via wiring (inner upper and lower conductor portion) 7b. Form. For example, as one example, when forming the lower via wiring 7b, after forming or plating the via hole 15 and its periphery, a resist material is formed on these films and plating layers, and the resist material is partially coated. The lower via wiring 7b made of a conductive material can be formed only on the inner side of the via hole 15 by etching and removing the resist material except for the portion filled with the conductive material in the via hole 15 by etching.
A typical photolithography process in the case of using the phenol-based resin will be described. After applying the resin layer constituting the protective layer 7, pre-baking 110 ° C./3 minutes, light irradiation 300 mJ / cm 2 , post-exposure baking 110 It can be realized in a low temperature process with a mixture of environmental measures by a series of steps of ℃ / 3 minutes, development 2.38% / 60 minutes, rinsing 30 seconds, post-baking 190 ° C / 60 minutes. In the photolithography process described below, the time changes depending on the thickness of the bare chip used, and basically, the same process can be used.

下部ビア配線7bを形成後、下部保護層7の上面に先の下部ビア配線7bに接続する配線部7cを形成することで拡張配線部5を形成することができる。配線部7cを形成するには、下部保護層7の上面にマスク材を形成後、露光と、現像、選択的エッチングを行うフォトリソグラフィ工程を施しても良いし、メッキ層を形成して配線回路としても良いし、導電材料製の薄体を圧着して配線回路を形成するなど、基盤上に配線回路を形成する際に利用する一般的な方法を採用すればよい。
なお、配線はメッキにて行うことが基本であり、下地にTi、Cr等のシード層をスパッタにて打ち込み、配線パターンは耐メッキレジストで行い、メッキ後においてレジスト剥離、シード層エッチングを行い、絶縁材で埋めることで配線ができる。
配線部7cを形成したならば、下部保護層7上に下部保護層7の上面と配線部7cを覆うように樹脂のコーティング、塗布、あるいは樹脂フィルムの貼り付けなどの方法を用いて上部保護層8を形成し、プリベークや熱処理を行って下部保護層7と上部保護層8を接合する。
この後、先の下部ビア配線7bを形成した場合と同じ手法を用いて上部ビア配線9を形成し、更に上部保護層8の上面に端子部(面拡張端子部)10を形成することにより、図7に示す構成の端子部形成面積拡張型の集積回路チップ部品Aを得ることができる。
以上は詳細を示したものであるが、実際の製造では生産性向上のため、レジストパターニング及び現像、下地メッキエッチング及び絶縁層塗布工程で下部ビア配線7b、配線部7c、上部ビア配線9及び端子部10を同時のプロセスで作ることもありえる。又、水平方向配線は単層のみならず多層配線もありうる。工程は現状ウェハーレベル上で量産されている再配線工程と似た工程を基盤上で行う事になる。
After forming the lower via wiring 7b, the extended wiring section 5 can be formed by forming the wiring section 7c connected to the lower via wiring 7b on the upper surface of the lower protective layer 7. In order to form the wiring portion 7c, a mask material may be formed on the upper surface of the lower protective layer 7, and then a photolithography process for performing exposure, development, and selective etching may be performed, or a wiring layer may be formed by forming a plating layer. Alternatively, a general method used for forming a wiring circuit on a substrate, such as forming a wiring circuit by pressing a thin body made of a conductive material, may be adopted.
Wiring is basically performed by plating, and a seed layer such as Ti or Cr is sputtered into the base, and the wiring pattern is made of a plating-resistant resist. After plating, the resist is peeled off and the seed layer is etched. Wiring can be done by filling with insulating material.
When the wiring part 7c is formed, the upper protective layer is coated on the lower protective layer 7 using a method such as resin coating, coating, or resin film so as to cover the upper surface of the lower protective layer 7 and the wiring part 7c. 8 is formed, and the lower protective layer 7 and the upper protective layer 8 are joined by pre-baking or heat treatment.
Thereafter, the upper via wiring 9 is formed using the same method as that for forming the previous lower via wiring 7b, and the terminal portion (surface expansion terminal portion) 10 is further formed on the upper surface of the upper protective layer 8, The terminal part formation area expansion type integrated circuit chip component A having the configuration shown in FIG. 7 can be obtained.
Although the above shows details, in actual manufacturing, the lower via wiring 7b, the wiring portion 7c, the upper via wiring 9 and the terminal are used in the resist patterning and development, the base plating etching, and the insulating layer coating process in order to improve productivity. It is possible to make the part 10 in the same process. Further, the horizontal wiring can be not only a single layer but also a multilayer wiring. As for the process, a process similar to the rewiring process currently mass-produced on the wafer level is performed on the substrate.

以上説明した方法により端子部形成面積拡張型の集積回路チップ部品Aを製造するならば、基盤1上に樹脂絶縁層12を形成し、集積回路チップ3をその上に設置し、被覆絶縁層13を形成し、フォトリソグラフィ工程を利用してビアホール15を形成し、その内部に上下導通用の導電材料の下部ビア配線7bを形成し、拡張配線部5を形成し、更に上部保護層8を形成し、そこに上部ビア配線9と端子部10を形成するという、個別的には半導体回路製造において一般的に行われている方法を組み合わせることにより容易に実現できる。従って集積回路チップ部品Aを製造する工程が一般的な回路形成に比べて煩雑になることはない。   When manufacturing the integrated circuit chip component A with the terminal portion forming area expansion type by the method described above, the resin insulating layer 12 is formed on the substrate 1, the integrated circuit chip 3 is installed thereon, and the covering insulating layer 13 is formed. A via hole 15 is formed using a photolithography process, a lower via wiring 7b made of a conductive material for vertical conduction is formed therein, an extended wiring portion 5 is formed, and an upper protective layer 8 is further formed. However, it can be easily realized by combining the method generally formed in the semiconductor circuit manufacturing, in which the upper via wiring 9 and the terminal portion 10 are formed there. Therefore, the process of manufacturing the integrated circuit chip component A is not complicated as compared with general circuit formation.

図7に示す構成の集積回路チップ部品Aを製造したならば、これを全ての電気特性即ち機能、高周波、AC、パラメーター等の電気特性テスト及び初期信頼性不良を除く場合バーンインテストを行う。
図8はイラスト的に単純に基盤上に連続した状態を示しているが、実際には上記テストが可能なプローバーがなければ、個別分離してテストソケット及びバーンインソケットを用いて、集積回路チップ部品Aの端子部10に対してソケットの端子に合わせる事により完全なテストを行い、良品判定を行う。ここでは端子部10の形成ピッチや形成領域は、内部に収容されている集積回路チップ3の端子部3aの形成ピッチや形成領域よりも拡大形成されている(拡張配線(ファンアウト)されている)ので、高周波も含めて全てのテスト項目をテストすることができる。
即ち、本発明の集積回路チップ部品Aであるならば、信頼性及び高周波特性を含めた全ての機能を発揮する完全な良品であるか、あるいは不良品であるか、判別することができる。
When the integrated circuit chip component A having the configuration shown in FIG. 7 is manufactured, all the electrical characteristics, that is, the electrical characteristics test such as the function, the high frequency, the AC, the parameters, etc., and the burn-in test are performed when initial reliability defects are excluded.
FIG. 8 simply shows a continuous state on the board as an illustration. However, if there is no prober capable of the above test, an integrated circuit chip component can be separately separated using a test socket and a burn-in socket. A complete test is performed by matching the terminal portion 10 of A with the terminal of the socket, and a non-defective product is determined. Here, the formation pitch and formation region of the terminal portions 10 are formed larger than the formation pitch and formation region of the terminal portions 3a of the integrated circuit chip 3 accommodated therein (expanded wiring (fan-out). Therefore, all test items including high frequency can be tested.
That is, if it is the integrated circuit chip component A of this invention, it can be discriminate | determined whether it is a complete good product which exhibits all the functions including reliability and a high frequency characteristic, or it is a defective product.

図8に示す基盤1上の全ての集積回路チップ部品Aに対して行い、良品であるか、不良品であるか判定した結果、全て良品判別された部品のみを、集積を行っていく第1層のマルチチップモジュール製造の為として、基盤上の絶縁体保護層上に配置する。
図10に示す構成の端子部形成面積拡張型の集積回路チップ部品Aであるならば、集積回路チップ3が極薄型の例えば厚さ10μm以下程度のものであって、割れや欠けなどのおそれがあり、ハンドリング不能なものであっても、その周囲を絶縁材の保護層2が覆っているので、ハンドリング可能であり、割れや欠けの危険性が少ないという特徴を有する。又検査工程が最終工程となる為、検査工程後の損傷及び歩留まりロスがない。
次に、集積する集積回路チップの保護層上のテスト端子が同一面積で延出配線されている状態の場合、即ち集積回路チップのテスト端子より接続された保護層中の再配線を通して接続されているテスト端子が、集積回路チップの表面積と同等の保護層の表面積上にある場合で、ウェハー上でのプロービング及びウェハーレベルバーンイン成熟品でバーンインテストなくても初期信頼性不良が出ない。更に検査後の工程(切断等)を追加してKDGが保証される場合は、図10(B)に示す端子部形成面積同一型集積回路チップ部品Bがモジュールの構成素子として示される。
この例の端子部形成面積拡張型の集積回路チップ部品Bはウェハーレベル上で絶縁体保護層に集積回路チップ端子の再配線及び端子を配置した後プローブテスト及び省略される場合もあるがウェハーレベルバーンイン及び切断工程によって製作される。但し、保護層状にウェハーレベルパッケージに見られるバンプやソルダー等の端子接続部分の形成は必要が無く、メッキ配線接続用端子で良い。チップの厚みはチップ厚50μm以下であればチップの下面にも端子部形成面積拡張型集積回路チップ部品と同様の理由で絶縁体の下部保護層7が必要となる。なお、品質向上の為側面に下部保護層を覆う場合もある。このため、図10(B)に示す如く集積回路チップ3‘が集積回路チップ部品Bの側面側に露出していなくとも集積回路チップ3’の両側面側を適切な厚みで下部保護層7が覆う構造でも良い。
8 is performed on all the integrated circuit chip components A on the substrate 1 shown in FIG. 8, and as a result of determining whether it is a non-defective product or a defective product, only the components that are all determined to be non-defective are integrated. For the production of multi-chip modules of layers, it is arranged on an insulator protective layer on a substrate.
In the case of the integrated circuit chip component A with the terminal portion formation area expansion type having the configuration shown in FIG. 10, the integrated circuit chip 3 is extremely thin, for example, about 10 μm or less in thickness, and there is a risk of cracking or chipping. Even if it is impossible to handle, the protective layer 2 of the insulating material covers the periphery thereof, so that it can be handled and has a feature that there is little risk of cracking or chipping. Further, since the inspection process is the final process, there is no damage and yield loss after the inspection process.
Next, when the test terminals on the protective layer of the integrated circuit chip to be integrated are extended in the same area, that is, connected through the rewiring in the protective layer connected from the test terminal of the integrated circuit chip. In the case where the test terminal is on the surface area of the protective layer equivalent to the surface area of the integrated circuit chip, probing on the wafer and a mature wafer-level burn-in product do not cause an initial reliability failure without a burn-in test. Further, when KDG is guaranteed by adding a post-inspection process (cutting or the like), the terminal portion formation area same type integrated circuit chip component B shown in FIG. 10B is shown as a component of the module.
In this example, the integrated circuit chip component B of the terminal area forming type expansion type wafer probe level may be omitted after the rewiring of the integrated circuit chip terminal and the terminal are arranged on the insulator protection layer on the wafer level. Manufactured by burn-in and cutting processes. However, it is not necessary to form the terminal connection portions such as bumps and solder found in the wafer level package in the protective layer shape, and a plated wiring connection terminal may be used. If the thickness of the chip is 50 μm or less, an insulating lower protective layer 7 is also required on the lower surface of the chip for the same reason as that of the integrated circuit chip component having an extended terminal area. In some cases, the lower protective layer is covered on the side surface for quality improvement. Therefore, even if the integrated circuit chip 3 ′ is not exposed on the side surface side of the integrated circuit chip component B as shown in FIG. A covering structure may be used.

