JP2001358493A - Electromagnetic-wave absorber, its manufacturing method and various applications using the same - Google Patents

Electromagnetic-wave absorber, its manufacturing method and various applications using the same

Info

Publication number
JP2001358493A
JP2001358493A JP2001098786A JP2001098786A JP2001358493A JP 2001358493 A JP2001358493 A JP 2001358493A JP 2001098786 A JP2001098786 A JP 2001098786A JP 2001098786 A JP2001098786 A JP 2001098786A JP 2001358493 A JP2001358493 A JP 2001358493A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
particles
absorbing material
wave absorbing
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001098786A
Other languages
Japanese (ja)
Other versions
JP3925835B2 (en
Inventor
Tadashi Fujieda
藤枝  正
Shinzo Ikeda
伸三 池田
Tsukasa Ogawa
宰 小川
Teruyoshi Abe
輝宜 阿部
Yasuhisa Aono
泰久 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001098786A priority Critical patent/JP3925835B2/en
Publication of JP2001358493A publication Critical patent/JP2001358493A/en
Application granted granted Critical
Publication of JP3925835B2 publication Critical patent/JP3925835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic-wave absorber whose electromagnetic- wave absorption characteristic in a high frequency region at 1 GHz or more is superior, to provide its manufacturing method and to provide various applications using it. SOLUTION: The manufacturing method for the electromagnetic-wave absorber comprises composite magnetic particles in which magnetic metal particles and ceramics are integrated. A composite powder which comprises a magnetic metal powder and a ceramics powder is formed by a mechanical alloying method, in the composite magnetic particles in which the magnetic metal particles and the ceramics are integrated. In the electromagnetic-wave absorber, the composite magnetic particles are dispersed to an insulating polymer resin or a ceramics. An electronic apparatus, an optical transmission module, an optical reception module, an optical transmission-reception module, and an automatic tollgate which prevents a malfunction by an electromagnetic interference between vehicles, use the electromagnetic-wave absorber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な電磁波吸収
材とその製造方法及び複合部材並びにその用途に係り、
磁性金属粒子とセラミックス、特に非磁性あるいは軟磁
性の金属酸化物,炭化物,窒化物の少なくとも1種類を
含む微細結晶粒からなる複合磁性粒子を有する電磁波吸
収材とその製造法及び複合部材並びにそれを用いた半導
体集積回路、電子回路、電子機器筐体、光送信・受信モ
ジュール、自動料金所に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel electromagnetic wave absorbing material, a method for producing the same, a composite member, and uses thereof.
Electromagnetic wave absorbing material having composite magnetic particles composed of magnetic metal particles and ceramics, particularly fine crystal grains containing at least one kind of non-magnetic or soft magnetic metal oxides, carbides, and nitrides; The present invention relates to a semiconductor integrated circuit, an electronic circuit, an electronic device housing, an optical transmission / reception module, and an automatic tollgate used.

【0002】[0002]

【従来の技術】近年、電子機器の高速処理化が加速的に
進んでおり、LSIやマイクロプロセッサなどのICの
動作周波数は急速に上昇しており、不要ノイズが放射し
易くなっている。
2. Description of the Related Art In recent years, high-speed processing of electronic devices has been accelerated, and the operating frequency of ICs such as LSIs and microprocessors has rapidly increased, and unnecessary noise has been easily emitted.

【0003】更に、通信分野では、次世代マルチメディ
ア移動通信(2GHz)、無線LAN(2〜30GHz)、ITS(Intellige
nt Transport Sysyem)の分野ではETS(自動料金収受シ
ステム)における5.8GHz、AHS(走行支援道路システ
ム)における76GHzなどが利用されており、今後、高周
波利用範囲は更に急速に拡大してゆくことが予想され
る。
In the communication field, next-generation multimedia mobile communication (2 GHz), wireless LAN (2 to 30 GHz), ITS (Intellige
In the field of nt Transport Sysyem), 5.8GHz is used for ETS (Automatic Toll Collection System) and 76GHz for AHS (Driving Support Road System), and it is expected that the range of high frequency use will expand more rapidly in the future. Is done.

【0004】ところで、電波の周波数が上昇すれば、ノ
イズとして放射し易くなる反面、最近の電子機器の低消
費電力化によるノイズマージン低下により、デジタル回
路のアナログ化によるイミュニティ(ノイズ耐性)低下
および電子機器の小型化、高密度化の流れにより、機器
内部のノイズ環境が悪化し、EMI(Electro-Magnetic Int
erference)による誤動作が問題になってきている。
[0004] By the way, when the frequency of a radio wave rises, it is easy to radiate it as noise, but on the other hand, the immunity (noise immunity) is reduced due to the analogization of the digital circuit and the electronic noise is reduced due to the reduction of the noise margin due to the recent reduction in power consumption of electronic equipment. Due to the trend toward miniaturization and high-density equipment, the noise environment inside the equipment has deteriorated, and EMI (Electro-Magnetic Int.
error) has become a problem.

【0005】そこで、電子機器内部でのEMIを低減させ
るために、電子機器内部に電波吸収体を配置するなどの
対策がとられている。従来、GHz帯用電波吸収体として
は、ゴムや樹脂などの電気的絶縁性有機物と軟磁性金属
酸化物材料や軟磁性金属材料などの磁性損失材料とを複
合化してシート状にしたものが主に使用されている。
Therefore, in order to reduce EMI inside the electronic device, measures such as disposing a radio wave absorber inside the electronic device have been taken. Conventionally, as a radio wave absorber for the GHz band, a sheet-like material obtained by combining an electrically insulating organic material such as rubber or resin with a magnetic loss material such as a soft magnetic metal oxide material or a soft magnetic metal material is mainly used. Used in

【0006】一般に電子情報通信機器用の電波吸収体に
求められる特性として、反射減衰量が大きい(反射係
数が小さい)、電波を吸収できる帯域が広い、薄
い、が挙げられる。しかしながら、これらの特性を全て
満足するような電波吸収体は実現されていない。
In general, characteristics required of a radio wave absorber for electronic information communication equipment include a large return loss (a small reflection coefficient), a wide band capable of absorbing radio waves, and a thin band. However, a radio wave absorber satisfying all of these characteristics has not been realized.

【0007】ここで、を達成するためには、吸収体表
面での電波反射量を小さくする必要があり、これには、
物体の特性インピーダンス値√(μrr)を自由空間の
それ√(μ00)に近づけることである。しかし、μr(=
μr'+jμr''C):複素比透磁率、εr(=εr'+jεr''):
複素比誘電率であり、μ0、ε0は自由空間の透磁率およ
び誘電率である。を達成させるためには、特に磁性損
失材料の場合は、μr'とμr''狽ェ一定の関係を保ちなが
ら周波数に対して、緩やかに単調減少することが条件で
ある。の吸収体の薄型化を達成するためには、物体内
における電波の減衰量を大きくする必要があり、これに
は、物体の伝播定数(γ=2πf(μr ・ε r)0.5)の実数
部が大きいこと、すなわち所望の周波数における複素比
透磁率及び複素比誘電率の値を大きくすることである。
但し、複素比誘電率の値が大きくなるほど、自由空間と
のインピーダンス整合はとりにくくなる。
Here, in order to achieve
It is necessary to reduce the amount of radio wave reflection on the surface,
The characteristic impedance value of the object √ (μr/ εr) Of free space
It (μ0/ ε0). However, μr(=
μr'+ jμr'' C): complex relative magnetic permeability, εr(= εr'+ jεr''):
Complex relative permittivity, μ0, Ε0Is the permeability of free space and
And permittivity. In order to achieve
Μ for lost materialr'And μr''
With the condition that it gradually decreases monotonically with frequency.
is there. In order to achieve a thinner absorber,
It is necessary to increase the amount of radio wave attenuation at
Is the propagation constant of the object (γ = 2πf (μr ・ Ε r)0.5Real number
Large part, that is, the complex ratio at the desired frequency
To increase the values of magnetic permeability and complex relative permittivity.
However, as the value of the complex relative permittivity increases, free space and
Is difficult to match.

【0008】電磁波吸収材料として実績のあるスピネル
結晶構造の軟磁性金属酸化物材料は、電気抵抗率が軟磁
性金属材料と比較して著しく高いため、渦電流による反
射は小さいものの、GHz帯では透磁率が急激に減少する
ために、電磁波を良好に吸収するためにはかなりの厚さ
が必要となってくる。
A soft magnetic metal oxide material having a spinel crystal structure, which has been proven as an electromagnetic wave absorbing material, has a remarkably higher electric resistivity than a soft magnetic metal material. Since the magnetic susceptibility sharply decreases, a considerable thickness is required to absorb electromagnetic waves well.

【0009】一方、軟磁性金属材料については、比透磁
率が極めて高いので、薄型電波吸収体を実現できる可能
性があるが、電気抵抗率が低いため、高周波数領域では
渦電流損による比透磁率の著しい低下および複素比誘電
率虚数部の著しい上昇に伴い、反射が大きくなり、電波
吸収体として成立しなくなる。
On the other hand, a soft magnetic metal material has a very high relative magnetic permeability, so that it is possible to realize a thin electromagnetic wave absorber. However, since the electric resistivity is low, the relative permeability due to eddy current loss in a high frequency region is low. As the magnetic susceptibility significantly decreases and the complex relative permittivity imaginary part significantly increases, the reflection increases, and the electromagnetic wave absorber cannot be realized.

【0010】このような問題点を解決するために、特開
平9-181476において、強磁性超微結晶金属相を金属酸化
物相中に分散した形態のヘテログラニュラー構造の超微
結晶磁性膜を高周波数領域での電波吸収体として利用す
ることが提案されている。このような磁性膜の特徴とし
ては、強磁性超微結晶による軟磁性と金属酸化物相によ
る高電気抵抗率とを実現し、これによって渦電流損失を
低減して高周波数領域での高透磁率化を実現できる。
In order to solve such a problem, Japanese Unexamined Patent Application Publication No. 9-181476 discloses a method of forming a hetero-granular ultrafine crystalline magnetic film in which a ferromagnetic ultrafine crystalline metal phase is dispersed in a metal oxide phase. It has been proposed to use it as a radio wave absorber in the frequency domain. The characteristics of such a magnetic film are that it realizes soft magnetism by ferromagnetic microcrystals and high electric resistivity by a metal oxide phase, thereby reducing eddy current loss and achieving high magnetic permeability in a high frequency region. Can be realized.

【0011】しかし、電気抵抗率の点では500〜1000μ
Ω・cm程度であり、必ずしも十分高いとは言えず、G
Hz領域では、渦電流損による透磁率低下は避けられな
い。又、複素比誘電率に関しては電気抵抗率が十分高く
ないため、実数部に比して虚数部が大きくなってしまい
インピーダンス整合がとり難いことが予測される。
However, in terms of electric resistivity, 500 to 1000 μm
Ω · cm, which is not necessarily high enough.
In the Hz region, a decrease in magnetic permeability due to eddy current loss is inevitable. Further, regarding the complex relative permittivity, since the electrical resistivity is not sufficiently high, the imaginary part becomes larger than the real part, and it is expected that impedance matching is difficult to be achieved.

【0012】しかし、この電波吸収体の製造方法として
は、軟磁性金属及び酸素、窒素、炭素とこれらに対し親
和性の高い金属酸化物相構成元素とを同時にスパッタし
て、これら元素を含むアモルファス膜を有機フイルムな
どの基板上に成膜し、この膜を熱処理することで金属酸
化物相中に強磁性超微結晶を生成させて、2相構造とす
るものである。しかし、大掛かりな成膜装置が必要であ
るため、コスト的な問題、さらには、薄膜構造であるた
め、適用個所にも制限がある。
However, as a method of manufacturing this radio wave absorber, a soft magnetic metal, oxygen, nitrogen, and carbon and a metal oxide phase constituent element having a high affinity for these are simultaneously sputtered to form an amorphous material containing these elements. A film is formed on a substrate such as an organic film, and the film is subjected to a heat treatment to generate ferromagnetic microcrystals in a metal oxide phase to form a two-phase structure. However, since a large-scale film-forming apparatus is required, there is a problem in terms of cost, and further, since it has a thin-film structure, there are also restrictions on application points.

【0013】特開平7−212079号公報及び特開平
11−354973号公報は、扁平形状の軟磁性金属粒
子と有機結合剤からなる電磁波干渉抑制体或いは電磁波
吸収体を開示する。軟磁性金属粒子を表皮深さ以下の厚
みの扁平形状として、渦電流を抑制し、さらに、形状磁
気異方性の効果による磁気共鳴周波数の向上、及び形状
に起因する反磁界の低減による透磁率向上を達成し、数
MHz〜1GHzで優れた電磁波吸収能を得ている。し
かし、電子機器内部或いは高周波数域対応の電磁波吸収
体としては、厚さ、吸収能とも不十分である。
JP-A-7-212079 and JP-A-11-354973 disclose an electromagnetic wave interference suppressor or an electromagnetic wave absorber comprising flat soft magnetic metal particles and an organic binder. The soft magnetic metal particles have a flat shape with a thickness equal to or less than the skin depth to suppress eddy currents, further improve the magnetic resonance frequency by the effect of shape magnetic anisotropy, and reduce the demagnetizing field due to the shape, thereby reducing the magnetic permeability. Improvement has been achieved, and an excellent electromagnetic wave absorbing ability has been obtained at several MHz to 1 GHz. However, as an electromagnetic wave absorber for use in an electronic device or in a high frequency range, neither the thickness nor the absorption capacity is insufficient.

【0014】また、特開平9-111421において、高透磁率
アモルファス合金をその結晶化温度以上で酸素ガス、窒
素ガスおよびアンモニアガスのうち少なくとも一種を含
有する雰囲気中で熱処理することにより、高透磁率合金
よりなる結晶粒と結晶粒の周囲に酸化物あるいは窒化物
を形成させることにより高周波領域で高電気抵抗化を図
った線輪部品用磁性材料が提案されている。
In Japanese Patent Application Laid-Open No. Hei 9-114121, a high magnetic permeability amorphous alloy is heated at a temperature higher than its crystallization temperature in an atmosphere containing at least one of oxygen gas, nitrogen gas, and ammonia gas to obtain a high magnetic permeability. 2. Description of the Related Art A magnetic material for a wire component has been proposed in which crystal grains made of an alloy and oxide or nitride are formed around the crystal grains to achieve high electric resistance in a high frequency region.

【0015】更に、特開平11-16727において、強磁性を
有する鉄と磁性を有するニッケルフェライトからなり、
強磁性相中に磁性相または磁性中に強磁性相の分散ある
いは強磁性相と磁性相が多層に積層された構造からなる
高周波磁気素子用の磁性薄膜が提案されている。しか
し、これらの電波吸収体として利用することは提案され
ていない。
Further, in Japanese Patent Application Laid-Open No. 11-16727, the ferromagnetic material comprises iron having ferromagnetism and nickel ferrite having magnetism,
There has been proposed a magnetic thin film for a high-frequency magnetic element having a structure in which a ferromagnetic phase is dispersed in a ferromagnetic phase or a ferromagnetic phase is dispersed in a magnetism or a ferromagnetic phase and a magnetic phase are laminated in a multilayer. However, it has not been proposed to use them as these radio wave absorbers.

【0016】又、特開平9-74298号公報にはセラミック
スと磁性粒子とを窒化珪素ボールを用いてボールミル混
合後焼結した電磁波シールド材が提案されている。しか
し、この公報には電波吸収体は提案されていない。
Japanese Patent Application Laid-Open No. 9-74298 proposes an electromagnetic wave shielding material obtained by mixing ceramics and magnetic particles using a silicon nitride ball and mixing them in a ball mill, followed by sintering. However, this publication does not propose a radio wave absorber.

【0017】更に、光送信モジュールにおいては、特開
平11-196055号公報にモジュール内部での光送信部と受
信部との間でのノイズの授受による内部干渉防止策が示
されている。
Further, in the case of an optical transmission module, Japanese Patent Laid-Open No. 11-196055 discloses a measure for preventing internal interference by transmitting and receiving noise between an optical transmission unit and a reception unit inside the module.

【0018】又、自動料金所においては、ノンストップ
での自動支払いが一部設けられており、電磁波吸収体と
してパネル型が用いられている。
In an automatic tollgate, non-stop automatic payment is partially provided, and a panel type is used as an electromagnetic wave absorber.

【0019】[0019]

【発明が解決しようとする課題】本発明の目的は、高周
波数領域における電波吸収特性に優れ、生産工程の少な
い電磁波吸収材とその製造法及び複合部材並びにそれを
用いた各種用途を提供することにる。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an electromagnetic wave absorbing material which is excellent in radio wave absorption characteristics in a high frequency region and has a small number of production steps, a method for producing the same, a composite member, and various uses using the same. Naru.

【0020】本発明の他の目的は、施工性に優れ、伝送
速度が2.4Gbps以上でも電磁波吸収特性が劣化しない電
磁波吸収材を用いることにより、前記ノイズを抑制し、
高感度化を可能にする光送信モジュール、光受信モジュ
ール、光送受信モジュールを提供することにある。
Another object of the present invention is to suppress the noise by using an electromagnetic wave absorbing material which is excellent in workability and does not deteriorate electromagnetic wave absorbing characteristics even at a transmission speed of 2.4 Gbps or more.
An object of the present invention is to provide an optical transmission module, an optical reception module, and an optical transmission / reception module that can increase the sensitivity.

【0021】本発明の他の目的は、施工性に優れ、塗
装、シート等の薄型の電磁波吸収材を用いた自動料金所
を提供することにある。
Another object of the present invention is to provide an automatic toll booth which is excellent in workability and uses a thin electromagnetic wave absorbing material such as a paint or a sheet.

【0022】[0022]

【課題を解決するための手段】本発明は、磁性金属粒子
とセラミックスとが一体となった複合磁性粒子を有し、
好ましくは磁性金属粒子と体積比で10%以上、より好
ましくは20%以上のセラミックスとが一体となった粒
径10μm以下、より好ましくは5μm以下の複合磁性
粒子を有すること、複数の微細な磁性金属粒子がセラミ
ックスによって囲まれて一体となった複合磁性粒子を有
すること、更に磁性金属粒子内に好ましくは棒状のセラ
ミックスが埋め込めれて一体となった複合磁性粒子を有
し、大半は磁性金属粒子を囲むように形成されているこ
とのいずれかよりなることを特徴とする電磁波吸収材に
ある。
SUMMARY OF THE INVENTION The present invention comprises a composite magnetic particle in which magnetic metal particles and ceramics are integrated,
Preferably having composite magnetic particles having a particle diameter of 10 μm or less, more preferably 5 μm or less, in which magnetic metal particles and ceramics having a volume ratio of 10% or more, more preferably 20% or more, are integrated; Metal particles have composite magnetic particles integrated by being surrounded by ceramics. Furthermore, magnetic metal particles preferably have composite magnetic particles embedded with rod-shaped ceramics embedded, and most of them are magnetic metal particles. The electromagnetic wave absorber is characterized by being formed so as to surround the electromagnetic wave absorber.

