JP2001506395A - ゲート制御式電子放出デバイス及びその製造方法 - Google Patents

ゲート制御式電子放出デバイス及びその製造方法

Info

Publication number
JP2001506395A
JP2001506395A JP50069698A JP50069698A JP2001506395A JP 2001506395 A JP2001506395 A JP 2001506395A JP 50069698 A JP50069698 A JP 50069698A JP 50069698 A JP50069698 A JP 50069698A JP 2001506395 A JP2001506395 A JP 2001506395A
Authority
JP
Japan
Prior art keywords
layer
gate
opening
insulating
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP50069698A
Other languages
English (en)
Other versions
JP3736857B2 (ja
Inventor
ヘイブン、ドゥエイン・エイ
ルドウィグ、ポール・エヌ
スピント、クリストファー・ジェイ
ドブキン、ダニエル・エム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Candescent Technologies Inc
Original Assignee
Candescent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Candescent Technologies Inc filed Critical Candescent Technologies Inc
Publication of JP2001506395A publication Critical patent/JP2001506395A/ja
Application granted granted Critical
Publication of JP3736857B2 publication Critical patent/JP3736857B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

(57)【要約】 粒子(26)を絶縁層(24)の上に被着させる工程によって、ゲート制御式電子エミッタを製造する。ゲート材料を絶縁性上の粒子間の空間に被着した後、粒子とその上層をなす材料を除去する。残ったゲート材料はゲート層(28Aまたは48A)を形成し、除去された粒子の位置にはゲート層を貫通するゲート開口部(30または50)が形成される。ゲート材料の一部が粒子の下の空間に入り込むようにゲート材料の被着を行うと、ゲート開口部の側面が傾斜した形状となる。ゲート開口部を通して絶縁層をエッチングすることにより、誘電体開口部(32または52)が形成される。電子放出素子(36Aまたは56A)は、誘電体開口部に形成される。通常この工程は、エミッタ材料をゲート開口部を通して誘電体開口部に導入する過程と、リフトオフ層(34)または電気化学技術を用いて過剰なエミッタ材料を除去する過程とを伴う。