「1層シングルチップモジュール及びマルチチップモジュールと積層されたマルチチップモジュール」
次に、基盤1から分離した状態の図10に示す集積回路チップ部品Aを用いて1層のシングルチップモジュール及びマルチチップモジュールを構成し、更に積層して3次元化し、積層マルチチップモジュールを製造する方法について説明する。なお、以下では構成素子として端子部形成面積拡張型の集積回路チップ部品Aを主に説明するが、端子部形成面積同一型の集積回路チップ部品Bでも良いし、それらの混合でも良い。
先の工程により製造した良品判定済みの集積回路チップ部品Aを用い、別途用意した基盤1の上に塗布樹脂層あるいは樹脂フィルムなどの樹脂層を介して必要個数の集積回路チップ部品Aを間隔をあけて1層分配置する。この形態では図11に示すように集積回路チップ部品A1、A2、A3を基盤1上に配列形成し、それらの集積回路チップ部品A1、A2、A3のうち、接続の必要なものどうしの各端子部を必要に応じて水平配線22にて接続し、1層マルチチップモジュールCを構成してから積層マルチチップモジュールとする例として説明する。
これらの集積回路チップ部品A1、A2、A3を囲むように、しかもこれらの上に数10μm程度覆う程度の厚さに樹脂を塗布し、この樹脂層を硬化させて集積回路チップ部品A1、A2、A3を覆う保護層20を構成し、この保護層20のうち、集積回路チップ部品A1、A2、A3の上部側を覆っている被覆層21に対して先の集積回路チップ部品Aの製造工程において行ったフォトリソグラフィ工程と同等のフォトリソグラフィ工程を施して集積回路チップ部品A1、A2、A3を接続する水平配線部22及びA1、A2、A3の端子10を垂直方向に引き出す配線を形成し、被覆層21の上面に露出するように端子部23を個々に形成する。
以上は詳細を示したものであるが、実際の製造では生産性向上のため、レジストパターニング及び現像、下地メッキエッチング、絶縁層塗布工程で水平配線部22と垂直方向の配線と端子部23を同時のプロセスで作ることもあり得る。又、単層のみならず多層配線もありうる。工程は現状ウェハーレベル上で量産されている再配線工程と似た工程を基盤1上で行う事になる。集積回路チップ部品A1、A2、A3のモジュールへの密着一体化は基本的に各々配線(メッキ)パターン形成前の樹脂のハードベイクによる熱硬化でなされる。このように複数の集積回路チップ部品A1、A2、A3を1層になるように並べて構成したものを1層マルチチップモジュール(1 layer Multi Chip Module)Cと称することができる。なお、集積回路チップ部品A1のみを単一に1層配置すれば、1層シングルチップモジュール(1 layer Single Chip Module)と称することができる
"Multi-chip module laminated with single-layer single-chip module and multi-chip module"
Next, a single-layer single-chip module and a multi-chip module are constructed using the integrated circuit chip component A shown in FIG. 10 separated from the substrate 1, and further laminated to make a three-dimensional structure, thereby producing a laminated multi-chip module. How to do will be described. In the following description, an integrated circuit chip component A having a terminal portion formation area expansion type is mainly described as a constituent element, but may be an integrated circuit chip component B having the same terminal portion formation area type, or a mixture thereof.
Using the integrated circuit chip component A that has been determined to be non-defective manufactured by the previous process, the required number of integrated circuit chip components A are spaced on a separately prepared substrate 1 through a resin layer such as a coated resin layer or a resin film. Open one layer. In this embodiment, as shown in FIG. 11, integrated circuit chip components A1, A2, and A3 are arranged on the substrate 1, and each of the integrated circuit chip components A1, A2, and A3 that need to be connected to each other. An example will be described in which a single layer multichip module C is formed after connecting the parts by horizontal wiring 22 as necessary, and then a laminated multichip module.
A resin is applied so as to surround these integrated circuit chip components A1, A2 and A3, and on top of these so as to cover about several tens of μm, and this resin layer is cured to integrate the integrated circuit chip components A1, A2, In the manufacturing process of the previous integrated circuit chip component A, the protective layer 20 covering A3 is configured, and the covering layer 21 covering the upper side of the integrated circuit chip components A1, A2, A3 of the protective layer 20 is formed. A photolithography process equivalent to the performed photolithography process is performed to form a horizontal wiring portion 22 for connecting the integrated circuit chip components A1, A2, and A3 and a wiring for pulling out the terminals 10 of A1, A2, and A3 in the vertical direction, and covering Terminal portions 23 are individually formed so as to be exposed on the upper surface of the layer 21.
Although the above shows details, in actual manufacturing, the horizontal wiring portion 22 and the vertical wiring and the terminal portion 23 are simultaneously formed in resist patterning and development, base plating etching, and insulating layer coating processes in order to improve productivity. It is possible to make this process. Moreover, not only a single layer but also a multilayer wiring can be used. As for the process, a process similar to the rewiring process mass-produced on the current wafer level is performed on the substrate 1. The integrated integration of the integrated circuit chip components A1, A2, and A3 into the module is basically performed by thermosetting by hard baking of the resin before forming each wiring (plating) pattern. A configuration in which a plurality of integrated circuit chip components A1, A2, and A3 are arranged in a single layer as described above can be referred to as a one-layer multichip module C. If only one layer of the integrated circuit chip component A1 is arranged in a single layer, it can be referred to as a single layer single chip module.

次に、2層目の集積回路チップ部品積層のため、先の被覆層21の上面と端子部23とを覆うように塗布樹脂層あるいは樹脂フィルムなどの中間層25を下層のマルチチップモジュールと積層する集積回路チップ部品の一体化を行うために図11に示すように形成し、プリベークする。その上に、別途先の製造方法と同じように製造した良品検査済みの集積回路チップ部品A4、A5、A6を図12に示すように1層目の集積回路チップ部品A1、A2、A3の上に平面視重なる位置となるように配置する。
次いで先に集積回路チップ部品A1、A2、A3の周囲に保護層26を上面側に被覆層27を図13に示すように形成し、次に、保護層26と被覆層27を上下貫通するビアホールをフォトリソグラフィ工程あるいはレーザ照射により形成すると同時に下層マルチチップモジュール及び保護層26、被覆層27が一体化され集積回路チップ部品A4、A5、A6も一体化される。次いで、導電材料製の上下導体部28を形成するとともに、集積回路チップ部品A1、A2、A3の上の被覆層27にも先の工程と同等の方法で行ったフォトリソグラフィ工程あるいはレーザ照射を施してビアホールを形成し、そこに導電材料製の上下導体部30を形成する。
これらの上下導体部28、30により1層目の集積回路チップ部品A1、A2、A3と2層目の集積回路チップ部品A4、A5、A6を最上層の被覆層27上に導出することができる。更に被覆層27上に形成された端子と集積回路チップA4、A5、A6からの上下導体部30を選択的に接続する水平再配線、及び更に次の積層又は外部接続用の端子を保護層上に形成する(第1層の水平配線部22、23の様に)。ここでも2層目の集積回路チップ部品A4、A5、A6のモジュールへの密着一体化はそれぞれの保護層の配線(メッキ)パターン形成前の樹脂のハードベイクによる熱硬化でなされる。
以上の工程により、図13に示すように集積回路チップ部品A1〜A3を1層目に有し、集積回路チップ部品A4〜A6を2層目に有する2層構造の多層モジュールD、2層マルチチップモジュール(2 Layer Single Chip Module)を得ることができる。この多層モジュールDは、各々層に用いる集積回路チップ部品がA1、A4のみシングルチップである場合は、シングルチップ2層モジュール(Single Chip 2 Layer layer Module)と称することができる。
Next, in order to laminate the second-layer integrated circuit chip component, an intermediate layer 25 such as a coating resin layer or a resin film is laminated with the lower multi-chip module so as to cover the upper surface of the coating layer 21 and the terminal portion 23. In order to integrate the integrated circuit chip components to be formed, they are formed and pre-baked as shown in FIG. In addition, the non-defective inspected integrated circuit chip components A4, A5, and A6 manufactured in the same manner as in the previous manufacturing method are placed on the first-layer integrated circuit chip components A1, A2, and A3 as shown in FIG. So as to overlap with each other in plan view.
Next, a protective layer 26 is first formed on the upper surface side around the integrated circuit chip components A1, A2, and A3 as shown in FIG. 13, and then a via hole that vertically penetrates the protective layer 26 and the coating layer 27 is formed. Are formed by a photolithography process or laser irradiation, and at the same time, the lower multichip module, the protective layer 26 and the covering layer 27 are integrated, and the integrated circuit chip components A4, A5 and A6 are also integrated. Next, the upper and lower conductor portions 28 made of a conductive material are formed, and the coating layer 27 on the integrated circuit chip components A1, A2, and A3 is subjected to a photolithography process or laser irradiation performed in the same manner as the previous process. Then, a via hole is formed, and the upper and lower conductor portions 30 made of a conductive material are formed there.
By these upper and lower conductor portions 28 and 30, the first-layer integrated circuit chip components A1, A2, and A3 and the second-layer integrated circuit chip components A4, A5, and A6 can be led out on the uppermost coating layer 27. . Further, the horizontal rewiring for selectively connecting the terminals formed on the coating layer 27 and the upper and lower conductor portions 30 from the integrated circuit chips A4, A5, A6, and further the terminal for the next lamination or external connection on the protective layer. (Like the horizontal wiring portions 22 and 23 in the first layer). Here too, the second-layer integrated circuit chip components A4, A5, and A6 are closely integrated into the module by thermosetting by hard baking of the resin before forming the wiring (plating) pattern of each protective layer.
Through the above steps, as shown in FIG. 13, the multilayer module D having the two-layer structure having the integrated circuit chip parts A1 to A3 in the first layer and the integrated circuit chip parts A4 to A6 in the second layer, the two-layer multi-layer A chip module (2 Layer Single Chip Module) can be obtained. The multilayer module D can be referred to as a single chip 2 layer module when the integrated circuit chip components used for each layer are only single chips A1 and A4.