【0023】即ち、本発明は、好ましくは粒径0.1μ
m以下、より好ましくは50nmの微細な多数の磁性金
属粒子、及び10体積%以上、好ましくは20〜70体
積%のセラミックスとが一体となった複合磁性粒子を有
することを特徴とする電磁波吸収材にある。特に、磁性
金属とセラミックスとは、一つの粒子内で互いに層状に
形成されており、磁性金属は粒径の大半が100nm以
下の複雑な形状の粒子となっており、その周りをセラミ
ックスが囲む様子を有するものである。その複雑な形状
の粒子は粒径が20nm以下の微細な粒子が集合して出
来たものである。又、セラミックスはほとんどが磁性粒
子を囲むように形成され、棒状に少量形成されている。
That is, the present invention preferably has a particle size of 0.1 μm.
m or less, more preferably 50 nm, and a large number of fine magnetic metal particles, and 10% by volume or more, preferably 20 to 70% by volume of composite magnetic particles integrally formed with ceramics. It is in. In particular, the magnetic metal and the ceramic are formed in a layer with each other in one particle, and the magnetic metal is a complex-shaped particle having a particle diameter of most 100 nm or less, and the ceramic surrounds the particle. It has. The particles having a complicated shape are formed by assembling fine particles having a particle diameter of 20 nm or less. Most of the ceramic is formed so as to surround the magnetic particles, and is formed in a small amount in a rod shape.

【0024】前記磁性金属が鉄、コバルト及びニッケル
の少なくとも一つの金属又は合金であること、前記セラ
ミックスが鉄、コバルト、ニッケル、チタン、バリウ
ム、マンガン、亜鉛、マグネシウム、アルミニウム、シ
リコンまたは銅の酸化物、窒化物及び炭化物のうちの少
なくとも一つであること、前記セラミックス粒子が前記
複合磁性粒子表面に一体に結合していること、及び前記
セラミックス粒子の大部分が前記磁性金属粒子の結晶粒
内及び粒界に存在することのいずれかであることが好ま
しい。前記磁性金属は軟磁性金属が好ましい。
The magnetic metal is at least one metal or alloy of iron, cobalt and nickel, and the ceramic is an oxide of iron, cobalt, nickel, titanium, barium, manganese, zinc, magnesium, aluminum, silicon or copper. , Being at least one of nitride and carbide, that the ceramic particles are integrally bonded to the surface of the composite magnetic particles, and that most of the ceramic particles within the crystal grains of the magnetic metal particles and Preferably, it is either present at the grain boundary. The magnetic metal is preferably a soft magnetic metal.

【0025】又、本発明は、金属酸化物等のセラミック
ス粒子が軟磁性超微細結晶の磁性金属粒子内にnmオーダ
で微細に一体に埋め込まれて混在する複合磁性粒子であ
り、軟磁性金属を微細結晶粒化することによる高透磁率
化、及び超微細なセラミックス粒子を分散させることに
よる高電気抵抗率化を同時に実現させることにより、高
周波数領域においても高透磁率化を維持させると共に、
優れた吸収特性を有するものである。
The present invention is also a composite magnetic particle in which ceramic particles such as a metal oxide are finely and integrally embedded in the order of nm within magnetic metal particles of a soft magnetic ultrafine crystal, By simultaneously realizing high permeability by forming fine crystal grains and high electrical resistivity by dispersing ultra-fine ceramic particles, high permeability is maintained even in high frequency range,
It has excellent absorption characteristics.

【0026】複合磁性粒子を高い電気抵抗率を有するセ
ラミックスが超微細磁性金属結晶粒の周りを取り囲む構
造とすることにより、一般に使用されている単相金属磁
性粒子に比べ、GHz領域において、電気抵抗率が向上
するだけでなく、複素比透磁率が向上する。
Since the composite magnetic particles have a structure in which ceramics having a high electric resistivity surround the ultrafine magnetic metal crystal grains, the electric resistance in the GHz range is higher than that of the generally used single-phase metal magnetic particles. Not only does the permeability improve, but the complex relative permeability also improves.

【0027】更に、複合磁性粒子は、軟磁性金属相と金
属酸化物相が交互に積層化された形態をとるため、軟磁
性金属相幅が表皮深さ以下となり、実質、表皮深さ以下
の厚みの軟磁性金属粉を分散させたのと同じ効果がある
ため、渦電流が低減され、電波を効率良く取り込むこと
ができる。
Furthermore, since the composite magnetic particles take a form in which a soft magnetic metal phase and a metal oxide phase are alternately laminated, the width of the soft magnetic metal phase is less than the skin depth, and substantially less than the skin depth. Since it has the same effect as dispersing the soft magnetic metal powder having a large thickness, the eddy current is reduced and radio waves can be efficiently taken.

【0028】ここで、複合磁性粒子を構成する磁性金属
の結晶粒径が、50nmを越えると、金属結晶粒間での
交換相互作用が弱くなり、軟磁性特性が劣化するため
に、透磁率が低下し、電気抵抗率が上昇してしまう。従
って、磁性金属の結晶粒径は50nm以下、より好まし
くは20nm以下である。
Here, when the crystal grain size of the magnetic metal constituting the composite magnetic particles exceeds 50 nm, the exchange interaction between the metal crystal grains becomes weak, and the soft magnetic characteristics are deteriorated. It decreases and the electrical resistivity increases. Therefore, the crystal grain size of the magnetic metal is 50 nm or less, more preferably 20 nm or less.

【0029】なお、添加するセラミック粒子の混合割合
であるが、軟磁性金属粒子に対するセラミックスの体積
混合割合が10体積%未満では、電気抵抗率が十分向上
しない。また、特に非磁性セラミックスの体積混合割合
が80体積%以上では、複合磁性粒子の透磁率が低下しす
ぎて、電波吸収特性が劣化する。これらより、軟磁性金
属粒子に対するセラミックスの体積混合割合は、30〜
60体積%が好ましい。
As for the mixing ratio of the ceramic particles to be added, if the volume mixing ratio of the ceramics to the soft magnetic metal particles is less than 10% by volume, the electric resistivity is not sufficiently improved. In particular, when the volume mixing ratio of the nonmagnetic ceramic is 80% by volume or more, the magnetic permeability of the composite magnetic particles is excessively reduced, and the radio wave absorption characteristics are deteriorated. From these, the volume mixing ratio of ceramics to soft magnetic metal particles is 30 to
60% by volume is preferred.

【0030】上述に記載の複合磁性粒子は、複合磁性粒
子よりも高電気抵抗率を有する材料に分散していること
を特徴とする電磁波吸収材にある。高電気抵抗率を有す
る材料として、絶縁性高分子樹脂、セラミックスが用い
られ、互いの混合粉末、複合磁性粒子が樹脂、セラミッ
クス内に取り込まれた粉末、又は有機溶剤、無機バイン
ダーによって液状にして用いられる。
The above-described composite magnetic particles are an electromagnetic wave absorbing material characterized in that they are dispersed in a material having a higher electric resistivity than the composite magnetic particles. As a material having high electric resistivity, insulating polymer resin and ceramics are used, and mixed powder of each other, composite magnetic particles are used as resin, powder taken in ceramics, or liquid with an organic solvent and inorganic binder. Can be

【0031】本発明は、磁性金属粉末とセラミックス粉
末とをメカニカルアロイング法により互いに超微細な状
態に混合して一体化するものであり、磁性金属粒子と好
ましくは体積比で10%以上のセラミックスとが一体と
なった複合磁性粒子を形成すること、又磁性金属粉末と
セラミックス粉末とを有する複合粉末を、前記金属粉末
の粒径より大きく、前記複合粉末の量より多い量、好ま
しくは重量で複合粉末1に対して50〜100の割合の
金属製ボール又はセラミックス製ボールを容器に入れ
て、高速で回転する、好ましくは1500〜3000r
pmで回転する方法による強力なエネルギーを粉末に与
えることによって互いに超微細な状態に混合して一体化
するいわゆる一般に言われているメカニカルアロイング
法によるものであり、微細な磁性金属粒子とセラミック
スとが一体となった複合磁性粒子を形成することを特徴
とする電磁波吸収材の製造法にある。
According to the present invention, a magnetic metal powder and a ceramic powder are mixed together in a superfine state by a mechanical alloying method and are integrated with each other. To form composite magnetic particles integrated with each other, or a composite powder having a magnetic metal powder and a ceramic powder, in an amount larger than the particle diameter of the metal powder and larger than the amount of the composite powder, preferably by weight. A metal ball or a ceramic ball in a ratio of 50 to 100 with respect to the composite powder 1 is put in a container and rotated at a high speed, preferably 1500 to 3000 r.
This is a so-called mechanical alloying method that mixes and integrates with each other in a very fine state by giving strong energy to the powder by a method of rotating at pm. Are formed into integrated magnetic particles.

【0032】即ち、本発明は、磁性金属粉末とセラミッ
クス粉末とを有する複合粉末を一般に言われているメカ
ニカルアロイング法により互いに超微細な状態に混合し
て一体化するものであり、一般に合金化と言われるもの
であり、超微細な磁性金属粒子とセラミックス粒子とを
の10%以上を分散させた複合磁性粒子を形成すること
を特徴とする電磁波吸収材の製造法にある。この様な状
態にすることにより、高電気抵抗率を有するので、高周
波領域で良好な磁気特性が得られ、高い電波吸収性が得
られるものである。
That is, according to the present invention, a composite powder having a magnetic metal powder and a ceramic powder is mixed and integrated into an ultrafine state by a generally-known mechanical alloying method. This is a method for producing an electromagnetic wave absorbing material, which comprises forming composite magnetic particles in which at least 10% of ultrafine magnetic metal particles and ceramic particles are dispersed. In such a state, a high electric resistivity is obtained, so that good magnetic characteristics are obtained in a high frequency range, and high radio wave absorption is obtained.

【0033】本発明は、前述のいずれかに記載の複合磁
性粒子がそれよりも高電気抵抗率を有する材料、特に、
樹脂、絶縁塗料又はセラミックス焼結体に好ましくは2
0〜70重量%が分散していることを特徴とする電磁波
吸収材にある。ここで、複合磁性粒子をそれよりも高電
気抵抗率を有する材料に分散させる理由は、複合磁性粒
子単独の電気抵抗率が電波吸収体として成立するのには
十分小さくないためであること、更には、複合磁性粒子
の混合割合を変化させることにより、電波吸収体の設計
自由度が増すためである。このような観点から、複合磁
性材が薄膜形状よりも粒子形状で有る方が好ましいと言
える。
According to the present invention, there is provided a composite magnetic particle according to any one of the above, wherein the composite magnetic particle has a higher electric resistivity,
Preferably 2 for resin, insulating paint or ceramic sintered body
0 to 70% by weight is dispersed in the electromagnetic wave absorbing material. Here, the reason for dispersing the composite magnetic particles in a material having a higher electrical resistivity is that the electrical resistivity of the composite magnetic particles alone is not sufficiently small to be established as a radio wave absorber, and further, This is because the degree of freedom in designing the radio wave absorber is increased by changing the mixing ratio of the composite magnetic particles. From such a viewpoint, it can be said that the composite magnetic material preferably has a particle shape rather than a thin film shape.

【0034】以上より、これらの複合磁性粒子からなる
本発明の電磁波吸収材は、樹脂封止型半導体パッケージ
の封止樹脂中に混合して、半導体素子レベルでの輻射ノ
イズを抑止したり、樹脂製電子回路基板や金属酸化物よ
りなるセラミックス製電子回路基板中に混合することに
よって基板自体で発生する電磁波を吸収すること、ある
いは樹脂製電子機器筐体に混合したり、金属製電子機器
筐体内面に絶縁塗料とともに塗布することによって内部
干渉を抑止するなど幅広い用途に用いることが出来る。
As described above, the electromagnetic wave absorbing material of the present invention composed of these composite magnetic particles is mixed in the sealing resin of a resin-sealed semiconductor package to suppress radiation noise at the semiconductor element level, Electromagnetic waves generated by the substrate itself can be absorbed by mixing it into the electronic circuit board made of ceramics or a ceramic electronic circuit board made of metal oxide. It can be used for a wide range of applications such as suppressing internal interference by applying it together with an insulating paint on the surface.

【0035】複数の磁性金属粒子と体積比で10%以上
のセラミックスとが一体となった粒径10μm以下の複
合磁性粒子、複数の微細な磁性金属粒子がセラミックス
によって囲まれて一体となった複合磁性粒子、及び磁性
金属粒子内に棒状のセラミックスが埋め込められて一体
となった複合磁性粒子のいずれかを有することを特徴と
する複合部材にある。
A composite magnetic particle having a particle diameter of 10 μm or less in which a plurality of magnetic metal particles and a ceramic having a volume ratio of 10% or more are integrated, and a composite in which a plurality of fine magnetic metal particles are surrounded by ceramics and integrated. A composite member comprising: magnetic particles; and composite magnetic particles in which rod-shaped ceramics are embedded in magnetic metal particles and are integrated.

【0036】本発明は、磁性金属粒子と好ましくは体積
比で10%以上のセラミックスとが一体となった粒径1
0μm以下の複合磁性粒子、複数の微細な磁性金属粒子
がセラミックスによって囲まれて一体となった複合磁性
粒子、及び磁性金属粒子内にセラミックスが埋め込めれ
て一体となった複合磁性粒子のいずれか又はこれらの組
み合わせを有することを特徴とする複合部材にある。こ
の複合部材は前述と同様の方法で製造することが出来
る。
According to the present invention, a particle size of 1 in which magnetic metal particles and preferably a ceramic having a volume ratio of 10% or more are integrated.
Any of composite magnetic particles of 0 μm or less, composite magnetic particles in which a plurality of fine magnetic metal particles are surrounded by ceramics, and composite magnetic particles in which ceramics are embedded in magnetic metal particles and integrated, or A composite member characterized by having these combinations. This composite member can be manufactured by the same method as described above.

【0037】本発明は、磁性金属粒子とセラミックスと
が一体となった複合磁性粒子と、該複合磁性粒子より高
電気抵抗率を有する材料とが複合化された複合部材に関
する。
The present invention relates to a composite member in which composite magnetic particles in which magnetic metal particles and ceramics are integrated, and a material having a higher electrical resistivity than the composite magnetic particles.

【0038】また、磁性金属粒子とセラミックス相とが
一体になった複合磁性粒子と、該複合磁性粒子より高電
気抵抗率を有する樹脂、アルミナ、シリカの少なくとも
1種とが複合化された電磁波吸収材である。
An electromagnetic wave absorption in which composite magnetic particles in which magnetic metal particles and a ceramic phase are integrated and at least one of a resin, alumina, and silica having higher electric resistivity than the composite magnetic particles is combined. Material.

【0039】そして、前記複合磁性粒子中のセラミック
スが10〜80体積%で、磁性金属粒子中に分散した海
島(グラニュラー)構造であることが好ましい。又、本
発明は、平均粒径50nm以下、更に好ましくは20n
m以下の磁性金属からなる微結晶、好ましくは15〜7
0体積%のセラミックスとが一体となった複合磁性粒子
と該複合磁性粒子よ前記複合磁性粒子の平均結晶粒径が
50nm以下であることが好ましい。更に、磁性金属粒
子及びセラミックスの材質は前述の通りである。
The ceramics in the composite magnetic particles are preferably 10 to 80% by volume and have a sea-island (granular) structure dispersed in the magnetic metal particles. In the present invention, the average particle size is preferably 50 nm or less, more preferably 20 nm.
microcrystals, preferably 15 to 7
It is preferable that an average crystal grain size of the composite magnetic particles in which 0% by volume of ceramics is integrated with the composite magnetic particles is 50 nm or less. Further, the materials of the magnetic metal particles and the ceramics are as described above.

【0040】前記複合磁性粒子の表面が該複合磁性粒子
より高電気抵抗率を有する材料で被覆されていること、
前記複合磁性粒子の形状がアスペクト比で2以上の扁平
形状であること、前記複合磁性粒子が、該複合磁性粒子
より高い電気抵抗率を有する材料に均一分散しているこ
と、扁平形状の複合磁性粒子が、該扁平形状の複合磁性
粒子より高電気抵抗率を有する材料中で配向しているこ
と、前記複合磁性粒子より高電気抵抗率を有する材料が
少なくとも絶縁性高分子材料又はセラミックス焼結体の
いずれかを含むことを特徴とする電磁波吸収材である。
このように、複合磁性粒子を高電気抵抗率を有するセラ
ミックス相が超微細磁性金属結晶粒の周りを取り囲む構
造とすることにより、一般に使用されている単相金属磁
性粒子に比べ、GHz領域において、電気抵抗率が向上
するだけでなく、複素比透磁率が向上する。ここで、複
合磁性粒子を構成する磁性金属の結晶粒径が、50nm
を超えると、金属結晶粒間での交換相互作用が弱くな
り、軟磁性特性が劣化するために、透磁率が低下し、電
気抵抗率も上昇する。これより、本発明における複合磁
性粒子を構成する磁性金属の結晶粒径は、50nm以
下、更に好ましくは20nm以下が良い。
The surface of the composite magnetic particles is coated with a material having a higher electrical resistivity than the composite magnetic particles;
The shape of the composite magnetic particles is a flat shape having an aspect ratio of 2 or more; the composite magnetic particles are uniformly dispersed in a material having a higher electrical resistivity than the composite magnetic particles; The particles are oriented in a material having a higher electrical resistivity than the flat composite magnetic particles, and the material having a higher electrical resistivity than the composite magnetic particles is at least an insulating polymer material or a ceramic sintered body. An electromagnetic wave absorbing material comprising:
As described above, by forming the composite magnetic particles in a structure in which the ceramic phase having a high electrical resistivity surrounds the ultrafine magnetic metal crystal grains, compared with the generally used single-phase metal magnetic particles, in the GHz region, Not only the electric resistivity is improved, but also the complex relative magnetic permeability is improved. Here, the crystal grain size of the magnetic metal constituting the composite magnetic particles is 50 nm.
If it exceeds, the exchange interaction between the metal crystal grains becomes weak, and the soft magnetic properties deteriorate, so that the magnetic permeability decreases and the electric resistivity increases. Accordingly, the crystal grain size of the magnetic metal constituting the composite magnetic particles in the present invention is preferably 50 nm or less, more preferably 20 nm or less.

【0041】更に、複合磁性粒子におけるセラミックス
の体積比率をコントロールすることにより、電磁波吸収
特性に関わるパラメータである複素比透磁率、複素比誘
電率を比較的自由に制御できるため、目的の周波数帯域
で良好な電磁波吸収特性を得ることができる。なお、磁
性金属に対するセラミックスの体積混合割合が10体積
%未満では、電気抵抗率が十分向上しないため、低周波
数側での複素比透磁率は高くなるが、GHz領域におい
ては、渦電流損失により、複素比透磁率は急激に減少し
てしまう。さらに、複素比誘電率の虚数部は大きくなり
すぎてしまい、十分な電磁波吸収特性が得られない。ま
た、セラミックス相が特に非磁性である場合、セラミッ
クスの体積混合割合が80体積%を超えると、電気抵抗
率はかなり向上するものの、複合磁性粒子の複素比透磁
率及び複素比誘電率の実数部が低下しすぎてしまい、十
分な電磁波吸収特性を得るためには、かなりの厚みが必
要である。これらより、軟磁性金属粒子に対するセラミ
ックスの混合体積割合は、15〜70体積%が好まし
い。
Further, by controlling the volume ratio of the ceramics in the composite magnetic particles, the complex relative permeability and the complex relative permittivity, which are parameters related to the electromagnetic wave absorption characteristics, can be relatively freely controlled. Good electromagnetic wave absorption characteristics can be obtained. If the volume mixing ratio of the ceramic to the magnetic metal is less than 10% by volume, the electrical resistivity is not sufficiently improved, so that the complex specific permeability on the low frequency side becomes high. However, in the GHz region, due to eddy current loss, The complex relative magnetic permeability sharply decreases. Furthermore, the imaginary part of the complex relative permittivity becomes too large, and sufficient electromagnetic wave absorption characteristics cannot be obtained. Further, when the ceramic phase is particularly non-magnetic, when the volume mixing ratio of the ceramics exceeds 80% by volume, the electrical resistivity is considerably improved, but the real part of the complex relative magnetic permeability and the complex relative permittivity of the composite magnetic particles. Is excessively reduced, and a considerable thickness is required to obtain sufficient electromagnetic wave absorption characteristics. From these, the mixing volume ratio of the ceramic to the soft magnetic metal particles is preferably 15 to 70% by volume.