Description

【発明の詳細な説明】 ゲート制御式電子放出デバイス及びその製造方法関連出願の相互参照 本出願は、(a)Haven等による、同時出願の国際出願PCT/____ /_____、及び(b)Haven等による、同時出願の国際出願PCT/_ ___/_____に特に類似した内容を含んでいる。利用分野 本発明は、フラットパネル型CRTディスプレイのような製品における使用に 適する、通常カソードと称する電子放出デバイスの製造と構造に関するものであ る。 背景技術 電界放出カソード(またはフィールドエミッタ)は、十分な強度の電界を受け たとき電子を放出する。電界は、カソードと、通常アノードまたはゲート電極と 称するカソードから僅かに離れた位置に配置された電極との間に適当な電圧を印 加することにより発生する。 電界放出カソードが、フラットパネル型CRTディスプレイにおいて使用され るとき、カソードからの電子の放出は、かなり広い面積にわたって起こる。電子 放出領域は、通常電子放出部分の二次元配列に分割され、配列の各部分は対応す る発光部分に対向して配置され、画素(またはピクセル)の一部、または全てを 形成する。各電子放出部分から放出された電子は、対応する発光部分に衝突し、 発光部分から可視光線を放出させる。 通常、各発光部分の面積全体にわたって照度が一様(一定)であることが望ま しい。均一な照度を達成するための方法の1つは、対応する電子放出部分の面積 全体にわたって電子が一様に放射されるような構成にすることである。このため に通常は、僅かな距離だけ離隔して配置され た小形の電子放出素子の群として各電子放出部分を形成する。 僅かな距離だけ離隔して配置された小形の電子放出素子を含む電子放出デバイ スの製造のため、種々の技術が研究されてきた。Spindt等の“Research i n Micron-Sized Field-Emission Tubes,”IEEE Conf.Rec.1966 Eighth Conf. Tube Techniques,20 September 1966,pp.143-147には、フラット形の電界放 出カソード上での円錐形の電子放出素子の位置を確定するために、球形の粒子を ランダムに分散させる方法が記載されている。この球形粒子の粒径が、円錐形電 子放出素子のベース部の直径を概ね決定する。 厚いアノードを備えた電子放出ダイオードの製造において、Spindt等の 方法によれば、初めに上側モリブデン層が、下側モリブデン層の上に配設された 中間誘電体層の上層をなす構造を形成する。球形のポリスチレン粒子を上側モリ ブデン層上に分散した後、通常はアルミナである「レジスト」を、構造の上部に 被着する。球形粒子を除去して、レジストの球形粒子上の部分を除去することに より、レジストを貫通する開口部を形成する。 上側モリブデンを、レジストの開口部を通してエッチングし、上側モリブデン 層を貫通する開口部を形成する。次いでレジストと上側モリブデンの開口部を通 して中間誘電体層をエッチングし、中間誘電体層を通して下側モリブデン層に達 するキャビティを形成する。レジストの除去は、通常キャビティの形成時に行う 。 最後に、構造の上部及び中間誘電体層のキャビティの中にモリブデンを蒸着す る。この蒸着は、モリブデンが誘電体層に堆積するときに通過する開口部が次第 に閉じてゆくように行う。誘電体層のキャビティ内に円錐形の電子放出素子を形 成するとともに、上側モリブデン層と結合してダイオードのアノードを同時に形 成する連続的なモリブデン層を上側 モリブデン層上に堆積する。 Spindt等の方法における、電子放出素子の位置、ベース部の直径を設定 するための球形の粒子の利用は、電子放出デバイスを形成するための独創的な方 法である。しかし、電子放出コーンにより放出された電子は、真上にあるアノー ドに収集され、従って発光領域を直接能動化するのに使用されない。フラットパ ネル型デバイスにおける発光素子を高い一様性をもって直接能動化するために用 いられ得る電子を放出する、僅かな距離だけ離隔して配置された小形の電子放出 素子群の位置を確定するためには球形の粒子を用いることが望ましい。発明の概要の開示 本発明は、上述のように、典型的には球形である粒子をゲート制御式電子放出 デバイスの製造において使用する製造プロセスの群を提供する。この粒子はゲー ト制御式電子エミッタにおける電子放出素子の位置や、横方向の領域もかなりの 程度まで確定する。重要な点は、本発明の製造プロセスが、電子放出素子によっ て放出される電子が例えばフラットパネル型デバイスにおける発光領域のような 素子を直接能動化するために使用され得るように構成されている点である。 粒子の表面密度は容易に高いレベルに設定することができる。電子放出素子の 位置が粒子によって確定されることから、電子放出素子の表面密度は粒子の表面 密度に等しくなる。従って、電子放出素子の表面密度を容易に高めることができ る。粒子の表面密度及び平均粒径を適切に調節することにより、電子放出素子群 を、互いに適切に近接した距離だけ離隔して配置することができる。 更に、この粒子は、その粒径分布が小さくなるように容易に選択することがで きる。即ち平均粒径の標準偏差は極めて小さくなる。従って、通常電子放出素子 は、特にそれが円錐形の形状であるとき、その大部分 が等しい横方向の面積を占めるようになる。電子エミッタが、本発明に従って通 常のプロセス制御を用いた従来の製造装置によって製造されるとき、電子放出素 子群は互いに極めて類似した形態に形成することができる。 この粒子群、更にはこれらの電子放出素子群は、通常互いに概ねランダムな位 置に配置される。それにもかかわらず、単位面積あたりの電子放出素子の数は全 電子放出領域にわたって比較的一様である。最終的には、本発明の製造プロセス に従った粒子の利用によって、高度に一様な電子放出が達成され得、これにより 発光領域を高度に一様な形態で直接能動化することが可能となる。 本発明の一実施例によるゲート制御式電子エミッタの製造では、多数の粒子を 電気的に絶縁性の層の上に分散させる。次いで、好ましくは球形の形状であるこ の粒子を用いて、電子エミッタのためのゲート開口部を形成する。これには、少 なくとも粒子間の空間において、絶縁性層の上層をなす電気的に非絶縁性のゲー ト材料を設けることが必要である。後に説明するように、「電気的に非絶縁性」 なる言葉が意味するのは、電気的な性質が導電性或いは抵抗性ということである 。次いでこの粒子群を除去する。粒子除去操作の際に、粒子の上に堆積した任意 のゲート材料が同時に除去されることになる。残ったゲート材料がゲート層を形 成し、このゲート層の除去された粒子の位置にはゲート層を貫通するゲート開口 部が形成される。 このゲート層をマスクとして使用して、絶縁性層をゲート開口部を通してエッ チングし、誘電体開口部を形成する。この誘電体開口部は、絶縁性層を貫通し、 実質的に縁性層の下に設けられた電気的に非絶縁性の領域に達する。電気的に非 絶縁性のエミッタ材料を誘電体開口部に導入して、ゲート開口部を通して外部に 露出される対応する電子放出素子を 形成する。この操作は、通常、ゲート層の上及びゲート開口部を通してエミッタ 材料を被着し、次いで誘電体開口部の外側のゲート層の上に堆積したエミッタ材 料の少なくとも一部を除去することにより行われる。電子放出素子は通常円錐形 の形状である。 ゲート層の上層をなす過剰なエミッタ材料の除去は様々な方法で行うことがで きる。例えば、エミッタ材料を被着する前に、ゲート材料の上に、リフトオフ層 を形成することができるが、このとき、このリフトオフ層を貫通し、ゲート開口 部と垂直方向に整合したリフトオフ開口部が形成されるようにする。エミッタ材 料の被着において、このエミッタ材料の一部がリフトオフ開口部及びゲート開口 部を通過して誘電体開口部に入ってゆく際に、エミッタ材料の他の部分はゲート 層の上のリフトオフ層上にも堆積することになる。次いでこのリフトオフ層を除 去して、ゲート層の上に蓄積された過剰なエミッタ材料を実質的に除去する。別 法として、リフトオフ層を必要としない電気化学的方法によってゲート層の上層 をなすエミッタ材料の一部又は全てを除去することができる。いずれの場合でも 、電子放出素子は形成された構造においてゲート開口部を通して外部に露出され る。 絶縁性層上に粒子を分散させる前、つまり構造の上にゲート材料を被着させる 前に、絶縁性層の上に中間層を設けることができる。この場合、粒子を絶縁性層 の上層をなす中間層の上に分散させる。この中間層は通常、後に形成されるゲー ト層のための接着層としての機能を果たす。 重要なことは、粒子分散過程の際、特にその粒子が電界の影響下で、即ち電気 泳動的或いは誘電泳動的に中間層の上に分散される場合に、粒子の凝集を抑止す ることもできる点である。粒子の凝集を抑止することにより、粒子の表面密度を 高めることができる。従って中間層を用いることにより、本発明によって作製さ れる電子エミッタの特性を著しく改 善することができる。 本発明の或る実施例においては、ゲート開口部が、その側面が傾斜した形態を 有する。即ち、各ゲート開口部の直径は、開口部を下側非絶縁性領域に向かって 進むにつれ次第に小さくなっている。各ゲート開口部の直径は、ゲート層の底部 、或いはその近傍において最小値に達する。電子放出素子を形成するべく誘電体 開口部の中にエミッタ材料を被着する際にゲート層上に堆積した過剰なエミッタ 材料の除去においてリフトオフ層を使用すると、ゲート開口部の傾斜のためにエ ミッタ材料が誘電体開口部に入る際に通過する開口部を著しく埋めずに、リフト オフ層を厚く形成することが可能となる。 傾斜したゲートを有する電子エミッタを形成するため、好ましくは球形である 多数の粒子を電気的に絶縁性の層の上に分散させる。絶縁性層の上には電気的に 非絶縁性のゲート材料が被着されるが、このときこのゲート材料が、粒子間の空 間をカバーするとともに、絶縁性層上の粒子の下の空間に入り込むようにする。 非コリメート(non-collimated)スパッタリングのような非コリメート式の技術 をゲート材料の被着に用いるのが好ましい。 この粒子は概ね除去される。粒子上に堆積した任意のゲート材料は粒子の除去 の際に同時に除去され、これにより形成されたゲート層の除去された粒子の位置 にゲート層を貫通するゲート開口部が形成される。このゲート材料はもともと粒 子の下に入り込んだものであることから、ゲート開口部はこの時点で側面が傾斜 した形態となっている。エッチング用のマスクとしてゲート層を用いて、側面が 傾斜したゲート開口部を通して絶縁性層のエッチングを行い、絶縁性層を貫通し て下側の電気的に非絶縁性の領域に達する、対応する誘電体開口部を形成する。 誘電体開口部の中の下側非絶縁性領域の上に電子放出素子を形成する。 この電子放出素子の形成工程には、通常、ゲート層の上にリフトオフ層を被着す る過程と、リフトオフ層の上及びゲート開口部を通して誘電体開口部の中にエミ ッタ材料を被着する過程と、リフトオフ層を除去して該リフトオフ層上に堆積し た任意の過剰なエミッタ材料を除去する過程とが含まれる。初めに説明した本発 明の実施例のように、この時点で電子放出素子は、ゲート開口部を通して外部に 露出された形態となっている。 別法として、リフトオフ層を使用することなくエミッタ材料をゲート層の上、 及びゲート開口部を通して誘電体開口部の中に被着することができる。ゲート層 上の過剰なエミッタ材料の少なくとも一部分の除去は、通常電気化学的技術を用 いて行われ、この除去が行われると電子放出素子が外部に露出された形態となる 。この別法は、製造工程の数が少ない点、及び非コリメートスパッタリングのよ うな非コリメート技術によるゲート層の被着が平行技術を用いるよりコストがか さまない点で魅力的である。 本発明の更に別の実施例によるゲート制御式電子エミッタの製造においては、 絶縁性層上に形成されたパターン転写層の上に粒子を分散させる。パターン転写 層の、粒子の影になっていない(即ち粒子で垂直方向に覆われていない)部分を 除去することによりパターン転写層から粒子に対応する位置に台座状のペデスタ ル部を形成する。次いで少なくとも粒子の間の空間、つまり粒子の陰になってい ない空間に、絶縁性層の上にゲート材料を被着する。絶縁性層とパターン転写層 との間に、適切な電気的に非絶縁性の中間層を設けることにより、ゲート材料を 電気化学的に被着することができる。 ペデスタル部や粒子を含む上側の材料を除去する。残ったゲート材料がゲート 層を形成し、このゲート層のこのようにして除去されたペデス タル部の位置には層を貫通するゲート開口部が形成されている。次いでこの構造 を上述の方法で処理して、絶縁性層における誘電体開口部と、誘電体開口部内の 電子放出素子を形成する。 本発明による、いずれの製造プロセスを用いる場合も、本発明により製造され た電子エミッタの電子放出素子によって放出された電子の移動は、絶縁性層の上 に被着された導電性材料によって妨げられない。この電子は電子エミッタを越え て移動し、電子エミッタの上方の、電子エミッタから適切な距離の位置に配置さ れた発光領域のような素子を能動化することができる。最終的には、本発明によ り、特に大面積フラットパネル型CRTディスプレイのようなフラットパネル型 CRTデバイスに容易に組み込むことができる高性能の電子エミッタを製造する ための経済的なプロセスが提供される。 本発明の重要な特徴は、ゲート材料の候補として、そのゲート材料を通して小 形、典型的にはミクロン未満のサイズの開口部を正確にエッチングすることが困 難な、金のような金属を含めることができる点である。具体的には、ゲート材料 が粒子の上に被着されるとき、ゲート材料の被着が行われている際に粒子又はペ デスタル部の位置においてゲート開口部が形成される。つまりゲート開口部を形 成するのにエッチングを行う必要がない。この結果、ゲート材料としてエッチン グが困難な金属を用いることができるのである。図面の簡単な説明 第1a図〜第1h図は、本発明によるゲート制御式電子エミッタの製造のため のプロセスの各段階を示す構造の断面図である。 第2a図〜第2j図は、第1a図〜第1h図に示す製造プロセスの或る実施例 における各段階を示す構造の断面図である。 第3a図〜第3h図は、本発明によるゲート制御式フィールドエミッ タの製造のための別の製造プロセスの各段階を示す構造の断面図である。 第4図は、ゲート開口部を中心にした第3f図の一部を拡大した構造の拡大断 面図である。 第5a図〜第5c図は、第1e図の中間構造から開始される、本発明によるゲ ート制御式フィールドエミッタの製造の終了までの一連の工程の各段階を示す構 造の断面図である。 第6a図〜第6i図は、本発明によるゲート制御式フィールドエミッタの製造 のための別の工程の各段階を示す構造の断面図である。 第7a図〜第7g図は、本発明によるゲート制御式フィールドエミッタの製造 のための一連の前段階工程の各段階を示す構造の断面図である。この第7a図〜 第7g図に示す工程は、例えば第1e図〜第1h図の工程によって完了させるこ とができる。 第8図は、本発明により形成された、例えば第2j図のようなゲート制御式フ ィールドエミッタを組み込んだフラットパネル型CRTディスプレイの構造の断 面図である。 図面及び以下の好適実施例の説明において、同一の、或いは著しく類似した要 素には同じ符号を付して示した。好適実施例の説明 本発明では、ゲート制御式電界放出カソードのゲート電極における開口部を確 定するために構造の表面に分散させた粒子を用いる。本発明により製造されたフ ィールドエミッタは、フラットパネル型装置のCRTのフェースプレート上の励 起燐光体領域用として適したものである。前述のフラットパネル型装置の例とし ては、フラットパネル型テレビや、パーソナルコンピュータ、ラップトップコン ピュータ、又はワークステーション用のフラットパネル型モニタがある。 本発明は、ゲート開口部を確定するために通常は球形の形状を有する 粒子の種々の使用方法を提供する。このフィールドエミッタは多数の電子放出素 子を備え、各電子放出素子は対応するゲート開口部の一つを通して電子の一つを 放出する。粒子がゲート開口部の位置を確定しているため、その粒子は電子放出 素子の位置も確定することになる。 以下の説明に置いて、用語「電気的に絶縁性の」(又は「誘電体の」)は、一 般に抵抗率は1010Ω−cm以上の材料を意味する。用語「電気的に非絶縁性」 は、従って抵抗率が1010Ω−cm未満の材料を意味する。電気的に非絶縁性の 材料は、(a)抵抗率が1Ω−cm未満の導電性材料と、(b)抵抗率が1〜1 010Ω−cmの範囲にある(電気的に)抵抗性の材料とに分けられる。このよう な分類は、1V/μm以上の電界強度において設定されたものである。 導電性材料の例には、金属、金属−半導体化合物(例えば金属珪化物)、及び 金属−半導体共融混合物がある。導電性材料には、(N型又はP型の)中程度か ら高濃度のドーピングをされた半導体も含まれる。電気的に抵抗性の材料には、 真性半導体及び(N型又はP型の)低濃度のドーピングをされた半導体が含まれ る。電気的に抵抗性の材料の別の例には、(a)例えばサーメット(金属粒子を 埋没させたセラミック)のような金属−絶縁体複合材料、(b)グラファイト、 アモルファスカーボン、及び改質ダイヤモンド(例えば、ドーピングされた、若 しくはレーザーにより改質されたダイヤモンド)のような種々の形態の炭素、( c)及び珪素−炭素−窒素のようなある種の珪素−炭素化合物がある。 図面に於いて、第1a図〜1h図(集合的に「第1図」)には、本発明の技術 による円錐形電子放出素子のためのゲート開口部を確定するために球形粒子を用 いるゲート制御式電界放出カソードの製造のための工程が示されている。第1図 の製造工程では、開始点は、通常セラミック又はガラスで形成された電気的に絶 縁性の基板20である。第1a図を 参照されたい。基板20は電界エッミッタの支持帯を成し、板形状に形成されて いる。フラットパネル型CRTディスプレイに於いて、基板20はバックプレー トの一部を構成する。 下側の電気的に非絶縁性のエミッタ領域である下側非絶縁性領域22は基板2 0の上に配設される。下側非絶縁性領域22は、様々な形態に構成され得る。下 側非絶縁性領域22の少なくとも一部は、通常行電極と称される、概ね平行なエ ミッタ電極ラインの群にパターニングされる。非絶縁性領域22をこのように構 成した場合、最終的な電界放出カソードは、フラットパネル型CRTディスプレ イに於ける発光燐光体素子の励起のために特に適したものとなる。それにも関わ らず、非絶縁性領域22を、他のパターンに形成したり、或いはパターニングせ ずに設けることもできる。 十分に一様な電気的に絶縁性の絶縁性層24が構造の上部に設けられる。絶縁 性層24は、通常シリコン酸化物からなる。別形態では、層24をシリコン窒化 物で形成することもできる。第1a図には示されていないが、絶縁性層24の一 部は、下側非絶縁性領域22の形状によっては基板22に接触し得る。絶縁性層 24の一部は、後にエミッタ/ゲート電極間層誘電体となる。 絶縁性層24の厚みは、後に形成される電子放出素子が先端部が層24の上よ りわずかに突出する円錐型部(コーン)として形成される程度の十分な厚さを有 しているべきである。各電子放出コーンの高さは、後に説明するように、電子放 出コーンのためのゲート開口部を確定するのに用いられる球形粒子の直径によっ て決まる、そのベース部の直径によって決まる。絶縁性層24の厚みは通常球形 粒子の直径の1〜2倍である。絶縁性層の厚みは、通常0.1〜3μmの範囲で ある。 固体の球形粒子26は、第1b図に示すように絶縁性層24の上部全 体にわたってランダムに、又は概ねランダムに分散される。球形粒子26は通常 ポリスチレンからなる。