以上の工程説明について図11〜図13では集積回路チップ部品A1〜A6をチップ状に略記したが、これらの集積回路チップ部品A1〜A6の構造をより詳しく図14〜図16に記載しておく。
図12と同じ段階の状態を図14に示し、2層目の集積回路チップ部品A4、A5の周囲と上に保護層26と被覆層27を形成した状態を図15に示し、2層目の保護層26と被覆層27に上下導体部28、30を形成した状態を図16に示す。更に被覆層26上に形成された上下導体部28とA4、A5、A6の上下導体部30を選択的に接続する配線、及び更に次の積層又は外部接続用の端子を保護層上に形成する(第1層の水平配線部22の様に形成)。
以上は詳細を示したものであるが、実際の製造では生産性向上のため、レジストパターニング及び現像、下地メッキエッチング、絶縁層塗布工程で水平配線部22、23を同時のプロセスで作ることもあり得る。又、単層のみならず多層配線もありうる。工程は現状ウェハーレベル上で量産されている再配線工程と似た工程を基盤上で行う事になる。
11 to 13, the integrated circuit chip components A1 to A6 are abbreviated in a chip shape. The structures of these integrated circuit chip components A1 to A6 are described in more detail in FIGS. .
FIG. 14 shows a state at the same stage as FIG. 12, and FIG. 15 shows a state in which a protective layer 26 and a covering layer 27 are formed on and around the second-layer integrated circuit chip components A4 and A5. FIG. 16 shows a state in which the upper and lower conductor portions 28 and 30 are formed on the protective layer 26 and the covering layer 27. Further, wiring for selectively connecting the upper and lower conductor portions 28 formed on the covering layer 26 and the upper and lower conductor portions 30 of A4, A5, and A6, and further terminals for the next lamination or external connection are formed on the protective layer. (It is formed like the horizontal wiring portion 22 of the first layer).
Although the above shows details, in actual manufacturing, the horizontal wiring portions 22 and 23 may be formed by a simultaneous process in resist patterning and development, base plating etching, and insulating layer coating processes in order to improve productivity. obtain. Moreover, not only a single layer but also a multilayer wiring can be used. As for the process, a process similar to the rewiring process currently mass-produced on the wafer level is performed on the substrate.

図14と図16に示す2層構造のマルチチップモジュールDに対し、更に積層して多層化する場合、図17に示すように目標の積層数まで集積回路チップ部品の積層を繰り返し行えば良い。それにより、集積回路チップ部品A1、A2、A3…An−2、An−1、An(nは用いる集積回路チップ部品の数に合わせた自然数)を備えた保護層20、26…26nを備えた多層構造の多層モジュールEを得ることができる。
この構造の多層モジュールEにおいては、1層目の集積回路チップ部品A1、A2、A3の各端子部が水平配線部22を介して上下導体部28に接続され、保護層26を上下に貫通する形で1つ上層側の上下導体部28に接続されて順次上層側の上下導体部28を介して最上層26nの上下導体部28まで到達されて多層モジュールEの上面側にまで配線が延出されている。
When the multi-chip module D having the two-layer structure shown in FIGS. 14 and 16 is further laminated to form a multilayer, the integrated circuit chip components may be repeatedly laminated up to the target number of layers as shown in FIG. Thereby, the protective layers 20, 26... 26n provided with the integrated circuit chip components A1, A2, A3... An-2, An-1, and An (n is a natural number corresponding to the number of integrated circuit chip components used) were provided. A multilayer module E having a multilayer structure can be obtained.
In the multilayer module E having this structure, each terminal portion of the first-layer integrated circuit chip components A1, A2, and A3 is connected to the upper and lower conductor portions 28 via the horizontal wiring portion 22, and penetrates the protective layer 26 vertically. Is connected to the upper and lower conductor portions 28 on the upper layer side, and reaches the upper and lower conductor portions 28 of the uppermost layer 26n sequentially through the upper and lower conductor portions 28, and the wiring extends to the upper surface side of the multilayer module E. Has been.

図18は図17に示す多層構造の多層モジュールEの上面に端子接続のための中間層36を形成した状態を示すもので、この中間層36をフォトリソグラフィ工程により必要な回路形状や端子形状に加工することで多層モジュールEとしての外部接続端子や接続回路を多層モジュールEの上面側に形成することができる。
図19(A)は端子部形成面積拡張型の集積回路チップ部品Aにより構成されたマルチチップモジュールFの製品構造を示し、図19(B)は端子部形成面積拡張型の集積回路チップ部品Aと端子部形成面積同一型集積回路チップ部品Bの混合又はいずれかの集積回路チップ部品で構成されたマルチチップモジュールF2の製品構造を示す。
図19(A)、(B)及び図20は、図19(B)に示される集積回路チップ部品A1〜An、B1〜Bnの集積が図20で示されるように集積回路チップ3の集積となる事を示している。図20の如く集積回路チップ3を内蔵積層した多層モジュールGの構造を採用しても良い。
FIG. 18 shows a state in which an intermediate layer 36 for terminal connection is formed on the upper surface of the multilayer module E having the multilayer structure shown in FIG. 17, and this intermediate layer 36 is formed into a necessary circuit shape and terminal shape by a photolithography process. By processing, external connection terminals and connection circuits as the multilayer module E can be formed on the upper surface side of the multilayer module E.
FIG. 19A shows a product structure of a multi-chip module F constituted by an integrated circuit chip component A with an extended terminal area forming type, and FIG. 19B shows an integrated circuit chip component A with an expanded terminal area forming type. A product structure of a multi-chip module F2 composed of a mixture of integrated circuit chip components B of the same type and terminal portion formation area or any of the integrated circuit chip components.
19A, 19B, and 20 show the integration of the integrated circuit chip 3 as shown in FIG. 20 when the integrated circuit chip components A1 to An and B1 to Bn shown in FIG. It shows that. A structure of a multilayer module G in which the integrated circuit chip 3 is built and laminated as shown in FIG. 20 may be adopted.

図21〜図26は、これまでの実施形態において用いてきた基盤1に代えて予め配線回路が形成されている配線基盤40を本発明に用いた形態を示す。
上面側に予め配線回路39が形成された配線基盤40を用い、この配線基盤40上に先の実施形態において用いたものと同等の中間層25を形成し、中間層25の上に先の形態の集積回路チップ部品A1〜Anを設置し、これらの集積回路チップ部品A1〜Anを覆うように先の実施形態の場合と同様に保護層20、被覆層27を形成し、これらのうち、集積回路チップ部品A…の上部側を覆っている被覆層27に対して先の集積回路チップ部品Aの製造工程において行ったフォトリソグラフィ工程と同等のフォトリソグラフィ工程を施して横方向に配列されている集積回路チップ部品A1〜Anを接続する水平配線部22を形成し、被覆層21の上面に露出するように端子部を形成する。
これらの工程により複数の集積回路チップ部品Aを備えたマルチチップモジュールHを得ることができる。
なお、この形態において、端子部形成面積拡張型の集積回路チップ部品Aを適宜選択して端子部形成面積同一型の集積回路チップ部品Bと混合して適用しても良い。
例えば図19(B)又は図25において、1層目を端子部形成面積同一型の集積回路チップ部品Bとして2層目を端子部形成面積拡張型の集積回路チップ部品Aとしたり、必要位置のモジュールのみを端子部形成面積同一型にあるいは端子部形成面積拡張型に適宜置き換えても良い。あるいは、1層目の1つを端子部形成面積拡張型の集積回路チップ部品A1としたり、2層目の1つを拡張配線型の集積回路チップ部品A2としても良い。その場合に多層モジュールの内部には拡張配線型と面積同一型の集積回路チップ部品が混在する構成となる。チップ多層型の場合は、例えばマルチチップ多層モジュール(Multi Chip Multi layer Module)と称することができ、例えば1チップ複数チップ混合積層の場合は、例えば1チップ複数チップ混合多層モジュール(Single and Multi Chip Mixed Multi layer Module)と称することができる。
FIGS. 21 to 26 show a form in which a wiring board 40 in which a wiring circuit is formed in advance is used in the present invention instead of the board 1 used in the above embodiments.
A wiring board 40 in which a wiring circuit 39 is previously formed on the upper surface side is used, an intermediate layer 25 equivalent to that used in the previous embodiment is formed on the wiring board 40, and the previous configuration is formed on the intermediate layer 25. The integrated circuit chip parts A1 to An are installed, and the protective layer 20 and the covering layer 27 are formed so as to cover these integrated circuit chip parts A1 to An as in the previous embodiment. The covering layer 27 covering the upper side of the circuit chip components A is subjected to a photolithography process equivalent to the photolithography process performed in the manufacturing process of the integrated circuit chip component A and arranged in the horizontal direction. A horizontal wiring portion 22 for connecting the integrated circuit chip components A1 to An is formed, and a terminal portion is formed so as to be exposed on the upper surface of the covering layer 21.
Through these steps, a multichip module H having a plurality of integrated circuit chip components A can be obtained.
In this embodiment, an integrated circuit chip component A having an extended terminal portion formation area may be appropriately selected and mixed with an integrated circuit chip component B having the same terminal portion formation area.
For example, in FIG. 19B or FIG. 25, the first layer is the integrated circuit chip component B having the same terminal portion formation area type and the second layer is the integrated circuit chip component A having the terminal portion formation area expansion type. Only the module may be appropriately replaced with the same type of terminal part formation area or the terminal part formation area expansion type. Alternatively, one of the first layers may be the terminal part forming area expansion type integrated circuit chip part A1, and one of the second layer may be the expansion wiring type integrated circuit chip part A2. In this case, an integrated circuit chip component having the same area as that of the extended wiring type is mixed in the multilayer module. In the case of the chip multilayer type, for example, it can be referred to as a multi-chip multilayer module (Multi Chip Multi-layer Module). For example, in the case of a single-chip multi-chip mixed stack, for example, a single-chip multi-chip mixed multi-layer module (Single and Multi Chip Mixed) Multi layer module).