【0042】本発明は、前述の複合磁性粒子がそれより
も高電気抵抗率を有する材料、特に、樹脂、絶縁塗料又
はセラミックス焼結体に好ましくは10〜80体積%が
分散していることを特徴とする電磁波吸収材にある。
According to the present invention, the composite magnetic particles are preferably dispersed in a material having a higher electric resistivity than that of the composite magnetic particles, in particular, a resin, an insulating paint or a ceramic sintered body in an amount of preferably 10 to 80% by volume. Characteristic electromagnetic wave absorber.

【0043】本発明において、複合磁性粒子を高電気抵
抗率を有するセラミックス相が磁性金属からなる微結晶
の周りを取り囲む構造とすることにより、一般に使用さ
れている単相金属磁性粒子に比べ、GHz領域におい
て、電気抵抗率が向上するだけでなく、複素比透磁率が
向上することが可能となる。
In the present invention, the composite magnetic particles have a structure in which a ceramic phase having a high electrical resistivity surrounds a microcrystal made of a magnetic metal, so that the composite magnetic particles have a GHz frequency as compared with generally used single-phase metal magnetic particles. In the region, not only the electric resistivity can be improved, but also the complex relative magnetic permeability can be improved.

【0044】更に、複合磁性粒子におけるセラミックス
相の体積比率をコントロールすることにより、電磁波吸
収特性に関わるパラメータである複素比透磁率、複素比
誘電率を比較的自由に制御できるため、目的の周波数帯
域で良好な電磁波吸収特性を得ることができる。なお、
磁性金属相に対するセラミックス相の体積混合割合が1
0体積%未満では、電気抵抗率が十分向上しない。ま
た、特に非磁性セラミックスの体積混合割合が80体積
%以上では、複合磁性粒子の透磁率が低下しすぎて、薄
型化を実現できない。これらより、軟磁性金属粒子に対
するセラミックスの混合体積割合は、より20〜70体
積%が好ましい。
Further, by controlling the volume ratio of the ceramic phase in the composite magnetic particles, the complex relative permeability and the complex relative permittivity, which are parameters relating to the electromagnetic wave absorption characteristics, can be relatively freely controlled. And good electromagnetic wave absorption characteristics can be obtained. In addition,
The volume mixing ratio of the ceramic phase to the magnetic metal phase is 1
If it is less than 0% by volume, the electrical resistivity will not be sufficiently improved. In particular, when the volume mixing ratio of the non-magnetic ceramics is 80% by volume or more, the magnetic permeability of the composite magnetic particles is excessively reduced, so that it is not possible to realize the thinning. From these, the mixing volume ratio of the ceramic to the soft magnetic metal particles is more preferably 20 to 70% by volume.

【0045】複合磁性粒子をそれよりも高電気抵抗率を
有する材料に10〜80体積%分散させる理由は、複
合磁性粒子単独の電気抵抗率が電磁波吸収体としては十
分大きくない、複合磁性粒子を電極とするマイクロコ
ンデンサーが構成されるため、複素比誘電率の実数部を
大きくできる、複合磁性粒子形状及び分散形態をコン
トロールして、複素比透磁率、複素比誘電率の周波数特
性を制御できる、絶縁性樹脂に対する複合磁性粒子の
体積混合比率をコントロールして、複素比透磁率、複素
比誘電率の周波数特性を制御できる、ためである。
The reason that the composite magnetic particles are dispersed in a material having a higher electric resistivity by 10 to 80% by volume is that the electric resistivity of the composite magnetic particles alone is not sufficiently large as an electromagnetic wave absorber. Since the microcapacitor as an electrode is configured, the real part of the complex relative permittivity can be increased, the complex magnetic particle shape and dispersion form can be controlled, and the complex relative magnetic permeability, the frequency characteristic of the complex relative permittivity can be controlled. This is because the frequency characteristics of the complex relative magnetic permeability and the complex relative permittivity can be controlled by controlling the volume mixing ratio of the composite magnetic particles to the insulating resin.

【0046】本発明において、複合磁性粒子をそれより
も高電気抵抗率を有する絶縁性材料と複合化を図り、磁
性金属相、高電気抵抗セラミックス相、絶縁性材料の三
相構造とすることが、磁性金属単相粒子と絶縁性樹脂と
の複合体や磁性金属粒子とセラミックスとの複合体のよ
うな二層構造よりも好ましい。
In the present invention, the composite magnetic particles may be combined with an insulating material having a higher electric resistivity to form a three-phase structure of a magnetic metal phase, a high electric resistance ceramic phase, and an insulating material. It is more preferable than a two-layer structure such as a composite of a magnetic metal single phase particle and an insulating resin or a composite of a magnetic metal particle and a ceramic.

【0047】ここで、電磁波吸収特性を更に向上させる
ためには、前記複合磁性粒子の形状をアスペクト比で2
以上かつ厚さを表皮深さ以下にした扁平形状とし、これ
らを高電気抵抗率を有する材料中で配向させるのがより
好ましい。つまり、渦電流による急激な複素比透磁率低
下の抑制、粒子形状に起因する反磁界の影響を低減させ
ることによる高透磁率化及び形状磁気異方性による磁気
共鳴周波数の高周波化、更にはコンデンサー電極面積の
増大による複素比誘電率実数部向上が図れるため、更な
る吸収特性向上及び薄型化が実現できる。
Here, in order to further improve the electromagnetic wave absorption characteristics, the shape of the composite magnetic particles should be 2
It is more preferable that the shape is a flat shape having a thickness equal to or less than the skin depth and oriented in a material having a high electrical resistivity. In other words, a sharp decrease in the complex relative magnetic permeability due to eddy currents is suppressed, the magnetic permeability is increased by increasing the magnetic permeability by reducing the influence of the demagnetizing field due to the particle shape, and the magnetic resonance frequency is increased by the shape magnetic anisotropy. Since the real part of the complex relative permittivity can be improved by increasing the electrode area, further improvement in absorption characteristics and reduction in thickness can be realized.

【0048】本発明において、磁性金属からなる微結晶
粒子(磁性金属粒子という)とセラミックス粒子の複合
化手法としては、メカニカルアロイング手法或いは、例
えば、磁性金属とそれよりも酸素、窒素、炭素との親和
性が高い元素からなり、更に、これらガス元素のいずれ
かの含有量が高い合金粉末をアトマイズ法などにより製
造し、その後、熱処理をすることにより、軟磁性金属相
とセラミックス相をそれぞれ生成させる手法、更に、磁
性金属とそれよりも酸素、窒素、炭素との親和性が高い
元素からなる合金粉末をアトマイズ法などにより製造
し、酸素、窒素、炭素のいずれかを含有するガス雰囲気
中で熱処理する手法、軟磁性金属相とセラミックス相を
それぞれ生成させる手法、金属アルコキシドを利用した
ゾル・ゲル法等も適用できる。このゾル・ゲル法では、
セラミックス相の中に微細な磁性金属粒子が分散した複
合磁性粒子が形成される。最終的に磁性金属相と高電気
抵抗セラミックス相とから構成される複合磁性粒子が得
られる製造法であれば、上記手法に限定されるものでは
ない。
In the present invention, as a method of combining microcrystalline particles (referred to as magnetic metal particles) made of a magnetic metal and ceramic particles, a mechanical alloying method or, for example, a magnetic metal and oxygen, nitrogen and carbon are used. An alloy powder composed of elements with high affinity for, and further containing one of these gas elements with high content is produced by the atomizing method and then heat-treated to produce a soft magnetic metal phase and a ceramic phase, respectively. Method, furthermore, an alloy powder composed of a magnetic metal and an element having a higher affinity for oxygen, nitrogen, and carbon than the alloy metal is manufactured by an atomizing method or the like, and oxygen, nitrogen, or a gas atmosphere containing any of carbon is produced. A heat treatment method, a method for forming a soft magnetic metal phase and a ceramic phase respectively, and a sol-gel method using a metal alkoxide are also suitable. It can be. In this sol-gel method,
Composite magnetic particles in which fine magnetic metal particles are dispersed in a ceramic phase are formed. The method is not limited to the above method as long as it is a production method that can finally obtain composite magnetic particles composed of a magnetic metal phase and a high electric resistance ceramic phase.

【0049】なお、複合磁性粒子自体の電気抵抗率を向
上させるために、大気中、酸素雰囲気中あるいは窒素雰
囲気中でアニールすることにより、複合磁性粒子表面に
酸化物層あるいは窒化物層等の電気抵抗率の高い皮膜を
同時形成させることも可能である。
In order to improve the electrical resistivity of the composite magnetic particles themselves, annealing is performed in the air, an oxygen atmosphere or a nitrogen atmosphere, so that the composite magnetic particles have an oxide layer or a nitride layer on the surface. It is also possible to simultaneously form a film having a high resistivity.

【0050】また、機械的複合法、好ましくはせん断型
ミルの一つであるメカノフュージョン法により複合磁性
粒子表面をより高電気抵抗率の材料でコーティングする
ことも可能である。
It is also possible to coat the surface of the composite magnetic particles with a material having a higher electric resistivity by a mechanical composite method, preferably a mechanofusion method which is one of shearing mills.

【0051】これら複合磁性粒子を絶縁性高分子材料に
対して、体積比にして20〜80%を混練した。絶縁性
高分子材料としては、ポリエステル系樹脂、ポリ塩化ビ
ニル系樹脂、ポリビニルプチラール樹脂、ポリウレタン
樹脂、セルロース系樹脂、あるいはこれらの共重合体、
エポキシ樹脂、フェノール樹脂、アミド系樹脂、イミド
系樹脂、ナイロン、アクリル、合成ゴム等を用いること
ができる。エポキシ樹脂が好ましい。樹脂に対する複合
磁性粒子の充填率が50体積%以上となる場合は、複合
磁性粒子同士の接触により、樹脂複合体の電気抵抗率が
低下するために、複合磁性粒子表面を絶縁コーティング
する目的で、シラン系、アルシキレート系あるいはチタ
ネート系のカップリング処理剤もしくはリン酸ホウ酸マ
グネシア絶縁処理材などを同時に添加する必要がある。
The composite magnetic particles were kneaded at a volume ratio of 20 to 80% with respect to the insulating polymer material. As the insulating polymer material, a polyester resin, a polyvinyl chloride resin, a polyvinyl butyral resin, a polyurethane resin, a cellulose resin, or a copolymer thereof,
Epoxy resins, phenol resins, amide resins, imide resins, nylon, acryl, synthetic rubber, and the like can be used. Epoxy resins are preferred. When the filling ratio of the composite magnetic particles with respect to the resin is 50% by volume or more, the electrical resistivity of the resin composite decreases due to the contact between the composite magnetic particles. It is necessary to simultaneously add a silane-based, alkylate-based or titanate-based coupling treatment agent, or a magnesia phosphate borate insulation treatment material.

【0052】このように、表面酸化法、機械的複合法あ
るいは化学的表面処理法を単独もしくは組み合わせて、
複合磁性粒子表面をより高電気抵抗率の材料でコーティ
ングすることにより、樹脂に対する複合磁性粒子の混合
割合を高めても、電気抵抗率を保持させたまま、複素比
透磁率および、複素比誘電率実数部の向上を図ることが
でき、電磁波吸収率の向上を図ることが可能となる。
As described above, the surface oxidation method, the mechanical composite method, or the chemical surface treatment method is used alone or in combination.
By coating the surface of the composite magnetic particles with a material having a higher electrical resistivity, even if the mixing ratio of the composite magnetic particles to the resin is increased, the complex relative magnetic permeability and the complex relative permittivity are maintained while maintaining the electrical resistivity. The real part can be improved, and the electromagnetic wave absorptance can be improved.

【0053】本発明の電磁波吸収材の適用形態として
は、次のようなものが考えられる。 (1)樹脂封止型の電子素子を有する電子装置の例とし
て、半導体素子を有する樹脂封止型半導体集積装置にお
いて、封止樹脂中に複合磁性粒子を混合して、半導体素
子レベルでの輻射ノイズを抑制する。 (2)プリント配線基板において、配線回路形成面及び
配線回路を有しない絶縁基板の裏面の一部又は全面に、
本発明の電磁波吸収材から構成される塗料を直接塗布す
るか、あるいはそれらをシート状に成形したフイルム等
を設けることにより、電磁波吸収層を形成させ、プリン
ト配線回路から発生する電磁波によるクロストーク現象
などのノイズ発生を抑制することができる。特に、半導
体基板の少なくとも片側主面に1層目の配線層が形成さ
れ、該1層目の配線層の表面に絶縁膜が形成され、該絶
縁膜上に導通穴を介して前記1層目の配線層と電気的に
接続した2層目の配線層が繰り返し積層されてなる多層
配線回路基板の高密度化、高集積度化を高い信頼性で達
成できる。 (3)ノイズ発生源となる半導体素子を包み込むよう
に、プリント配線基板上に複合磁性粒子とそれよりも高
電気抵抗率材料とで構成されるキャップを実装すること
により、半導体素子から放射される電磁波を効率よく吸
収でき、電磁波内部干渉を抑制することができる。 (4)金属製電子機器筐体内面に複合磁性粒子を混合し
た絶縁塗料を塗布したり、複合磁性粒子と樹脂で構成さ
れる電子機器筐体を用いることにより、電子機器内部干
渉を抑制することができる。
The following are conceivable application forms of the electromagnetic wave absorbing material of the present invention. (1) As an example of an electronic device having a resin-sealed electronic element, in a resin-sealed semiconductor integrated device having a semiconductor element, radiation of a semiconductor element level is obtained by mixing composite magnetic particles in a sealing resin. Suppress noise. (2) In a printed wiring board, a part or the whole of a back surface of a wiring circuit formation surface and an insulating substrate having no wiring circuit,
By directly applying the paint composed of the electromagnetic wave absorbing material of the present invention, or by providing a film or the like obtained by molding them into a sheet, the electromagnetic wave absorbing layer is formed, and the crosstalk phenomenon due to the electromagnetic wave generated from the printed wiring circuit is formed. Noise can be suppressed. In particular, a first wiring layer is formed on at least one main surface of the semiconductor substrate, an insulating film is formed on the surface of the first wiring layer, and the first wiring layer is formed on the insulating film through a conduction hole. , A high-density, high-integration multi-layer circuit board formed by repeatedly laminating a second wiring layer electrically connected to the second wiring layer can be achieved with high reliability. (3) Radiation from the semiconductor element is achieved by mounting a cap made of composite magnetic particles and a material having a higher electrical resistivity on the printed wiring board so as to enclose the semiconductor element as a noise source. Electromagnetic waves can be efficiently absorbed, and electromagnetic wave internal interference can be suppressed. (4) Suppressing internal interference in electronic equipment by applying an insulating paint mixed with composite magnetic particles to the inner surface of a metal electronic equipment housing or using an electronic equipment housing composed of composite magnetic particles and resin. Can be.

【0054】更に、本発明は、プリント配線基板上に搭
載された半導体素子が電磁波吸収材を含む樹脂によって
封止された半導体装置、又、前記樹脂が前記素子側が前
記電磁波吸収材フリーである樹脂によって被われている
こと、又、絶縁基板上に配線回路を有し、該回路が絶縁
層によって被われたプリント配線基板の前記絶縁基板の
前記配線回路形成面とその反対面側の少なくとも一方に
電磁吸収材を有する層が形成されていることを特徴とす
る。
Further, the present invention provides a semiconductor device in which a semiconductor element mounted on a printed wiring board is sealed with a resin containing an electromagnetic wave absorbing material, and a resin in which the element side is free of the electromagnetic wave absorbing material. Having a wiring circuit on the insulating substrate, and the circuit is provided on at least one of the wiring circuit forming surface and the opposite surface side of the insulating substrate of the printed wiring board covered by the insulating layer. It is characterized in that a layer having an electromagnetic absorbing material is formed.

【0055】又、本発明は、プリント配線基板上に搭載
された電子素子が電磁波吸収材によって内周面が形成さ
れた金属製キャップによって被われていること、又、プ
リント配線基板上に搭載された電子素子が電磁波吸収材
を有するキャップによって被われていること、又、プリ
ント配線基板と、該基板上に搭載された電子素子とが電
磁波吸収材を有する筐体によって被われていること、
又、プリント配線基板と、該基板上に搭載された電子素
子とが電磁波吸収材によって内周面が形成された金属製
筐体によって被われている電子装置のいずれかにある。
いずれの本発明に用いられる電磁波吸収材には前述の材
料を用いるのが好ましい。上述の電子素子は半導体素子
である半導体装置が好ましい。
Further, according to the present invention, an electronic element mounted on a printed wiring board is covered with a metal cap having an inner peripheral surface formed by an electromagnetic wave absorbing material. That the electronic element is covered by a cap having an electromagnetic wave absorbing material, and that the printed wiring board and the electronic element mounted on the substrate are covered by a housing having the electromagnetic wave absorbing material,
Also, the present invention is any of the electronic devices in which the printed wiring board and the electronic element mounted on the board are covered by a metal housing having an inner peripheral surface formed by an electromagnetic wave absorbing material.
It is preferable to use the above-mentioned materials for any electromagnetic wave absorbing material used in the present invention. The above electronic element is preferably a semiconductor device which is a semiconductor element.

【0056】本発明は、開口部を有する金属製筐体の内
周面に電磁波吸収材が形成されていることを特徴とする
電子装置用筐体にある。
According to the present invention, there is provided a housing for an electronic device, wherein an electromagnetic wave absorbing material is formed on an inner peripheral surface of a metal housing having an opening.

【0057】本発明は、高速通信網に使用される電気―
光変換器を有する光送信又は受信モジュールにおいて、
磁性金属粒とセラミックスとを有する複合磁性粒子、又
はこの複合磁性粒子にこれよりも高電気抵抗率を有する
材料が複合化された電磁波吸収材によって光送信素子又
は受信素子、それらの回路を覆うことにより、モジュー
ル外への放射ノイズおよびモジュール内でのノイズ干渉
を抑制することができる。
The present invention relates to an electric power supply used in a high-speed communication network.
In an optical transmission or reception module having an optical converter,
Covering the optical transmitting element or the receiving element and their circuits with composite magnetic particles having magnetic metal particles and ceramics, or an electromagnetic wave absorbing material in which a material having a higher electric resistivity is composited with the composite magnetic particles. Accordingly, radiation noise outside the module and noise interference inside the module can be suppressed.

【0058】本発明により、光ファイバを用いた高速通
信網において使用される光送信モジュール、光受信モジ
ュール、又は、光送信モジュールと光受信モジュールが
一体となった光送受信モジュールが得られ、モジュール
外への放射ノイズおよびモジュール内でのノイズ干渉を
抑制し、小型・軽量化、高速化、高感度化を可能にする
ものである。
According to the present invention, an optical transmitting module, an optical receiving module, or an optical transmitting and receiving module in which an optical transmitting module and an optical receiving module are used in a high-speed communication network using an optical fiber can be obtained. It suppresses radiated noise and noise interference in the module, and makes it possible to reduce the size, weight, speed, and sensitivity.