粒子26の別の材料には、ガラス(例えばシリコン酸化 物)、ポリスチレン以外のポリマー(例えばラテックス)、及び水酸基(アルコ ール)、有機酸基、アミド基、及びスルホン化基のような官能基が付加された( coated)ポリマーが含まれる。 粒子26がポリスチレンからなるとき、粒子の平均粒径は0.1〜3μmの範 囲にあり、典型的には0.3μmである。平均粒径の標準偏差は通常非常に小さ く、10%未満、典型的には2%未満である。絶縁性層24表面の粒子46の平 均表面密度は106〜1010粒子/cm2の範囲であり、好ましくは107〜109 粒子/cm2の範囲である。典型値は108粒子/cm2である。 球形粒子26は絶縁性層24に強力な接着力で接着する。この接着の仕組みに おいては、ファンデルワールス力が少なくとも部分的に寄与していると考えられ ている。球形粒子26の一部又はすべては帯電した状態にあり得る。例えば、球 形粒子26がポリスチレンからなる場合は負に帯電している。初期構造20/2 2/24が逆の極性に帯電していると、それは粒子の貼着の助けとなり得る。い ずれの場合にも、粒子26は層24にひとたび貼着すると、層から容易に離れる ことはない。 球形粒子26を絶縁性層24表面上に分散させるために様々な技術を用いるこ とができる。この技術の一つでは、初めに適当な小さいポリスチレンの球を含む 脱イオン水を、ビーカー内で試薬級のアルコールに結合する。このアルコールは 通常イソプロパノールである。アルコールの他の候補にはエタノールがある。 イソプロパノールを用いた場合、得られたイソプロパノール/水溶液に於ける 成分はイソプロパノールであり、通常は容積比で99%をイソプロパノールが占 める。ポリスチレン球をイソプロパノール/水溶液内 に懸濁する。溶液内に窒素の気泡を通して、溶液全体における球体分布をより一 様にする。別法では、溶液を超音波撹拌して、溶液全体における球体分布の均一 性を改善することもできる。 概ね円形のウエハの形態で形成された初期構造20/22/24を準備し、こ のウエハをスピンチャンバ内に置く。ウエハがチャンバ内にある間、懸濁された ポリスチレン球体を含むイソプロパノール/水溶液の調整した量を、ウエハの上 に、ウエハの上側表面の選択された部分をカバーするがウエハの上部からこぼれ ないように被着する。ついでこのウエハを短時間スピンさせて、溶液の大部分を 取り除く。スピニング速度は200〜2000rpmで、好ましくは750rp mである。スピニング時間は5〜120秒で、好ましくは20秒間である。エン クロージャ(即ちスピンチャンバ)内に於いてスピンさせることにより、エンク ロージャ内の雰囲気がイソプロパノールで飽和し、球体のより均一な分布が得ら れることになる。 スピンの間に、残りのイソプロパノール/水溶液は概ね全て蒸発し、ポリスチ レンの球形粒子26が残る。イソプロパノール/水溶液がいくらか残っている場 合には、乾燥させてイソプロパノール/水を取り除く。乾燥操作は、例えば窒素 ガスの噴射により行うことができる。乾燥操作を行う、行わないに関わらず、続 けてウエハがスピンチャンバから取り出される。このようにして、第1b図の構 造が形成される。 電気的に被絶緑性のゲート材料は、絶縁性層24および球形粒子26の上に被 着される。このゲート材料の被着は、通常蒸着又はコリメートスパッタリングの ような技術を用いて、層24の上側表面に対して概ね垂直な向きに行われる。ゲ ート材料は球形粒子26間の空間において層24の上に堆積し、比較的一様な厚 みの電気的に非絶縁性のゲート層28Aが形成される。第1c図を参照されたい 。ゲート材料の一部28B は、粒子26の上側半分(半球)上に同時に堆積している。ゲート材料の一部2 8Bがゲート層28にブリッジするのを回避するため、ゲート層28Aの厚みは 、通常球体26の平均半径より小さい厚みとする。ゲート材料は、通常例えばク ロム、ニッケル、モリブデン、チタン、タングステン、又は金のような金属であ る。 この時点において、球形の粒子26の除去を、構造の他の部分を著しく損なわ ない技術を用いて行う。粒子26の除去の間、ゲート材料部分28Bは同時に除 去されて、第1d図に示す構造が形成される。このとき、ゲート開口部30が、 除去された粒子26の位置においてゲート層28Aを貫通する形態で形成されて いる。このようにして、粒子26がゲート開口部30の位置を直接確定する。ゲ ート開口部30の形成が、粒子26上のゲート材料の被着の際になされ、ゲート 材料のエッチングは行わないため、後に電子放出コーンが突出する小形の開口部 、即ちその直径が通常1μm未満の開口部をエッチングでは正確に形成すること が困難である金を、ゲート材料の候補に含められる。 除去された粒子26は球形であるため、ゲート開口部30は概ね円形の形状を 呈する。ゲート層28を形成するための被着が、絶縁性層24の上側表面に対し て概ね垂直な向きに行われたとき、各ゲート開口部50の直径は、対応する除去 された球形粒子26の直径に概ね等しくなる。 球形粒子26がポリスチレンからなるとき、その除去には通常機械的工程が用 いられる。例えば、粒子26を超音波/メガソニック処理により除去することが できる。別法として、球体26の除去のために高圧水噴射を用いることもできる 。 球体の除去に超音波/メガソニック処理を用いる場合、球体26の大部分は、 処理の中の超音波処理の間に除去される。超音波処理は、通常僅かな容積百分率 (例えば1%)のValtron SP2200アル カリ性界面活性剤(2−ブチルキシエタノール及び非イオン系界面活性剤)を含 む脱イオン水のバスにウエハを入れ、このバスに10分間超音波振動を加えるこ とにより行われる。ウエハが超音波バスから取り出された後、このウエハを脱イ オン水でリンスする。メガソニック処理は、超音波処理の後に残った球体26を 除去するために行われ、この処理では、通常わずかな容積百分率(例えば0.5 %)のValtoron SP2200アルカリ性界面活性剤を含む脱イオン水 のバスにウエハを入れ、このバスに15分間メガソニック振動を加える。次いで このウエハをメガソニックバスから取り出し、脱イオン水でリンスして、スピン 乾燥する。 超音波処理及びメガソニック処理の両処理の際、Valtron SP220 0界面活性剤の代わりに、粒子26の荷電を概ね中和する界面活性剤を用いるこ とができる。荷電中和界面活性剤には、通常イオン系界面活性剤が含まれる。 ゲート層28Aをエッチングマスクとして用いて、絶縁性層24をゲート開口 部30を通してエッチングし、対応する誘電体開口部(又は誘電体開口空間)3 2を、層24を貫通し下側非絶縁性領域22に達する形態に形成する。第1e図 を参照されたい。ここで要素24Aは、絶縁性層24の残った部分である。電極 間誘電体エッチングは、通常流電帯開口部32がゲート層28Aにいくらかアン ダーカットするように行われる。アンダーカットの量は、後に被着されるエミッ タコーン材料が誘電体開口空間32の側壁(又は側面エッジ部分)上に堆積して 電子放出素子をゲート層28Aに短絡させないだけの十分な量となるように選択 される。 電極間誘電体エッチングは様々な方法で行うことができるが、例えば(a)1 又は2以上の化学的エッチング剤を用いる等方性ウエットエッ チング、(b)アンダーカット性(即ち不完全に異方性の)ドライエッチング、 及び(c)アンダーカットのウエットエッチング又はドライエッチングを後で行 う非アンダーカット性(完全異方性)ドライエッチングなどがある。絶縁性層2 4がシリコン酸化物からなるとき、エッチングは好ましくは二段階で行われる。 完全異方性(即ち概ね一方向性の)プラズマエッチングを四フッ化炭素を用いて 行って絶縁性層を概ね貫通する垂直な開口部を形成し、その後等方性ウエットエ ッチングを緩衝フッ化水素酸を用いて行って、初めの開口部の幅を広げて誘電性 開口部32を形成する。 リフトオフ層34は、構造を、リフトオフ材料源に対して、絶縁性層24の上 側表面に対して垂直な軸の周りに回転させながら、ゲート層28Aの上側表面に 対して中程度の角度、通常は概ね45度の向きで適切なリフトオフ材料を蒸着さ せることにより、構造の上部に形成される。第1f図を参照されたい。リフトオ フ層34の一部は、通常ゲート開口部30の位置の層28Aのエッジ部をカバー している。リフトオフ層の被着角度は、リフトオフ材料が誘電体開口空間32の 下側非絶縁性領域22の上に事実上堆積しない程度の十分に小さい値に設定され る。 リフトオフ材料は通常アルミニウムのような金属である。別形態では、リフト オフ材料は、アルミニウム酸化物のような誘電体、又はフッ化マグネシウム、塩 化マグネシウム、若しくは塩化ナトリウムのような塩であり得る。リフトオフ材 料は金属/誘電体複合材料であってもよい。リフトオフ材料の組成は、ゲート層 28A、絶縁性層24A、下側非絶縁性エミッタ領域22、及び電子放出素子を 形成する材料に対して選択的エッチングが可能である限り、特に重要ではない。 電気的に非絶縁性のエミッタコーン材料は、絶縁性層24Aの上側表面に対し て概ね垂直な向きに構造の上部に蒸着される。エミッタコーン 材料はリフトオフ層34の上に蓄積し、且つゲート開口部30を通過して誘電体 開口空間32における下側の非絶縁性領域22の上に蓄積する。リフトオフ層3 4上えのコーン材料の蓄積のため、コーン材料が開口空間32に入っていく時に 通過する開口部は次第に閉じられてゆく。この蒸着はこれらの開口部が完全に封 止されるまで行われる。この結果、コーン材料は誘電体開口部32内に堆積し、 第1g図に示すような対応する円錐形電子放出素子36Aを形成する。コーン材 料の連続層36Bもリフトオフ層34上に同時に形成される。このコーン材料は 通常、モリブデン、ニッケル、クロム、又はニオブのような金属、もしくは炭化 チタンのような耐熱性の金属炭化物である。 ここでリフトオフ層34が適切なエッチング剤を用いて除去される。層34の 除去の際、過剰なコーン材料層36Bも同時に除去される。第1h図に示すのは 、このようにして形成された電子エミッタである。電子放出コーン36Aは、こ のときゲート開口部30を通して外部に露出される。コーン材料の被着がゲート 層28Aに対して概ね垂直な向きに行われたことから、各電子放出コーン36A は、対応するゲート開口部30上に垂直方向に同心の位置に設けられ、従って対 応する除去された球形粒子26の位置とも垂直方向に同心に形成される。結果的 に、コーン36Aの位置は球体26(の位置)によって確定されることになる。 電子放出コーン36Aは、粒子26Aの表面への分散がランダムもしくは概ね ランダムであったことから、互いにランダム又は概ねランダムな位置に配置され ている。それにも関わらず、コーン36Aの単位面積当たりの数は全電子放出領 域にわたって余り変わらない。 各コーン36Aのベース部の直径は、蒸着されるコーン材料の原子の経路が平 行ビームからどの程度異なっているかによって決まる、対応する除去された球2 6の直径と概ね等しい直径である。この結果、コーン 36のベース部の平均直径は、粒子26の平均直径を調節することにより制御さ れることになる。粒子の平均直径を小さくすることにより、コーンの平均直径も 概ね同程度に小さくなり、その逆も言える。このようにして、粒子26は電子放 出コーンによって占められる横方向の面積を決定する。球体26がコーン36A の位置を確定する限り、コーン36A間の平均距離は、球体26の平均表面密度 及び平均粒径を調節することにより制御される。 粒子26の平均粒径の標準偏差は、上述のように、粒子の平均粒径と比較して 極めて小さい。従って電子放出コーン36Aのベース部の平均直径の標準偏差は 、初めの概算ではコーンのベース部の平均直径と比較して同様に小さいものとな る。粒子26が球形であるため、36Aのベース部も概ね円形になる。またコー ン36Aが占める横方向の面積は概ね等しい。球体の直径や電極間誘電体層24 Aの厚みのようなパラメータを適切に調節することにより、電子放出素子36A のサイズ及び形状を高度に均一なものとすることが容易にできる。 電子放出コーン36Aは、好ましくは小形で、互いに僅かな距離だけ離隔され て配置されるような形態に形成される。このことは、適切な平均粒径の小さい球 体26を使用し、この球体26を球体受容面上に適切な密度で分散させることに より達成される。コーン36Aのサイズ及び形状のばらつきが極くわずかである ため、電子の放出は、電子放出領域全体に亘って比較的一様になされる。重要な ことは、この非常に望ましい特徴が、粒子26のサイズ及び表面密度を調節して 電子の流れがよく制御されるようにすることによって概ね達成されるという点で ある。 下側非絶縁性エミッタ領域22は、通常下側導電性層と上側(電気的)抵抗性 層からなる。領域22におけるこの2つの層の少なくとも下側導電性層は、同じ く相互に平行なラインにパターニングされて、エミッタ 行電極を形成する。 ゲート層28Aは、下側非絶縁性領域22のエミッタ行電極に対して直角な方 向に走るゲートラインの群にパターニングされ得る。このゲートラインは列電極 としての役目を果たす。ゲート層28Aに適当なパターニングを施すことにより 、第1h図のフィールドエミッタは、別形態としてゲート層28Aの一部に接触 し行電極に対して垂直な方向に走る独立した列電極を備えた形態となり得る。こ のゲートパターン形成と、それが含められる場合の独立した列電極形成とは、絶 縁性層24をエッチングして誘電体開口部32を形成する前に通常行われるが、 このプロセスの後の段階で行うこともできる。 第2a図〜第2j図(集合的に「第2図」)は、前の二つの段落に記載された 特徴がフィールドエミッタに導入されるような、第1図のプロセスの実施態様を 示した図である。第2図のプロセスは基板20から開始され、初めの仕事は行電 極を形成することである。導電性エミッタ電極材料、即ち好ましくはクロムまた はニッケルのような金属のブランケット層が基板20上に0.1〜0.4μmの 厚み、好ましくは0.2μmの厚みに被着される。この被着処理は、通常スパッ タリングにより行われる。 適切なフォトレジストマスク(図示せず)を用いて、ブランケット導電性層は 、平行なエミッタ電極ラインの群22Aにパターニングされる。第2a図に示す のは図面の平面に対して直交する向きに水平に延在するこのような導電性エミッ タ電極ライン22Aの1つである。ブランケット導電性層の不必要な部分は、例 えば硝酸のような、フォトレジストをアンダーカットするウエットエッチング剤 により除去される。この結果、導電性エミッタライン22Aのエッジ部には強い 傾斜がつけられる。この傾斜の角度、即ち基板20の上部と各ライン22Aのエ ッジ部との間 の角度は、通常約20度である。このようにエミッタライン22Aに傾斜を与え ることにより、後続の各処理の際のステップカバレッジ(段差被覆性)を改善す る助けとなる。 電気的に抵抗性の材料、好ましくはサーメットまたは珪素−炭素−窒素化合物 のブランケット層は、構造体の上部に被着される。ブランケット抵抗性層の厚み は0.2〜0.7μm、好ましくは0.3μmである。通常この被着過程は同様 にスパッタリングにより行われる。 別の適切なフォトレジストマスク(図示せず)を用いて、ブランケット抵抗性 層をそれぞれ導電性ライン22Aの上層をなす平行なラインの群22Bにパター ニングする。第2a図に示すのは、抵抗性ライン22Bの1つである。ブランケ ット抵抗性層の不必要な部分は、導電性ライン22Aを形成するのに用いたエッ チング剤のような、フォトレジストをアンダーカットするプラズマエッチング剤 を用いて除去する。抵抗性ライン22Bのエッジ部は、同様に通常約20度の角 度で傾斜が付けられ、これによって後続の被着段階における段差被覆性を改善す る。各導電性エミッタライン22A及びその上層をなす抵抗性ライン22Bは行 電極を形成する。 絶縁性層24はシリコン酸化物からなり、構造の上部に0.2〜1.0μm、 好ましくは0.35μmの厚みに形成される。絶縁性層24の形成は、350℃ でのプラズマCVDにより行われる。行電極への電気的接続をなすようにするた め、更に別のフォトレジストマスク(図示せず)を用いて、第2a図の外側の絶 縁性層24の部分が、構造の外周部において除去される。 球形の粒子26は、上述のように構造の上部に分散され、第2b図の構造が形 成される。通常はクロムであるゲート材料が、上述のように構造の上部に厚み0 .02〜0.08μm、好ましくは厚み0.04μm で被着される。これによって、第2c図の構造が形成される。球体26は上述の ように除去され、第2d図の構造が形成される。この時ゲート開口部30をを通 してゲート層28Aが露出されている。 適切なフォトレジストマスク(図示せず)を用いて、ゲート層28Aはその第 4部が列電極になる予定の位置の下にくる部分にパターニングされる。要素28 Cがゲート層28Aのその残りの部分を示す第2e図を参照されたい。このゲー ト層のパターニングは、通常、完全異方性プラズマエッチング剤を用いて行われ る。別法では、ゲート層のパターニングにウェットケミカルエッチングまたは部 分的異方性プラズマエッチングを用いることもできる。 ここで列電極が形成される。電気的に非絶縁性の列電極材料、好ましくは金属 からなるブランケット層が、構造体の上部に厚み0.1〜0.5μm、列電極材 料がニッケルからなる場合好ましくは0.15μmで被着される。クロムのよう な他の金属も、それがゲート材料に対して選択的にエッチング可能(即ちゲート 材料と異なっている)、若しくは列電極パターニング(以下に説明)が、ゲート 層28Cを著しく損なわないように行われるという条件のもとで列電極材料とし て用いることができる。この列電極材料の被着は通常スパッタリングにより行わ れる。 適切なフォトレジストマスク(図示せず)を用いて、ブランケット列電極層を ゲート層の部分28Cの上層をなし、導電性エミッタライン22Aに対して直交 して延在する平行な列電極の群40にパターニングされる。パターニング処理の 際に、電極40がエミッタライン22Aと交差する位置の上において列電極40 を貫通するアパーチャ42が形成される。第2f図には、図のようにして形成さ れた、列電極40が図面の平面に対して平行に水平に延在する構造体が示されて いる。このパターニングはフォトレジストをアンダーカットする硝酸のようなエ ッチング 剤を用いて行われる。従って、列電極40のエッジ部には通常約20度の強い傾 斜が与えられ、これが後続の被着過程における段差被覆性を改善する。 電子エミッタ形成の残りの工程は、第1e図〜第1h図のゲート層28Aをゲ ート電極部分28Cに置き換えた、第1e図〜第1h図のフィールドエミッタに ついて説明した方法と概ね同じ方法で行われる。誘電体開口部32は、絶縁性層 24を通して形成され、第2h図の構造が形成される。リフトオフ層34は第2 h図に示すような構造の上部に形成される。 円錐型の電子放出素子36A及び連続した過剰なゲート材料層36Bを形成す るゲート材料被着により形成された構造は、第2i図に示されている。第2j図 に示すのは、リフトオフ層34と過剰なエミッタ材料層36Bの同時除去の後、 形成されたフィールドエミッタである。最終的なフィールドエミッタでは、抵抗 性層22Bが、電子放出コーン36Aとその下層をなすエミッタ行ライン22A との間で少なくとも106オーム、典型的には108オーム以上の抵抗率を与える 。 別法では、列電極を上述よりも早い段階において、ゲート層が部分的に列電極 の上層をなすように形成することができる。具体的には、構造体の上部に球体2 6を分散させる前に、列電極を絶縁性層24の上に形成することができる。