図21、図22、図23においては、図3あるいは図7を基に先に説明した集積回路チップ部品Aの構造において、基盤1を配線基盤40に置き換えることにより形成された集積回路チップ部品Aを内蔵化したマルチチップモジュールJとされている。即ち、まず図21に示すように、配線基盤上に配線基盤と集積回路チップ部品を密着一体化する為の中間層25を塗布又は張り、その上に集積回路チップ部品Aを配置し、図14、図15、図16で示される場合と同様に樹脂で覆い、硬化し、一体化し、配線を行う。ただこの場合配線基盤上の端子から垂直配線を立ち上げる。   21, 22, and 23, the integrated circuit chip component A formed by replacing the substrate 1 with the wiring substrate 40 in the structure of the integrated circuit chip component A described above with reference to FIG. 3 or FIG. 7. Is a multi-chip module J with built-in. That is, first, as shown in FIG. 21, an intermediate layer 25 for tightly integrating the wiring board and the integrated circuit chip component is applied or stretched on the wiring board, and the integrated circuit chip component A is arranged thereon, and FIG. In the same manner as shown in FIGS. 15 and 16, the resin is covered, cured, integrated, and wired. However, in this case, the vertical wiring is started from the terminal on the wiring board.

先の図23に示す積層回路マルチチップモジュールHを基に、その上に順次集積回路チップ部品Aを設置して保護層を形成してゆく工程を繰り返し行うことにより、図25に示す積層構造の多層モジュールKとすることができる。
又この形態においては端子部形成面積拡張型の集積回路チップ部品Aを適宜選択して端子部形成面積同一型の集積回路チップ部品Bと混合又は端子部形成面積同一型の集積回路チップ部品Bのみによる構成も可能である。
Based on the multilayer circuit multichip module H shown in FIG. 23, the process of sequentially installing the integrated circuit chip components A and forming the protective layer thereon is repeatedly performed, so that the multilayer structure shown in FIG. A multilayer module K can be used.
Further, in this embodiment, the integrated circuit chip component A having the terminal portion forming area expansion type is appropriately selected and mixed with the integrated circuit chip component B having the same terminal portion forming area type or only the integrated circuit chip component B having the same terminal portion forming area type. It is also possible to use the configuration.

例えば、図25において、1層目を端子部形成面積同一型の集積回路チップ部品Bとして2層目を端子部形成面積拡張型の集積回路チップ部品Aとしたり、必要位置のモジュールのみを端子部形成面積同一型にあるいは端子部形成面積拡張型に適宜置き換えても良い。あるいは、1層目の1つを端子部形成面積拡張型の集積回路チップ部品A1としたり、2層目の1つを拡張配線型の集積回路チップ部品A2としても良い。その場合に多層モジュールの内部には拡張配線型と面積同一型の集積回路チップ部品が混在する構成となる。チップ多層型の場合は、例えばマルチチップ多層モジュール(Multi Chip Multi layer Module)と称することができ、例えば1チップ複数チップ混合積層の場合は、例えば1チップ複数チップ混合多層モジュール(Single and Multi Chip Mixed Multi layer Module)と称することができる。   For example, in FIG. 25, the first layer is the integrated circuit chip component B of the same type as the terminal portion formation area and the second layer is the integrated circuit chip component A of the terminal portion formation area expansion type, or only the module at the required position is the terminal portion. It may be appropriately replaced with the same formation area type or the terminal part formation area expansion type. Alternatively, one of the first layers may be the terminal part forming area expansion type integrated circuit chip part A1, and one of the second layer may be the expansion wiring type integrated circuit chip part A2. In this case, an integrated circuit chip component having the same area as that of the extended wiring type is mixed in the multilayer module. In the case of the chip multilayer type, for example, it can be referred to as a multi-chip multi-layer module (Multi Chip Multi-layer Module). For example, in the case of a single-chip multi-chip mixed stack, for example, a single-chip multi-chip mixed multi-layer module (Single and Multi Chip Mixed) Multi layer module).

図26は、集積回路チップ部品の集積が、集積回路チップ3の集積になっていることを、即ち、該集積回路チップ部品3が2重の絶縁体保護層で被覆されつつ、外部の絶縁体の中に一体化され埋め込まれていることを示している。   FIG. 26 shows that the integration of the integrated circuit chip component is the integration of the integrated circuit chip 3, that is, the integrated circuit chip component 3 is covered with a double insulator protective layer and an external insulator. It is shown that it is integrated and embedded in.

図27は、図20あるいは図26に示す多層構造のマルチチップモジュールにおいて、水平方向に複数の集積回路チップ部品を設置し、厚さ方向に複数の拡張配線型あるいは面積同一型の集積回路チップ部品を任意に積層した構造の一例、並びに、それらの積層方向の1列の回路配線の一例を示したものである。
先の例の拡張配線型の集積回路チップ部品A1〜An、あるいは、面積同一型の集積回路チップ部品B1〜Bnを接続する配線パターンとして、上下に配置されている集積回路チップ部品を1つおき、あるいは複数おいて配線しても良いし、層毎に順次接続しても差し支えない。
例えば、1層目の集積回路チップ部品A1を2層目の集積回路チップ部品A2に接続する配線YIb1、1層目の集積回路チップ部品A1を3層目の集積回路チップ部品A2に接続する配線YIb2、1層目の集積回路チップ部品A1をn層目の集積回路チップ部品Anに接続する配線YIbnとして配線することができる。また、これらの集積回路チップ部品A1〜Anに対して個々に外部配線するための垂直配線として外部接続配線Y⊥b1〜Y⊥bnを設けることができる。
また、これらの配線とは別に、集積回路チップ部品A1〜Anに対して相互接続するために、共通に使用するアドレス配線、共通電源配線などのような配線YIaを設けることができる。
FIG. 27 shows a multi-chip module having a multilayer structure shown in FIG. 20 or FIG. 26, in which a plurality of integrated circuit chip components are installed in the horizontal direction, and a plurality of extended wiring type or same area integrated circuit chip components in the thickness direction. 1 shows an example of a structure in which layers are arbitrarily stacked, and an example of one line of circuit wiring in the stacking direction.
As the wiring pattern for connecting the extended circuit type integrated circuit chip parts A1 to An or the same area type integrated circuit chip parts B1 to Bn of the previous example, every other integrated circuit chip part arranged vertically is arranged. Alternatively, a plurality of wirings may be provided, or the layers may be connected sequentially.
For example, a wiring YIb1 that connects the first-layer integrated circuit chip component A1 to the second-layer integrated circuit chip component A2, and a wiring that connects the first-layer integrated circuit chip component A1 to the third-layer integrated circuit chip component A2. YIb2, the first-layer integrated circuit chip component A1 can be wired as a wiring YIbn that connects to the n-th layer integrated circuit chip component An. Further, external connection wirings Y⊥b1 to Y⊥bn can be provided as vertical wirings for individually connecting these integrated circuit chip components A1 to An.
In addition to these wirings, wirings YIa such as commonly used address wirings and common power supply wirings can be provided for mutual connection to the integrated circuit chip components A1 to An.

図28は、図20あるいは図26に示す多層構造のマルチチップモジュールにおいて、水平方向配線構造の他の例を示す。
図28では、集積回路チップ部品A1〜An、あるいは、面積同一型の集積回路チップ部品B1〜Bnを接続する配線パターンに加え、他の部品、例えば、コントロールチップCT1〜CTn、プロセッサチップPT1〜PTn、バッファチップBT1〜BTnを積層した例である。
図28に示す構造において、各層に水平方向に設置されている集積回路チップ部品A1〜AnとコントロールチップCT、プロセッサチップPT1〜PTn、バッファチップBTの全てに共通で配線されるアドレス配線、共通電源配線などのような配線Xa1〜Xanを設け、更に、集積回路チップ部品A1〜AnとコントロールチップCT、バッファチップBTを適宜必要な物のみ接続する選択配線Xb1〜Xbnを設けた構成とすることができる。
以上説明した如く、図27と図28に図示した如く、本発明に係る多層構造のマルチチップモジュールにおいて、水平方向あるいは垂直方向のいずれの方向においても、共通配線、あるいは個別配線、更には外部配線を任意の組み合わせで用いることができる。
勿論これらの各種配線は、この構成の積層構造のみに適用するものではなく、これら配線(配線Xa1〜Xan、選択配線Xb1〜Xbn)のいずれかを図11に示すマルチチップモジュールC、図16に示すマルチチップモジュールD、図17、図18に示すマルチチップモジュールE、図19、図20に示すマルチチップモジュールF、F2、Gに適用しても良い。
なお、この種の半導体積層基板の電気信号は、電源信号、グランド信号、クロック信号、アドレス信号、チップセレクト信号、各種制御信号、データ信号、命令信号等になるので、これら各信号を伝達するための必要な配線を上記から選択して必要数設けることで実際のメモリ基板、ビデオボード基板、マザーボード基板等の種々の基板に本発明構造を適用することができる。
FIG. 28 shows another example of the horizontal wiring structure in the multi-chip module having the multilayer structure shown in FIG.
In FIG. 28, in addition to the wiring pattern for connecting the integrated circuit chip components A1 to An or the integrated circuit chip components B1 to Bn having the same area, other components such as the control chips CT1 to CTn and the processor chips PT1 to PTn. This is an example in which buffer chips BT1 to BTn are stacked.
In the structure shown in FIG. 28, the integrated circuit chip components A1 to An and the control chip CT, the processor chips PT1 to PTn, and the buffer chip BT that are installed in the horizontal direction in each layer are all wired in common and common power Wirings Xa1 to Xan such as wirings are provided, and further, selection wirings Xb1 to Xbn are provided to connect only the necessary components to the integrated circuit chip components A1 to An, the control chip CT, and the buffer chip BT. it can.
As described above, as shown in FIG. 27 and FIG. 28, in the multi-chip module having a multilayer structure according to the present invention, common wiring, individual wiring, or external wiring can be used in either the horizontal direction or the vertical direction. Can be used in any combination.
Of course, these various wirings are not applied only to the laminated structure of this configuration, and any of these wirings (wirings Xa1 to Xan, selection wirings Xb1 to Xbn) is shown in the multichip module C shown in FIG. The present invention may be applied to the multichip module D shown, the multichip module E shown in FIGS. 17 and 18, and the multichip modules F, F2, and G shown in FIGS.
The electrical signals of this type of semiconductor multilayer substrate are power signals, ground signals, clock signals, address signals, chip select signals, various control signals, data signals, command signals, etc., so that these signals are transmitted. The structure of the present invention can be applied to various substrates such as an actual memory substrate, a video board substrate, and a motherboard substrate by selecting the necessary wirings from the above and providing the necessary number.