【0059】本発明は、ゲート屋根が設けられた料金所
と、該料金所を通行する車両に対して進入側に設けられ
た進入部アンテナと、前記車両に対して出路側に設けら
れた出路部アンテナと、路側通信装置と前記車両に搭載
されている車載機との間で情報の授受を行う自動料金収
受システムとを備えた自動料金所において、該料金所と
その近傍の電磁波を反射する部材の表面に電磁波吸収材
が形成されていること、前記ゲート屋根の車両走行側表
面と、進入部アンテナ及び出路部アンテナを支える支柱
の表面に磁性金属粒とセラミックスとを有する電磁波吸
収材が形成されていることを特徴とする。
According to the present invention, there is provided a tollgate provided with a gate roof, an entrance antenna provided on an entrance side for a vehicle passing through the tollgate, and an exit provided on an exit side for the vehicle. At an automatic tollgate provided with an external antenna and an automatic toll collection system for exchanging information between the roadside communication device and the on-vehicle device mounted on the vehicle, which reflects electromagnetic waves in and around the tollgate An electromagnetic wave absorbing material is formed on the surface of the member, and an electromagnetic wave absorbing material having magnetic metal particles and ceramics is formed on the surface of the gate roof on the vehicle running side, and on the surface of the column supporting the entrance antenna and the exit antenna. It is characterized by having been done.

【0060】本発明に用いる電磁波吸収材は、前述と同
様である。
The electromagnetic wave absorbing material used in the present invention is the same as described above.

【0061】[0061]

【発明の実施の形態】(実施例1)粒径1-5μmのFe粉5
0vol%と平均粒径0.3μmのSiO2粒子50vol%の混合粉
末とSUS410製ボール(粒径:9.5mm)を重量比にして粉
末:ボール=1:80でSUS製の容器に一緒に入れ、アルゴ
ンガスを封入して、回転数:200rpmで100時間 、MA(メ
カニカルアロイング)処理を行った。MA後の複合粒子の
形状は複雑な形状を有する不定形であり、平均粒径は数
十μmであった。
(Example 1) Fe powder 5 having a particle size of 1-5 μm
A mixed powder of 0 vol% and 50 vol% of SiO 2 particles having an average particle diameter of 0.3 μm and a SUS410 ball (particle diameter: 9.5 mm) are put together in a SUS container at a powder / ball ratio of 1:80 by weight ratio, MA (mechanical alloying) treatment was performed at a rotation speed of 200 rpm for 100 hours with argon gas sealed. The shape of the composite particles after MA was an irregular shape having a complicated shape, and the average particle size was several tens of μm.

【0062】図1は複合磁性粒子をTEM観察したTEM
組織写真である。写真の黒い部分のFeの結晶粒径は約10
nm程度であり、その複合磁性粒子は複雑な形状を有し、
粒径100nm以下のFe粒子を囲む様に白い部分のSi
酸化物が網目状に形成していた。そのFe粒子は粒径が
20nm以下の微細なものが独立又、複雑な形状のFe
粒子となってその粒径より大きく形成されているものは
それらが集合して形成されているものである。又、Si
酸化物がFe結晶粒界に分散しており、Fe粒子とSi
酸化物とが互いに層状に形成されていた。更に、Si酸
化物は棒状にも形成され、直径0.05μm以下、長さ
0.1〜0.5μmのものが1μm平方当たり10〜2
0個程度形成されていた。
FIG. 1 is a TEM image of composite magnetic particles observed by TEM.
It is an organization photograph. The grain size of Fe in the black part is about 10
nm, the composite magnetic particles have a complex shape,
White portion of Si surrounding Fe particles with a particle size of 100 nm or less
The oxide was formed in a network. The fine Fe particles having a particle size of 20 nm or less are independent and have a complicated shape.
Particles that are formed to be larger than the particle diameter are formed by assembling them. Also, Si
The oxide is dispersed in the Fe grain boundaries, and the Fe particles and Si
The oxides were formed in layers with each other. Further, the Si oxide is also formed in a rod shape, and a diameter of 0.05 μm or less and a length of 0.1 to 0.5 μm is 10 to 2 μm per 1 μm square.
About 0 were formed.

【0063】また、MA後、この複合粒子を真空中(真空
度:10-6Torr以上)で温度500℃、1時間のアニールを施
した。その後、この複合粒子をエポキシ樹脂に対して、
体積比にして50%を混練し、室温でタブレット状に加圧
成形し、さらに、そのタブレットを180℃、210kgfで一
軸加圧し、硬化させた。その後、機械加工、研磨によ
り、外形:7-0.05mm、内径:3.04+0.06mm、厚さ:2mm、
4mmのトロイダル形状に仕上げた。
After MA, the composite particles were annealed at 500 ° C. for one hour in a vacuum (degree of vacuum: 10 −6 Torr or more). After that, the composite particles are
The mixture was kneaded at a volume ratio of 50% and pressed into a tablet at room temperature, and the tablet was further uniaxially pressed at 180 ° C. and 210 kgf to be cured. Then, by machining and polishing, outer shape: 7-0.05mm, inner diameter: 3.04 + 0.06mm, thickness: 2mm,
Finished in a 4mm toroidal shape.

【0064】ネットワークアナライザー(HP製8720C)
と同軸エアラインから構成される測定系により、試料の
複素比誘電率、複素比透磁率を測定する場合には、自由
空間の透磁率、誘電率が1となるように校正した後、同
軸エアラインに試料を挿入し、2つのポートを使用して
S11、S21の2つのパラメータを測定し、それから計算に
より複素比誘電率、複素比透磁率を求めた。
Network analyzer (HP 8720C)
When measuring the complex relative permittivity and complex relative permeability of a sample using a measurement system consisting of a coaxial air line and a coaxial air line, calibrate so that the magnetic permeability and permittivity of free space become 1, and then adjust the coaxial air line. Insert the sample into the line and use the two ports
The two parameters S11 and S21 were measured, and the complex relative permittivity and the complex relative permeability were calculated from the parameters.

【0065】また、試料の反射特性は、自由空間の反射
係数が0になるように校正した後、試料を同軸エアライ
ンに挿入し、試料の終端を金属面で短絡し、S11を測定
し、反射係数を計算した。なお、測定周波数は50MHz〜2
0GHzである。
The reflection characteristics of the sample were calibrated so that the reflection coefficient in free space became zero, then the sample was inserted into a coaxial air line, the end of the sample was short-circuited with a metal surface, and S11 was measured. The reflection coefficient was calculated. The measurement frequency is 50 MHz to 2
0 GHz.

【0066】軟磁性金属粒子内に絶縁性金属酸化物粒子
を分散した複合磁性粒子の効果をみるために、本発明の
方法により製造したFe-50vol%SiO2複合磁性粒子及び、F
e粉とSiO2粉を別々に前記MA処理と同条件でメカニカル
ミリング処理後、アニールした各粉末を単にVミキサー
により混合したものをエポキシ樹脂と複合化したものの
複素比透磁率、複素比誘電率および反射係数の周波数特
性を測定し、比較した結果を図2〜図4に示す。
In order to examine the effect of composite magnetic particles in which insulating metal oxide particles are dispersed in soft magnetic metal particles, Fe-50 vol% SiO2 composite magnetic particles produced by the method of the present invention and F
e powder and SiO2 powder were mechanically milled separately under the same conditions as the MA treatment, and then the complex specific permeability, complex relative permittivity and The frequency characteristics of the reflection coefficient were measured and the results of comparison are shown in FIGS.

【0067】図2より、高周波領域では、単にFe粉とSi
O2粉とをVミキサーにより混合した場合よりも複合化し
た方が、複素比透磁率の実数部および虚数部ともに上昇
しているのがわかる。
As shown in FIG. 2, in the high frequency region, Fe powder and Si
It can be seen that when the O2 powder is mixed with the V mixer, the real part and the imaginary part of the complex relative permeability are higher than when the O2 powder is mixed.

【0068】図3より、複素比誘電率の実数部および虚
数部ともに、複合化により若干低下しており、自由空間
とのインピーダンス整合がとりやすくなっているのがわ
かる。
From FIG. 3, it can be seen that both the real part and the imaginary part of the complex relative permittivity are slightly reduced due to the compounding, and that the impedance matching with free space can be easily achieved.

【0069】図4は試料厚さ1.8mmの場合の反射係数の
周波数特性であり、反射係数は複合粒子の方が小さく、
また中心周波数(最も反射係数が小さくなる周波数)は
複合粒子の方が低周波数側にある。さらに、反射係数-1
0dB以下を満足する周波数帯域幅は、複合粒子の方が広
くなっている。
FIG. 4 shows the frequency characteristics of the reflection coefficient when the sample thickness is 1.8 mm.
The center frequency (the frequency at which the reflection coefficient becomes the smallest) is lower for the composite particles. Furthermore, the reflection coefficient -1
The frequency bandwidth satisfying 0 dB or less is wider for the composite particles.

【0070】これらの結果より、軟磁性金属粉と絶縁性
金属酸化物をナノスケールで複合化した方が、単に2種
類の粉末を混合した場合に比べ、電波吸収特性は向上し
ているのがわかる。
From these results, it is clear that the composite of the soft magnetic metal powder and the insulating metal oxide at the nanoscale has improved radio wave absorption characteristics as compared with the case where only two kinds of powders are mixed. Understand.

【0071】(実施例2)粒径1〜5μmのFe粉と平均粒
径0.7μmの(Ni-Zn-Cu)Fe2O4又は(Mn-Zn)Fe2O4などの軟
磁性金属酸化物粉との混合粉末(体積比で50:50)とSUS
410製ボール(粒径95mm)を重量比にして粉末:ボール
=1:80でSUS製のポットに一緒に入れ、アルゴンガスを
封入して、回転数:200rpmで100時間、MA(メカニカル
アロイング)処理を行った。MA後の複合磁性粒子の形状
は不定形であり、平均粒径は数10μmであった。また、
この複合磁性粒子をTEM観察した結果実施例1と同様で
あり、Feの結晶粒径は約10nm程度であり、その結晶粒界
に軟磁性金属酸化物の成分を含む酸化物が網目状に微細
分散していた。この複合粒子を真空中(真空度:10-6Tor
r以上)で温度500℃、1時間のアニールを施した。複合磁
性粒子は実施例1と同様の組織を示していた。
(Example 2) Mixed powder of Fe powder having a particle size of 1 to 5 µm and soft magnetic metal oxide powder such as (Ni-Zn-Cu) Fe2O4 or (Mn-Zn) Fe2O4 having an average particle size of 0.7 µm (50:50 by volume ratio) and SUS
A ball made of 410 (particle diameter: 95 mm) is put in a SUS pot at a ratio of powder: ball = 1: 80 by weight ratio, filled with argon gas, and rotated at 200 rpm for 100 hours, MA (mechanical alloying). ) Processing. The shape of the composite magnetic particles after MA was amorphous, and the average particle size was several tens of μm. Also,
The composite magnetic particles were observed by TEM and the result was the same as in Example 1. The crystal grain size of Fe was about 10 nm, and the oxide containing the component of the soft magnetic metal oxide was finely meshed at the crystal grain boundaries. Was dispersed. The composite particles are placed in a vacuum (degree of vacuum: 10 -6 Tor)
r), annealing was performed at 500 ° C. for 1 hour. The composite magnetic particles had the same structure as in Example 1.

【0072】軟磁性金属粉と軟磁性金属酸化物粉を複合
化した効果をみるために、本発明の複合粒子及び、Fe粉
と軟磁性金属酸化物粉を別々に前述のMA処理と同条件で
メカニカルミリング処理後、アニールした各粉末を単に
Vミキサーにより混合したものをエポキシ樹脂と複合化
したものの各特性の各特性を測定し、比較した結果、実
施例1と同様な効果が認められた。
In order to see the effect of compounding the soft magnetic metal powder and the soft magnetic metal oxide powder, the composite particles of the present invention and the Fe powder and the soft magnetic metal oxide powder were separately separated under the same conditions as in the above-mentioned MA treatment. After mechanical milling with, each annealed powder is simply
The properties obtained by mixing the mixture with the V mixer and the epoxy resin were measured and compared. As a result, the same effect as in Example 1 was recognized.

【0073】(実施例3)粒径1〜5μmのFe粉と平均粒
径1.0μmのSi粉とを体積比にして50:50で混合した粉末
に前述と同じステンレス製ボールを重量比にして1:80で
ステンレス製のポットに一緒に入れ、酸素ガス(Ar:O2
=4:1)を封入して、回転数:200rpmで100時間、メカ
ニカルアロイング(MA)処理を行った。MA後の複合粉末の
形状は不定形であり、平均粒径は5.0μmであった。ま
た、この複合磁性粒子をTEM観察した結果、Feの結晶粒
径は約10nm程度であり、その結晶粒界にはSi酸化物が網
目状に微細分散し、更に棒状のSi酸化物が分散してい
た。さらに、X線回折の結果、Fe酸化物(Fe23,F
34)の存在も確認された。前記方法と同様にこの複
合粒子をエポキシ樹脂に混合したものの各種特性を測定
した結果、実施例1の方法で製造した複合磁性粒子とほ
ぼ同様な組織及び特性が得られた。
Example 3 A mixture of Fe powder having a particle size of 1 to 5 μm and Si powder having an average particle size of 1.0 μm in a volume ratio of 50:50 was mixed with the same stainless steel ball as described above in a weight ratio. Put together in a stainless steel pot at 1:80 and add oxygen gas (Ar: O2
= 4: 1) and subjected to mechanical alloying (MA) treatment at a rotation speed of 200 rpm for 100 hours. The shape of the composite powder after MA was amorphous, and the average particle size was 5.0 μm. Also, as a result of TEM observation of the composite magnetic particles, the crystal grain size of Fe was about 10 nm, and Si oxides were finely dispersed in a network at the crystal grain boundaries, and rod-shaped Si oxides were further dispersed. I was Further, as a result of X-ray diffraction, Fe oxide (Fe 2 O 3 , F
e 3 O 4 ) was also confirmed. As a result of measuring various characteristics of a mixture of the composite particles and the epoxy resin in the same manner as in the above method, a structure and characteristics substantially similar to those of the composite magnetic particles produced by the method of Example 1 were obtained.

【0074】(実施例4)実施例1〜3によって得た複
合磁性粒子の粒子表面に電気抵抗率の高い非磁性又は磁
性酸化物をコーテングした。コーテング法として表面酸
化法又は機械的複合法により行った。
(Example 4) A non-magnetic or magnetic oxide having a high electric resistivity was coated on the surface of the composite magnetic particles obtained in Examples 1 to 3. The coating was performed by a surface oxidation method or a mechanical composite method.

【0075】表面酸化法として、複合粒子の製造工程に
おけるアニール時の雰囲気を大気又は酸素とすることに
より、主に粒子表面にFe34などの酸化物が生成して
いるのが、X線回折により確認された。
As the surface oxidation method, when the atmosphere at the time of annealing in the production process of the composite particles is set to the atmosphere or oxygen, oxides such as Fe 3 O 4 are mainly generated on the particle surface by X-ray. Confirmed by diffraction.

【0076】又、機械的複合法として、せん断型ミルの
一つであるメカノフュージョン法を採用した。具体的に
は、ホスト粒子として複合磁性粒子(平均粒径:10μ
m)、ゲスト粒子としてSiO2(平均粒径:0.01
6μm)又は(Ni−Zn―Cu)Fe24(平均粒
径:0.5μm)をもちいた。これらのホスト粒子とゲ
スト粒子を体積比で2:3で混合し、メカノフュージョ
ン装置に投入した。メカノフュージョン条件として、真
空中、回転数:1000rpm、処理時間:3時間とし
た。その結果、複合磁性粒子表面にはゲスト粒子で構成
される厚さ約1.0μmの比較的緻密な酸化物層がコー
テングされているのが、SEM観察により確認された。
As a mechanical composite method, a mechanofusion method, which is one of shearing mills, was employed. Specifically, composite magnetic particles (average particle size: 10 μm) are used as host particles.
m), and SiO 2 (average particle size: 0.01) as guest particles.
6 μm) or (Ni—Zn—Cu) Fe 2 O 4 (average particle size: 0.5 μm). These host particles and guest particles were mixed at a volume ratio of 2: 3 and charged into a mechanofusion device. The conditions of mechanofusion were as follows: vacuum, rotation speed: 1000 rpm, processing time: 3 hours. As a result, it was confirmed by SEM observation that a relatively dense oxide layer composed of guest particles and having a thickness of about 1.0 μm was coated on the surface of the composite magnetic particles.

【0077】(実施例5)粒径1−5μmのFe粉70
vol%と平均粒径0.3μmのSiO2粒子30vo
l%の混合粉末とSUS製ボールをSUS製容器に一緒
に入れ、アルゴンガスを封入して、メカニカルアロイン
グ(機械的合金化)処理を行った。メカニカルアロイン
グ後の複合磁性粒子の形状は不定形であり、平均粒径は
数10μmであった。次いで、この複合磁性粒子に真空
中(真空度:10-6Torr以上)で500℃、1時間
の熱処理を施した。
(Example 5) Fe powder 70 having a particle size of 1 to 5 µm
vol 2 and SiO 2 particles 30 vo with an average particle diameter of 0.3 μm
1% of the mixed powder and the SUS ball were put together in a SUS container, and argon gas was sealed therein to perform a mechanical alloying (mechanical alloying) treatment. The shape of the composite magnetic particles after mechanical alloying was irregular, and the average particle size was several tens of μm. Next, the composite magnetic particles were subjected to a heat treatment at 500 ° C. for 1 hour in vacuum (degree of vacuum: 10 −6 Torr or more).

【0078】磁性金属からなる微結晶粒子(磁性金属粒
子という)とセラミックス粒子の複合化手法としては、
メカニカルアロイング手法に限らず、前述の方法によっ
て得ることができる。具体的には、ホスト粒子としてメ
カニカルアローイング処理後の複合磁性粒子(平均粒
径:10μm)、ゲスト粒子としてSiO2(平均粒
径:0.016μm)又は(Ni−Zn―Cu)Fe2
4(平均粒径:0.5μm)を用いた。これらのホス
ト粒子とゲスト粒子を体積比で2:3で混合し、メカノ
フュージョン装置に投入(好ましくは、真空中、回転数
100〜10000rpm、処理時間1〜10時間)し
た。メカノフュージョン条件として、真空中、回転数:
1000rpm、処理時間:3時間とした。その結果、
複合磁性粒子表面にはゲスト粒子で構成される厚さ約
1.0μmの緻密な酸化物層がコーテングされているの
が、SEM観察により確認された。
As a method of combining microcrystalline particles made of magnetic metal (referred to as magnetic metal particles) and ceramic particles,
It is not limited to the mechanical alloying method but can be obtained by the above-described method. Specifically, the composite magnetic particles (mean particle size: 10 μm) after the mechanical arranging treatment are used as host particles, and SiO 2 (average particle size: 0.016 μm) or (Ni—Zn—Cu) Fe 2 is used as guest particles.
O 4 (average particle size: 0.5 μm) was used. These host particles and guest particles were mixed at a volume ratio of 2: 3 and charged into a mechanofusion device (preferably, in a vacuum, at a rotation speed of 100 to 10,000 rpm, and a processing time of 1 to 10 hours). Mechanofusion conditions include vacuum, rotation speed:
1000 rpm, processing time: 3 hours. as a result,
SEM observation confirmed that a dense oxide layer composed of guest particles and having a thickness of about 1.0 μm was coated on the surface of the composite magnetic particles.