列電 極が平行なラインとして形成されることに加えて、この別法では、電子放出素子 の形成される予定の位置の上にアパーチャを備えた列電極が形成される。その後 、球体を分散させる過程、ゲート材料を被着させる過程、球体を除去する過程、 及びゲート材料のパターニング過程が、第2図のプロセスとして説明した方法で 行われる。 先述した別法においては、列電極はゲート層と同じ材料、例えばクロム若しく はゲート層のパターニングに用いられるエッチング剤が作用す る材料からなり得る。従って列電極のエッチングはゲートパターニングの際に行 われる。しかし、通常列電極はゲート層より極めて厚いものである。エッチング の際のゲートのパターニングの程度を限定することにより、列電極とゲート層が 共通のエッチング可能な材料によりなる場合でも、ゲートパターニングの際、列 電極が著しく損なわれないことになる。 リフトオフ層34の被着の際、リフトオフ材料の一部は、第1f図におけるゲ ート層28Aのエッジ部に沿って堆積し、且つ第2h図におけるゲート部分28 Cのエッジ部に沿って堆積する。これにより、エミッタコーン材料がコーン36 Aを形成するべく誘電体開口空間32に入る際に通過する開口部の直径を小さく することができる。コーン36Aのベース部の直径及びコーンの高さは僅かに小 さくなる。 第3a図〜第3g図(集合的に「第3図」)は、上述の問題点を概ね克服する ようなゲート制御式電界放出デバイスの製造工程を示した図であり、この工程で は球形粒子を用いて傾斜した形状にゲート開口部を形成する。第3図のプロセス において後に過剰なエミッタコーン材料を除去するために用いられるリフトオフ 層を形成するためのリフトオフ材料の被着の際、リフトオフ材料は、円錐型の電 子放出素子を形成するために後に被着されるコーン材料が通過する開口部の直径 をあまり小さくしないようにゲート層のエッジ部に沿って堆積する。 同じサイズのゲート開口部を用いた場合でも、第3図のプロセスに従って形成 された電子放出コーンは、第1図(または第2図)のプロセスに従って形成され たものよりいくらか広くまた高いものである。また、第3図のプロセスにより、 リフトオフ層を厚くして、リフトオフ処理を容易にすることができる。 第3図のプロセスにおいて、基板20、下側非絶縁性エミッタ領域2 2、及び絶縁性層24からなる初期構造体は、第1図のプロセスと概ね同様な方 法で形成される。第1a図と同じ第3a図には、第3図のプロセスにおける初期 構造20/22/24が示されている。球形粒子26は、上述と同様の方法で絶 縁性層24の上部に分散される。このような球体26の1つが示されているが、 その他の点では第1b図と同じである第3b図を参照されたい。球体26は、通 常ポリスチレンからなる。 電気的に非絶縁性のゲート材料は通常クロムまたはニッケルのような金属から なり、絶縁性層24の上の球体26の間の空間に堆積することに加えて、層24 の球体26の下にくる部分にも堆積するように構造の上部に被着される。第3c 図には、ゲート材料がどのように絶縁性層24の上に堆積し、層24の間の空間 に堆積し球体26の下側まで延在するゲート層48Aが形成されるかが示されて いる。 ゲート材料の被着は、例えば非コリメートスパッタリング(即ちスパッタされ る材料の原子の衝突する際の入射角が実質的に拡がっているようなスパッタリン グ処理)またはプラズマCVDのような、同一の非コリメート式技術によって行 われる。非コリメートスパッタリングの際、その圧力は通常10〜100ミリト ルの範囲である。 別法として、非コリメート式ゲート材料被着を、傾斜回転スパッタリングや傾 斜回転蒸着のような傾斜回転技術によって行うこともできる。この傾斜回転被着 においては、ゲート材料が層24の上側表面に対して90度よりかなり小さい角 度で絶縁性層24の上に被着されると共に、構造20/22/24を、層24の 上側表面に対して垂直な軸の周りに、ゲート材料源に対して回転させる。傾斜回 転被着の際に衝突するゲート材料の原子は、瞬間的には平行な(コリメート)ビ ームを形成し得るが、ゲート材料源に対する構造20/22/24の傾斜回転に より全体的な被着は非平行なものとなる。 同一の非コリメート方式で粒子26の下側の空間へのゲート材料の被着が行わ れる場合、ゲート層48Aの、球体26により垂直方向に陰になった領域の中に 入り込む(または浸食する)部分の、球体の径方向の長さは、球体の平均直径の 1/3に等しくなり得る。例えば球の直径が0.3μmの時、各球形粒子26の 中心を通る垂直な平面に沿って陰になった領域の両端から0.1μmの浸食が達 成され得る。 ゲート材料の被着の際、ゲート材料の一部48Bは、球体26の上側半分の上 に同時に堆積する。ゲート材料の被着が非コリメート式に行われることから、ゲ ート材料部分48Bは球体26の下半分の上には僅かにしか伸びていかない。ゲ ート材料部分48Bがゲート層48Aにブリッジするのを回避するため、ゲート 材料の厚みは通常球の平均半径よりも小さく、典型的には球の平均半径の60% にされる。 球形粒子26が通常上述と同様の方法で除去され、同時にゲート材料の一部4 8Bも除去される。第3b図を参照されたい。ゲート材料が被着される方式のた めに、除去された球体26の位置に、ゲート層48を貫通する側壁が傾斜したゲ ート開口部50が形成される。 各傾斜ゲート開口部50の直径は、ゲート層48Aの上から絶縁性層24の上 側表面に向かって次第に小さくなっている。従って、各ゲート開口部50の直径 は層24の上部において最小値に達する。更に、ゲート層48Aの傾斜したエッ ジ部は、開口部50に沿って凹んだ形状(凹状の垂直断面)を有する。各ゲート 開口部50の垂直方向に小さくなってゆく直径の変化率は開口部50を下向きに 進むにつれ大きくなる。 絶縁性層24は、ゲート層48Aをエッチングマスクとして用いて、ゲート開 口部50を通してエッチングされ、絶縁性層24を通して下側の非絶縁性領域2 2に達する対応する誘電体開口部(または誘電体開口空間)52が形成される。 が絶縁性層24の残った部分が要素24Bと して示されている第3e図を参照されたい。第1図のプロセスと同様に、電極間 誘電体エッチングは、誘電体開口部52がゲート層48Aをアンダーカットでき るような方法で行われる。 リフトオフ層54は、リフトオフ材料をゲート層48Aの上側表面に対して選 択された角度で蒸着すると共に、構造体を、リフトオフ材料源に対して、絶縁性 層24Bの上側表面に対して概ね垂直な軸の周りに回転させることにより、構造 体の上部に形成される。第3f図を参照されたい。(回転)リフトオフ被着の角 度は、20度〜50度で、典型的には45度である。このリフトオフ材料は、通 常アルミニウムまたは酸化アルミニウムよりなる。 リフトオフ材料の一部は、ゲート開口部50に沿ってゲート層48Aの傾斜し たエッジ部上に堆積する。リフトオフ被着の角度が十分に小さいため、後に電子 放出素子が設けられる誘電体開口空間52における下側絶縁性エミッタ領域22 上にはリフトオフ材料は実質的に堆積しない。被着の角度の大きさによって、リ フトオフ材料の一部は誘電体開口部52の側壁上にも堆積し得るが、この材料は 通常(後の)リフトオフ層54の除去の際に除去される。 第4図は、リフトオフ被着角度が約45度であるシミュレーションのためのゲ ート開口部50を中心にした第3f図の一部の拡大図である。第4図に示すよう に、リフトオフ材料はゲート層48Aの傾斜したエッジ部に沿ってその上側表面 に沿った部分より厚く堆積している。リフトオフ層54のゲート層48Aの上部 に沿った厚みをこのように厚くすることにより、リフトオフ層54の厚みの最大 値は、ゲート開口部50の傾斜したエッジ部に沿って約1.4tに達する。 重要な点は、リフトオフ材料が層48Aのエッジ部を著しく越えて延在しない ようにゲート層48Aの傾斜したエッジ部上に堆積する点であ る。即ち、リフトオフ層54を貫通する各開口部の直径は、対応するゲート開口 部50の最少直径と概ね等しくなる。第4図のシミュレーションでは、約45度 のリフトオフ材料の被着角度の場合が示されているが、エミッタ材料が堆積して エミッタコーンを形成する際に通過する開口部の直径が、リフトオフ被着角度が 20〜50度の範囲にあった時でも著しく小さくならないことは明らかである。 通常はモリブデン、ニッケル、クロム、またはニオブ、若しくは炭化チタンの ような耐熱性金属炭化物である電気的に非絶縁性のエミッタコーン材料は、上述 のように構造体の上部に蒸着される。エミッタコーン材料が誘電体開口空間52 に入る際に通過する開口部は、堆積が進行するにつれ閉じられてゆく。円錐型電 子放出素子56Aは、このようにして第3f図に示すように、開口空間52の中 にそれぞれ形成される。第3図のプロセスにおいてコーン材料が開口空間52に 入る際に通過する開口部が、第1図のプロセスにおける対応する開口部より大き いことから、電子放出コーン56Aはゲート開口部の最少直径が同じである場合 コーン36Aより、より幅広くより高く成長する。コーン材料の連続層56Bは 、エミッタ材料堆積の際リフトオフ層54の上に堆積する。 リフトオフ層54は、適切なエッチング剤で除去され、これにより過剰なコー ン材料層56Bが除去される。このようにして形成されたフィールドエミッタは 、第3g図に示されている。コーン56Aは、ゲート開口部30を通して外部に 露出されている。エミッタ材料の堆積はゲート層48の上側表面に対して概ね垂 直な向きに行われるため、各電子放出コーン56Aは、対応するゲート開口部5 0の垂直向きの中心に配設される。各ゲート開口部50は、対応する除去された 球体26の位置の中心に設けられている。第1図のプロセスと同様に、球体26 はコーン56Aの位置を確定する。 同様に、ゲート開口部50はゲート層48Aの底部に沿って概ね円形の形状を なす。従って、コーン56Aのベース部は概ね円形である。球体26は概ね球形 で、その直径が非常に小さいため、コーン56Aは全て概ね同じ大きさである。 製造工程パラメータに適切な制御を与えることにより、コーン56Aからの電子 の放出は電子放出領域全体に亘って比較的一様になる。コーン56A間の平均の 間隔は球体26の表面密度と平均粒径を調節することにより制御され、これによ り電子放出のレベルを制御する。 第1図のプロセスにより製造されたフィールドエミッタにおける場合のように 、第3図のプロセスによって形成されたフィールドエミッタにおける下側の非絶 縁性エミッタ領域22は、通常下側導電性層と上側抵抗性層とからなる。同様に 、少なくとも下側導電性層は互いに平行に走る複数の線にパターニングされて、 エミッタ行電極を形成する。 第3図のプロセスによって形成されたフィールドエミッタも、通常ゲート層4 8Aの一部に接触し、両電極に対して垂直に延在する列電極を備えている。この ような形状を形成するため、第3図のプロセスは、第1図のプロセスの1つの実 施形態である第2図に示したプロセスと概ね同様の形態で実現され得る。列電極 がゲート層の前に形成されるような上述の別プロセスを、第3図のプロセスの実 現において用いることができる。 第5a図〜第5c図(集合的に「第5図」)が示すのは第1図のプロセスを変 更したプロセスであって、ここではゲート層28A上に堆積する過剰なエミッタ 材料がリフトオフ層を用いずに電気化学的に除去される。第5図の改変プロセス はここでは第5a図として示されている第1e図から開始される。 電気的に非絶縁性のエミッタコーン材料は、絶縁性層24Aの上側表 面に対して概ね垂直な向きに、第5a図の構造の上部に蒸着される。エミッタコ ーン材料はゲート層28A上に堆積すると共に、ゲート開口部30として誘電体 開口部32内の下側非絶縁性エミッタ領域22上に対応する電子放出素子58A を形成する。エミッタ材料が誘電体開口部32に入る際に通過する開口部は堆積 が進むにつれて閉じてゆく。堆積はこれらの開口部が完全に閉じるまで行われ、 このとき電子放出素子58Aは概ね円錐形状となる。第5b図を参照されたい。 同時にエミッタコーン材料の連続層58Bがゲート層28A上に形成される。 このプロセスにおけるコーン材料の候補には、モリブデン、ニッケル、クロム 、ニオブ、及び酸化チタンが含まれ、つまり、第1図のプロセスにおけるエミッ タコーン材料として上述した材料の全てが含まれている。しかし、過剰なエミッ タコーン材料が第5図のプロセスの中では電気化学的に除去されるため、このプ ロセスで用いられるコーン材料はゲート材料とは異なったものである。 過剰なエミッタ層58Bは電気化学的に除去されるが、好ましくは1997年 3月5日出願のSpindtらによる国際特許出願PCT/US97/0297 3(現在PCT公開公報____/_____)に記載の技術を用いて行われる 。上記特許出願は本明細書と一体に参照されたい。第5c図には、第1g図のフ ィールドエミッタと概ね同型の電界放出構造が形成されたところが示されている 。ここで電子放出コーン58Aはゲート開口部30を通して外部に露出されてい る。第1図のプロセスにおけるコーン36Aと同様に、コーン58Aの位置は球 体26によって確定される。 同様に、第3図のプロセスにおけるゲート層48Aの上に堆積する過剰なエミ ッタ材料を、リフトオフ層を用いずに電気化学的に除去することができる。この 変更した処理は、第1e図の構造に対して行われた先 述した変更プロセスと同様に、第3a図の構造に対して行われる。即ち、電気的 に非絶縁性のエミッタ材料がゲート層48Aの上に堆積すると共に、傾斜したゲ ート開口部30を通って誘電体開口部52に入って円錐型電子放出素子を形成し 、その後誘電体開口部52の外部のゲート層48Aの上の過剰なエミッタ材料が 電気化学的に除去される。 本発明により形成された電子エミッタでは、ゲート層が1又は2以上のサブレ イヤを備えた形態に形成されてもよい。様々な機能を果たす1又は2以上の中間 層を、電極間誘電体層とゲート層との間に堆積してもよい。例えば、このような 中間層には貼着機能を果たし得る。即ち、ゲート層自体が電極間誘電体材料に良 く貼着しない場合、中間層が絶縁性層24とゲート層とを良く貼着させる。この 中間層は、このほか粒子26の表面における球形粒子26の分布を改善する役目 を果たし得る。この中間層が電気的に非絶縁性の材料からなる時、中間層は通常 ゲート電極の一部を構成する。 第6a図〜第6i図(集合的に「第6図」)に示すのは、第1図のプロセスの 変更プロセスであり、ここでは前述の特徴を、本発明の全部に基づいてゲート制 御式電界放出カソードの製造において使用する。後に説明するように、第6図の プロセスにおける粒子26の被着は、電気泳動又は誘電泳動技術に基づき、加え られた電界の影響下で行われる。第6図のプロセスはここでは第6a図として示 した第1a図に示す構造20/22/24から開始される。 中間層62は、第6b図に示すように比較的一様な厚みで絶縁性層24上に堆 積される。中間層62は、通常層24に良く貼着し、且つ続けて層62上に堆積 されるゲート材料にも良く貼着する材料からなる。 絶縁性層24は、中間層62が存在しない場合、層24上に粒子26が電気泳 動技術または誘電泳動技術を用いて被着される際に粒子26を 凝集させ得るような表面欠陥を有する場合がある。たとえ層24がこのような表 面欠陥を有していない場合でも、層24はやはり、中間層62が存在しない場合 に粒子26の電気泳動技術または誘電泳動技術を用いた層24への被着の際に粒 子26を凝集させ得る材料からなる場合もある。 中間層62は、粒子26が層62上に電気泳動技術または誘電泳動技術を用い て被着される際に粒子26が凝集するのを著しく抑制する材料からなる。中間層 62は絶縁性層24の上層を成しているため、層62の使用によって、粒子の電 気泳動技術または誘電泳動技術を用いた被着の際の凝集の問題は実質的に解決さ れる。粒子の凝集を防ぐことにより、粒子の表面密度を高めることができる。 中間層62は、所望の接着力及び凝集抑制特性に応じて電気的に非絶縁性の材 料または電気的に絶縁性の材料からなり得る。層62は、通常金属、好ましくは クロムからなり、厚みは5〜10nm、通常は7.5nmである。我々の指示に 従って行われた実験によって証明されたように、微小ポリスチレン球体が新たに 堆積されたクロム表面上に電気泳動技術によって被着された場合、その凝集は、 シリコン酸化物表面上で、特にそれが追加の処理を受けた時に、シリコン酸化物 表面上で起こるこのような粒子の凝集より著しく少なくなる。絶縁性層24がシ リコン酸化物からなる時クロムを用いて中間層62を形成することにより電気泳 動的被着の際の凝集が著しく低下する。クロムはまた、シリコン酸化物にもよく 貼着する。層62は金属からなるため、層64の一部が後にゲート電極の一部を 形成する。 球形粒子26は中間層62の上部に電気泳動的に若しくは誘電泳動的に被着さ れる。第6c図を参照されたい。電気泳動的または誘電泳動的被着は、前出のH avenらによる国際特許出願PCT/____/_ ____に記載されているような方法で行われる。この出願の明細書を本明細書 と一体に参照されたい。特に、電気泳動的被着を用いて粒子26の被着を行うと 、粒子の表面密度を約5×108粒子/cm2のレベルまで高めることができる。 上述のHavenらの国際特許出願PCT/____/_____の明細書に 記載されているように、電気泳動的被着は球体26が懸濁された液体を含むセル の中で行われる。液体の中に配設された上側電極は電気泳動的被着の際カソード としての役目を果たす。中間層はアノードとして用いられる。1〜100Vの範 囲の電圧、通常は15Vの電圧をアノードとカソードとの間に印加し、電界を発 生させ、これにより球体26が層62の上に被着する。 球体の電気泳動的被着の終了後、電気的に非絶縁性のゲート材料が絶縁層24 の上側表面に対して概ね垂直な向きに構造体の上部に二段階で被着される。被着 の両段階は、通常コリメート蒸着により行われる。第1蒸着段階におけるゲート 材料は第2蒸着段階におけるゲート材料とは異なるものである。 第1段階のゲート材料は粒子26の間の空間において中間層62上に堆積し、 第6d図に示すように比較的一様な厚みのゲートサブレイヤ64Aを形成する。 第1段階の材料の一部64Bは球体26の上半分の上に同時に堆積する。第2段 階のゲート材料は粒子26の間のゲートにおけるゲートサブレイヤ64Aの上に 堆積して比較的一様な厚みの別のゲートサブレイヤ66Aを形成する。第2段階 材料の一部66Bは、ゲートサブレイヤ66A形成の際、第1段階の堆積部64 Bの上に堆積する。 第1段階のゲート材料はクロム、モリブデン、チタン、またはタングステンで あり得、中間層62がクロムからなるとき、第1段階のゲート材料は、通常厚さ 2.5〜7.5nm、典型的には5nmに堆積された クロムからなる。ゲートサブレイヤ64Aにおけるクロムは、ゲートサブレイヤ 66Aの接着性を改善する。第2段階のゲート材料は、通常20〜50nm、典 型的には30nmの厚みに被着された金からなる。 球体26が除去され、これによりゲート材料の一部64B及び66Bも除去さ れる。第6e図に示すのはこのようにして形成された構造である。ゲートサブレ イヤ64A及び66Aは複合ゲート層64A/66Aを形成し、これを貫通して 概ね円形のゲート開口部68が中間層62に達している。ゲート開口部68は第 1及び第2段階の球体26の上のゲート材料の被着の際に形成されるが、この時 第2段階ゲート材料をエッチングすることが不要であることから、エッチングが 困難な金が第2段階のゲート材料として適したものとなる。 (ゲート材料の部分64B及び66Bの除去を伴う)球体26の除去は、第1 図の工程において用いられた技術に従って行われ得る。別法として、球体26を キシレンのような溶媒に溶解することにより化学的に除去することもできる。 