以上説明した如く本発明によれば、特別なシリコンプロセスを要することなく、例えば、1mm厚の多層モジュール構造にシリコンテクノロジー第5世代の集積に相当する32個以上の集積回路チップ3を多層集積化することが可能となり、その製造コストはシリコンテクノロジーの開発製造にかかる費用よりも遙かに少ない。また、既存量産中のメモリーのみでなく、性能は良いがセル構造の微細化が難しいメモリーの多層高集積化、シリコンプロセスが異なり、単一ウェハ上では高集積化が困難なシステムデバイスを高集積に低コストで可能とする特徴を有する。また、前述の構造の保護層2、20の内部に集積回路チップ3とは異なる受動部品などを組み込むこともでき、応用範囲を拡張できる。   As described above, according to the present invention, for example, 32 or more integrated circuit chips 3 corresponding to the integration of the fifth generation of silicon technology are integrated into a multilayer module structure having a thickness of 1 mm without requiring a special silicon process. The cost of manufacturing is much less than the cost of developing and manufacturing silicon technology. In addition to existing mass-produced memories, high-density multi-layer integration of memory with good performance but difficult cell structure miniaturization, high integration of system devices that are difficult to achieve high integration on a single wafer due to different silicon processes It has a feature that enables it at low cost. In addition, passive components that are different from the integrated circuit chip 3 can be incorporated in the protective layers 2 and 20 having the above-described structure, and the application range can be expanded.

本発明の集積構造は、従来技術にない微小の集積回路チップ部品が3次元に整列配置された構造をとり、将来世代においても、集積密度、チップの厚みにかかわらず基本的に同一であり、製造方法も基本的に同一かつシリコンプロセスで既に使われている多層メッキ配線、平坦化、リソグラフィーの技術を使用する為開発製造及び応用に関してコスト負担及びリスクが少ない。
更に、構成される基本素子である集積回路チップ部品A及びBは、ベアチップに比較して製品規格テスト選別され、封止されている為、歩留まりという最大の集積上の問題が最小化される。即ち、モジュールの量産時の最終電気特性保証テストもマルチチップモジュールのシステム及びプロセスの評価後は基本的に配線の機能及び特性テスト(接続状態、電気抵抗、インピーダンス、インダクタンス、キャパシタンス、ノイズ等)のみとすることが出来、負担が大幅に減り、低コスト化、高品質、高信頼に直結できる。又集積工程もチップ面に対して応力不均衡解消を行い、封止保護されているから出荷後の信頼性が向上される。
また、本発明は、配線も基本的にメッキ、パターンもリソグラフィーにより、金属接合を有しないので、従来技術になくはるかに微細化、高密度、配線品質、多様性を持つ配線が出来る。配線基板、3次元的に配置された素子間、配線基盤間を任意に接続出来、配線径は数μm以下を達成できる。複数電源、グラウンド、信号ライン任意に配置できるから、パターン精度、信号品質(SI)も向上され、高周波チップ、デジタル、アナログ、ロジック、メモリー等の異種のチップ集積も容易となり、より高度高集積の最終製品の製作が可能となる。更に、アンテナ、コイル等の機能部品の製作、厚いメッキによる放熱機能も可能となる。即ち、本発明は高密度高機能のチップモジュールに対する要求項目全てを満たしている。
以上総合して、本発明によれば、従来技術をはるかに凌駕する能力を有する多層モジュールの提供が可能となり、産業界、消費者に大きな貢献を為す。
The integrated structure of the present invention has a structure in which minute integrated circuit chip parts not existing in the prior art are arranged in a three-dimensional manner, and will be basically the same in future generations regardless of the integration density and chip thickness. The manufacturing method is basically the same and uses the multi-layer plating wiring, planarization, and lithography techniques already used in the silicon process, so that there is little cost burden and risk for development and manufacturing and application.
Further, the integrated circuit chip components A and B, which are the basic elements to be constructed, are selected according to the product standard test and sealed as compared with the bare chip, so that the maximum integration problem of yield is minimized. In other words, the final electrical characteristic assurance test at the time of mass production of the module is basically only the function and characteristic test of the wiring (connection state, electrical resistance, impedance, inductance, capacitance, noise, etc.) after the evaluation of the system and process of the multichip module. The burden is greatly reduced, and it can be directly connected to low cost, high quality and high reliability. The integration process also eliminates the stress imbalance with respect to the chip surface and is sealed to improve reliability after shipment.
Further, according to the present invention, since the wiring is basically plated and the pattern is also formed by lithography and does not have metal bonding, wiring having much finer, high density, wiring quality, and diversity can be obtained than in the prior art. Wiring substrates, three-dimensionally arranged elements, and wiring boards can be arbitrarily connected, and the wiring diameter can be several μm or less. Since multiple power supplies, grounds, and signal lines can be arranged arbitrarily, pattern accuracy and signal quality (SI) are also improved, and different types of chips such as high-frequency chips, digital, analog, logic, and memory can be easily integrated. The final product can be manufactured. Furthermore, it is possible to manufacture functional parts such as antennas and coils and to dissipate heat by thick plating. That is, the present invention satisfies all the requirements for high density and high performance chip modules.
In summary, according to the present invention, it is possible to provide a multilayer module having a capability far surpassing that of the prior art, which greatly contributes to the industry and consumers.

基盤上の絶縁下部保護層上に集積回路チップを配置した状態を示す断面図。Sectional drawing which shows the state which has arrange | positioned the integrated circuit chip on the insulating lower protective layer on a board | substrate. 基盤上の集積回路チップの周囲に上部保護層を形成した状態を示す断面図。Sectional drawing which shows the state which formed the upper protective layer in the circumference | surroundings of the integrated circuit chip on a board | substrate. 基盤上に集積回路チップ搭載したテスト前の集積回路チップ部品の断面図。Sectional drawing of the integrated circuit chip component before the test which mounted the integrated circuit chip on the board | substrate. 基盤上の保護層内部に1つの集積回路チップを埋設した状態を示す断面図。Sectional drawing which shows the state which embed | buried one integrated circuit chip inside the protective layer on a board | substrate. 集積回路チップ上の被覆層に上下導体部を形成した状態を示す断面図。Sectional drawing which shows the state which formed the upper and lower conductor part in the coating layer on an integrated circuit chip. 被覆層上に拡張配線部を形成した状態を示す断面図。Sectional drawing which shows the state which formed the extended wiring part on the coating layer. 拡張配線部上に上下導体部と端子部を形成した状態を示す断面図。Sectional drawing which shows the state which formed the upper and lower conductor part and the terminal part on the extended wiring part. 端子部を介してプローバ(又はソケット)により集積回路チップを検査している状態を示す断面図。Sectional drawing which shows the state which test | inspects an integrated circuit chip with a prober (or socket) through a terminal part. 基盤上の保護層内に設けた集積回路チップを切り取る位置を示す断面図。Sectional drawing which shows the position which cuts off the integrated circuit chip provided in the protective layer on a board | substrate. 図10(A)は保護層内部に集積回路チップを備えた端子部形成面積拡張型の集積回路チップ部品の断面図、図10(B)は保護層内部に集積回路チップを備えた端子部形成面積同一型の集積回路チップ部品の断面図。FIG. 10A is a cross-sectional view of an integrated circuit chip component of an extended terminal area forming integrated circuit chip provided with an integrated circuit chip inside the protective layer, and FIG. 10B is a formed terminal portion including an integrated circuit chip inside the protective layer. Sectional drawing of integrated circuit chip components of the same area type. 基盤上の保護層内部に集積回路チップ部品を設けた状態を示す断面図。Sectional drawing which shows the state which provided the integrated circuit chip component inside the protective layer on a board | substrate. 基盤上に集積回路チップ部品を2層積層した状態を示す断面図。Sectional drawing which shows the state which laminated | stacked two layers of integrated circuit chip components on the board | substrate. 基盤上の2段目の集積回路チップ部品を保護層で囲んで配線した状態を示す断面図。Sectional drawing which shows the state which enclosed and wired the integrated circuit chip component of the 2nd step | paragraph on the board | substrate with the protective layer. 基盤上に集積回路チップ部品を2層積層した状態を示す断面図。Sectional drawing which shows the state which laminated | stacked two layers of integrated circuit chip components on the board | substrate. 基盤上の2段目の集積回路チップ部品を保護層で囲んで配線した状態を示す断面図。Sectional drawing which shows the state which enclosed and wired the integrated circuit chip component of the 2nd step | paragraph on the board | substrate with the protective layer. 2段目の集積回路チップ部品の周囲に配線した状態を示す断面図。Sectional drawing which shows the state wired around the 2nd step | paragraph of integrated circuit chip components. 多層マルチチップモジュールの一例の断面図。Sectional drawing of an example of a multilayer multichip module. 多層マルチチップモジュール上に外部接続層及び端子が配置された断面図。Sectional drawing by which the external connection layer and the terminal were arrange | positioned on a multilayer multichip module. 図19(A)は多層マルチチップモジュールの基盤から分離された状態を示す断面図、図19(B)は端子部形成面積拡張型の集積回路チップ部品A1−An、端子部形成面同一型の集積回路チップ部品,B1−Bn の混在状態を示す断面図。FIG. 19A is a cross-sectional view showing a state separated from the base of the multi-layer multichip module, and FIG. 19B is an integrated circuit chip component A1-An having a terminal part forming area expansion type, the same type of terminal part forming surface. Sectional drawing which shows the mixed state of integrated circuit chip components and B1-Bn. 多層マルチチップモジュールの断面図。Sectional drawing of a multilayer multichip module. 配線基板上に絶縁層を形成した状態を示す断面図。Sectional drawing which shows the state which formed the insulating layer on the wiring board. 絶縁層上に端子部形成面積拡張型の集積回路チップ部品を配置した状態を示す断面図。Sectional drawing which shows the state which has arrange | positioned the terminal part formation area expansion type integrated circuit chip component on the insulating layer. 端子部形成面積拡張型の集積回路チップ部品の上に水平配線を形成した状態の一例を示す断面図。Sectional drawing which shows an example of the state which formed the horizontal wiring on the integrated circuit chip component of a terminal part formation area expansion type. 配線基板上に端子部形成面積拡張型の集積回路チップが1層のマルチチップモジュールとして示されている断面図。FIG. 3 is a cross-sectional view showing an integrated circuit chip with an extended terminal area forming type on a wiring board as a one-layer multichip module. 図25は配線基板上に端子部形成面積拡張型の集積回路チップ部品A1〜An、端子部形成面同一型の集積回路チップ部品,B1〜Bn の混在状態を示す断面図。FIG. 25 is a cross-sectional view showing a mixed state of the integrated circuit chip parts A1 to An of the terminal part forming area expansion type, the integrated circuit chip parts of the same type of the terminal part forming surface, and B1 to Bn on the wiring board. 配線基板上に集積回路チップが多層のマルチチップモジュールとして示されている断面図。Sectional drawing by which an integrated circuit chip is shown as a multilayer multichip module on the wiring board. 上下多層積層された集積回路チップ部品を選択的に接続する配線部を備えたマルチチップモジュールの断面図。Sectional drawing of a multichip module provided with the wiring part which selectively connects the integrated circuit chip components laminated | stacked on the upper and lower multilayer. 上下多層積層された集積回路チップ部品のうち、水平方向に配置された集積回路チップ部品を選択的に接続する配線部を備えたマルチチップモジュールの断面図。Sectional drawing of a multichip module provided with the wiring part which selectively connects the integrated circuit chip components arrange | positioned in the horizontal direction among the integrated circuit chip components laminated | stacked on upper and lower multilayer.