【0079】図5はメカニカルアローイング処理後、真
空中でアニールした複合磁性粒子のTEM組織写真であ
る。写真の黒い部分はFeの微細結晶粒であり、結晶粒
径は10〜20nm程度であった。また、Feの微細結
晶粒を取り囲むように非晶質Si酸化物が存在してい
た。
FIG. 5 is a TEM micrograph of the composite magnetic particles annealed in vacuum after the mechanical arrowing process. The black portions in the photograph are fine crystal grains of Fe, and the crystal grain size was about 10 to 20 nm. Further, an amorphous Si oxide was present so as to surround the fine crystal grains of Fe.

【0080】その後、これらを乾燥、粉砕処理後、室温
でタブレット状に加圧成形した。さらに、そのタブレッ
トを180℃、210kgfで一軸加圧し、硬化させ
た。なお、その他の樹脂複合体の製造法としては,射出
成形法やトランスファーモールド法等が挙げられる。ま
た、シート状の樹脂複合体を製造する場合には、ドクタ
ーブレード法、スピンコート法、カレンダーロール法等
が適用可能である。
Thereafter, these were dried and pulverized, and then pressed at room temperature into tablets. Further, the tablet was uniaxially pressed at 180 ° C. and 210 kgf to be cured. In addition, as other manufacturing methods of the resin composite, an injection molding method, a transfer molding method, and the like can be given. When a sheet-shaped resin composite is manufactured, a doctor blade method, a spin coating method, a calendar roll method, or the like can be applied.

【0081】特性評価用試料として、これら樹脂複合体
を機械加工、研磨により、外形:7−0.02mm、内
径:3.04+0.02mm、厚さ:0.5〜2mmの
トロイダル形状に仕上げた。次に、特性評価法である
が、ネットワークアナライザー(HP製8720C)と
同軸導波管から構成される測定系により、試料の複素比
誘電率、複素比透磁率を測定する場合には、自由空間の
透磁率、誘電率が1となるように校正した後、同軸導波
管に試料を挿入し、2つのポートを使用してS11、S
21の2つのパラメータを測定し、Nicolson−
Ross,Weir法により複素比誘電率、複素比透磁
率を求めた。
As a sample for property evaluation, these resin composites were finished by machining and polishing into a toroidal shape having an outer shape of 7-0.02 mm, an inner diameter of 3.04 + 0.02 mm, and a thickness of 0.5 to 2 mm. . Next, regarding the characteristic evaluation method, when the complex relative permittivity and the complex relative permeability of the sample are measured by a measurement system including a network analyzer (HP 8720C) and a coaxial waveguide, a free space is used. After calibrating so that the magnetic permeability and permittivity of the sample become 1, the sample is inserted into the coaxial waveguide, and S11, S
21 were measured and the Nicolson-
The complex relative permittivity and the complex relative magnetic permeability were determined by the Ross and Weir method.

【0082】試料の反射特性は、空気の反射係数が0に
なるように校正した後、試料を同軸エアラインに挿入
し、試料の終端を金属面で短絡し、S11を測定し、反
射係数を計算した。なお、測定周波数は0.1〜18G
Hzである。
After calibrating the reflection characteristics of the sample so that the air reflection coefficient becomes zero, the sample is inserted into a coaxial air line, the end of the sample is short-circuited with a metal surface, S11 is measured, and the reflection coefficient is measured. Calculated. The measurement frequency is 0.1 to 18G
Hz.

【0083】また、単相のFe粒子との特性を比較する
ために、粒径1−5μmのFe粉と平均粒径0.3μm
のSiO2粉を別々に前記メカニカルアローイング処理
と同条件でメカニカルミリング処理後、Fe粉とSiO
2粉を体積比で70:30の割合で配合し、これらをV
ミキサーにより十分混合し、前記同条件でアニールした
ものを前記同様の手法によりエポキシ樹脂と複合化し、
複素比透磁率、複素比誘電率及び反射係数の周波数特性
を測定した。
In order to compare the characteristics with the single-phase Fe particles, an Fe powder having a particle size of 1 to 5 μm and an average particle size of 0.3 μm
After mechanical milling of the SiO 2 powder separately under the same conditions as the mechanical alloying, Fe powder and SiO 2
The two powders were mixed at a volume ratio of 70:30, and
Mix well with a mixer, and annealed under the same conditions as above, compounded with epoxy resin by the same method as above,
The frequency characteristics of complex relative permeability, complex relative permittivity, and reflection coefficient were measured.

【0084】図6〜図8に複合磁性粒子と単相Fe粒子
との複素比透磁率、複素比誘電率、反射係数の周波数特
性比較を示す。図6より、高周波領域では、Fe粉とS
iO 2粉との単純混合粉よりも複合磁性粒子の方が、複
素比透磁率の実数部および虚数部ともに上昇しているの
がわかる。図7より、複素比誘電率の実数部に関して
は、複合磁性粒子の方が、大きくなっているが、同時に
虚数部も僅かに大きくなっている。図8(a)は、電磁
波吸収材の片面に金属板がある場合の反射係数の周波数
特性であり、反射係数は複合磁性粒子の方が小さくなっ
ている。また、図8(b)は、電磁波吸収材そのものの
電磁波吸収量を測定した結果であり、複合磁性粒子の方
が、吸収率は大きくなっている。
FIGS. 6 to 8 show composite magnetic particles and single-phase Fe particles.
Frequency characteristics of complex relative permeability, complex relative permittivity and reflection coefficient
The gender comparison is shown. From FIG. 6, in the high frequency region, Fe powder and S
iO TwoComposite magnetic particles are more complex than simple mixed powders.
Both the real and imaginary parts of the prime permeability are increasing
I understand. From FIG. 7, regarding the real part of the complex relative permittivity,
Means that the composite magnetic particles are larger,
The imaginary part is also slightly larger. FIG. 8A shows an electromagnetic
Frequency of reflection coefficient when there is a metal plate on one side of wave absorber
Characteristic, the reflection coefficient is smaller for composite magnetic particles.
ing. FIG. 8B shows the electromagnetic wave absorbing material itself.
This is the result of measuring the amount of electromagnetic wave absorption.
However, the absorption rate has increased.

【0085】これらの結果より、軟磁性金属粒相と高電
気抵抗セラミックス相をナノスケールで複合化すること
により、電磁波吸収特性を向上させることができる。
From these results, it is possible to improve the electromagnetic wave absorption characteristics by combining the soft magnetic metal particle phase and the high electric resistance ceramic phase on a nano scale.

【0086】(実施例6)実施例5において、Feの代
わりに、Ni、Coあるいはそれら強磁性金属のうち少
なくとも1つを含む合金、例えばFe−Ni系のパーマ
ロイ、Fe−Al−Si系のセンダスト、Fe−Si合
金系、Fe−Cr、Fe−Cr−Al合金系等を用いた
場合、及びSiO2の代わりに、アルミナ(Al
23)、磁性酸化物としてスピネル系のMn−Zn系フ
ェライト、Ni−Zn系フェライト、更にはプレーナー
型六方晶系フェライト、マグネトプランバイト型フェラ
イトなどを用いた場合にも同様の結果が得られた。
(Example 6) In Example 5, instead of Fe, Ni, Co or an alloy containing at least one of these ferromagnetic metals, for example, Fe-Ni-based permalloy, Fe-Al-Si-based sendust, Fe-Si alloy system, Fe-Cr, when using a Fe-Cr-Al alloy system and the like, and instead of SiO 2, alumina (Al
2 O 3), resulting spinel Mn-Zn ferrite of, Ni-Zn ferrite, and more planar hexagonal ferrite, similar results when using such magnetoplumbite ferrite as a magnetic oxide Was done.

【0087】(実施例7)実施例5又は6におけるメカ
ニカルアローイング処理後の複合磁性粒子形状を偏平化
する目的で、遊星ボールミル装置(又はアトライター)
等の粉砕機を用いて、エタノール等の有機溶剤と複合磁
性粒子を一緒に入れて湿式処理することにより、アスペ
クト比が2以上の偏平状複合磁性粒子を得た。この偏平
状複合磁性粒子を熱処理した後、液状樹脂に混合しペー
スト状にした後、複合磁性粒子にせん断力が加えられる
ドクターブレード法でシート状にした後、ホットプレス
で加圧成形した。このシート断面をSEMで観察した結
果、図9のように、偏平状複合磁性粒子がシート表面に
対して平行に配向していた。
(Embodiment 7) A planetary ball mill (or attritor) for flattening the shape of the composite magnetic particles after the mechanical arrowing treatment in Embodiment 5 or 6.
An organic solvent such as ethanol and the composite magnetic particles were put together and wet-processed using a pulverizer such as the above to obtain flat composite magnetic particles having an aspect ratio of 2 or more. The flat composite magnetic particles were heat-treated, mixed with a liquid resin to form a paste, formed into a sheet by a doctor blade method in which a shear force was applied to the composite magnetic particles, and then pressed by hot pressing. As a result of observing the cross section of the sheet by SEM, as shown in FIG. 9, the flat composite magnetic particles were oriented parallel to the sheet surface.

【0088】また、偏平状複合磁性粒子と樹脂との複合
コンパウンドを予め作製しておき、それを射出成形機に
より金型に射出した。この成形品の断面をSEM観察し
た結果、図9と同様に、射出方向に偏平状複合磁性粒子
が高配向していた。これら偏平状複合磁性粒子を樹脂中
に高配向させた場合、実施例5及び6に比べ、複素比透
磁率及び複素比誘電率実数部の向上が認められ、電磁波
吸収率が大幅に向上した。
A composite compound of flat composite magnetic particles and a resin was prepared in advance, and was injected into a mold by an injection molding machine. As a result of SEM observation of the cross section of this molded product, as in FIG. 9, the flat composite magnetic particles were highly oriented in the injection direction. When these flat composite magnetic particles were highly oriented in the resin, improvements in the complex relative magnetic permeability and the real part of the complex relative permittivity were recognized as compared with Examples 5 and 6, and the electromagnetic wave absorption was significantly improved.

【0089】(実施例8)図10は、実施例1〜7に記
載の複合磁性粒子を混合した樹脂で封止した半導体集積
装置の断面図を示す。図10に示すように、マイクロプ
ロセッサやシステムLSI等の製造工程において、複合
磁性粒子を混合した封止樹脂でトランスファーモールド
法によってパッケージ成型することにより、これら半導
体集積素子を構成するIC及びインナーリードから発生
する電磁波を吸収し、内部干渉を抑制できる。なお、複
合磁性粒子を混合した封止樹脂の半導体素子側には複合
磁性粒子フリーの樹脂によって覆うことによりリードと
の電気的接触を避ける事が出来る。ICと外部との電気
的接続は半田ボール7によってプリント配線基板9を介
して行われる。リード8はAu,Cu,Al線のいずれ
かが用いられる。複合磁性粒子フリーの樹脂には、球
径、角型シリカ等の無機充填剤を60〜95重量%有す
る樹脂が用いられ、トランスファーモールド法によって
形成される。
(Embodiment 8) FIG. 10 is a sectional view of a semiconductor integrated device sealed with a resin mixed with the composite magnetic particles described in Embodiments 1 to 7. As shown in FIG. 10, in a manufacturing process of a microprocessor, a system LSI, or the like, a package is formed by a transfer molding method using a sealing resin in which composite magnetic particles are mixed, so that an IC and an inner lead constituting these semiconductor integrated elements are removed. The generated electromagnetic waves can be absorbed and internal interference can be suppressed. The semiconductor element side of the sealing resin in which the composite magnetic particles are mixed is covered with a resin free of composite magnetic particles, so that electrical contact with the leads can be avoided. Electrical connection between the IC and the outside is made via a printed wiring board 9 by solder balls 7. The lead 8 is made of one of Au, Cu, and Al wires. As the resin free of composite magnetic particles, a resin having 60 to 95% by weight of an inorganic filler such as spherical or square silica is used, and is formed by a transfer molding method.

【0090】(実施例9)図11は、実施例1〜7に記
載の電磁波吸収材から構成される電磁波吸収層を具備し
たプリント配線基板の断面図を示す。絶縁基板上に配線
回路13が形成されたプリント配線回路9の、配線回路
13を形成した面の絶縁層10上及び配線回路を形成し
ていない絶縁基板から成るプリント配線回路9の裏面の
それぞれの一部又は全面に複合磁性粒子とそれよりも高
電気抵抗の材料から構成される塗料を直接塗布するか、
あるいはそれらをシート状に成形したものを配置して、
電磁波吸収層を形成させて、プリント配線回路から発生
する電磁波によるクロストーク現象によるノイズの発生
を抑制できる。また、各電磁波吸収層の外側に導体層を
配置して、電磁波吸収効率を向上でき、かつ外部からの
電磁波に対するシールド効果も向上できる。
(Embodiment 9) FIG. 11 is a sectional view of a printed wiring board provided with an electromagnetic wave absorbing layer composed of the electromagnetic wave absorbing materials described in Examples 1 to 7. Each of the printed wiring circuit 9 having the wiring circuit 13 formed on the insulating substrate is formed on the insulating layer 10 on the surface on which the wiring circuit 13 is formed and on the back surface of the printed wiring circuit 9 formed of the insulating substrate on which the wiring circuit is not formed. Directly apply a paint composed of composite magnetic particles and a material with a higher electrical resistance than part or all of it,
Or place them in a sheet shape,
By forming the electromagnetic wave absorbing layer, it is possible to suppress the generation of noise due to the crosstalk phenomenon due to the electromagnetic waves generated from the printed wiring circuit. Further, by arranging a conductor layer outside each electromagnetic wave absorbing layer, the electromagnetic wave absorbing efficiency can be improved, and the shielding effect against external electromagnetic waves can also be improved.

【0091】(実施例10)図12は、ノイズ発生源と
なる半導体素子を包み込むように、プリント配線基板上
に配置された半導体用電磁波吸収キャップの断面を示
す。マイクロプロセッサやシステムLSI等のノイズ発
生源となる半導体素子を包み込むように、プリント配線
基板上に本発明に係わる電磁波吸収キャップを配置した
構成である。図12(a)は、金属製キャップの内面に
本発明の電磁波吸収層を配置した場合であり、外部から
の電磁波に対するシールド、内部から放射される電磁波
を吸収できる。図12(b)は、本発明の電磁波吸収材
を射出成形で成形したキャップを用いた場合である。こ
の実装により、半導体素子から放射される電磁波を効率
よく吸収でき、内部干渉を抑制できる。
(Embodiment 10) FIG. 12 is a cross-sectional view of a semiconductor electromagnetic wave absorbing cap disposed on a printed wiring board so as to surround a semiconductor element serving as a noise source. In this configuration, an electromagnetic wave absorbing cap according to the present invention is disposed on a printed wiring board so as to enclose a semiconductor element serving as a noise generation source such as a microprocessor or a system LSI. FIG. 12A shows a case in which the electromagnetic wave absorbing layer of the present invention is disposed on the inner surface of a metal cap, which can shield external electromagnetic waves and absorb electromagnetic waves radiated from inside. FIG. 12B shows a case where a cap obtained by molding the electromagnetic wave absorbing material of the present invention by injection molding is used. With this mounting, the electromagnetic wave radiated from the semiconductor element can be efficiently absorbed, and the internal interference can be suppressed.

【0092】(実施例11)図13は、プリント配線基
板9に搭載した集積回路IC6を本発明の電磁波吸収材
から構成される電子機器筐体によって封止された断面図
である。図13(a)は、金属製電子機器筐体内面に本
発明の電磁波吸収層を塗布あるいは射出成形などで形成
した場合である。図13(b)は、本発明の電磁波吸収
材を射出成形で成形した電子機器筐体である。このよう
に、電子機器筐体に電磁波吸収機能を付与することによ
り、電子機器内部での電磁波干渉を抑制できる。
(Embodiment 11) FIG. 13 is a cross-sectional view in which an integrated circuit IC 6 mounted on a printed wiring board 9 is sealed with an electronic equipment housing made of an electromagnetic wave absorbing material of the present invention. FIG. 13A shows a case where the electromagnetic wave absorbing layer of the present invention is formed on the inner surface of a metal electronic device housing by coating or injection molding. FIG. 13B shows an electronic apparatus housing in which the electromagnetic wave absorbing material of the present invention is formed by injection molding. Thus, by providing the electronic device housing with the electromagnetic wave absorbing function, it is possible to suppress electromagnetic wave interference inside the electronic device.

【0093】(実施例12)図14は、本発明の光送信
モジュールの構成を示す断面図である。光送信モジュー
ル21は、光ファイバ25、光導波路29、LD26、
送信回路27、回路基板28等から構成される。送信回
路27は、レーザ発光ダイオードであるLD26を駆動
するLDドライバ、レーザ出力制御部、フリップフロッ
プ回路等から構成される。実際には、リードフレームや
ワイヤがついているが、これらの図示を略している。伝
送速度が大きくなるにつれて、光伝送モジュール内で
は、LD26を励起する電気信号のクロック周波数が高
くなるため、高周波の電磁波が発生し、これらの電磁波
は、他の要素、部品等に悪影響を及ぼすノイズの原因と
なる。本実施例では、光送信モジュールを型に入れ、前
記複合磁性粒子を含有した樹脂混合物を流し込んで固化
させることで、完全封止し、さらにその外側を金属筐体
30で覆うことにより、各素子や基板を水や気体から保
護するだけでなく、電磁波を吸収、シールドすることが
でき、送信モジュール内でのノイズ干渉を抑制し、かつ
モジュール外部へのノイズの放射を完全に防止すること
ができる。
(Embodiment 12) FIG. 14 is a sectional view showing the structure of an optical transmission module according to the present invention. The optical transmission module 21 includes an optical fiber 25, an optical waveguide 29, an LD 26,
It comprises a transmission circuit 27, a circuit board 28 and the like. The transmission circuit 27 includes an LD driver that drives the LD 26 that is a laser light emitting diode, a laser output control unit, a flip-flop circuit, and the like. Actually, lead frames and wires are provided, but these are not shown. As the transmission speed increases, the clock frequency of the electric signal that excites the LD 26 increases in the optical transmission module, so that high-frequency electromagnetic waves are generated, and these electromagnetic waves cause noise that adversely affects other elements and components. Cause. In this embodiment, the optical transmission module is put into a mold, and the resin mixture containing the composite magnetic particles is poured and solidified to completely seal it. In addition to protecting the board and substrate from water and gas, it can also absorb and shield electromagnetic waves, suppress noise interference in the transmission module, and completely prevent noise emission outside the module. .

【0094】又、金属筐体30は必ずしも必要ではな
く、図15のように、樹脂混合物のみで封止した構造と
することが出来、電磁波吸収、シールド効果は金属筐体
で覆った場合よりも若干劣るが、廉価できるメリットが
ある。
Further, the metal housing 30 is not always necessary. As shown in FIG. 15, the structure can be sealed with only the resin mixture, and the electromagnetic wave absorption and the shielding effect are better than those covered with the metal housing. Although slightly inferior, it has the merit of being cheap.

【0095】又、複合磁性粒子表面を絶縁コーティング
することによって、配線間の短絡を防止することができ
る。絶縁性コーティング法としては、雰囲気中、熱処理
により、複合磁性粒子表面に酸化物層あるいは窒化物層
等の電気抵抗率の高い皮膜を形成させる方法、または、
シラン系、アルシキレート系あるいはチタネート系のカ
ップリング処理剤もしくはリン酸ホウ酸マグネシア絶縁
処理液等を用いた化学的形成法、あるいは、せん断型ミ
ルの一つであるメカノフュージョン法により複合磁性粒
子表面を高電気抵抗率の材料でコーティングする機械的
形成法などが挙げられる。
Further, by coating the surface of the composite magnetic particles with an insulating coating, a short circuit between wirings can be prevented. As the insulating coating method, a method of forming a film having a high electric resistivity such as an oxide layer or a nitride layer on the surface of the composite magnetic particles by heat treatment in an atmosphere, or
Surface of composite magnetic particles by chemical forming method using silane-based, alkylate-based or titanate-based coupling treatment agent, or magnesia phosphate borate insulation treatment solution, or mechanofusion method, which is one of shearing mills With a material having a high electrical resistivity.