エッチングマスクとして複合ゲート層64A/66Aを用いることにより、中 間層62がゲート開口部68を通して一様にエッチングされ、絶縁性層24に達 する概ね円形の中間開口部70が形成される。第6f図ではこのようにして形成 された構造が示されており、ここでは要素62Aは中間層62の残った部分であ る。残った中間層62Aはゲート電極の下側部分を形成する。 中間層のエッチングは通常塩素プラズマを用いて行われ、完全に異方性(概ね 一方向)に、或いは部分的に等方性エッチングで行うことができる。第6f図に 示すのは中間層エッチングが部分的に等方性エッチングで行われ、中間開口部7 0がゲートサブレイヤ64Aを僅かにアンダーカットしている例である。各中間 開口部70は対応するゲート開口部 68に垂直方向に整合されており、複合ゲート開口部68/70を形成している 。 複合ゲート層62A/64A/66Aをエッチング用マスクとして用いて絶縁 層24を複合ゲート開口部68/70を通してエッチングし、下側非絶縁性エミ ッタ領域22に達する複合開口空問(または誘電体開口部)72が形成される。 要素24Cが絶縁層24の残った部分である第6g図を参照されたい。電極間誘 電体のエッチングは、通常第1図の工程について説明したのと同じ方法で行われ 、誘電体開口空間72が複合ゲート層62A/64A/66Aに僅かにアンダー カットする形態となる。 電気的非絶縁性のエミッタコーン材料は、通常そのエミッタコーン材料がゲー ト材料とは異なったものであるという条件で、第1図の工程について説明したの と同じ材料のなかの任意のものからなり、絶縁性層24Cの上側表面に対して概 ね垂直な方向に第6g図の構造の上部に蒸着される。このコーン材料はゲート層 62A/64A/66Aの上に堆積し、ゲート開口部68/70を通過して第6 h図に示すように対応する円錐型の電子放出素子74Aを形成する。エミッタコ ーン材料の連続層74Bはゲートサブレイヤ66Aの上側にも同時に形成される 。 過剰なコーン材料層74BはSpindtらによる国際特許出願PCT/US 97/02973(前出)に概要が記載されている方法で電気化学的に除去され る。このようにして形成されたフィールドエミッタを第6i図に示す。電子放出 コーン74Aはゲート開口部68/70を通して外部に露出されている。 各電子放出コーン74Aはその複合ゲート開口部68/70と垂直方向に整合 されている。球体26は元のゲート開口部68の位置を確定することから、コー ン74Aの位置は球体26によって決定されることに なる。また、各コーン74Aのベース部は概ね円形である。第1図の工程に従っ て形成された電子エミッタにおける高度に一様な電子放出の達成についての前の 説明は、第6i図の電子放出素子についても同様にあてはまる。 前述の工程/プロセスシーケンスに於いては、ゲート開口部を直接的に確定す るために球形粒子26を用いている。しかし粒子26はゲート開口部のための所 望の横向きの形状を有する固体領域を初めに確定するために用いることができる 。このような固体領域は通常円形であり後にゲート開口部を確定するために用い られる。 第7a図〜第7g図(集合的に「第7図」)に示すのは、ゲート制御式電界放 出カソード用のゲート開口部が固体領域から形成される製造工程の前工程部分の 例である。ここでは固体領域の形状が本発明により球形粒子26により確定され る。第7図のプロセスシーケンスはここでは第7a図として示されている。第1 a図の構造20/22/24から開始される。 後にゲート層の下側部としての役目を果たす電気的に非絶縁性の中間層80は 、第7b図に示すように絶縁性層24の上に堆積される。中間の非絶縁性層80 は、通常プロム又はチタンのような金属からなる。パターン転写層82は中間層 80の上に形成される。パターン転写層82はポトレジストや無機誘電材料のよ うな種々の材料からなり得る。 粒子26は第1図のプロセスに於いて説明したランダム又は概ねランダムな分 散技術を用いてパターン転写層82の上側表面上に転写される。第7c図に示さ れるのはこの時点に於ける構造体である。粒子26の陰になっていない、即ち垂 直方向に覆われていないパターン転写層82部分は、第7d図に示すように除去 される。概ね円形のペデスタル部82aはこのようにして層82の残りの部分と して形成される。各ペデスタ ル部82aは粒子26の対応する一つの下層を成す。 パターン転写層82がフォトレジストからなるとき、層82は球形粒子26を 露出マスクとして、通常は紫外線である化学線作用のある放射線に露出される。 露出マスクとしての機能を果たす球形粒子26によってその下のフォトレジスト の部分が化学線照射を受けないことになる。露出されたフォトレジストはその化 学的組成に変化を起こす。次いで構造の上に現像処理を施し、露出されたフォト レジストを除去し、これによって構造は第7d図に示すような状態になる。層8 2が無機誘電体からなるとき、粒子26をエッチングマスクとして用いた絶縁性 層24の上側表面に対して概ね垂直な向きでの異方性エッチングが層82に対し て行われる。層82の陰になっていない部分はこのエッチングの際に除去され、 同様に第7b図に示すような構造が形成される。 電気的に非絶縁性のゲート材料はこの構造の上部に堆積される。このゲート材 料堆積は、好ましくは非絶縁性中間層82を堆積用カソードとして用いた電気化 学的技術によって行われる。堆積処理用のアノードは粒子26の被着電解液内に 配設される。電気化学的被着の際、ゲート材料は中間層80の露出された部分の 上に堆積して第7e図に示すような電気的に非絶縁性の上側ゲートサブレイヤ8 4が形成される。 ペデスタル部82A及び粒子26が除去されて、第7f図の構造が形成される 。上側ゲート開口部86は粒子26の下の除去されたペデスタル部82Aの位置 において上側ゲートサブレイヤ84を貫通している。ペデスタル部82及び粒子 26の除去は種々の方法により行われ得る。例えば、ペデスタル部82を適当な 化学的エッチング剤又はプラズマエッチング剤を用いて除去し、これによって粒 子26を同時に除去することができる。別法として、粒子26を除去し、その後 ペデスタル82を除去することができる。 上側ゲートサブレイヤ84をエッチングマスクとして用いて、非絶縁性中間層 80に上側ゲート開口部86を通して異方性エッチングを行い、中間層80を貫 通して絶縁性層24に達する対応する中間開口部88を形成する。第7g図を参 照されたい。各中間開口部88は上層をなす上側開口部86と垂直方向に同心で 概ね同じ直径を有する。中間層80の残りの部分80Aは、このとき下側ゲート サブレイヤとなり、中間開口部88は下側ゲート開口部となる。従って、ゲート サブレイヤ80A及び84は複合ゲート層を構成し、各対応するゲート開口部8 6及び88の各対は複合ゲート開口部を形成する。 第7g図の構造に於けるゲート層がサブレイヤ80A及び84からなるという 点を除いて、第7g図の構造は第1d図の構造と、符号以外は実質的に同一であ る。第7g図に於ける要素80A/84及び86/88はそれぞれ第1d図に於 ける要素28A及び42に相当する。このような符号の違いを考慮すれば、第7 g図の構造は第1e図〜第1h図の後工程によって終了する。同様にして、第7 図の前工程は、第2e図〜第2j図の後工程又は第5図の後工程に従って完了す ることができる。 第8図に示すのは、本発明によって製作された第2j図のような面積方向配列 形電界放出素子を用いたフラットパネル型CRTディスプレイのコア能動領域の 典型的な例である。基板20はCRTディスプレイのバックプレートを形成する 。下側非絶縁性領域22はバックプレート20の内側表面上に配設され、導電性 層22A及びその上層をなす抵抗性層22Bからなる。ここで導電性層22Aの エミッタ電極ライン(行電極)は、第8図の面と平行に水平方向に延在する。 その一つが第8図に示されている列電極40の群は、ゲート層28の上に設け られる。列電極40は、第8図の面に対して垂直方向に並んでいる。各列電極ア パーチャ42は、第8図のフィールドエミッタにおけ る多数の電子放出素子36Aを露出している。 透明な、通常はガラス製のベースプレート90はベースプレート20に対向配 置されている。発光燐光体領域92はその一つが第8図に示されており、ベース プレート90の内部表面上の対応する列電極アパーチャ42の正反対の位置に配 設されている。薄い導電性光反射層94は通常アルミニウム製で、ベースプレー ト90の内部表面に沿って燐光体領域92の上層を成している。電子放出素子か ら放出された電子は光反射層94を通り、燐光体領域92を発光させて、ベース プレート90の外部表面上に目に見える像を生成させる。 フラットパネル型CRTディスプレイのコア能動領域は、通常第8図に示すよ うな他の構成要素を含む。例えば、ベースプレート90の内部表面に設けられた ブラックマトリクスは通常各燐光体領域92を取り囲んで、各燐光体領域を別の 燐光体領域から横方向に分離する。電極間誘電体層上に設けられた集束用突条部 (focusing ridge)は、電子の軌跡の制御を補助する。また、バックプレート2 0とベースプレート90との間の間隔を比較的一様に維持するためにスペーサ壁 が用いられる。 第8図に示す型のフラットパネル型ディスプレイに組み込まれたとき、本発明 により製造されたフィールドエミッタは以下のように動作する。光反射層94が 電界放出カソードのアノードとしての役目を果たす。このアノードはゲート及び エミッタラインに対して正の高い電位に維持される。 (a)ゲートライン(列電極)の選択された一つと、(b)エミッタライン( 行電極)の選択された一つとの間に適切な電圧が印加されると、選択されたゲー トラインは二つの選択されたラインの交点に於ける電子放出素子から電子を放出 させ、得られた電子の流れの強さを制御する。電子放出が所望のレベルに達する のは、燐光体領域92が高電圧燐光体 であるとき、フラットパネル型ディスプレイの燐光体被覆フェイスプレートに於 いて測定した場合に印加されたゲート−エミッタ平行−プレート電界が20V/ μm近くに達したときである。引き出された電子が衝突すると燐光体領域は発光 する。 「下側」及び「下向き」といった方向に関する言葉は、本発明を説明するため に便宜的に用いているものであり、本発明の種々の構成要素がどのように組み合 わされているかを読み手がより容易に理解できるように用いているものである。 実際の実施に於いては、電子放出デバイスの構成要素は、本明細書の説明に於い て用いられている、方向に関する表記によって指定されているのとは異なる向き に向けられることもあり得る。同じことが本発明に於ける製造工程の実行につい ても言える。方向についての用語は説明を容易にするための便宜上用いられてい るものであるが、本発明は、ここで用いた方向の用語が示すものとは異なる方向 を向いた実施例もその範囲に含んでいる。 本発明の特定の実施例について説明してきたが、その説明は単に本発明の内容 を説明する目的で記述されたものであり、請求の範囲に記載された本発明の範囲 を限定しようとするものではない。例えば、第1図〜第3図の任意のプロセスに 於いて、電極間誘電体層24に粒子26の分散を、第6図のプロセスに於いて用 いられているような抗凝集層の介入無しに、電気泳動的又は誘電泳動的に行うこ とができる。この場合も粒子の表面密度を高めることができる。前出のHave nらの国際特許出願PCT/____/_____に開示された技術を用いて粒 子26を電気泳動的或いは誘電泳動的に被着することができる。 ゲート開口部がゲート層を貫通して下側非絶縁性領域エミッタ領域22の上の 絶縁性層24に達するような構造を形成した後、ゲート層の厚みはゲート層上に 非絶縁性ゲート材料を更に選択的に被着することによ って厚くすることができる。ゲート材料の更なる被着は電気化学的技術によって 行うことができる。一般に、このゲート材料の更なる被着は粒子26の除去の前 か後に行うことができる。 回転式被着手順を用いてリフトオフ層34または54を形成する代わりに、リ フトオフ材料の被着を、典型的には少なくとも4つの複数の被着材料源から行う ことができる。この複数の被着材料源はウエハの周りの位置に固定されており、 これによってリフトオフ材料を絶縁性層24の上側表面に対して通常はそれぞれ 等しい適切な角度で蒸着することができる。蒸着以外の透視線(line-of-sight )被着技術を用いてリフトオフ層34又は54を形成することができる。電気的 研磨処理を行って、ゲート開口部のゲート層のエッジ部を面取りすることができ る。 下側非絶縁性領域22が基板を支持するだけの十分な厚みを有する連続層であ る場合、基板20を用いずにすますことができる。絶縁性基板20の変わりに構 造支持体となる比較的厚い非絶縁性層の上に薄い絶縁性層が設けられた複合基板 を用いることができる。 この電子放出素子は円錐形以外の他の形状を有することもできる。本発明の製 造プロセスに従って形成された面積方向配列形電子エミッタを用いてフラットパ ネル型CRTディスプレイ以外の装置を形成することができる。特に、ゲート制 御式電子源が必要とする概ね真空の環境下において、本発明のエミッタを用いる ことができる。従って、当業者は、請求の範囲に記載の本発明の範囲及び精神を 逸脱することなく本発明を様々に改変して実施することができよう。
【手続補正書】特許法第184条の8第1項 【提出日】平成10年1月6日(1998.1.6) 【補正内容】 明細書 ゲート制御式電子放出デバイス及びその製造方法関連出願の相互参照 本出願は、(a)Haven等による、同時出願の国際出願PCT/US97 /09197、及び(b)Haven等による、同時出願の国際出願PCT/U S97/09198に特に類似した内容を含んでいる。利用分野 本発明は、フラットパネル型CRTディスプレイのような製品における使用に 適する、通常カソードと称する電子放出デバイスの製造と構造に関するものであ る。 背景技術 電界放出カソード(またはフィールドエミッタ)は、十分な強度の電界を受け たとき電子を放出する。電界は、カソードと、通常アノードまたはゲート電極と 称するカソードから僅かに離れた位置に配置された電極との間に適当な電圧を印 加することにより発生する。 電界放出カソードが、フラットパネル型CRTディスプレイにおいて使用され るとき、カソードからの電子の放出は、かなり広い面積にわたって起こる。電子 放出領域は、通常電子放出部分の二次元配列に分割され、配列の各部分は対応す る発光部分に対向して配置され、画素(またはピクセル)の一部、または全てを 形成する。各電子放出部分から放出された電子は、対応する発光部分に衝突し、 発光部分から可視光線を放出させる。 先述した別法においては、列電極はゲート層と同じ材料、例えばクロム若しく はゲート層のパターニングに用いられるエッチング剤が作用す る材料からなり得る。従って列電極のエッチングはゲートパターニングの際に行 われる。しかし、通常列電極はゲート層より極めて厚いものである。エッチング の際のゲートのパターニングの程度を限定することにより、列電極とゲート層が 共通のエッチング可能な材料によりなる場合でも、ゲートパターニングの際、列 電極が著しく損なわれないことになる。 リフトオフ層34の被着の際、リフトオフ材料の一部は、第1f図におけるゲ ート層28Aのエッジ部に沿って堆積し、且つ第2h図におけるゲート部分28 Cのエッジ部に沿って堆積する。これにより、エミッタコーン材料がコーン36 Aを形成するべく誘電体開口空間32に入る際に通過する開口部の直径を小さく することができる。コーン36Aのベース部の直径及びコーンの高さは僅かに小 さくなる。 第3a図〜第3h図(集合的に「第3図」)は、上述の問題点を概ね克服する ようなゲート制御式電界放出デバイスの製造工程を示した図であり、この工程で は球形粒子を用いて傾斜した形状にゲート開口部を形成する。第3図のプロセス において後に過剰なエミッタコーン材料を除去するために用いられるリフトオフ 層を形成するためのリフトオフ材料の被着の際、リフトオフ材料は、円錐型の電 子放出素子を形成するために後に被着されるコーン材料が通過する開口部の直径 をあまり小さくしないようにゲート層のエッジ部に沿って堆積する。 同じサイズのゲート開口部を用いた場合でも、第3図のプロセスに従って形成 された電子放出コーンは、第1図(または第2図)のプロセスに従って形成され たものよりいくらか広くまた高いものである。また、第3図のプロセスにより、 リフトオフ層を厚くして、リフトオフ処理を容易にすることができる。 通常はモリブデン、ニッケル、クロム、またはニオブ、若しくは炭化チタンの ような耐熱性金属炭化物である電気的に非絶縁性のエミッタコーン材料は、上述 のように構造体の上部に蒸着される。エミッタコーン材料が誘電体開口空間52 に入る際に通過する開口部は、堆積が進行するにつれ閉じられてゆく。円錐型電 子放出素子56Aは、このようにして第3g図に示すように、開口空間52の中 にそれぞれ形成される。第3図のプロセスにおいてコーン材料が開口空間52に 入る際に通過する開口部が、第1図のプロセスにおける対応する開口部より大き いことから、電子放出コーン56Aはゲート開口部の最少直径が同じである場合 コーン36Aより、より幅広くより高く成長する。コーン材料の連続層56Bは 、エミッタ材料堆積の際リフトオフ層54の上に堆積する。 リフトオフ層54は、適切なエッチング剤で除去され、これにより過剰なコー ン材料層56Bが除去される。このようにして形成されたフィールドエミッタは 、第3h図に示されている。コーン56Aは、ゲート開口部30を通して外部に 露出されている。エミッタ材料の堆積はゲート層48の上側表面に対して概ね垂 直な向きに行われるため、各電子放出コーン56Aは、対応するゲート開口部5 0の垂直向きの中心に配設される。各ゲート開口部50は、対応する除去された 球体26の位置の中心に設けられている。第1図のプロセスと同様に、球体26 はコーン56Aの位置を確定する。 同様に、ゲート開口部50はゲート層48Aの底部に沿って概ね円形の形状を なす。従って、コーン56Aのベース部は概ね円形である。球体26は概ね球形 で、その直径が非常に小さいため、コーン56Aは全て概ね同じ大きさである。 製造工程パラメータに適切な制御を与えることにより、コーン56Aからの電子 の放出は電子放出領域全体に亘って比較的一様になる。コーン56A間の平均の 間隔は球体26の表面密度と平均粒径を調節することにより制御され、これによ り電子放出のレベルを制御する。 第1図のプロセスにより製造されたフィールドエミッタにおける場合のように 、第3図のプロセスによって形成されたフィールドエミッタにおける下側の非絶 縁性エミッタ領域22は、通常下側導電性層と上側抵抗性層とからなる。同様に 、少なくとも下側導電性層は互いに平行に走る複数の線にパターニングされて、 エミッタ行電極を形成する。 第3図のプロセスによって形成されたフィールドエミッタも、通常ゲート層4 8Aの一部に接触し、両電極に対して垂直に延在する列電極を備えている。この ような形状を形成するため、第3図のプロセスは、第1図のプロセスの1つの実 施形態である第2図に示したプロセスと概ね同様の形態で実現され得る。列電極 がゲート層の前に形成されるような上述の別プロセスを、第3図のプロセスの実 現において用いることができる。 このプロセスにおけるコーン材料の候補には、モリブデン、ニッケル、クロム 、ニオブ、及び酸化チタンが含まれ、つまり、第1図のプロセスにおけるエミッ タコーン材料として上述した材料の全てが含まれている。