符号の説明Explanation of symbols

A、A1、A2、A3、A4、An…端子部形成面積拡張型の集積回路チップ部品、
B、B1、B2、B3、B4、Bn…端子部形成面積同一型の集積回路チップ部品、
C、D、H、J…シングルチップモジュール又はマルチチップモジュール、
E、F、G、K…多層モジュール、
1…基盤、2…保護層(下部保護層7と上部保護層8が合体した保護層)、
3…集積回路チップ、5…拡張配線部、6…面拡張端子部、
7…保護層(絶縁体下部保護層12と上部保護層13が一体化された保護層)、
7a…被覆層、7b…下部ビア配線部(内部側上下導体部)、
8…(再配線用)上部保護層、9…上部ビア配線(外部側上下導体部)、20…保護層、
10…端子部(面拡張端子部)、12…絶縁体下部保護層、13…上部保護層、
18…集積回路チップ部品を配置する絶縁体下部保護層、
19…集積回路チップ部品再配線被覆保護層、
20…集積回路チップ部品を覆う更なる保護層(18,19と合体した保護層)、
22…水平配線、25…配線基板上の絶縁材、
26、26n…積層される保護層、27…積層される再配線被覆保護層、
28…上下集積回路チップ部品層間導体部、
30…集積回路チップ部品上の上下導体部、
36…外部接続保護層及び外部接続端子、39…配線基板上の端子、40…配線基板、
Yta, …配線基板端子より上下全ての集積回路チップ部品間を接続するビア配線
Ytb1, Ytb2, Ytb3, Ytbn,…配線基板端子より上下の集積回路チップ部品を選択的接続
するビア配線、
Yia, …モジュール内集積回路チップ部品より上下全ての集積回路チップ部品間を接続す
るビア配線
Yib1, Yib2, Yibn,…モジュール内集積回路チップ部品より上下の集積回路チップ部品を
選択的に接続するビアA配線
Xa1, Xan …モジュール内集積回路チップ部品より横方向全ての集積回路チップ部品間
を接続する水平配線
Xb1, Xb2, Xb3, Xbn,…モジュール内集積回路チップ部品より横方向の集積回路チップ部
品を選択的に接続する配線



A, A1, A2, A3, A4, An... Terminal portion forming area expansion type integrated circuit chip component,
B, B1, B2, B3, B4, Bn ... Integrated circuit chip parts having the same type of terminal area,
C, D, H, J ... single chip module or multi chip module,
E, F, G, K ... multilayer modules,
1 ... base, 2 ... protective layer (a protective layer in which the lower protective layer 7 and the upper protective layer 8 are combined),
3 ... Integrated circuit chip, 5 ... Extension wiring part, 6 ... Plane extension terminal part,
7 ... Protective layer (protective layer in which the insulator lower protective layer 12 and the upper protective layer 13 are integrated),
7a ... coating layer, 7b ... lower via wiring part (inner side upper and lower conductor part),
8 ... (for rewiring) upper protective layer, 9 ... upper via wiring (outer side upper and lower conductors), 20 ... protective layer,
DESCRIPTION OF SYMBOLS 10 ... Terminal part (surface expansion terminal part), 12 ... Insulator lower protective layer, 13 ... Upper protective layer,
18 ... Insulator lower protective layer for disposing the integrated circuit chip component,
19 ... Integrated circuit chip component rewiring coating protective layer,
20 ... Further protective layer covering the integrated circuit chip component (a protective layer combined with 18, 19),
22 ... Horizontal wiring, 25 ... Insulating material on the wiring board,
26, 26n ... laminated protective layer, 27 ... laminated rewiring coating protective layer,
28: Upper and lower integrated circuit chip component interlayer conductors,
30: Upper and lower conductor portions on the integrated circuit chip component,
36 ... External connection protective layer and external connection terminal, 39 ... Terminal on the wiring board, 40 ... Wiring board,
Yta, ... via wiring Ytb1, Ytb2, Ytb3, Ytbn for connecting all the integrated circuit chip components above and below the wiring board terminal, via wiring for selectively connecting the integrated circuit chip parts above and below the wiring board terminal,
Yia,... Via wiring for connecting all the integrated circuit chip components above and below the integrated circuit chip components in the module Yib1, Yib2, Yibn,... Vias for selectively connecting the integrated circuit chip components above and below the integrated circuit chip components in the module A wiring Xa1, Xan ... Horizontal wiring Xb1, Xb2, Xb3, Xbn for connecting all the integrated circuit chip parts in the lateral direction from the integrated circuit chip parts in the module. Integrated circuit chip parts in the lateral direction from the integrated circuit chip parts in the module Selectively connect the wiring



Claims (20)