【0096】また、配線間の短絡防止法としてより確実
なのは、図16のように、配線部のみを複合磁性粒子を
含有していない絶縁性樹脂で封止し、さらにその上に複
合磁性粒子を含有した樹脂混合物で封止する2層構造と
することである。
As a more reliable method for preventing a short circuit between wires, as shown in FIG. 16, only the wiring portion is sealed with an insulating resin containing no composite magnetic particles, and the composite magnetic particles are further placed thereon. A two-layer structure in which sealing is performed with the contained resin mixture.

【0097】なお、複合磁性粒子の粒径は、複合磁性粒
子組成により異なるが、樹脂混合物の流動性等を考慮す
ると、40μm以下が好ましい。また、粒形状は球状ある
いは扁平状でも良く、特に限定されない。また、複合磁
性粒子の樹脂に対する充填量は、樹脂混合物の流動性確
保の点から60vol%以下であるのが好ましい。さらに、樹
脂としては、通常電子回路部の封止樹脂として使用され
るエポキシ系の他に、絶縁性高分子材料であれば前述し
たものを用いることができる。
The particle size of the composite magnetic particles varies depending on the composition of the composite magnetic particles, but is preferably 40 μm or less in consideration of the fluidity of the resin mixture. The shape of the particles may be spherical or flat, and is not particularly limited. Further, the filling amount of the composite magnetic particles into the resin is preferably 60 vol% or less from the viewpoint of ensuring the fluidity of the resin mixture. Further, as the resin, in addition to the epoxy resin usually used as a sealing resin for an electronic circuit portion, the above-mentioned resin can be used as long as it is an insulating polymer material.

【0098】本実施例では、LD26、送信回路27に
ついて示したが、これらを受光及び受信回路に変えるこ
とによって光受信モジュールを同様に構成することがで
きる。
In this embodiment, the LD 26 and the transmission circuit 27 are described. However, the optical reception module can be similarly configured by changing these to the light receiving and receiving circuits.

【0099】(実施例13)図17は、回路基板28上
に光送信モジュールと光受信モジュールとが形成された
光送受信モジュールの平面図である。光送受信モジュー
ル23は、前記の光送信モジュールと光受信モジュール
を併せ備えた機能を有する。光送信部は、光ファイバ2
5、光導波路29、LD26、送信回路27、回路基板
28等から構成される。送信回路は、レーザを駆動する
LDドライバ、レーザ出力制御部、フリップフロップ回
路等から構成される。光受信部は、光ファイバ25、光
導波路29、PD35、受信回路36、回路基板28等か
ら構成される。受信回路は、前置増幅機能を有するPRE
IC、クロック抽出部および等価増幅部からなるCDR LS
I、狭帯域フィルタのSAW、APDバイアス制御回路等から
構成される。実際には、リードフレームやワイヤがつい
ているが、これらの図示を略している。
(Embodiment 13) FIG. 17 is a plan view of an optical transmitting / receiving module in which an optical transmitting module and an optical receiving module are formed on a circuit board 28. FIG. The optical transmitting / receiving module 23 has a function including both the optical transmitting module and the optical receiving module. The optical transmission unit is an optical fiber 2
5, optical waveguide 29, LD 26, transmitting circuit 27, circuit board 28, and the like. The transmission circuit includes an LD driver for driving a laser, a laser output control unit, a flip-flop circuit, and the like. The optical receiving unit includes an optical fiber 25, an optical waveguide 29, a PD 35, a receiving circuit 36, a circuit board 28, and the like. The receiving circuit is a PRE with preamplification function
CDR LS consisting of IC, clock extractor and equivalent amplifier
I, SAW of narrow band filter, APD bias control circuit, etc. Actually, lead frames and wires are provided, but these are not shown.

【0100】このように、送信モジュールと受信モジュ
ールが一体となった送受信モジュールでは、前記したよ
うに、特に、光送信部と光受信部との間でのノイズ授受
による内部ノイズ干渉が問題となる。
As described above, in the transmitting / receiving module in which the transmitting module and the receiving module are integrated, as described above, internal noise interference due to noise transmission / reception between the optical transmitting unit and the optical receiving unit becomes a problem. .

【0101】本実施例においても、電磁波吸収材の配置
を実施例12と同様に図14〜図16のように構成する
ことができる。従来の光送受信モジュールでは、光送信
部と光受信部の間に、金属製のシールド板を配置した
り、各モジュールを金属パッケージに封入し、独立の送
信モジュール、受信モジュールとしてノイズ干渉を防止
していたが、このような構造とすることで、モジュール
全体が大型化し、重くなるばかりではなく高価な金属パ
ッケージを使用することで、廉価にできないといった問
題があり、本発明のような構造とすることで、モジュー
ル内でのノイズ干渉を防止できるばかりでなく、小型・
軽量化、低価格化を実現できる。
Also in this embodiment, the arrangement of the electromagnetic wave absorbing material can be configured as shown in FIGS. In conventional optical transmission / reception modules, a metal shield plate is placed between the optical transmission unit and the optical reception unit, or each module is enclosed in a metal package to prevent noise interference as an independent transmission module and reception module. However, with such a structure, there is a problem that not only the entire module becomes large and heavy, but also it is not possible to reduce the cost by using an expensive metal package. Not only prevents noise interference in the module, but also
Lighter weight and lower price can be realized.

【0102】又、本実施例によれば、高速通信網におい
て使用に耐える、内部ノイズ干渉、外部へのノイズ放射
を抑制し、小型・軽量化、高速化、高感度化を可能にす
る光送信モジュール、光受信モジュール、あるいは、光
送信部および光受信部を併せ持つ光送受信モジュールを
提供することができる。
Further, according to the present embodiment, optical transmission that can be used in a high-speed communication network, suppresses internal noise interference and external noise radiation, and enables downsizing, weight reduction, high speed, and high sensitivity. A module, an optical receiving module, or an optical transmitting and receiving module having both an optical transmitting unit and an optical receiving unit can be provided.

【0103】(実施例14)図18は、料金所を通行す
る車両が、路側通信装置と通行車両に搭載されている車
載機との間で情報の授受ができる自動料金収受システム
(以下、ETC)が適用されている料金所の基本構成を示し
た断面図である。
(Embodiment 14) FIG. 18 shows an automatic toll collection system in which a vehicle passing a tollgate can exchange information between a roadside communication device and an on-board unit mounted on the passing vehicle.
FIG. 1 is a cross-sectional view showing a basic configuration of a tollgate to which (hereinafter, ETC) is applied.

【0104】図18に示すように、進入部アンテナ4
0、出路部アンテナ41、車載機42との間で、周波数
5.8GHzの電波を使用し、料金収受に必要な情報を交換す
る。ところで、出路側アンテナ41からの送信による電
波(直接波46)の広がりが、路面43とゲート屋根4
4の天井面あるいは支柱45等との電磁波多重反射現象
により大きくなる。それによって、図18に示すよう
に、出路部アンテナ41から送信された電波(直接波4
6)が、車両A48の車載機に送信される以外に、路面
43で反射された反射波47が、後続の車両B48の車
載機42に送信されてしまうという車間区分の問題や隣
接レーンの車両への干渉問題等の電波障害による誤動作
が予測されるため、ゲート屋根44の天井面、支柱等の
電磁波を反射する部材の表面に複合磁性粒子を含有した
絶縁性高分子樹脂組成物を溶剤によって液状にして塗付
又はその組成物をシートにしたものを接着剤によって貼
り付けることにより、反射波47を吸収し、前記問題を
解決することができる。
As shown in FIG. 18, the entrance antenna 4
0, the frequency between the departure section antenna 41 and the vehicle-mounted device 42
Using 5.8GHz radio waves, exchange information required for toll collection. By the way, the spread of the radio wave (direct wave 46) due to the transmission from the exit side antenna 41 is caused by the road surface 43 and the gate roof 4.
It becomes larger due to the electromagnetic wave multiple reflection phenomenon with the ceiling surface of the No. 4 or the column 45 or the like. Thereby, as shown in FIG. 18, the radio wave (direct wave 4
6), in addition to being transmitted to the on-vehicle device of the vehicle A48, the reflected wave 47 reflected on the road surface 43 is transmitted to the on-vehicle device 42 of the following vehicle B48. Because malfunctions due to radio interference such as interference problems to the roof are predicted, the insulating polymer resin composition containing composite magnetic particles on the surface of the member that reflects electromagnetic waves, such as the ceiling surface of the gate roof 44 and columns, is mixed with a solvent. By applying the liquid or applying the composition into a sheet and attaching it with an adhesive, the reflected wave 47 can be absorbed, and the above problem can be solved.

【0105】従来のETC用電波吸収体は、一体パネル型
であり、厚さも数十cm以上もあり、かなり厚い。その
ため、複雑形状部分には取付が困難である等の取付作業
上の問題があり、塗料タイプあるいは柔軟シートタイプ
で薄型の電波吸収体が求められている。本発明の電波吸
収体49は複合磁性粒子を含有した絶縁性高分子樹脂と
の混合物からなり、樹脂の選択により、塗料タイプある
いは柔軟シートタイプにすることが可能であり、また、
複合磁性粒子は従来の軟磁性金属粒子よりも特に5GHz以
上での高周波数領域で電磁気特性に優れているため、こ
れらの問題を解決することができる。絶縁性高分子樹脂
には前述した材料が用いられる。
The conventional ETC radio wave absorber is of an integral panel type, has a thickness of several tens of cm or more, and is considerably thick. Therefore, there is a problem in mounting work such as difficulty in mounting in a complicated shape portion, and a thin type electromagnetic wave absorber of a paint type or a flexible sheet type is required. The radio wave absorber 49 of the present invention is made of a mixture with an insulating polymer resin containing composite magnetic particles, and can be a paint type or a flexible sheet type depending on the selection of the resin.
These problems can be solved because the composite magnetic particles are superior to the conventional soft magnetic metal particles particularly in the electromagnetic characteristics in a high frequency region of 5 GHz or more. The above-mentioned materials are used for the insulating polymer resin.

【0106】複合磁性粒子を含有した樹脂混合物を用い
た電波吸収体49としては、単層又は、図19に示すよ
うに斜入射特性を向上させるために、電波入射面側から
完全反射体である金属層方向に、入射電波50に対する
電波吸収体のインピーダンスが徐々に減少する多層構造
にするのが有効である。具体的には、電波入射面側から
金属層51方向に複素比透磁率および複素比誘電率を徐
々に増加させれば良く、そのためには、同一組成の複合
磁性粒子の樹脂に対する充填量を変化させるか、あるい
は、各層中の複合磁性粒子組成を変化させる等の方法が
ある。なお、取付面が金属である場合には、金属層は不
要である。図19では電波吸収体49を3層とした。
The radio wave absorber 49 using the resin mixture containing the composite magnetic particles is a single layer or a perfect reflector from the radio wave incident surface side in order to improve the oblique incidence characteristics as shown in FIG. It is effective to form a multilayer structure in which the impedance of the radio wave absorber with respect to the incident radio wave 50 gradually decreases in the direction of the metal layer. Specifically, the complex relative magnetic permeability and the complex relative permittivity may be gradually increased from the radio wave incident surface side toward the metal layer 51. To this end, the filling amount of the composite magnetic particles having the same composition into the resin is changed. Or changing the composition of the composite magnetic particles in each layer. When the mounting surface is made of metal, the metal layer is unnecessary. In FIG. 19, the radio wave absorber 49 has three layers.

【0107】また、複合磁性粒子の粒径は、複合磁性粒
子組成により異なるが、樹脂混合物の流動性等を考慮す
ると、40μm以下が好ましい。また、粒形状は球状ある
いは扁平状でも良く、特に限定されない。また、各層の
複合磁性粒子の樹脂に対する充填量は、樹脂混合物の流
動性確保の点から最高でも60vol%以下であるのが好まし
い。
The particle size of the composite magnetic particles varies depending on the composition of the composite magnetic particles, but is preferably 40 μm or less in consideration of the fluidity of the resin mixture. The shape of the particles may be spherical or flat, and is not particularly limited. Further, the filling amount of the composite magnetic particles in each layer with respect to the resin is preferably at most 60 vol% from the viewpoint of ensuring the fluidity of the resin mixture.

【0108】[0108]

【発明の効果】本発明によれば、磁性金属と非磁性ある
いは磁性セラミックスとが各々超微細に分散して一体に
形成させた複合磁性粒子から構成される電波吸収体は、
単なる混合粉から構成される電波吸収体に比らべ、優れ
た電波吸収特性を有する顕著な効果が得られる。
According to the present invention, there is provided a radio wave absorber composed of composite magnetic particles in which a magnetic metal and a non-magnetic or magnetic ceramic are each dispersed ultra-finely and integrally formed,
A remarkable effect having excellent radio wave absorption characteristics can be obtained as compared with a radio wave absorber composed of a mere mixed powder.

【0109】更に、本発明によれば、高周波数領域特に
GHz領域における電磁波吸収特性に優れ、薄型の電磁
波吸収材によって電子機器内部での電磁波干渉を効率的
に抑制できるので、高速通信網での使用に耐え、内部ノ
イズ干渉、外部へのノイズ放射を抑制し、小型・軽量
化、高速化、高感度化を可能にする半導体装置、光送信
モジュール、光受信モジュール、光送受信モジュールが
提供できる。
Further, according to the present invention, since the electromagnetic wave interference inside the electronic device can be effectively suppressed by the thin electromagnetic wave absorbing material having excellent electromagnetic wave absorbing characteristics in a high frequency region, particularly in a GHz region, it can be used in a high-speed communication network. A semiconductor device, an optical transmitting module, an optical receiving module, and an optical transmitting and receiving module that can withstand use, suppress internal noise interference and noise radiation to the outside, and enable small size, light weight, high speed, and high sensitivity can be provided.

【0110】又、本発明によれば、車両間での電波障害
による誤動作が防止される自動料金所が提供できる。
Further, according to the present invention, it is possible to provide an automatic toll booth in which malfunction due to radio wave interference between vehicles is prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のFe-SiO2磁性複合粒子の断面の顕微
鏡写真(TEM写真)。
FIG. 1 is a micrograph (TEM photograph) of a cross section of the Fe—SiO 2 magnetic composite particles of the present invention.

【図2】 本発明の磁性複合粒子と比較の混合粉のもの
の透磁率の周波数特性測定結果を示す線図。
FIG. 2 is a diagram showing the results of measuring the frequency characteristics of the magnetic permeability of the mixed powder of the magnetic composite particles of the present invention and a comparative powder.

【図3】 本発明の磁性複合粒子と比較の混合粉のもの
の誘電率の周波数特性測定結果を示す線図。
FIG. 3 is a diagram showing the results of measuring the frequency characteristics of the dielectric constant of the mixed powder of the magnetic composite particles of the present invention and a comparative powder.

【図4】 本発明の磁性複合粒子と比較の混合粉のもの
の反射係数の周波数特性測定結果を示す線図。
FIG. 4 is a graph showing the measurement results of the frequency characteristics of the reflection coefficient of the mixed powder of the magnetic composite particles of the present invention and the comparative powder.

【図5】 本発明の複合磁性粒子の断面の高分解能透過
電子顕微鏡写真。
FIG. 5 is a high-resolution transmission electron micrograph of a cross section of the composite magnetic particle of the present invention.

【図6】 磁性金属相とセラミックス相とをナノレベル
で複合化したことによる複素比透磁率の周波数特性を示
すグラフ。
FIG. 6 is a graph showing a frequency characteristic of a complex relative magnetic permeability when a magnetic metal phase and a ceramic phase are composited at a nano level.

【図7】 磁性金属相とセラミックス相とをナノレベル
で複合化したことによる複素比誘電率の周波数特性を示
す線図。
FIG. 7 is a diagram showing a frequency characteristic of a complex relative permittivity obtained by combining a magnetic metal phase and a ceramic phase at a nano level.

【図8】 磁性金属相とセラミックス相とをナノレベル
で複合化したことによる電磁波吸収特性を示す線図。
FIG. 8 is a diagram showing electromagnetic wave absorption characteristics obtained by combining a magnetic metal phase and a ceramic phase at a nano level.

【図9】 扁平状複合磁性粒子を樹脂中で配向させた電
磁波吸収材の断面図。
FIG. 9 is a cross-sectional view of an electromagnetic wave absorber in which flat composite magnetic particles are oriented in a resin.

【図10】 複合磁性粒子を混合した封止樹脂でパッケ
ージ成型した半導体集積素子の断面図。
FIG. 10 is a cross-sectional view of a semiconductor integrated device package-molded with a sealing resin mixed with composite magnetic particles.

【図11】 本発明の電磁波吸収材から構成される電磁
波吸収層を具備したプリント配線基板の断面図。
FIG. 11 is a cross-sectional view of a printed wiring board provided with an electromagnetic wave absorbing layer composed of the electromagnetic wave absorbing material of the present invention.

【図12】 ノイズ発生源となる半導体素子を包み込む
ように、プリント配線基板上に配置された電磁波吸収キ
ャップの断面図。
FIG. 12 is a cross-sectional view of an electromagnetic wave absorbing cap disposed on a printed wiring board so as to surround a semiconductor element serving as a noise generation source.

【図13】 本発明の電磁波吸収材から構成される電子
機器筐体の断面図。
FIG. 13 is a cross-sectional view of an electronic device housing made of the electromagnetic wave absorbing material of the present invention.

【図14】 複合磁性粒子を含有した樹脂混合物で、完
全封止し、さらにその外側を金属筐体で覆った光送信モ
ジュールの断面図。
FIG. 14 is a cross-sectional view of an optical transmission module completely sealed with a resin mixture containing composite magnetic particles and further covering the outside with a metal housing.

【図15】 金属筐体を取外した光送信モジュールの断
面図。
FIG. 15 is a cross-sectional view of the optical transmission module with the metal housing removed.

【図16】 配線部のみを複合磁性粒子を含有していな
い絶縁性樹脂で封止し、その上に複合磁性粒子を含有し
た樹脂混合物で封止した2層構造の光送信モジュールの
断面図。
FIG. 16 is a cross-sectional view of an optical transmission module having a two-layer structure in which only a wiring portion is sealed with an insulating resin containing no composite magnetic particles, and is sealed thereon with a resin mixture containing the composite magnetic particles.

【図17】 光送受信モジュールの第一の形態である光
送受信モジュールの平面図。
FIG. 17 is a plan view of an optical transceiver module as a first embodiment of the optical transceiver module.

【図18】 本発明の電磁波吸収材をゲート屋根天井面
及び支柱に配置した自動料金収受システム(ETC)による
自動料金所の断面構成図。
FIG. 18 is a cross-sectional configuration diagram of an automatic toll booth by an automatic toll collection system (ETC) in which the electromagnetic wave absorbing material of the present invention is arranged on a gate roof ceiling surface and a support.

【図19】 本発明の多層構造を有する電波吸収体の断
面図。
FIG. 19 is a sectional view of a radio wave absorber having a multilayer structure of the present invention.