しかし、過剰なエミッ タコーン材料が第5図のプロセスの中では電気化学的に除去されるため、このプ ロセスで用いられるコーン材料はゲート材料とは異なったものである。 過剰なエミッタ層58Bは電気化学的に除去されるが、好ましくは1997年 3月5日出願のSpindtらによる国際特許出願PCT/US97/0297 3(現在PCT公開公報WO97/33297)に記載の技術を用いて行われる 。上記特許出願は本明細書と一体に参照されたい。第5c図には、第1g図のフ ィールドエミッタと概ね同型の電界放出構造が形成されたところが示されている 。ここで電子放出コーン58Aはゲート開口部30を通して外部に露出されてい る。第1図のプロセスにおけるコーン36Aと同様に、コーン58Aの位置は球 体26によって確定される。 同様に、第3図のプロセスにおけるゲート層48Aの上に堆積する過剰なエミ ッタ材料を、リフトオフ層を用いずに電気化学的に除去することができる。この 変更した処理は、第1e図の構造に対して行われた先 述した変更プロセスと同様に、第3a図の構造に対して行われる。即ち、電気的 に非絶縁性のエミッタ材料がゲート層48Aの上に堆積すると共に、傾斜したゲ ート開口部30を通って誘電体開口部52に入って円錐型電子放出素子を形成し 、その後誘電体開口部52の外部のゲート層48Aの上の過剰なエミッタ材料が 電気化学的に除去される。 本発明により形成された電子エミッタでは、ゲート層が1又は2以上のサブレ イヤを備えた形態に形成されてもよい。様々な機能を果たす1又は2以上の中間 層を、電極間誘電体層とゲート層との間に堆積してもよい。例えば、このような 中間層には貼着機能を果たし得る。即ち、ゲート層自体が電極間誘電体材料に良 く貼着しない場合、中間層が絶縁性層24とゲート層とを良く貼着させる。この 中間層は、このほか粒子26の表面における球形粒子26の分布を改善する役目 を果たし得る。この中間層が電気的に非絶縁性の材料からなる時、中間層は通常 ゲート電極の一部を構成する。 球形粒子26は中間層62の上部に電気泳動的に若しくは誘電泳動的に被着さ れる。第6c図を参照されたい。電気泳動的または誘電泳動的被着は、前出のH avenらによる国際特許出願PCT/US97/0 9197に記載されているような方法で行われる。この出願の明細書を本明細書 と一体に参照されたい。特に、電気泳動的被着を用いて粒子26の被着を行うと 、粒子の表面密度を約5×108粒子/cm2のレベルまで高めることができる。 上述のHavenらの国際特許出願PCT/US97/O9197の明細書に 記載されているように、電気泳動的被着は球体26が懸濁された液体を含むセル の中で行われる。液体の中に配設された上側電極は電気泳動的被着の際カソード としての役目を果たす。中間層はアノードとして用いられる。1〜100Vの範 囲の電圧、通常は15Vの電圧をアノードとカソードとの間に印加し、電界を発 生させ、これにより球体26が層62の上に被着する。 球体の電気泳動的被着の終了後、電気的に非絶縁性のゲート材料が絶縁層24 の上側表面に対して概ね垂直な向きに構造体の上部に二段階で被着される。被着 の両段階は、通常コリメート蒸着により行われる。第1蒸着段階におけるゲート 材料は第2蒸着段階におけるゲート材料とは異なるものである。 第1段階のゲート材料は粒子26の間の空間において中間層62上に堆積し、 第6d図に示すように比較的一様な厚みのゲートサブレイヤ64Aを形成する。 第1段階の材料の一部64Bは球体26の上半分の上に同時に堆積する。第2段 階のゲート材料は粒子26の間のゲートにおけるゲートサブレイヤ64Aの上に 堆積して比較的一様な厚みの別のゲートサブレイヤ66Aを形成する。第2段階 材料の一部66Bは、ゲートサブレイヤ66A形成の際、第1段階の堆積部64 Bの上に堆積する。 「下側」及び「下向き」といった方向に関する言葉は、本発明を説明するために 便宜的に用いているものであり、本発明の種々の構成要素がどのように組み合わ されているかを読み手がより容易に理解できるように用いているものである。実 際の実施に於いては、電子放出デバイスの構成要素は、本明細書の説明に於いて 用いられている、方向に関する表記によって指定されているのとは異なる向きに 向けられることもあり得る。同じことが本発明に於ける製造工程の実行について も言える。方向についての用語は説明を容易にするための便宜上用いられている ものであるが、本発明は、ここで用いた方向の用語が示すものとは異なる方向を 向いた実施例もその範囲に含んでいる。 本発明の特定の実施例について説明してきたが、その説明は単に本発明の内容 を説明する目的で記述されたものであり、請求の範囲に記載された本発明の範囲 を限定しようとするものではない。例えば、第1図〜第3図の任意のプロセスに 於いて、電極間誘電体層24に粒子26の分散を、第6図のプロセスに於いて用 いられているような抗凝集層の介入無しに、電気泳動的又は誘電泳動的に行うこ とができる。この場合も粒子の表面密度を高めることができる。前出のHave nらの国際特許出願PCT/US97/09197に開示された技術を用いて粒 子26を電気泳動的或いは誘電泳動的に被着することができる。 ゲート開口部がゲート層を貫通して下側非絶縁性領域エミッタ領域22の上の 絶縁性層24に達するような構造を形成した後、ゲート層の厚みはゲート層上に 非絶縁性ゲート材料を更に選択的に被着することによ って厚くすることができる。ゲート材料の更なる被着は電気化学的技術によって 行うことができる。一般に、このゲート材料の更なる被着は粒子26の除去の前 か後に行うことができる。 回転式被着手順を用いてリフトオフ層34または54を形成する代わりに、リ フトオフ材料の被着を、典型的には少なくとも4つの複数の被着材料源から行う ことができる。この複数の被着材料源はウエハの周りの位置に固定されており、 これによってリフトオフ材料を絶縁性層24の上側表面に対して通常はそれぞれ 等しい適切な角度で蒸着することができる。蒸着以外の透視線(line-of-sight )被着技術を用いてリフトオフ層34又は54を形成することができる。電気的 研磨処理を行って、ゲート開口部のゲート層のエッジ部を面取りすることができ る。請求の範囲 1.電気的に絶縁性の絶縁性層の上に多数の粒子を分散させる分散過程と、 少なくとも前記粒子の間の空間において前記絶縁性層の上に電気的に非絶縁性 のゲート材料を供給するゲート材料供給過程と、 前記粒子及び前記粒子の上層をなす実質的に任意の材料を除去する粒子除去過 程であって、残ったゲート材料がゲート層を形成し、前記ゲート層の前記粒子が 除去された位置にゲート開口部が貫通するようにする、該粒子除去過程と、 前記ゲート開口部を通して前記絶縁性層をエッチングし、前記絶縁性層を通し てその下に配設された下側の電気的に非絶縁性の下側非絶縁性領域に達する対応 する誘電体開口部を形成する絶縁性層エッチング過程と、 前記誘電体開口部の中に電気的に非絶縁性のエミッタ材料を導入して、前記下 側非絶縁性領域の上に対応する電子放出素子を形成する導入過程であって、前記 電子放出素子が前記ゲート開口部を通して外部に露出される、該導入過程とを含 むことを特徴とする方法。 2.前記導入過程が、 前記ゲート層の上にリフトオフ層を形成する過程であって、前記リフトオフ層 を通して前記ゲート開口部に垂直方向に整合されたリフトオフ開口部が貫通して いる、該過程と、 前記リフトオフ層及び前記リフトオフ開口部及びゲート開口部を通して前記誘 電体開口部の中に前記エミッタ材料を堆積させる過程と、 前記リフトオフ層を除去して、前記リフトオフ層の上に堆積した任意のエミッ タ材料を概ね除去する過程とを含むことを特徴とする請求項1に記載の方法。 3.前記ゲート材料供給過程が、前記絶縁性層の上の前記粒子の下の空間に前記 ゲート材料の一部を堆積させる過程を含むことを特徴とする請求項2に記載の方 法。 4.前記導入過程が、 前記ゲート層の上及び前記ゲート開口部を通して前記誘電体開口部の中に前記 エミッタ材料を堆積させる過程と、 前記誘電体開口部の内部の前記ゲート層の上に堆積した前記エミッタ材料の少 なくとも一部を除去するエミッタ材料除去過程とを含むことを特徴とする請求項 1に記載の方法。 5.前記エミッタ材料除去過程が電気化学的に行われることを特徴とする請求項 4に記載の方法。 6.前記分散過程の前に、前記絶縁性層の上に中間層を設ける過程であって、前 記粒子が前記絶縁性層の上層をなす前記中間層の上に後に分散される、該過程を 更に含むことを特徴とする請求項1に記載の方法。 7.前記粒子除去過程と前記絶縁性層エッチング過程との間に、前記ゲート開口 部を通して前記中間層をエッチングし、前記中間層を貫通する対応する中間開口 部を形成する過程であって、前記絶縁性層エッチング過程も前記中間開口部を通 して行われる、該過程を更に含むことを特徴とする請求項6に記載の方法。 8.前記中間層が、前記絶縁性層及び前記ゲート層の双方に蒸着されることを特 徴とする請求項7に記載の方法。 9.前記中間層が、前記分散過程の間に前記粒子が凝集するのを抑制するのを特 徴とする請求項7に記載の方法。 10.前記導入過程が、 前記ゲート層及び前記ゲート開口部及び中間開口部を通してエミッタ材料を堆 積させる過程と、 前記誘電体開口部の外側の前記ゲート層の上に堆積したエミッタ材料の少なく とも一部を電気化学的に除去する過程とを含むことを特徴とする請求項7に記載 の方法。 11.前記中間層が、電気的に非絶縁性の材料を含むことを特徴とする請求項7 に記載の方法。 12.前記ゲート層が、化学的組成の異なる少なくとも2つのサブレイヤーを含 むことを特徴とする請求項7に記載の方法。 13.前記ゲート材料が、それを通して正確に微小な開口部をエッチングするこ とが困難な金属を含むことを特徴とする請求項1に記載の方法。 14.前記分散過程の前に、前記絶縁性層の上にパターン転写層を形成する過程 と、 前記分散過程と前記ゲート材料供給過程との間において、前記粒子の陰になっ ていない前記パターン転写層の材料を除去して、前記パターン転写層から対応す るペデスタル部を形成する過程と、 前記ゲート材料供給過程と前記絶縁性層エッチング過程との間において、前記 ペデスタル部を除去する過程とを更に含むことを特徴とする請求項1に記載の方 法。 15.前記ゲート材料供給過程が、前記粒子の陰になっていない前記絶縁性層の 材料の上に前記ゲート材料を選択的に被着する過程を含むことを特徴とする請求 項14に記載の方法。 16.各ゲート開口部の直径が一般にゲート開口部の下に進むにつれ小さくなる ことを特徴とする請求項1に記載の方法。 17.電気的に絶縁性の絶縁性層の上に多数の粒子を分散させる分散過程と、 前記絶縁性層の上に電気的に非絶縁性のゲート材料を供給するゲート材料供給 過程であって、前記ゲート材料が前記粒子の間の空間をカバー し、かつ前記絶縁性層の上の前記粒子の下の空間に実質的に入り込む、該ゲート 材料供給過程と、 前記粒子及び前記粒子の上の実質的に任意の材料を除去する粒子除去過程であ って、残りのゲート材料がゲート層を形成し、前記ゲート層の粒子が除去された 位置に傾斜したゲート開口部が貫通する、該粒子除去過程と、 前記傾斜したゲート開口部を通して前記絶縁性層をエッチングし、前記絶縁性 層の下に設けられた下側の電気的に非絶縁性の下側非絶縁性領域に達する絶縁性 層を貫通する対応する誘電体開口部を形成する絶縁性層エッチング過程と、 前記下側非絶縁性領域の上に電子放出素子を形成する電子放出素子形成過程で あって、各電子放出素子が電気誘電体開口部の対応する1つの中に少なくとも部 分的に配置される、該電子放出素子形成過程とを含むことを特徴とする方法。 18.傾斜したゲート開口部のそれぞれが、前記下側非絶縁性領域に向かってゲ ート開口部を下向きに進むにつれ直径が小さくなっており、各ゲート開口部の直 径は、前記下側絶縁性領域に達した時、またはその近傍で最小値に達することを 特徴とする請求項17に記載の方法。 19.各ゲート開口部の直径の最小値が、そのゲート開口部の位置において前記 絶縁性層の上に配置された粒子の平均直径よりも小さいことを特徴とする請求項 18に記載の方法。 20.前記ゲート材料供給過程が、非コリメート方式で行われることを特徴とす る請求項18に記載の方法。 21.前記電子放出素子形成過程が、 前記ゲート層の上にリフトオフ層を被着するリフトオフ層被着過程であって、 前記リフトオフ層が前記ゲート開口部の前記ゲート層のエッジ 部を越えて著しく横向きに延在せずに、前記ゲート開口部において前記ゲート層 のエッジ部をカバーする、該リフトオフ層被着過程と、 前記リフトオフ層の上及び前記ゲート開口部を通して前記誘電体開口部の中に 電気的に非絶縁性のエミッタ材料を被着して、前記電子放出素子の少なくとも一 部を形成する過程と、 前記リフトオフ層を除去し、前記リフトオフ層の上の任意の材料を概ね除去す る過程とを含むことを特徴とする請求項18に記載の方法。 22.前記リフトオフ層被着過程が、前記絶縁性層の上側表面に対して20〜5 0度の被着角度で行われることを特徴とする請求項21に記載の方法。 23.前記電子放出素子形成過程が、 前記ゲート層の上及び前記ゲート開口部を通して前記誘電体開口部の中に電気 的に非絶縁性のエミッタ材料を被着し、前記電子放出素子を少なくとも部分的に 形成する過程と、 前記誘電体開口部の外側の前記ゲート層の上に堆積した前記エミッタ材料の少 なくとも一部を除去し、前記電子放出素子が前記傾斜したゲート開口部を通して 外部に露出されるようにするエミッタ材料除去過程とを含むことを特徴とする請 求項18に記載の方法。 24.前記除去過程が電気化学的に行われることを特徴とする請求項23に記載 の方法。 25.電気的に絶縁性の絶縁性層の上に形成されたパターン転写層の上に多数の 粒子を分散させる分散過程と、 前記粒子の陰になっていない前記パターン転写層の材料を除去することにより 前記パターン転写層から対応するペデスタル部を形成するペデスタル部形成過程 と、 少なくとも前記ペデスタル部の間の空間において前記絶縁性層の上に 電気的に非絶縁性のゲート材料を供給するゲート材料供給過程と、 前記ペデスタル部および前記ペデスタル部の上の、前記粒子を含む実質的に任 意の材料を除去し、残ったゲート材料がゲート層を形成し、ゲート層の粒子が除 去された位置にゲート開口部が貫通するようにする過程と、 前記ゲート開口部を通して前記絶縁性層をエッチングし、前記絶縁性層の下側 の電気的に非絶縁性の下側非絶縁性領域に達する対応する誘電体開口部を前記絶 縁性層を通して形成する絶縁性層エッチング過程と、 前記下側非絶縁性領域の上に電子放出素子を形成する電子放出素子形成過程で あって、各電子放出素子が前記誘電体開口部の対応する1つの中に少なくとも部 分的に配置される、該電子放出素子形成過程とを含むことを特徴とする方法。 26.前記ゲート材料供給過程が、前記粒子の陰になっていない前記絶縁性層の 材料の上に前記ゲート材料を選択的に被着する過程を含むことを特徴とする請求 項25に記載の方法。 27.前記分散過程の前に、(a)前記絶縁性層の上層をなす電気的に非絶縁性 の中間層、及び(b)前記中間層の上層をなすパターン転写層を形成する過程と 、 前記ゲート材料供給過程の後に、前記ゲート開口部を通して前記中間層をエッ チングし、前記絶縁性層に達する前記中間層を貫通する対応する中間開口部を形 成する過程とを更に含むことを特徴とし、 前記絶縁性層エッチング過程も前記中間開口部を通して行われることを特徴と する請求項26に記載の方法。 28.前記ゲート材料供給過程が、前記ペデスタル部の陰になっていない前記中 間層の材料の上に前記ゲート材料を電気化学的に被着する過程を含むことを特徴 とする請求項27に記載の方法。 29.前記ペデスタル部形成過程が、 前記ペデスタル部を露出マスクとして用いて前記パターン転写層を化学線放射 に暴露し、前記パターン転写層の前記粒子の陰になっていない材料の化学的組成 に変化を生じさせる過程と、 前記パターン転写層の化学的に変化した材料を除去する過程とを含むことを特 徴とする請求項25に記載の方法。 30.前記ペデスタル部形成過程が、前記粒子をエッチングマスクとして用いて 、前記パターン転写層を異方性エッチングする過程を含むことを特徴とする請求 項25に記載の方法。 31.前記電子放出素子が、概ね円錐形の形状に形成されることを特徴とする請 求項1乃至30の何れかに記載の方法。 32.前記粒子が、概ね球形であることを特徴とする請求項1乃至30の何れか に記載の方法。 33.前記電子放出素子が、電界放出モードで動作可能であることを特徴とする 請求項1乃至30の何れかに記載の方法。 34.前記分散過程が、印加された電界の影響の下で行われることを特徴とする 請求項1乃至30の何れかに記載の方法。 35.前記電子放出素子によって放出された電子を収集するためのアノード手段 を、前記電子放出素子の上で、かつ前記電子放出素子から離隔した形態で設ける 過程を更に含むことを特徴とする請求項1乃至30の何れかに記載の方法。 36.前記アノード手段が、前記電子放出素子から放出された電子が衝当した時 発光する発光素子を有する発光構造の一部として設けられることを特徴とする請 求項35に記載の方法。 37.下側の電気的に非絶縁性の下側非絶縁性領域と、 前記下側非絶縁性領域の上に配設された電気的に絶縁性の絶縁性層で あって、前記下側非絶縁性領域に達する多数の誘電体開口部が貫通している、該 絶縁性層と、 多数の電子放出素子であって、それぞれが前記誘電体開口部の対応する1つの 中に少なくとも部分的に配置され、且つ前記対応する誘電体開口部を通して前記 下側非絶縁性領域に電気的に接続されている、該多数の電子放出素子と、 前記絶縁性層の上に配設された電気的に非絶縁性のゲート層であって、前記ゲ ート層を通して多数の傾斜したゲート開口部が貫通し、前記電子放出素子の対応 する1つを前記ゲート開口部のそれぞれが露出し、前記ゲート開口部のそれぞれ の直径は前記ゲート開口部を前記下側非絶縁性領域に向かって進むにつれ次第に 小さくなっており、前記ゲート層の底部において、若しくはその近傍において直 径が最小値に達する、該電気的に非絶縁性のゲート層とを有することを特徴とす る構造体。 38.各ゲート開口部の直径が前記ゲート開口部を下向きに進むにつれ小さくな っていることを特徴とする請求項37に記載の構造体。 39.前記下側非絶縁性領域が、 下側導電性層と、 前記導電性層の上層をなす上側抵抗性層とを含むことを特徴とする請求項37 に記載の構造体。 40.前記ゲート層が、各ゲート開口部に沿って凹んだ断面形状を有しているこ とを特徴とする請求項37乃至39の何れかに記載の構造体。 41.各電子放出素子が、概ね円錐形の形状であることを特徴とする請求項37 乃至39の何れかに記載の構造体。 42.前記電子放出素子が、電界放出モードで動作可能であることを特徴とする 請求項37乃至39の何れかに記載の構造体。 43.前記電子放出素子の上で、かつ前記電子放出素子から離隔された 形態で配設された、前記電子放出素子から放出された電子を収集するためのアノ ード手段を更に含むことを特徴とする請求項37乃至39の何れかに記載の構造 体。 44.前記アノード手段が、前記電子放出素子から放出された電子が衝当したと き発光する発光素子を有する発光デバイスの一部であることを特徴とする請求項 43に記載の構造体。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 スピント、クリストファー・ジェイ アメリカ合衆国カリフォルニア州94025・ メンロパーク・ヒルサイドアベニュー 115 (72)発明者 ドブキン、ダニエル・エム アメリカ合衆国カリフォルニア州94086・ サニーベイル・サターアベニュー 877 【要約の続き】