端子部を備えた集積回路チップの少なくとも端子部形成面が、該端子部形成面よりも面積の大きな絶縁材からなる保護層により覆われ、前記保護層に、前記端子部を接続する拡張配線部及び再配置された端子部が形成され、該拡張配線部が、前記端子部から前記保護層の厚さ方向に延出形成された内部側上下導体部と、前記内部側上下導体部から前記保護層の面方向に延出形成された導体部と該導体部を前記保護層の外部側に引き出すための外部側上下導体部と、前記保護層の外部側に前記外部側上下導体部に接続されて設けられた再配置端子部とを具備した端子部形成面積拡張型にされてなることを特徴とする集積回路チップ部品。   An extended wiring portion connecting at least a terminal portion forming surface of an integrated circuit chip having a terminal portion with a protective layer made of an insulating material having a larger area than the terminal portion forming surface and connecting the terminal portion to the protective layer And the rearranged terminal portion is formed, and the extended wiring portion extends from the terminal portion in the thickness direction of the protective layer, and the protection from the inner side upper and lower conductor portion. A conductor portion extending in the surface direction of the layer, an external upper and lower conductor portion for drawing the conductor portion to the outside of the protective layer, and an external upper and lower conductor portion connected to the outer side of the protective layer. An integrated circuit chip component characterized in that it is of a terminal part forming area expansion type comprising a rearranged terminal part provided in the above-described manner. 端子部を備えた集積回路チップの少なくとも端子部形成面が、該端子部形成面よりも面積の大きな絶縁材からなる保護層により覆われ、前記保護層に、前記端子部を接続する拡張配線部及び再配置された端子部が形成され、該拡張配線部が、前記端子部から前記保護層の厚さ方向に延出形成された内部側上下導体部と、前記内部側上下導体部から前記保護層の面方向に延出形成された導体部と該導体部を前記保護層の外部側に引き出すための外部側上下導体部と、前記保護層の外部側に前記外部側上下導体部に接続されて設けられた再配置端子部とを具備してなる端子部形成面積拡張型の集積回路チップ部品と、
端子部を備えた集積回路チップの端子部形成面が、該端子部形成面と同一面積の絶縁材からなる保護層により覆われ、前記保護層に前記集積回路チップの端子部から前記保護層の外部側に設けられた端子部に接続された配線部が設けられてなる端子部形成面積同一型の集積回路チップ部品の少なくとも一方を備え、
前記端子部形成面積拡張型と前記端子部形成面積同一型の1つまたは複数の集積回路チップ部品が、更なる保護層の中に、2次元的又は3次元的に配置されてなり、前記更なる保護層中に2次元的又は3次元的に配置された前記複数の集積回路チップ部品を任意に接続するための水平配線又は垂直配線が形成されてなることを特徴とするマルチチップモジュール。
An extended wiring portion connecting at least a terminal portion forming surface of an integrated circuit chip having a terminal portion with a protective layer made of an insulating material having a larger area than the terminal portion forming surface and connecting the terminal portion to the protective layer And the rearranged terminal portion is formed, and the extended wiring portion extends from the terminal portion in the thickness direction of the protective layer, and the protection from the inner side upper and lower conductor portion. A conductor portion extending in the surface direction of the layer, an external upper and lower conductor portion for drawing the conductor portion to the outside of the protective layer, and an external upper and lower conductor portion connected to the outer side of the protective layer. An integrated circuit chip component of a terminal part forming area expansion type comprising a rearranged terminal part provided
A terminal portion forming surface of an integrated circuit chip having a terminal portion is covered with a protective layer made of an insulating material having the same area as the terminal portion forming surface, and the protective layer is covered with the protective layer from the terminal portion of the integrated circuit chip. Provided with at least one of integrated circuit chip parts of the same type of terminal part formation area provided with a wiring part connected to a terminal part provided on the outside side,
One or a plurality of integrated circuit chip components of the terminal part formation area expansion type and the terminal part formation area same type are arranged two-dimensionally or three-dimensionally in a further protective layer. A multi-chip module, wherein horizontal wiring or vertical wiring for arbitrarily connecting the plurality of integrated circuit chip components arranged two-dimensionally or three-dimensionally in a protective layer is formed.
前記更なる保護層中に2次元的又は3次元的に配置された前記複数の集積回路チップ部品のいずれかに対し、前記水平配線又は垂直配線を介して外部から接続自在に構成されることを特徴とする請求項2に記載のマルチチップモジュール。   Any one of the plurality of integrated circuit chip components arranged two-dimensionally or three-dimensionally in the further protective layer is configured to be connectable from the outside via the horizontal wiring or vertical wiring. The multichip module according to claim 2, wherein 前記保護層中に単一の集積回路チップ部品を配置してなるシングルチップモジュール又は前記マルチチップモジュールが配線基板上に形成され、前記シングルチップモジュール又はマルチチップモジュールと前記配線基板の電極接合が、電気メッキにより行われ、前記シングルチップモジュール又はマルチチップモジュールの保護層が前記配線基板に密着され、前記シングルチップモジュール又はマルチチップモジュールが配線基板と一体化されてなることを特徴とする請求項2または3に記載のマルチチップモジュール。   A single chip module or the multichip module formed by disposing a single integrated circuit chip component in the protective layer is formed on a wiring board, and electrode bonding between the single chip module or the multichip module and the wiring board is performed. 3. The method according to claim 2, wherein the protective layer of the single chip module or the multichip module is adhered to the wiring board, and the single chip module or the multichip module is integrated with the wiring board. Or the multichip module of 3. 前記集積回路チップ部品が、更なる保護層の中に並列配置又は積層配置されて被覆され、内部側の集積回路チップ部品の端子を互いに接続する配線が該更なる保護層の中に設けられ、該更なる保護層上に接続延長して別の端子が配置され、互いの保護層が一体化されて該更なる保護層内に前記複数の集積回路チップ部品が離間配置されてなることを特徴とする請求項2〜4のいずれかに記載のマルチチップモジュール。   The integrated circuit chip component is covered in parallel or stacked in a further protective layer, and wiring for connecting the terminals of the internal integrated circuit chip component to each other is provided in the further protective layer. Another terminal is arranged by extending the connection on the further protective layer, the protective layers are integrated with each other, and the plurality of integrated circuit chip components are arranged separately in the further protective layer. The multichip module according to any one of claims 2 to 4. 前記集積回路チップ部品が、集積回路チップ又は受動素子と混在状態で、複数、互いの保護層を一体化し、内部側の集積回路チップに配線された状態で集合されてなることを特徴とする請求項2〜5のいずれかに記載のマルチチップモジュール。   The integrated circuit chip component is assembled in a state of being mixed with an integrated circuit chip or a passive element, in which a plurality of protective layers are integrated and wired to an internal integrated circuit chip. Item 6. The multichip module according to any one of Items 2 to 5. 前記端子部形成面積拡張型の集積回路チップ部品の端子部を介して必要要求を満たす、100MHz以上の高周波、機能、AC、パラメータ等の電気特性テスト及びバーンインテスト合格済み、又は、同等の品質信頼性の集積回路チップ部品の保護層どうしが更なる保護層と一体化されてなることを特徴とする請求項2〜6のいずれかに記載のマルチチップモジュール。   100% or more high frequency, function, AC, parameter, etc. electrical characteristics test and burn-in test have been satisfied or equivalent quality reliability is satisfied through the terminal part of the terminal part forming area expansion type integrated circuit chip part 7. The multichip module according to claim 2, wherein protective layers of the integrated circuit chip component are integrated with a further protective layer. 請求項2〜7のいずれかに記載のマルチチップモジュールにおいて、前記保護層の内部の集積回路チップ部品と集積回路チップと受動部品のいずれかの端子を選択的に接続する垂直配線または水平配線が、前記集積回路チップ部品と集積回路チップと受動部品のいずれかの外側の保護層に配置されてなることを特徴とするマルチチップモジュール。   The multichip module according to any one of claims 2 to 7, wherein a vertical wiring or a horizontal wiring for selectively connecting the terminals of the integrated circuit chip component, the integrated circuit chip, and the passive component inside the protective layer is provided. A multi-chip module, wherein the multi-chip module is disposed on a protective layer outside any one of the integrated circuit chip component, the integrated circuit chip, and the passive component. 前記内部の集積回路チップ部品の外側脇の保護層を上下導通した上下導体部により下層側の前記マルチチップモジュール内の積層回路チップ部品用のテスト端子と上層側の前記マルチチップモジュールの集積回路チップ用のテスト端子とが電気的に接続されてなることを特徴とする請求項2〜8のいずれかに記載のマルチチップモジュール。   A test terminal for a multilayer circuit chip component in the multichip module on the lower layer side and an integrated circuit chip of the multichip module on the upper layer side by upper and lower conductor portions that vertically communicate with the protective layer on the outer side of the internal integrated circuit chip component. The multi-chip module according to claim 2, wherein the multi-chip module is electrically connected to a test terminal. 請求項2〜9のいずれかに記載のマルチチップモジュールにおいて、前記マルチチップモジュールの外部端子と、マルチチップモジュール内の任意の集積回路チップ部品又は集積回路チップ又は受動部品の任意の接続端子より、前記マルチチップモジュール内の任意の集積回路チップ部品と集積回路チップと受動部品のいずれかの接続端子への接続が該集積回路チップ部品と集積回路チップと受動部品以外の接続端子に経由接続されるか否か選択できる配線を有することを特徴とする請求項2〜9のいずれかに記載のマルチチップモジュール。   In the multichip module according to any one of claims 2 to 9, from an external terminal of the multichip module and an arbitrary connection terminal of any integrated circuit chip component or integrated circuit chip or passive component in the multichip module, The connection to any connection terminal of any integrated circuit chip component, integrated circuit chip, and passive component in the multichip module is connected via a connection terminal other than the integrated circuit chip component, the integrated circuit chip, and the passive component. The multichip module according to claim 2, further comprising a wiring that can be selected as to whether or not. 基盤又は配線基板上に、請求項1または請求項2に記載の集積回路チップ部品、前記集積回路チップ部品を覆う保護層及び前記保護層中に前期集積回路チップ部品の端子に接続される配線及び配線端子と層間を接続するビア配線と同層の集積回路チップ部品を接続する水平配線の形成によって1層のチップモジュールを造り、前記1層のチップモジュールの製造工程の繰り返しによって積層製造することを特徴とするチップモジュールの製造方法。   The integrated circuit chip component according to claim 1, a protective layer covering the integrated circuit chip component, a wiring connected to a terminal of the previous integrated circuit chip component in the protective layer, A one-layer chip module is formed by forming a horizontal wiring that connects an integrated circuit chip component of the same layer as a via wiring that connects a wiring terminal and an interlayer, and is laminated and manufactured by repeating the manufacturing process of the one-layer chip module. A method for manufacturing a chip module. 請求項1または請求項2に記載の集積回路チップ部品を前記端子部を上に向けて基盤上の絶縁材下部保護層上に設置した後、前記下部保護層上に前記集積回路チップ部品を覆うように絶縁材の上部保護層を形成し、前記上部保護層に前記集積回路チップ部品の端子部に接続して前記上部保護層上に露出する内部側上下導体部を形成し、この後、次の集積回路チップ部品積層用の下部保護層の上面に前記内部側上下導体部に接続する拡張配線部を形成し、集積回路チップ部品を搭載の後、前記下部保護層の上に前記拡張配線部を覆う上部保護層を形成するとともに、前記上部保護層に前記拡張配線部に接続して前記上部保護層の上面側に達する外部側上下導体部を形成し、その後、前記外部側上下導体部の上部側に前記上部保護層の上面に位置する端子部を形成することを特徴とするチップモジュールの製造方法。   3. The integrated circuit chip component according to claim 1 or 2 is placed on an insulating material lower protective layer on a substrate with the terminal portion facing upward, and then the integrated circuit chip component is covered on the lower protective layer. Forming an upper protective layer of an insulating material, and forming an inner upper and lower conductor portion exposed on the upper protective layer by connecting to the terminal portion of the integrated circuit chip component on the upper protective layer, Forming an extended wiring portion connected to the inner upper and lower conductor portions on the upper surface of the lower protective layer for stacking the integrated circuit chip components, and mounting the integrated circuit chip components and then extending the extended wiring portion on the lower protective layer An upper protective layer covering the upper protective layer, and an external upper and lower conductor portion connected to the extended wiring portion and reaching the upper surface side of the upper protective layer is formed on the upper protective layer. Located on the upper surface of the upper protective layer on the upper side Method for producing a chip module and forming a that terminal unit. 請求項1または請求項2に記載の集積回路チップ部品を、配線基板上に形成された絶縁材下部保護層上に前記集積回路チップ部品の端子部を上に向けて設置した後、前記下部保護層に配線基板端子に連結するビア配線及び端子を形成し、さらに、前記集積回路チップ部品を覆うように絶縁材の上部保護層を形成し、前記上部保護層に前記下部保護層上端子に連結するビア配線及び前記上部保護層上に露出する端子を形成し、前記端子に前記集積回路チップ部品の端子部が接続される内部側上下導体部及び前記上部保護層の上面に前記内部側上下導体部に接続する拡張配線部を形成することを特徴とするチップモジュールの製造方法。   The integrated circuit chip component according to claim 1 or 2 is placed on an insulating material lower protective layer formed on a wiring board with a terminal portion of the integrated circuit chip component facing upward, and then the lower protection Form via wiring and terminals to be connected to the wiring board terminals in the layer, and further form an upper protective layer of an insulating material so as to cover the integrated circuit chip component, and connect to the upper protective layer to the lower protective layer upper terminal Forming via wiring and a terminal exposed on the upper protective layer, and connecting the terminal portion of the integrated circuit chip component to the terminal, and an inner upper and lower conductor on the upper surface of the upper protective layer A method of manufacturing a chip module, wherein an extended wiring portion connected to the portion is formed. 前記下部保護層上に水平方向に並ぶ複数の集積回路チップ部品を配置するとともに、これら複数の集積回路チップ部品の前記拡張配線部どうしを水平方向に接続する水平配線を形成することを特徴とする請求項11〜13のいずれかに記載のチップモジュールの製造方法。   A plurality of integrated circuit chip components arranged in a horizontal direction are arranged on the lower protective layer, and a horizontal wiring for connecting the extension wiring portions of the plurality of integrated circuit chip components in a horizontal direction is formed. The manufacturing method of the chip module in any one of Claims 11-13. 前記端子部形成面積拡張型又は前記端子部拡張面積同一型の集積回路チップ部品の端子部を介して必要要求を満たす、100MHz以上の高周波、機能、AC、パラメータ等の電気特性テスト及びバーンインテスト合格済みの集積回路チップ部品の保護層どうしが一体化されてなることを特徴とする請求項11〜14のいずれかに記載のチップモジュールの製造方法。   Electrical characteristics test and burn-in test for high frequency, function, AC, parameters, etc. of 100 MHz or higher that meet the required requirements via the terminal part of the terminal part forming area extended type or the terminal part extended area same type integrated circuit chip part The method for manufacturing a chip module according to claim 11, wherein the protective layers of the integrated circuit chip parts that have already been formed are integrated. 端子部を有する集積回路チップを前記端子部を上に向けて基盤上の絶縁材下部保護層上に設置した後、前記下部保護層上に前記集積回路チップを覆うように絶縁材の上部保護層を形成し、前記上部保護層に前記集積回路チップの端子部に接続して前記上部保護層上に露出する内部側上下導体部を形成し、この後、前記上部保護層の上面に前記内部側上下導体部に接続する拡張配線部を形成し、次いで前記下部保護層の上に前記拡張配線部を覆う上部保護層を形成するとともに、前記上部保護層に前記拡張配線部に接続して前記上部保護層の上面側に達する外部側上下導体部を形成し、その後、前記外部側上下導体部の上部側に前記上部保護層の上面に位置する端子部を形成することを特徴とする集積回路チップ部品の製造方法。   An integrated circuit chip having a terminal portion is placed on an insulating material lower protective layer on a base with the terminal portion facing upward, and then an upper protective layer of an insulating material so as to cover the integrated circuit chip on the lower protective layer And forming an inner upper and lower conductor portion exposed on the upper protective layer by connecting to the terminal portion of the integrated circuit chip on the upper protective layer, and then forming the inner side on the upper surface of the upper protective layer. Forming an extension wiring part connected to the upper and lower conductor parts, and then forming an upper protection layer covering the extension wiring part on the lower protection layer, and connecting the extension wiring part to the upper protection layer and An integrated circuit chip, wherein an external upper and lower conductor portion reaching the upper surface side of the protective layer is formed, and thereafter a terminal portion positioned on the upper surface of the upper protective layer is formed on the upper side of the outer upper and lower conductor portion. A manufacturing method for parts. 請求項11〜請求項16のいずれかに記載の製造方法により得られたチップモジュールを複数積層し、上層側のチップモジュールの配線部と下層側のチップモジュールの配線部とを上下導体部により接続することを特徴とするチップモジュールの製造方法。   A plurality of chip modules obtained by the manufacturing method according to any one of claims 11 to 16, wherein a plurality of chip modules are connected, and a wiring portion of the chip module on the upper layer side and a wiring portion of the chip module on the lower layer side are connected by the upper and lower conductor portions. A method for manufacturing a chip module, comprising: 請求項11〜請求項16のいずれかに記載の製造方法により、チップモジュールを複数得るとともに、これらのチップモジュールを積層し、上層側のチップモジュールの配線部と下層側のチップモジュールの配線部との接続は、最終的なチップモジュール内の任意のチップモジュールの任意の接続端子と該チップモジュール内の任意のチップモジュールの任意の接続端子又は該チップモジュールの外部端子とが該チップモジュール内の他のチップモジュールの任意の接続端子に接続することを選択して行うことを特徴とするマルチチップモジュールの製造方法。   A plurality of chip modules are obtained by the manufacturing method according to any one of claims 11 to 16, and the chip modules are stacked, and a wiring portion of the chip module on the upper layer side and a wiring portion of the chip module on the lower layer side In the connection of the chip module, any connection terminal of any chip module in the final chip module and any connection terminal of any chip module in the chip module or the external terminal of the chip module are the other in the chip module. A method of manufacturing a multi-chip module, characterized in that selection is made to connect to any connection terminal of the chip module. 複数の集積回路チップを絶縁体の中に該複数集積回路チップ間を任意に接続する配線と共に3次元的に配置し、該絶縁体中に一体化されたマルチチップモジュールを作る方法として、集積回路チップ部品又は各種のチップモジュールを絶縁体の中に埋め込み又は絶縁体で覆い、該絶縁体に配線パターンを形成する前に、該集積回路チップ部品またはチップモジュールを該覆った絶縁体の硬化によってこれらを結合、一体化し、集積化することを特徴とするマルチチップモジュールの製造方法。   As a method of three-dimensionally arranging a plurality of integrated circuit chips in an insulator together with wiring for arbitrarily connecting the plurality of integrated circuit chips, a multichip module integrated in the insulator is manufactured as an integrated circuit. Chip components or various chip modules are embedded in an insulator or covered with an insulator, and before forming a wiring pattern on the insulator, these integrated circuit chip components or chip modules are cured by curing the insulator. Are combined, integrated, and integrated. A method for manufacturing a multichip module. 請求項11〜19のいずれかに記載のチップモジュールを構成する全ての素子が電気特性、信頼性が保証されたものであり、その場合に、チップモジュールの電気的機能、特性を保証する方法として、チップモジュール内の配線機能、特性のみをテストすることを特徴とする請求項11〜19のいずれかに記載のマルチチップモジュールの製造方法。