【符号の説明】[Explanation of symbols]

1…樹脂、2…扁平状複合磁性粒子、3…電磁波吸収
材、4…封止樹脂、5…複合磁性粒子、6…IC、7…
はんだボール、8…リード、9…プリント配線基板、1
0…絶縁層、11…金属キャップ、12…金属製電子機
器筐体、13…配線回路、21…光送信モジュール、2
5…光ファイバ、26…LD、27…送信回路、28…
回路基板、29…光導波路、30…金属筐体、32…複
合磁性粒子+樹脂、35…PD、36…受信回路進入部、
40…進入部アンテナ、41…出路部アンテナ、42…
車載機、43…路面、44…ゲート屋根、45…支柱、
46…直接波、47…反射波、48…車両。
DESCRIPTION OF SYMBOLS 1 ... resin, 2 ... flat composite magnetic particle 3, 3 ... electromagnetic wave absorber, 4 ... sealing resin, 5 ... composite magnetic particle, 6 ... IC, 7 ...
Solder ball, 8 ... Lead, 9 ... Printed wiring board, 1
0: insulating layer, 11: metal cap, 12: metal electronic device housing, 13: wiring circuit, 21: optical transmission module, 2
5 ... optical fiber, 26 ... LD, 27 ... transmitting circuit, 28 ...
Circuit board, 29: Optical waveguide, 30: Metal casing, 32: Composite magnetic particle + resin, 35: PD, 36: Receiving circuit entrance,
40 ... entry section antenna, 41 ... exit section antenna, 42 ...
In-vehicle unit, 43: road surface, 44: gate roof, 45: support,
46: direct wave, 47: reflected wave, 48: vehicle.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 宰 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 阿部 輝宜 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 青野 泰久 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Satoshi Ogawa 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Teruyoshi Abe 7, Omika-cho, Hitachi City, Ibaraki No. 1-1 Inside Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Yasuhisa Aono 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory

Claims (35)

【特許請求の範囲】[Claims] 【請求項1】磁性金属粒子とセラミックスとが一体とな
った複合磁性粒子を有することを特徴とする電磁波吸収
材。
1. An electromagnetic wave absorbing material comprising composite magnetic particles in which magnetic metal particles and ceramics are integrated.
【請求項2】複数の微細な磁性金属粒子がセラミックス
によって囲まれて一体となった複合磁性粒子を有するこ
とを特徴とする電磁波吸収材。
2. An electromagnetic wave absorbing material comprising composite magnetic particles in which a plurality of fine magnetic metal particles are integrally surrounded by ceramics.
【請求項3】磁性金属粒子内にセラミックス粒子が埋め
込められて一体となった複合磁性粒子を有することを特
徴とする電磁波吸収材。
3. An electromagnetic wave absorber comprising ceramic magnetic particles embedded in magnetic metal particles and integrated magnetic particles.
【請求項4】前記磁性金属が鉄、コバルト、ニッケルの
うちの少なくとも一つの金属又は合金であり、前記セラ
ミックスが鉄、アルミニウム、シリコン、チタン、バリ
ウム、マンガン、亜鉛、マグネシウム、コバルトまたは
ニッケルの酸化物、窒化物及び炭化物のうちの少なくと
も一つであることを特徴とする請求項1〜3のいずれか
に記載の電磁波吸収材。
4. The magnetic metal is at least one metal or alloy of iron, cobalt and nickel, and the ceramic is an oxide of iron, aluminum, silicon, titanium, barium, manganese, zinc, magnesium, cobalt or nickel. The electromagnetic wave absorbing material according to any one of claims 1 to 3, wherein the material is at least one of a material, a nitride, and a carbide.
【請求項5】前記セラミックスが前記複合磁性粒子表面
に粒子状で一体に結合していることを特徴とする請求項
1〜4のいずれかに記載の電磁波吸収材。
5. The electromagnetic wave absorbing material according to claim 1, wherein the ceramics are integrally bonded to the surface of the composite magnetic particles in the form of particles.
【請求項6】請求項1〜5のいずれかに記載の複合磁性
粒子が、該複合磁性粒子よりも高電気抵抗率を有する材
料に分散していることを特徴とする電磁波吸収材。
6. An electromagnetic wave absorbing material, wherein the composite magnetic particles according to claim 1 are dispersed in a material having a higher electrical resistivity than the composite magnetic particles.
【請求項7】請求項6に記載の高電気抵抗率を有する材
料が樹脂、絶縁性高分子塗料及びセラミックス焼結体の
いずれかであることを特徴とする電磁波吸収材。
7. An electromagnetic wave absorbing material according to claim 6, wherein the material having a high electric resistivity according to claim 6 is any one of a resin, an insulating polymer paint and a ceramic sintered body.
【請求項8】磁性金属粒子とセラミックスとが一体とな
った複合磁性粒子と、該複合磁性粒子より高電気抵抗率
を有する高分子樹脂、アルミナ及びシリカの少なくとも
1種とが複合化されたことを特徴とする電磁波吸収材。
8. A composite of composite magnetic particles in which magnetic metal particles and ceramics are integrated with at least one of a polymer resin, alumina and silica having a higher electrical resistivity than the composite magnetic particles. An electromagnetic wave absorbing material characterized by the following.
【請求項9】請求項1〜8いずれかにおいて、前記複合
磁性粒子に対して前記セラミックスが10〜75体積%
であり、前記磁性金属粒子内に埋め込まれていることを
特徴とする電磁波吸収材。
9. The composite magnetic particle according to claim 1, wherein the content of the ceramic is 10 to 75% by volume based on the composite magnetic particles.
And an electromagnetic wave absorbing material embedded in the magnetic metal particles.
【請求項10】請求項1〜9のいずれかにおいて、前記
複合磁性粒子の平均結晶粒径が50nm以下であること
を特徴とする電磁波吸収材。
10. The electromagnetic wave absorbing material according to claim 1, wherein the composite magnetic particles have an average crystal grain size of 50 nm or less.
【請求項11】請求項1〜10のいずれかにおいて、前
記複合磁性粒子の表面が前記複合磁性粒子よりも高電気
抵抗率を有する材料で被覆されていることを特徴とする
電磁波吸収材。
11. An electromagnetic wave absorbing material according to claim 1, wherein the surface of said composite magnetic particles is coated with a material having a higher electrical resistivity than said composite magnetic particles.
【請求項12】請求項1〜11のいずれかにおいて、前
記複合磁性粒子のアスペクト比が2以上で、扁平形状で
あることを特徴とする電磁波吸収材。
12. The electromagnetic wave absorbing material according to claim 1, wherein the composite magnetic particles have an aspect ratio of 2 or more and have a flat shape.
【請求項13】請求項12において、扁平形状の複合磁
性粒子が、前記高電気抵抗率を有する材料中に一方向に
配向していることを特徴とする電磁波吸収材。
13. The electromagnetic wave absorbing material according to claim 12, wherein the flat composite magnetic particles are oriented in one direction in the material having a high electrical resistivity.
【請求項14】請求項8〜13のいずれかにおいて、前
記アルミナ及びシリカは焼結体であることを特徴とする
電磁波吸収材。
14. An electromagnetic wave absorbing material according to claim 8, wherein said alumina and silica are sintered bodies.
【請求項15】磁性金属粉末とセラミックス粉末とをメ
カニカルアロイング法により磁性金属粒子とセラミック
スとが一体となった複合磁性粒子を形成することを特徴
とする電磁波吸収材の製造法。
15. A method for producing an electromagnetic wave absorbing material, comprising forming composite magnetic particles in which magnetic metal particles and ceramics are integrated with a magnetic metal powder and a ceramic powder by a mechanical alloying method.
【請求項16】磁性金属粉末とセラミックス粉末とを有
する複合粉末を、前記金属粉末の粒径より大きく、前記
複合粉末の量より多い量の金属製ボール又はセラミック
ス製ボールを用いたメカニカルアロイング法により磁性
金属粒子とセラミックスとが混合した一体となった複合
磁性粒子に形成することを特徴とする電磁波吸収材の製
造法。
16. A mechanical alloying method using a composite powder having a magnetic metal powder and a ceramic powder, using a metal ball or a ceramic ball in an amount larger than the particle diameter of the metal powder and larger than the amount of the composite powder. A method for producing an electromagnetic wave absorbing material, wherein the composite material is formed into an integrated composite magnetic particle in which magnetic metal particles and ceramics are mixed.
【請求項17】磁性金属粒子とセラミックスとが一体と
なった複合磁性粒子、複数の微細な磁性金属粒子がセラ
ミックスによって囲まれて一体となった複合磁性粒子、
及び磁性金属粒子内にセラミックスが埋め込めれて一体
となった複合磁性粒子のいずれかを有することを特徴と
する複合部材。
17. A composite magnetic particle in which magnetic metal particles and ceramics are integrated, a composite magnetic particle in which a plurality of fine magnetic metal particles are integrated by being surrounded by ceramics,
And a composite member comprising ceramic magnetic particles embedded in ceramics and integrated magnetic particles.
【請求項18】磁性金属粒子とセラミックスとが一体と
なった複合磁性粒子と、該複合磁性粒子より高電気抵抗
率を有する材料とが複合化されたことを特徴とする複合
部材。
18. A composite member comprising composite magnetic particles in which magnetic metal particles and ceramics are integrated, and a material having a higher electrical resistivity than the composite magnetic particles.
【請求項19】プリント配線基板上に搭載された電子素
子が電磁波吸収材を含む樹脂によって封止されたことを
特徴とする電子装置。
19. An electronic device, wherein an electronic element mounted on a printed wiring board is sealed with a resin containing an electromagnetic wave absorbing material.
【請求項20】プリント配線基板上に搭載された電子素
子が電磁波吸収材を含む樹脂によって封止された半導体
装置であって、前記樹脂は前記素子側が前記電磁波吸収
材フリーである樹脂によって被われていることを特徴と
する電子装置。
20. A semiconductor device in which an electronic element mounted on a printed circuit board is sealed with a resin containing an electromagnetic wave absorbing material, wherein the resin is covered with a resin whose element side is free of the electromagnetic wave absorbing material. An electronic device, comprising:
【請求項21】絶縁基板上に配線回路を有し、該回路が
絶縁層によって被われたプリント配線基板において、前
記絶縁基板の前記配線回路形成面及びその反対面側の少
なくとも一方に電磁吸収材を有する層が形成されている
ことを特徴とするプリント配線基板。
21. A printed circuit board having a wiring circuit on an insulating substrate, wherein the circuit is covered with an insulating layer, wherein at least one of the wiring circuit forming surface and the opposite surface side of the insulating substrate has an electromagnetic absorbing material. A printed wiring board, wherein a layer having: is formed.
【請求項22】プリント配線基板上に搭載された電子素
子が電磁波吸収材によって内周面が形成された金属製キ
ャップによって被われていることを特徴とする電子装
置。
22. An electronic device wherein an electronic element mounted on a printed wiring board is covered by a metal cap having an inner peripheral surface formed by an electromagnetic wave absorbing material.
【請求項23】プリント配線基板上に搭載された電子素
子が電磁波吸収材を有するキャップによって被われてい
ることを特徴とする電子装置。
23. An electronic device wherein an electronic element mounted on a printed wiring board is covered with a cap having an electromagnetic wave absorbing material.
【請求項24】プリント配線基板と、該基板上に搭載さ
れた電子素子とが電磁波吸収材を有する筐体によって被
われていることを特徴とする電子装置。
24. An electronic device, wherein the printed wiring board and the electronic element mounted on the board are covered by a housing having an electromagnetic wave absorbing material.
【請求項25】プリント配線基板と、該基板上に搭載さ
れた電子素子とが電磁波吸収材によって内周面が形成さ
れた金属製筐体によって被われていることを特徴とする
電子装置。
25. An electronic device, wherein a printed wiring board and an electronic element mounted on the board are covered by a metal casing having an inner peripheral surface formed by an electromagnetic wave absorbing material.
【請求項26】開口部を有する金属製筐体の内周面に電
磁波吸収材が形成されていることを特徴とする筐体。
26. A housing characterized in that an electromagnetic wave absorbing material is formed on an inner peripheral surface of a metal housing having an opening.
【請求項27】絶縁基板上に配線回路を有し、該回路が
絶縁層によって被われたプリント配線基板において、前
記絶縁基板の前記配線回路形成面及びその反対面側の少
なくとも一方に電磁吸収材を有する層が形成されている
ことを特徴とするプリント配線基板。
27. A printed circuit board having a wiring circuit on an insulating substrate, wherein the circuit is covered with an insulating layer, and at least one of the wiring circuit forming surface and the opposite surface of the insulating substrate is provided with an electromagnetic absorbing material. A printed wiring board, wherein a layer having: is formed.
【請求項28】回路基板上に発光素子及び受光素子の少
なくとも一方の素子と、送信回路及び受信回路の少なく
とも一方の回路とを有し、前記基板、素子及び回路が電
磁波吸収材を有する部材によって被われていることを特
徴とする光送信又は受信モジュール。
28. A circuit board having at least one of a light-emitting element and a light-receiving element and at least one of a transmission circuit and a reception circuit, wherein the substrate, the element, and the circuit each include an electromagnetic wave absorbing material. An optical transmission or reception module, which is covered.
【請求項29】回路基板上に発光素子及び受光素子の少
なくとも一方の素子と、送信回路及び受信回路の少なく
とも一方の回路とを有し、前記基板、素子及び回路が電
磁波吸収材を有する部材によって被われている内周面が
形成された金属製キャップによって被われていることを
特徴とする光送信又は受信モジュール。
29. A circuit board having at least one of a light emitting element and a light receiving element and at least one circuit of a transmitting circuit and a receiving circuit, wherein the substrate, the element and the circuit have a member having an electromagnetic wave absorbing material. An optical transmitting or receiving module, wherein the covered inner peripheral surface is covered by a formed metal cap.
【請求項30】回路基板上に発光素子及び受光素子の少
なくとも一方の素子と、送信回路及び受信回路の少なく
とも一方の回路とを有し、前記基板、素子及び回路が電
磁波吸収材を有する部材によって被われ、該部材の外周
面が金属製キャップによって被われていることを特徴と
する光送信又は受信モジュール。
30. A circuit board having at least one of a light-emitting element and a light-receiving element and at least one circuit of a transmission circuit and a reception circuit, wherein the substrate, the element and the circuit each include an electromagnetic wave absorbing material. An optical transmitting or receiving module, wherein the outer peripheral surface of the member is covered with a metal cap.
【請求項31】請求項28〜30のいずれかにおいて、
前記基板、素子及び回路が絶縁樹脂によって被われてい
ることを特徴とする光送信又は受信モジュール。
31. The method according to claim 28, wherein
An optical transmission or reception module, wherein the substrate, the element, and the circuit are covered with an insulating resin.
【請求項32】ゲート屋根が設けられた料金所と、該料
金所を通行する車両に対して進入側に設けられた進入部
アンテナと、前記車両に対して出路側に設けられた出路
部アンテナと、路側通信装置と前記車両に搭載されてい
る車載機との間で情報の授受を行う自動料金収受システ
ムとを備えた自動料金所において、該料金所とその近傍
の電磁波を反射する部材の表面に磁性金属粒とセラミッ
クスとを有する電磁波吸収材が形成されていることを特
徴とする自動料金所。
32. A tollgate provided with a gate roof, an entrance antenna provided on an entrance side for a vehicle passing through the tollgate, and an exit antenna provided on an exit side with respect to the vehicle. And an automatic tollgate provided with an automatic toll collection system for exchanging information between the roadside communication device and the vehicle-mounted device mounted on the vehicle, wherein the tollgate and a member that reflects electromagnetic waves near the tollgate are provided. An automatic tollgate characterized in that an electromagnetic wave absorbing material having magnetic metal particles and ceramics is formed on a surface.
【請求項33】ゲート屋根が設けられた料金所と、該料
金所を通行する車両に対して進入側に設けられた進入部
アンテナと、前記車両に対して出路側に設けられた出路
部アンテナと、路側通信装置と前記車両に搭載されてい
る車載機との間で情報の授受を行う自動料金収受システ
ムとを備えた料金所において、前記ゲート屋根の前記車
両走行側表面と、進入部アンテナ及び出路部アンテナを
支える支柱の表面に磁性金属粒とセラミックスとを有す
る電磁波吸収材が形成されていることを特徴とする自動
料金所。
33. A tollgate provided with a gate roof, an approach antenna provided on an approach side for a vehicle passing through the tollgate, and an exit antenna provided on an outgoing side with respect to the vehicle. And a tollgate provided with an automatic toll collection system for exchanging information between a roadside communication device and an on-vehicle device mounted on the vehicle, wherein the vehicle traveling side surface of the gate roof, an entrance antenna An automatic tollgate characterized in that an electromagnetic wave absorbing material having magnetic metal particles and ceramics is formed on the surface of a column supporting an outgoing section antenna.
【請求項34】ゲート屋根が設けられた料金所と、該料
金所を通行する車両に対して進入側に設けられた進入部
アンテナと、前記車両に対して出路側に設けられた出路
部アンテナと、路側通信装置と前記車両に搭載されてい
る車載機との間で情報の授受を行う自動料金収受システ
ムとを備えた自動料金所において、前記ゲートの前記車
両走行側表面と、進入部アンテナ及び出路部アンテナを
支える支柱の表面に磁性金属粒とセラミックスとを有す
る複合磁性粒子と、該複合磁性粒子よりも高電気抵抗率
を有する材料とが複合化された電磁波吸収材が形成され
ていることを特徴とする自動料金所。
34. A tollgate provided with a gate roof, an entrance antenna provided on an entrance side of a vehicle passing through the tollgate, and an exit antenna provided on an exit side of the vehicle. And an automatic tollgate provided with an automatic toll collection system for exchanging information between a roadside communication device and an in-vehicle device mounted on the vehicle, the vehicle running side surface of the gate, an entrance antenna And an electromagnetic wave absorbing material in which composite magnetic particles having magnetic metal particles and ceramics, and a material having a higher electrical resistivity than the composite magnetic particles are formed on the surface of a column supporting the exit antenna. An automatic tollgate characterized by the following:
【請求項35】請求項32〜34のいずれかにおいて、
前記電磁波吸収材は、電磁波の入射側がその反対側より
高インピーダンスを有する多層構造であることを特徴と
する自動料金所。
35. The method according to claim 32, wherein
The automatic tollgate, wherein the electromagnetic wave absorbing material has a multilayer structure in which an incident side of the electromagnetic wave has a higher impedance than an opposite side.
JP2001098786A 2000-04-10 2001-03-30 Electromagnetic wave absorber, its production method and various uses using it Expired - Lifetime JP3925835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001098786A JP3925835B2 (en) 2000-04-10 2001-03-30 Electromagnetic wave absorber, its production method and various uses using it

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000107519 2000-04-10
JP2000-107519 2000-04-10
JP2001098786A JP3925835B2 (en) 2000-04-10 2001-03-30 Electromagnetic wave absorber, its production method and various uses using it

Publications (2)

Publication Number Publication Date
JP2001358493A true JP2001358493A (en) 2001-12-26
JP3925835B2 JP3925835B2 (en) 2007-06-06

Family

ID=26589750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001098786A Expired - Lifetime JP3925835B2 (en) 2000-04-10 2001-03-30 Electromagnetic wave absorber, its production method and various uses using it

Country Status (1)