Claims (1)

  1. 【特許請求の範囲】 1.電気的に絶縁性の絶縁性層の上に多数の粒子を分散させる分散過程と、 少なくとも粒子の間の空間において絶縁性層の上に電気的に非絶縁性のゲート 材料を供給するゲート材料供給過程と、 前記粒子を除去し、その粒子の上に堆積した任意の材料を実質的に除去する粒 子除去過程であって、残ったゲート材料がゲート層を形成し、そのゲート層の除 去された粒子の位置において層を貫通するゲート開口部が形成されるようにする 、該粒子除去過程と、 前記ゲート開口部を通して前記絶縁性層をエッチングし、前記絶縁性層を貫通 して前記絶縁性層の下層をなす下側電気的非絶縁性領域に概ね達する対応する誘 電体開口部を形成する絶縁性層エッチング過程と、 電気的に非絶縁性のエミッタ材料を前記誘電体開口部に導入して、前記下側非 絶縁性領域の上に対応する電子放出素子を形成する導入過程であって、前記電子 放出素子が前記ゲート開口部を通して外部に露出される、該導入過程とを含むこ とを特徴とする方法。 2.前記導入過程が、 前記ゲート層の上にリフトオフ層を形成する過程であって、前記ゲート開口部 に垂直方向に整合されたリフトオフ開口部が前記リフトオフ層を貫通している、 該過程と、 前記リフトオフ層の上及び前記リフトオフ開口部及びゲート開口部を通して前 記誘電体開口部の中に前記エミッタ材料を堆積させる過程と、 前記リフトオフ層を除去して前記リフトオフ層の上に堆積した任意のエミッタ 材料を概ね除去する過程とを含むことを特徴とする請求項1に記載の方法。 3.前記ゲート材料供給過程が、前記絶縁性層の上の粒子の下の空間に 前記ゲート材料の一部を堆積させる過程を含むことを特徴とする請求項2に記載 の方法。 4.前記導入過程が、 前記ゲート層の上及び前記ゲート開口部を通して前記誘電体開口部の中に前記 エミッタ材料を堆積させる過程と、 前記誘電体開口部の外部の前記ゲート層の上に堆積した前記エミッタ材料の少 なくとも一部を除去するエミッタ材料除去過程とを含むことを特徴とする請求項 1に記載の方法。 5.前記エミッタ材料除去過程が、電気化学的に行われることを特徴とする請求 項4に記載の方法。 6.前記分散過程の前に、前記絶縁性層の上の中間層を設ける過程であって、前 記粒子が前記絶縁性層の上層をなす前記中間層の上に続けて分散される、該過程 を更に含むことを特徴とする請求項1に記載の方法。 7.前記粒子除去過程と前記絶縁性層エッチング過程との間に、前記ゲート開口 部を通して前記中間層をエッチングし、前記中間層を貫通する対応する中間開口 部を形成する過程であって、前記絶縁性層エッチング過程もこの中間開口部を通 して行われる、該過程を更に含むことを特徴とする請求項6に記載の方法。 8.前記中間層が、絶縁性層及びゲート層の双方に蒸着されることを特徴とする 請求項7に記載の方法。 9.前記中間層が、前記分散過程の際に粒子の凝集を抑制することを特徴とする 請求項7に記載の方法。 10.前記導入過程が、 前記ゲート材料及び前記ゲート開口部及び前記中間開口部を通して前記エミッ タ材料を堆積させる過程と、 前記誘電体開口部の外部の前記ゲート層の上に堆積したエミッタ材料 の少なくとも一部を電気化学的に除去する過程とを含むことを特徴とする請求項 7に記載の方法。 11.前記中間層が電気的に非絶縁性の材料を含むことを特徴とする請求項7に 記載の方法。 12.前記ゲート層が、化学的組成が異なる少なくとも2つのサブレイヤーを含 むことを特徴とする請求項7に記載の方法。 13.前記ゲート材料が、それを通して微小な開口部を正確にエッチングするこ とが困難な金属を含むことを特徴とする請求項1に記載の方法。 14.前記分散過程の前に、前記絶縁性層の上にパターン転写層を形成する過程 と、 前記分散過程と前記ゲート材料供給過程との間において、前記粒子の陰になっ ていない前記パターン転写層の材料を除去して、前記パターン転写層から対応す るペデスタル部を形成する過程と、 前記ゲート材料供給過程と前記絶縁性層エッチング過程との間において、前記 ペデスタル部を除去する過程とを更に含むことを特徴とする請求項1に記載の方 法。 15.前記ゲート材料供給過程が、前記粒子の陰になっている前記絶縁性層の材 料の上に選択的に前記ゲート材料を被着する過程を含むことを特徴とする請求項 14に記載の方法。 16.各ゲート開口部の直径が前記ゲート開口部を下向きに進むにつれ小さくな ることを特徴とする請求項1に記載の方法。 17.電気的に絶縁性の絶縁性層の上に多数の粒子を分散させる分散過程と、 前記絶縁性層の上に電気的に非絶縁性のゲート材料を供給するゲート材料供給 過程であって、前記ゲート材料が前記粒子間の空間をカバーし、且つ前記絶縁性 層の上の前記粒子の下の空間に実質的に入り込む、該ゲ ート材料供給過程と、 前記粒子及び前記粒子の上にある実質的に任意の材料を除去する粒子除去過程 であって、残りのゲート材料がゲート層を形成し、該ゲート層の粒子が除去され た位置に傾斜したゲート開口部が貫通する、該粒子除去過程と、 前記傾斜したゲート開口部を通して前記絶縁性層をエッチングし、前記絶縁性 層の下に配設された下側の電気的非絶縁性領域に達する、絶縁性層を貫通する対 応する誘電体開口部を形成する絶縁性層エッチング過程と、 前記下側非絶縁性領域の上に電子放出素子を形成する電子放出素子形成過程で あって、各電子放出素子が前記誘電体開口部の対応する1つの上に少なくとも部 分的に配置される、該電子放出素子形成過程とを含む方法。 18.各傾斜開口部が、その直径がゲート開口部を下側非絶縁領域に向かって進 むにつれ小さくなっており、下側非絶縁性領域において、或いはその近傍におい て最小値に達することを特徴とする請求項17に記載の方法。 19.各ゲート開口部の直径の最小値が、前記絶縁性層の前記ゲート開口部の位 置に配置された粒子の平均直径より小さいことを特徴とする請求項18に記載の 方法。 20.前記ゲート材料供給過程が非平コリメート式に行われることを特徴とする 請求項18に記載の方法。 21.前記電子放出素子形成過程が、 前記ゲート層の上にリフトオフ層を被着するリフトオフ層被着過程であって、 前記リフトオフ層が前記ゲート開口部において前記ゲート層のエッジ面をカバー し、且つ前記ゲート開口部においてゲート層のエッジ 部を越えて横向きに著しく延在しない、該リフトオフ層被着過程と、 リフトオフ層上及びゲート開口部を通して誘電体開口部の中に電気的に非絶縁 性のエミッタ材料を被着して、少なくとも部分的に電子放出素子を形成する過程 と、 リフトオフ層を除去して、前記リフトオフ層の上層をなす任意の材料を実質的 に除去する過程とを含むことを特徴とする請求項18に記載の方法。 22.前記リフトオフ層被着過程が、前記絶縁性層の上側表面に対して20〜5 0度の被着角度で行われることを特徴とする請求項21に記載の方法。 23.前記電子放出素子形成過程が、 前記ゲート層及び前記ゲート開口部を通して前記誘電体開口部の上に電気的に 非絶縁性のエミッタ材料を被着して、少なくとも部分的に電子放出素子を形成す る過程と、 前記誘電体開口部の外部において前記ゲート層の上に堆積した前記エミッタ材 料の少なくとも一部を除去して、前記電子放出素子が前記傾斜したゲート開口部 を通して外部に露出されるようにするエミッタ材料除去過程とを含むことを特徴 とする請求項18に記載の方法。 24.前記エミッタ材料除去過程が電気化学的に行われることを特徴とする請求 項23に記載の方法。 25.電気的に絶緑性の絶緑性層の上に形成されたパターン転写層の上に多数の 粒子を分散させる分散過程と、 粒子の陰になっていない前記パターン転写層の材料を除去することにより前記 パターン転写層から対応するペデスタル部を形成するペデスタル部形成過程と、 少なくとも前記ペデスタル部の間の空間における前記絶縁性層の上に 電気的に非絶縁性のゲート材料を供給するゲート材料供給過程と、 前記ペデスタル部の上の粒子を含む任意の材料及びペデスタルを除去して、残 りのゲート材料がゲート層を形成し、該ゲート層の粒子が除去された位置にゲー ト開口部が貫通するようにする過程と、 前記ゲート開口部を通して前記絶縁性層をエッチングし、前記絶縁性層の下側 の下側非絶縁性領域に達する絶縁性層を貫通する対応する誘電体開口部を形成す る絶縁性層エッチング過程と、 前記下側非絶縁性領域の上に電子放出素子を形成する電子放出素子形成過程で あって、各電子放出素子が前記誘電体開口部の対応する1つに少なくとも部分的 に配置されるようにする、該電子放出素子形成過程とを含むことを特徴とする方 法。 26.前記ゲート材料供給過程が、前記粒子の陰になっていない前記絶縁性層の 材料の上に前記ゲート材料を選択的に被着する過程を含むことを特徴とする請求 項25に記載の方法。 27.前記分散過程の前に、(a)前記絶縁性層の上層をなす電気的に非絶縁性 の中間層、及び(b)前記中間層の上層をなすパターン転写層を形成する過程と 、 前記ゲート材料供給過程の後に、前記ゲート開口部を通して前記中間層をエッ チングし、前記中間層を貫通して前記絶縁性層に概ね達する対応する中間開口部 を形成する過程を更に含むことを特徴とし、 前記絶縁性層エッチング過程も前記中間開口部を通して行われることを特徴と する請求項26に記載の方法。 28.前記ゲート材料供給過程が、前記粒子の陰になっていない前記中間層の材 料および前記ゲート材料を電気化学的に被着する過程を含むことを特徴とする請 求項27に記載の方法。 29.前記ペデスタル部形成過程が、 前記パターン転写層を粒子を露出マスクとして用いて化学線放射に露出し、パ ターン転写層の前記粒子の陰になっていない材料の化学的組成を変化させる過程 と、 前記パターン転写層の化学的に変化した材料を除去する過程とを含むことを特 徴とする請求項25に記載の方法。 30.前記ペデスタル部形成過程が、前記粒子をエッチングマスクとして用いて 前記パターン転写層を異方性エッチングする過程を含むことを特徴とする請求項 25に記載の方法。 31.前記電子放出素子が概ね円錐形の形状に形成されることを特徴とする請求 項1乃至30の何れかに記載の方法。 32.前記粒子が概ね球形であることを特徴とする請求項1乃至30の何れかに 記載の方法。 33.前記電気放出素子が電界放出モードで動作可能であることを特徴とする請 求項1乃至30の何れかに記載の方法。 34.前記分散過程が、印加された電界の影響の下で行われることを特徴とする 請求項1乃至30の何れかに記載の方法。 35.前記電子放出素子の上で、かつ前記電子放出素子からは離隔された、前記 電子放出素子により放出された電子を吸収するためのアノード手段を設ける過程 を更に含むことを特徴とする請求項1乃至30の何れかに記載の方法。 36.前記アノード手段が前記電子放出素子から放出された電子が衝当した時発 光する発光素子を有する発光構造の一部として設けられることを特徴とする請求 項35に記載の方法。 37.下側の電気的に非絶縁性の下側非絶縁性領域と、 前記下側非絶縁性領域の上に配設された電気的に絶縁性の絶縁性層であって、 前記絶縁性層を通して前記下側非絶縁性領域に達する多数の誘 電体開口部が貫通している、該絶縁性層と、 それぞれ前記誘電体開口部の対応する1つの中に少なくとも部分的に配置され 、対応する誘電体開口部を通して前記下側非絶縁性領域に電気的に接続されてい る多数の電子放出素子と、 前記絶縁性層の上に配置された電気的に非絶縁性のゲート層であって、前記ゲ ート層を通して多数の傾斜したゲート開口部が設けられており、各ゲート開口部 が前記電子放出素子の対応する1つを露出し、各ゲート開口部の直径がゲート開 口部を前記下側非絶縁性領域に向かって下向きに進むにつれ小さくなっており、 前記ゲート層の底、または底の近傍において最小値になっている、該非絶縁性ゲ ート層とを有することを特徴とする構造体。 38.各ゲート開口部の直径がそれを下向きに進むにつれ次第に小さくなってい ることを特徴とする請求項37に記載の構造体。 39.各ゲート開口部を下向きに進むにつれその直径が小さくなる率が次第に大 きくなっていることを特徴とする請求項37に記載の構造体。 40.前記ゲート層が各ゲート開口部に沿って凹状の断面形状を有していること を特徴とする請求項37乃至39の何れかに記載の構造体。 41.各電子放出素子が概ね円錐形の形状を有していることを特徴とする請求項 37乃至39の何れかに記載の構造体。 42.前記電子放出素子が電界放出モードで動作可能であることを特徴とする請 求項37乃至39の何れかに記載の構造体。 43.前記電子放出素子の上で、かつ前記電子放出素子から離隔された、前記電 子放出素子から放出された電子を収集するためのアノード手段が設けられている ことを特徴とする請求項37乃至39の何れかに記載の装置。 44.前記アノード手段が前記電子放出素子から放出された電子と衝当 した時に発光する発光素子を有する発光装置の一部であることを特徴とする請求 項43に記載の方法。
JP50069698A 1996-06-07 1997-06-05 電子放出デバイスの製造方法 Expired - Fee Related JP3736857B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US660,537 1996-06-07
US08/660,537 US5865657A (en) 1996-06-07 1996-06-07 Fabrication of gated electron-emitting device utilizing distributed particles to form gate openings typically beveled and/or combined with lift-off or electrochemical removal of excess emitter material
PCT/US1997/009196 WO1997047020A1 (en) 1996-06-07 1997-06-05 Gated electron emission device and method of fabrication thereof