All the elements constituting the chip module according to any one of claims 11 to 19 have guaranteed electrical characteristics and reliability. In that case, as a method for ensuring the electrical function and characteristics of the chip module The method for manufacturing a multichip module according to any one of claims 11 to 19, wherein only the wiring function and characteristics in the chip module are tested.

JP2006194792A 2005-07-15 2006-07-14 Multichip module and manufacturing method thereof Active JP4699953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006194792A JP4699953B2 (en) 2005-07-15 2006-07-14 Multichip module and manufacturing method thereof

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2005206318 2005-07-15
JP2005206318 2005-07-15
JP2005227396 2005-08-05
JP2005227396 2005-08-05
JP2006092378 2006-03-29
JP2006092378 2006-03-29
JP2006194792A JP4699953B2 (en) 2005-07-15 2006-07-14 Multichip module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007294832A true JP2007294832A (en) 2007-11-08
JP4699953B2 JP4699953B2 (en) 2011-06-15

Family

ID=38765122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006194792A Active JP4699953B2 (en) 2005-07-15 2006-07-14 Multichip module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4699953B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8824163B2 (en) 2010-09-15 2014-09-02 Samsung Electronics Co., Ltd. RF layered module using three dimensional vertical wiring and disposing method thereof
KR20150046822A (en) * 2013-10-22 2015-05-04 삼성전자주식회사 Semiconductor package and method of fabricating the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321088A (en) * 1996-05-27 1997-12-12 Hitachi Ltd Manufacture of semiconductor integrated circuit device and module board and electronic apparatus obtained by it
JP2002246504A (en) * 2000-12-15 2002-08-30 Ibiden Co Ltd Method for producing multilayer printed wiring board incorporating semiconductor element
JP2004071998A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004079658A (en) * 2002-08-13 2004-03-11 Fujitsu Ltd Semiconductor device and its manufacturing method
JP2005019938A (en) * 2003-06-03 2005-01-20 Casio Comput Co Ltd Semiconductor device and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321088A (en) * 1996-05-27 1997-12-12 Hitachi Ltd Manufacture of semiconductor integrated circuit device and module board and electronic apparatus obtained by it
JP2002246504A (en) * 2000-12-15 2002-08-30 Ibiden Co Ltd Method for producing multilayer printed wiring board incorporating semiconductor element
JP2004071998A (en) * 2002-08-09 2004-03-04 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2004079658A (en) * 2002-08-13 2004-03-11 Fujitsu Ltd Semiconductor device and its manufacturing method
JP2005019938A (en) * 2003-06-03 2005-01-20 Casio Comput Co Ltd Semiconductor device and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8824163B2 (en) 2010-09-15 2014-09-02 Samsung Electronics Co., Ltd. RF layered module using three dimensional vertical wiring and disposing method thereof
KR20150046822A (en) * 2013-10-22 2015-05-04 삼성전자주식회사 Semiconductor package and method of fabricating the same
KR102144367B1 (en) * 2013-10-22 2020-08-14 삼성전자주식회사 Semiconductor package and method of fabricating the same

Also Published As

Publication number Publication date
JP4699953B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
US8076179B2 (en) Fabrication method for integrated circuit chip component, multi-chip module, and their integration structure
JPH0220848Y2 (en)
US10971483B2 (en) Semiconductor structure and manufacturing method thereof
US8872350B2 (en) Semiconductor device and manufacturing method thereof
US8058721B2 (en) Package structure
JP6268990B2 (en) Semiconductor device, semiconductor device manufacturing method, substrate, and substrate manufacturing method
US20130026650A1 (en) Semiconductor device, semiconductor module structure configured by vertically stacking semiconductor devices, and manufacturing method thereof
US7932517B2 (en) Semiconductor device comprising circuit substrate with inspection connection pads and manufacturing method thereof
JP5016811B2 (en) Semiconductor device
TW200527612A (en) Manufacturing method of semiconductor device, semiconductor device, circuit substrate and electronic equipment
US10515890B2 (en) Semiconductor device
US9196507B1 (en) Semiconductor device, semiconductor stacked module structure, stacked module structure and method of manufacturing same
JP2004079716A (en) Chip size package type package for semiconductor and its manufacturing method
JP4699953B2 (en) Multichip module and manufacturing method thereof
TWI621194B (en) Testing board component
KR20080031644A (en) Semiconductor device and method for manufacturing the same
KR100959859B1 (en) Manufacturing method of electronic parts built-in substrate
CN113451281A (en) Semiconductor package
JP2005159199A (en) Semiconductor device and its manufacturing method
US20220187341A1 (en) Microelectronic test interface substrates, devices, and methods of manufacture thereof layer level test and repair on buildup redistribution layers
Hu An Innovative System Integration Interconnection Technology Beyond BEOL
US20230140738A1 (en) Microelectronic test and package interface substrates, devices, and methods of manufacture thereof alignment improvement of interconnect on buildup redistribution layers
JP2004296464A (en) Semiconductor device
EP2903021A1 (en) Semiconductor device, semiconductor stacked module structure, stacked module structure and method of manufacturing same
KR100470123B1 (en) Board for burn-in test and fabrication method thereof, method for testing semiconductor chip by using it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

R150 Certificate of patent or registration of utility model

Ref document number: 4699953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250