Country Link
JP (1) JP3925835B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368480A (en) * 2001-06-12 2002-12-20 Nitto Denko Corp Electromagnetic wave suppressor sheet
JP2003327831A (en) * 2002-05-14 2003-11-19 Dow Corning Toray Silicone Co Ltd Curable silicone composition for forming soft magnetic composite material and the soft magnetic composite material
JP2004022892A (en) * 2002-06-18 2004-01-22 Kyocera Corp Electromagnetic wave absorber and high frequency circuit package using absorber
JP2004071658A (en) * 2002-08-01 2004-03-04 Nec Corp Electronic equipment equipped with chip component and its manufacturing method
JP2004077399A (en) * 2002-08-22 2004-03-11 Hitachi Ltd Milliwave radar
JP2004128001A (en) * 2002-09-30 2004-04-22 Sumitomo Electric Ind Ltd Electromagnetic wave absorber
JP2004281846A (en) * 2003-03-18 2004-10-07 Toshiba Corp High-frequency magnetic material, high-frequency magnetic part using the same, and method for manufacturing the same
US6818821B2 (en) 2002-02-15 2004-11-16 Hitachi, Ltd. Electromagnetic wave absorption material and an associated device
EP1641001A2 (en) 2004-09-24 2006-03-29 Kabushiki Kaisha Toshiba High-frequency magnetic material, producing method for the same and high-frequency magnetic device
JP2007157815A (en) * 2005-12-01 2007-06-21 Yokohama National Univ Method of manufacturing magnetic powdery fine particle
JP2007235085A (en) * 2006-02-03 2007-09-13 Hitachi Chem Co Ltd Method of manufacturing package substrate for packaging optical semiconductor element and method of manufacturing optical semiconductor device using the same
JP2008050573A (en) * 2006-07-25 2008-03-06 Hitachi Chem Co Ltd Thermosetting resin composition for reflecting light, substrate for loading optical semiconductor element using the same, method for producing the same and optical semiconductor device
WO2008133172A1 (en) * 2007-04-17 2008-11-06 Hitachi High-Technologies Corporation Composite fillers for resins
JP2009054758A (en) * 2007-08-27 2009-03-12 Fuji Xerox Co Ltd Optical communication apparatus and its shielding structure
JP2010272700A (en) * 2009-05-21 2010-12-02 Mitsubishi Electric Corp Multilayer high-frequency package substrate
WO2010146863A1 (en) * 2009-06-17 2010-12-23 日本電気株式会社 Ic package
JP2011171333A (en) * 2010-02-16 2011-09-01 Shuho:Kk Circuit board and electric wire
JP2011187671A (en) * 2010-03-08 2011-09-22 Joto Techno Co Ltd Multilayer woody radio wave absorbing board material and manufacturing method thereof
JP2012227515A (en) * 2011-04-04 2012-11-15 Seiko Epson Corp Magnetic shield, program, and selection method
CN102969109A (en) * 2011-08-31 2013-03-13 株式会社东芝 Magnetic material, manufacturing method thereof and inductor element using magnetic material
CN102969105A (en) * 2011-08-31 2013-03-13 株式会社东芝 Magnetic material, manufacture method of same, and sensor component
JP2013211296A (en) * 2012-03-30 2013-10-10 Toshiba Corp Radiowave absorber
WO2015033825A1 (en) * 2013-09-03 2015-03-12 山陽特殊製鋼株式会社 Insulator-coated powder for magnetic member
US9318809B2 (en) 2013-09-20 2016-04-19 Kabushiki Kaisha Toshiba Radio wave absorber
JP2016060959A (en) * 2014-09-19 2016-04-25 株式会社東芝 Manufacturing method of composite magnetic material
JP2016060956A (en) * 2014-09-19 2016-04-25 株式会社東芝 Manufacturing method of composite magnetic material
US9387608B2 (en) 2006-11-15 2016-07-12 Hitachi Chemical Company, Ltd. Thermosetting resin composition for light reflection, method for manufacturing the resin composition and optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP5988004B1 (en) * 2016-04-12 2016-09-07 Tdk株式会社 Electronic circuit package
US9450312B2 (en) 2013-09-20 2016-09-20 Kabushiki Kaisha Toshiba Magnetic metal particle aggregate and radio wave absorber
JPWO2015198667A1 (en) * 2014-06-27 2017-04-20 三菱電機株式会社 Optical transceiver
WO2018051858A1 (en) * 2016-09-16 2018-03-22 株式会社村田製作所 Electronic component
TWI634639B (en) * 2016-03-23 2018-09-01 日商Tdk股份有限公司 Electronic circuit package
WO2018159290A1 (en) * 2017-02-28 2018-09-07 株式会社村田製作所 Electronic component with thin-film shield layer
JP2019106542A (en) * 2013-11-25 2019-06-27 旭化成株式会社 Noise-absorbing sheet
WO2020035968A1 (en) * 2018-08-17 2020-02-20 株式会社村田製作所 Planar array coil and switching power supply device
DE102021113299A1 (en) 2020-05-25 2021-11-25 Denso Corporation In-vehicle camera and vehicle control system
CN116041067A (en) * 2022-11-28 2023-05-02 深圳大学 Photo-curing 3D printing magnetic composite wave-absorbing ceramic and preparation method and application thereof

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789212A (en) * 1980-11-25 1982-06-03 Tdk Electronics Co Ltd Composite ceramic electronic material
JPH0448005A (en) * 1990-06-15 1992-02-18 Toshiba Corp Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
JPH0697691A (en) * 1992-09-11 1994-04-08 Uniden Corp Electromagnetic shield structure
JPH0758486A (en) * 1993-08-20 1995-03-03 Cmk Corp Printed wiring board having magnetic field and radio wave shielding layer and its manufacture
JPH08110436A (en) * 1994-10-12 1996-04-30 Hitachi Ltd Optical transmission module
JPH09255408A (en) * 1996-03-21 1997-09-30 Ube Ind Ltd Radio wave absorbing material
JPH1092623A (en) * 1996-09-12 1998-04-10 Tokin Corp Electromagnetic interference suppressing material
JPH10117082A (en) * 1996-10-08 1998-05-06 Kitagawa Ind Co Ltd Electromagnetic wave shielding cover
JPH10224077A (en) * 1997-02-06 1998-08-21 Riken Corp Radio wave absorber
JPH10268575A (en) * 1997-03-27 1998-10-09 Toda Kogyo Corp Spherical composite particle powder and electrophotographic magnetic carrier comprising its particle powder
JPH11269503A (en) * 1998-03-19 1999-10-05 Hitachi Metals Ltd Iron-base nano-crystal magnetic powder, its production, and radio wave noise inhibiting member using the same
JPH11298187A (en) * 1998-04-09 1999-10-29 Hitachi Metals Ltd Noise suppression sheet excellent in electromagnetic wave absorbing characteristic of ghz band
JPH11354691A (en) * 1998-06-10 1999-12-24 Nec Corp Integrated circuit device and its mounting method
JPH11354973A (en) * 1998-06-04 1999-12-24 Hitachi Metals Ltd Electromagnetic wave absorber
JP2000021620A (en) * 1998-04-28 2000-01-21 Hitachi Metals Ltd Compound magnetic substance and manufacture thereof
JP2000068117A (en) * 1998-08-20 2000-03-03 Daido Steel Co Ltd Electromagnetic wave absorbent and its manufacture
JP2000223884A (en) * 1999-02-02 2000-08-11 Daido Steel Co Ltd Electromagnetic wave absorber
JP2001068925A (en) * 1999-08-26 2001-03-16 Matsushita Electric Ind Co Ltd Road side antenna device

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789212A (en) * 1980-11-25 1982-06-03 Tdk Electronics Co Ltd Composite ceramic electronic material
JPH0448005A (en) * 1990-06-15 1992-02-18 Toshiba Corp Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
JPH0697691A (en) * 1992-09-11 1994-04-08 Uniden Corp Electromagnetic shield structure
JPH0758486A (en) * 1993-08-20 1995-03-03 Cmk Corp Printed wiring board having magnetic field and radio wave shielding layer and its manufacture
JPH08110436A (en) * 1994-10-12 1996-04-30 Hitachi Ltd Optical transmission module
JPH09255408A (en) * 1996-03-21 1997-09-30 Ube Ind Ltd Radio wave absorbing material
JPH1092623A (en) * 1996-09-12 1998-04-10 Tokin Corp Electromagnetic interference suppressing material
JPH10117082A (en) * 1996-10-08 1998-05-06 Kitagawa Ind Co Ltd Electromagnetic wave shielding cover
JPH10224077A (en) * 1997-02-06 1998-08-21 Riken Corp Radio wave absorber
JPH10268575A (en) * 1997-03-27 1998-10-09 Toda Kogyo Corp Spherical composite particle powder and electrophotographic magnetic carrier comprising its particle powder
JPH11269503A (en) * 1998-03-19 1999-10-05 Hitachi Metals Ltd Iron-base nano-crystal magnetic powder, its production, and radio wave noise inhibiting member using the same
JPH11298187A (en) * 1998-04-09 1999-10-29 Hitachi Metals Ltd Noise suppression sheet excellent in electromagnetic wave absorbing characteristic of ghz band
JP2000021620A (en) * 1998-04-28 2000-01-21 Hitachi Metals Ltd Compound magnetic substance and manufacture thereof
JPH11354973A (en) * 1998-06-04 1999-12-24 Hitachi Metals Ltd Electromagnetic wave absorber
JPH11354691A (en) * 1998-06-10 1999-12-24 Nec Corp Integrated circuit device and its mounting method
JP2000068117A (en) * 1998-08-20 2000-03-03 Daido Steel Co Ltd Electromagnetic wave absorbent and its manufacture
JP2000223884A (en) * 1999-02-02 2000-08-11 Daido Steel Co Ltd Electromagnetic wave absorber
JP2001068925A (en) * 1999-08-26 2001-03-16 Matsushita Electric Ind Co Ltd Road side antenna device

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368480A (en) * 2001-06-12 2002-12-20 Nitto Denko Corp Electromagnetic wave suppressor sheet
US6818821B2 (en) 2002-02-15 2004-11-16 Hitachi, Ltd. Electromagnetic wave absorption material and an associated device
US7239261B2 (en) 2002-02-15 2007-07-03 Hitachi Ltd. Electromagnetic wave absorption material and an associated device
JP2003327831A (en) * 2002-05-14 2003-11-19 Dow Corning Toray Silicone Co Ltd Curable silicone composition for forming soft magnetic composite material and the soft magnetic composite material
JP2004022892A (en) * 2002-06-18 2004-01-22 Kyocera Corp Electromagnetic wave absorber and high frequency circuit package using absorber
JP2004071658A (en) * 2002-08-01 2004-03-04 Nec Corp Electronic equipment equipped with chip component and its manufacturing method
JP2004077399A (en) * 2002-08-22 2004-03-11 Hitachi Ltd Milliwave radar
JP2004128001A (en) * 2002-09-30 2004-04-22 Sumitomo Electric Ind Ltd Electromagnetic wave absorber
JP2004281846A (en) * 2003-03-18 2004-10-07 Toshiba Corp High-frequency magnetic material, high-frequency magnetic part using the same, and method for manufacturing the same
JP4601907B2 (en) * 2003-03-18 2010-12-22 株式会社東芝 High frequency magnetic material powder, high frequency magnetic component using the same, and manufacturing method
EP1641001A2 (en) 2004-09-24 2006-03-29 Kabushiki Kaisha Toshiba High-frequency magnetic material, producing method for the same and high-frequency magnetic device
JP4604197B2 (en) * 2005-12-01 2010-12-22 国立大学法人横浜国立大学 Method for producing magnetic fine particles
JP2007157815A (en) * 2005-12-01 2007-06-21 Yokohama National Univ Method of manufacturing magnetic powdery fine particle
JP2007235085A (en) * 2006-02-03 2007-09-13 Hitachi Chem Co Ltd Method of manufacturing package substrate for packaging optical semiconductor element and method of manufacturing optical semiconductor device using the same
JP2008050573A (en) * 2006-07-25 2008-03-06 Hitachi Chem Co Ltd Thermosetting resin composition for reflecting light, substrate for loading optical semiconductor element using the same, method for producing the same and optical semiconductor device
US9387608B2 (en) 2006-11-15 2016-07-12 Hitachi Chemical Company, Ltd. Thermosetting resin composition for light reflection, method for manufacturing the resin composition and optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
US10381533B2 (en) 2006-11-15 2019-08-13 Hitachi Chemical Company, Ltd. Optical semiconductor element mounting substrate and optical semiconductor device using thermosetting resin composition for light reflection
JP2012151502A (en) * 2007-04-17 2012-08-09 Hitachi High-Technologies Corp Composite filler for mixing resin
JPWO2008133172A1 (en) * 2007-04-17 2010-07-22 株式会社日立ハイテクノロジーズ Composite filler for resin mixing
WO2008133172A1 (en) * 2007-04-17 2008-11-06 Hitachi High-Technologies Corporation Composite fillers for resins
JP5133338B2 (en) * 2007-04-17 2013-01-30 株式会社日立ハイテクノロジーズ Composite filler for resin mixing
JP2009054758A (en) * 2007-08-27 2009-03-12 Fuji Xerox Co Ltd Optical communication apparatus and its shielding structure
JP2010272700A (en) * 2009-05-21 2010-12-02 Mitsubishi Electric Corp Multilayer high-frequency package substrate
WO2010146863A1 (en) * 2009-06-17 2010-12-23 日本電気株式会社 Ic package
JP5408253B2 (en) * 2009-06-17 2014-02-05 日本電気株式会社 IC package
JP2011171333A (en) * 2010-02-16 2011-09-01 Shuho:Kk Circuit board and electric wire
JP2011187671A (en) * 2010-03-08 2011-09-22 Joto Techno Co Ltd Multilayer woody radio wave absorbing board material and manufacturing method thereof
JP2012227515A (en) * 2011-04-04 2012-11-15 Seiko Epson Corp Magnetic shield, program, and selection method
US9612295B2 (en) 2011-04-04 2017-04-04 Seiko Epson Corporation Magnetic shield, program, and selection method
JP2014131054A (en) * 2011-08-31 2014-07-10 Toshiba Corp Magnetic material
US9362033B2 (en) 2011-08-31 2016-06-07 Kabushiki Kaisha Toshiba Magnetic material, method for producing magnetic material, and inductor element
JP2013065844A (en) * 2011-08-31 2013-04-11 Toshiba Corp Magnetic material, method for producing magnetic material, and inductor element
US8840800B2 (en) 2011-08-31 2014-09-23 Kabushiki Kaisha Toshiba Magnetic material, method for producing magnetic material, and inductor element
US8920670B2 (en) 2011-08-31 2014-12-30 Kabushiki Kaisha Toshiba Magnetic materials, methods of manufacturing magnetic material, and inductor element using magnetic material
CN102969105A (en) * 2011-08-31 2013-03-13 株式会社东芝 Magnetic material, manufacture method of same, and sensor component
JP2013051329A (en) * 2011-08-31 2013-03-14 Toshiba Corp Magnetic material, method for manufacturing magnetic material, and inductor element using magnetic material
JP2017120924A (en) * 2011-08-31 2017-07-06 株式会社東芝 Magnetic material, inductor element, magnetic ink, and antenna device
CN102969109A (en) * 2011-08-31 2013-03-13 株式会社东芝 Magnetic material, manufacturing method thereof and inductor element using magnetic material
JP2013211296A (en) * 2012-03-30 2013-10-10 Toshiba Corp Radiowave absorber
US9225072B2 (en) 2012-03-30 2015-12-29 Kabushiki Kaisha Toshiba Radiowave absorber
WO2015033825A1 (en) * 2013-09-03 2015-03-12 山陽特殊製鋼株式会社 Insulator-coated powder for magnetic member
US9318809B2 (en) 2013-09-20 2016-04-19 Kabushiki Kaisha Toshiba Radio wave absorber
US9450312B2 (en) 2013-09-20 2016-09-20 Kabushiki Kaisha Toshiba Magnetic metal particle aggregate and radio wave absorber
JP2019106542A (en) * 2013-11-25 2019-06-27 旭化成株式会社 Noise-absorbing sheet
JPWO2015198667A1 (en) * 2014-06-27 2017-04-20 三菱電機株式会社 Optical transceiver
JP2016060959A (en) * 2014-09-19 2016-04-25 株式会社東芝 Manufacturing method of composite magnetic material
JP2016060956A (en) * 2014-09-19 2016-04-25 株式会社東芝 Manufacturing method of composite magnetic material
US10513760B2 (en) 2014-09-19 2019-12-24 Kabushiki Kaisha Toshiba Method for producing magnetic material
TWI634639B (en) * 2016-03-23 2018-09-01 日商Tdk股份有限公司 Electronic circuit package
JP5988004B1 (en) * 2016-04-12 2016-09-07 Tdk株式会社 Electronic circuit package
WO2018051858A1 (en) * 2016-09-16 2018-03-22 株式会社村田製作所 Electronic component
JPWO2018159290A1 (en) * 2017-02-28 2019-12-12 株式会社村田製作所 Electronic component with thin-film shield layer
WO2018159290A1 (en) * 2017-02-28 2018-09-07 株式会社村田製作所 Electronic component with thin-film shield layer
US10964645B2 (en) 2017-02-28 2021-03-30 Murata Manufacturing Co., Ltd. Electronic component with thin-film shield layer
WO2020035968A1 (en) * 2018-08-17 2020-02-20 株式会社村田製作所 Planar array coil and switching power supply device
JPWO2020035968A1 (en) * 2018-08-17 2021-04-08 株式会社村田製作所 Planar array coil and switching power supply
DE102021113299A1 (en) 2020-05-25 2021-11-25 Denso Corporation In-vehicle camera and vehicle control system
US11671560B2 (en) 2020-05-25 2023-06-06 Denso Corporation In-vehicle camera and vehicle control system
DE102021113299B4 (en) 2020-05-25 2023-12-07 Denso Corporation In-vehicle camera and vehicle control system
CN116041067A (en) * 2022-11-28 2023-05-02 深圳大学 Photo-curing 3D printing magnetic composite wave-absorbing ceramic and preparation method and application thereof
CN116041067B (en) * 2022-11-28 2024-02-27 深圳大学 Photo-curing 3D printing magnetic composite wave-absorbing ceramic and preparation method and application thereof

Also Published As

Publication number Publication date
JP3925835B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
JP3925835B2 (en) Electromagnetic wave absorber, its production method and various uses using it
US6919387B2 (en) Electromagnetic wave absorber, method of manufacturing the same and appliance using the same
JP3922039B2 (en) Electromagnetic wave absorbing material and various products using the same
US7060350B2 (en) Composite magnetic material and magnetic molding material, magnetic powder compression molding material, and magnetic paint using the composite magnetic material, composite dielectric material and molding material, powder compression molding material, paint, prepreg, and substrate using the composite dielectric material, and electronic part
KR100627114B1 (en) Composite magnetic element, electromagnetic wave absorbing sheet, production method for sheet-form article, production method for electromagnetic wave absorbing sheet
JP5390099B2 (en) Planar magnetic element
KR102450588B1 (en) Radio wave absorbing laminated film, manufacturing method thereof, and device comprising same
US20050238858A1 (en) Printed circuit board
WO2014177028A1 (en) Soft magnetic composite film, manufacturing method and use thereof in electronic devices
CN110034075A (en) Use the circuit package of conductive molding material
JP3893252B2 (en) Optical transmitter / receiver module and manufacturing method thereof
JP2003124011A (en) Electromagnetic wave absorber and product using the same
JP2001338813A (en) Electronic part
JP3722391B2 (en) Composite magnetic body and electromagnetic interference suppressor using the same
JP2004022685A (en) Radio wave absorption cap
JP2002298170A (en) Automatic toll gate
JP2000091783A (en) Laminated wide-band wave absorber
JP2023160276A (en) Method for manufacturing sheet made of collection of flat powder by joining gap between flat surfaces of flat powder made of metal, alloy, metal oxide, or inorganic compound with collection of metal or metal oxide nanoparticles
JP2001332826A (en) Electronic circuit board having decoupling function

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6