Publications (2)

Publication Number Publication Date
JP2001506395A true JP2001506395A (ja) 2001-05-15
JP3736857B2 JP3736857B2 (ja) 2006-01-18

Family

ID=24649927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50069698A Expired - Fee Related JP3736857B2 (ja) 1996-06-07 1997-06-05 電子放出デバイスの製造方法

Country Status (7)

Country Link
US (1) US5865657A (ja)
EP (1) EP1018131B1 (ja)
JP (1) JP3736857B2 (ja)
KR (1) KR100357812B1 (ja)
DE (1) DE69740027D1 (ja)
TW (1) TW398005B (ja)
WO (1) WO1997047020A1 (ja)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158031B2 (en) * 1992-08-12 2007-01-02 Micron Technology, Inc. Thin, flexible, RFID label and system for use
US6417605B1 (en) 1994-09-16 2002-07-09 Micron Technology, Inc. Method of preventing junction leakage in field emission devices
JP4226651B2 (ja) * 1996-06-07 2009-02-18 キヤノン株式会社 電子放出デバイスを製作するための方法
US6187603B1 (en) 1996-06-07 2001-02-13 Candescent Technologies Corporation Fabrication of gated electron-emitting devices utilizing distributed particles to define gate openings, typically in combination with lift-off of excess emitter material
US5865659A (en) * 1996-06-07 1999-02-02 Candescent Technologies Corporation Fabrication of gated electron-emitting device utilizing distributed particles to define gate openings and utilizing spacer material to control spacing between gate layer and electron-emissive elements
US6015323A (en) * 1997-01-03 2000-01-18 Micron Technology, Inc. Field emission display cathode assembly government rights
US6095883A (en) * 1997-07-07 2000-08-01 Candlescent Technologies Corporation Spatially uniform deposition of polymer particles during gate electrode formation
US6039621A (en) 1997-07-07 2000-03-21 Candescent Technologies Corporation Gate electrode formation method
US6339385B1 (en) 1997-08-20 2002-01-15 Micron Technology, Inc. Electronic communication devices, methods of forming electrical communication devices, and communication methods
JP3595718B2 (ja) * 1999-03-15 2004-12-02 株式会社東芝 表示素子およびその製造方法
EP1073090A3 (en) * 1999-07-27 2003-04-16 Iljin Nanotech Co., Ltd. Field emission display device using carbon nanotubes and manufacturing method thereof
JP2001043790A (ja) * 1999-07-29 2001-02-16 Sony Corp 冷陰極電界電子放出素子の製造方法及び冷陰極電界電子放出表示装置の製造方法
US6364730B1 (en) * 2000-01-18 2002-04-02 Motorola, Inc. Method for fabricating a field emission device and method for the operation thereof
US6400068B1 (en) * 2000-01-18 2002-06-04 Motorola, Inc. Field emission device having an emitter-enhancing electrode
RU2194329C2 (ru) * 2000-02-25 2002-12-10 ООО "Высокие технологии" Способ получения адресуемого автоэмиссионного катода и дисплейной структуры на его основе
US6884093B2 (en) * 2000-10-03 2005-04-26 The Trustees Of Princeton University Organic triodes with novel grid structures and method of production
US7288014B1 (en) 2000-10-27 2007-10-30 Science Applications International Corporation Design, fabrication, testing, and conditioning of micro-components for use in a light-emitting panel
US6762566B1 (en) 2000-10-27 2004-07-13 Science Applications International Corporation Micro-component for use in a light-emitting panel
US6801001B2 (en) * 2000-10-27 2004-10-05 Science Applications International Corporation Method and apparatus for addressing micro-components in a plasma display panel
US6822626B2 (en) 2000-10-27 2004-11-23 Science Applications International Corporation Design, fabrication, testing, and conditioning of micro-components for use in a light-emitting panel
US6545422B1 (en) * 2000-10-27 2003-04-08 Science Applications International Corporation Socket for use with a micro-component in a light-emitting panel
US6796867B2 (en) * 2000-10-27 2004-09-28 Science Applications International Corporation Use of printing and other technology for micro-component placement
US6764367B2 (en) * 2000-10-27 2004-07-20 Science Applications International Corporation Liquid manufacturing processes for panel layer fabrication
US6620012B1 (en) 2000-10-27 2003-09-16 Science Applications International Corporation Method for testing a light-emitting panel and the components therein
US6612889B1 (en) 2000-10-27 2003-09-02 Science Applications International Corporation Method for making a light-emitting panel
US6935913B2 (en) * 2000-10-27 2005-08-30 Science Applications International Corporation Method for on-line testing of a light emitting panel
US6570335B1 (en) 2000-10-27 2003-05-27 Science Applications International Corporation Method and system for energizing a micro-component in a light-emitting panel
US7351607B2 (en) * 2003-12-11 2008-04-01 Georgia Tech Research Corporation Large scale patterned growth of aligned one-dimensional nanostructures
US20050189164A1 (en) * 2004-02-26 2005-09-01 Chang Chi L. Speaker enclosure having outer flared tube
GB0516783D0 (en) * 2005-08-16 2005-09-21 Univ Surrey Micro-electrode device for dielectrophoretic characterisation of particles
KR100831843B1 (ko) * 2006-11-07 2008-05-22 주식회사 실트론 금속층 위에 성장된 화합물 반도체 기판, 그 제조 방법 및이를 이용한 화합물 반도체 소자
TWI441237B (zh) * 2012-05-31 2014-06-11 Au Optronics Corp 場發射顯示器之畫素結構的製造方法
US10026822B2 (en) 2014-11-14 2018-07-17 Elwha Llc Fabrication of nanoscale vacuum grid and electrode structure with high aspect ratio dielectric spacers between the grid and electrode
US9548180B2 (en) * 2014-11-21 2017-01-17 Elwha Llc Nanoparticle-templated lithographic patterning of nanoscale electronic components
FR3044826B1 (fr) * 2015-12-02 2018-04-20 Commissariat Energie Atomique Agencement pour empilement de cellule photovoltaique en couches minces et procede de fabrication associe

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497929A (en) * 1966-05-31 1970-03-03 Stanford Research Inst Method of making a needle-type electron source
US3755704A (en) * 1970-02-06 1973-08-28 Stanford Research Inst Field emission cathode structures and devices utilizing such structures
US3665241A (en) * 1970-07-13 1972-05-23 Stanford Research Inst Field ionizer and field emission cathode structures and methods of production
JPS5325632B2 (ja) * 1973-03-22 1978-07-27
US3970887A (en) * 1974-06-19 1976-07-20 Micro-Bit Corporation Micro-structure field emission electron source
JPS5436828B2 (ja) * 1974-08-16 1979-11-12
FR2623013A1 (fr) * 1987-11-06 1989-05-12 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ,utilisant cette source
DE68926090D1 (de) * 1988-10-17 1996-05-02 Matsushita Electric Ind Co Ltd Feldemissions-Kathoden
US5170092A (en) * 1989-05-19 1992-12-08 Matsushita Electric Industrial Co., Ltd. Electron-emitting device and process for making the same
DE69025831T2 (de) * 1989-09-07 1996-09-19 Canon Kk Elektronemittierende Vorrichtung; Herstellungsverfahren Elektronemittierende Vorrichtung, Herstellungsverfahren derselben und Anzeigegerät und Elektronstrahl- Schreibvorrichtung, welche diese Vorrichtung verwendet.
US5007873A (en) * 1990-02-09 1991-04-16 Motorola, Inc. Non-planar field emission device having an emitter formed with a substantially normal vapor deposition process
JP3007654B2 (ja) * 1990-05-31 2000-02-07 株式会社リコー 電子放出素子の製造方法
FR2663462B1 (fr) * 1990-06-13 1992-09-11 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes.
US5150192A (en) * 1990-09-27 1992-09-22 The United States Of America As Represented By The Secretary Of The Navy Field emitter array
US5150019A (en) * 1990-10-01 1992-09-22 National Semiconductor Corp. Integrated circuit electronic grid device and method
JP2550798B2 (ja) * 1991-04-12 1996-11-06 富士通株式会社 微小冷陰極の製造方法
US5249340A (en) * 1991-06-24 1993-10-05 Motorola, Inc. Field emission device employing a selective electrode deposition method
US5278472A (en) * 1992-02-05 1994-01-11 Motorola, Inc. Electronic device employing field emission devices with dis-similar electron emission characteristics and method for realization
KR950004516B1 (ko) * 1992-04-29 1995-05-01 삼성전관주식회사 필드 에미션 디스플레이와 그 제조방법
KR950008756B1 (ko) * 1992-11-25 1995-08-04 삼성전관주식회사 실리콘 전자방출소자 및 그의 제조방법
US5534743A (en) * 1993-03-11 1996-07-09 Fed Corporation Field emission display devices, and field emission electron beam source and isolation structure components therefor
KR0150252B1 (ko) * 1993-07-13 1998-10-01 모리시다 요이치 반도체 기억장치의 제조방법
US5378182A (en) * 1993-07-22 1995-01-03 Industrial Technology Research Institute Self-aligned process for gated field emitters
US5564959A (en) * 1993-09-08 1996-10-15 Silicon Video Corporation Use of charged-particle tracks in fabricating gated electron-emitting devices
US5559389A (en) * 1993-09-08 1996-09-24 Silicon Video Corporation Electron-emitting devices having variously constituted electron-emissive elements, including cones or pedestals
US5462467A (en) * 1993-09-08 1995-10-31 Silicon Video Corporation Fabrication of filamentary field-emission device, including self-aligned gate
EP0700065B1 (en) * 1994-08-31 2001-09-19 AT&T Corp. Field emission device and method for making same
JP3304645B2 (ja) * 1994-09-22 2002-07-22 ソニー株式会社 電界放出型装置の製造方法
US5458520A (en) * 1994-12-13 1995-10-17 International Business Machines Corporation Method for producing planar field emission structure
US5676853A (en) * 1996-05-21 1997-10-14 Micron Display Technology, Inc. Mask for forming features on a semiconductor substrate and a method for forming the mask

Also Published As

Publication number Publication date
TW398005B (en) 2000-07-11
WO1997047020A1 (en) 1997-12-11
KR100357812B1 (ko) 2002-12-18
JP3736857B2 (ja) 2006-01-18
US5865657A (en) 1999-02-02
KR20000016557A (ko) 2000-03-25
EP1018131A1 (en) 2000-07-12
DE69740027D1 (de) 2010-12-02
EP1018131A4 (en) 2000-07-19
EP1018131B1 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP2001506395A (ja) ゲート制御式電子放出デバイス及びその製造方法
JP4160635B2 (ja) 電子放出デバイス用の構造上に多数の開口部が貫通した固体材料の層を形成する方法
WO1997047020A9 (en) Gated electron emission device and method of fabrication thereof
JP3699114B2 (ja) パッキング密度の高い電子放出デバイスの構造
WO1997046739A9 (en) Method of fabricating an electron-emitting device
US6422907B2 (en) Electrode structures, display devices containing the same, and methods for making the same
JP2000268701A (ja) 電子放出素子、その製造方法ならびに表示素子およびその製造方法
EP0501785A2 (en) Electron emitting structure and manufacturing method
US5865659A (en) Fabrication of gated electron-emitting device utilizing distributed particles to define gate openings and utilizing spacer material to control spacing between gate layer and electron-emissive elements
US6945838B2 (en) Knocking processing method in flat-type display device, and knocking processing method in flat-panel display device-use substrate
EP0520780A1 (en) Fabrication method for field emission arrays
US6338938B1 (en) Methods of forming semiconductor devices and methods of forming field emission displays
US6187603B1 (en) Fabrication of gated electron-emitting devices utilizing distributed particles to define gate openings, typically in combination with lift-off of excess emitter material
US6391670B1 (en) Method of forming a self-aligned field extraction grid
JP2002208346A (ja) 冷陰極電界電子放出素子の製造方法
JP4226651B2 (ja) 電子放出デバイスを製作するための方法
JP2002175764A (ja) 表示用パネル及びこれを用いた表示装置
JP2002270087A (ja) 冷陰極電界電子放出素子の製造方法、及び、冷陰極電界電子放出表示装置の製造方法
JPH08148080A (ja) アレイ状電界放射冷陰極とその製造方法
JP2800706B2 (ja) 電界放射型冷陰極の製造方法
JP2001345042A (ja) 冷陰極電界電子放出素子の製造方法、及び、冷陰極電界電子放出表示装置の製造方法
JP2002134017A (ja) 冷陰極電界電子放出表示装置の製造方法、及び、冷陰極電界電子放出表示装置用のアノードパネルの製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees