JP2000021620A - Compound magnetic substance and manufacture thereof - Google Patents

Compound magnetic substance and manufacture thereof

Info

Publication number
JP2000021620A
JP2000021620A JP11114945A JP11494599A JP2000021620A JP 2000021620 A JP2000021620 A JP 2000021620A JP 11114945 A JP11114945 A JP 11114945A JP 11494599 A JP11494599 A JP 11494599A JP 2000021620 A JP2000021620 A JP 2000021620A
Authority
JP
Japan
Prior art keywords
magnetic material
layer
insulating ceramic
composite magnetic
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11114945A
Other languages
Japanese (ja)
Inventor
Tokukazu Koyuhara
徳和 小湯原
Yoshinori Akiho
良則 明穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11114945A priority Critical patent/JP2000021620A/en
Publication of JP2000021620A publication Critical patent/JP2000021620A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove noises in the ultra high frequency band by composing a compound magnetic substance of a continuous layer made of a magnetic substance and a non-porous diffused layer made of an insulating ceramic or a non-magnetic substance and by specifying the initial permeabilities and permittivities of these layers. SOLUTION: The initial permeabilities of a continuous layer (first layer) consisting of a magnetic substance and a non-porous diffused layer (second layer) consisting of an insulating ceramic or a non-magnetic substance are set in the range of 10-500, and their permittivities at 100 MHz 50 or lower. The method of mixing the magnetic material with the insulating ceramic material or the non-magnetic material, is adjusted so that the second layer is uniformly present in the first layer in a predetermined size. By limiting the size of the second layer to 0.5-200 μm, the second layer has substantially the same size as the grain diameter of the magnetic substance, thereby suppressing internal stresses caused due to distortions of the crystal structure and the like as much as possible and minimizing the deterioration of the permeability, which is a magnetic property. Hence, good impedance characteristics can be obtained for high frequencies.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、磁性体から成る連
続層と絶縁性セラミックあるいは非磁性体から成る非多
孔性の分散層を有する複合磁性体に関するものであり、
特に用途は限定されるものではないが、例えば電子機器
用の広帯域な高周波ノイズ対策部品や電波吸収体・電波
吸収シートや電波遮蔽シート等に利用される複合磁性体
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite magnetic material having a continuous layer made of a magnetic material and a non-porous dispersion layer made of an insulating ceramic or a non-magnetic material.
Although the application is not particularly limited, for example, the present invention relates to a composite magnetic material used for a broadband high frequency noise suppression component for an electronic device, a radio wave absorber, a radio wave absorption sheet, a radio wave shielding sheet, and the like.

【0002】[0002]

【従来の技術】電源、コンピュータ、通信機器等あらゆ
る電子機器では、機器から発生するノイズによる弊害
(電磁波障害)を抑えるため、ノイズ対策用部品として
各種材料・形状の磁性体が適応周波数に合わせて使用さ
れている。形状の多様性・製造の容易性・低コストの面
から特にフェライト材料が注目され、各種機器のノイズ
対策用部品として使用され優れた効果を発揮している。
2. Description of the Related Art In all electronic devices such as power supplies, computers, communication devices, etc., magnetic materials of various materials and shapes are used as noise countermeasures in accordance with an adaptive frequency in order to suppress adverse effects (electromagnetic interference) caused by noise generated from the devices. It is used. Ferrite materials have attracted particular attention because of their variety of shapes, easiness of manufacture, and low cost, and they have been used as noise suppression components for various devices and have demonstrated excellent effects.

【0003】フェライトをインダクタとして用いた場
合、インダクタのインピーイダンス(Z)は周波数と共
に増加する。このため、信号領域ではインピーダンスが
低くローパスフィルタとして作用し、高周波になるに従
いそのインピーダンスは磁気損失の増大により抵抗成分
(R:レジスタンス)が支配的となり、ノイズ(不要な
高周波成分)を熱に変換し除去でき、ノイズフィルタと
して作用する。
[0003] When ferrite is used as an inductor, the impedance (Z) of the inductor increases with frequency. For this reason, in the signal region, the impedance is low and acts as a low-pass filter. As the frequency increases, the impedance becomes dominant in the resistance component (R: resistance) due to an increase in magnetic loss, and the noise (unwanted high-frequency component) is converted into heat. And acts as a noise filter.

【0004】フェライト材料の中では高透磁率であるM
n―Zn系フェライトコアは、主に10kHzから30
MHzの適応周波数で高いインピーダンスを有すること
から、前記周波数の伝導ノイズ対策用コアとしてコモン
モードラインフィルターに使用されている。一般的なコ
ア形状としては日の字型・ロの字型コア,トロイダル型
コア,EE型コア,UU型コア等が挙げられ、巻線とコ
ア間の絶縁のためコアに樹脂をコーティングした後ある
いはコアにボビンを装着した後、巻線を施し使用されて
いる。
[0004] Among ferrite materials, M, which has a high magnetic permeability,
The n-Zn ferrite core is mainly 30 kHz to 30 kHz.
Since it has a high impedance at an adaptive frequency of MHz, it is used in a common mode line filter as a core for suppressing conducted noise at the frequency. Common core shapes include a star-shaped core, a square-shaped core, a toroidal core, an EE core, a UU core, and the like. The core is coated with resin for insulation between the winding and the core. Alternatively, after a bobbin is mounted on a core, the core is wound and used.

【0005】また、フェライト材料の中では高抵抗なN
i―Zn系フェライトコアは、主に30MHzから30
0MHzの適応周波数で高いインピーダンスを有するこ
とから、前記周波数で輻射ノイズ対策用コアとしてコモ
ンモード状,ノーマルモード状にして使用されている。
一般的なコア形状としてはビーズコア,トロイダル型コ
ア,フラットケーブル用の矩形型コア(分割タイプ),
UI型コア等が挙げられ、コアに直にリードワイヤや巻
線を施したり、機器間のインターフェースケーブルに装
着し使用されるものがある。また、ノートパソコンや携
帯機器等の小型・薄型化に対応した回路基板にはSMD
型のビーズフィルタがノイズ対策用部品として数多く使
用されるように成って来ている。
Further, among ferrite materials, high-resistance N
i-Zn ferrite cores are mainly 30 MHz to 30 MHz.
Since it has a high impedance at an adaptive frequency of 0 MHz, it is used in the common mode and the normal mode as a radiation noise countermeasure core at the frequency.
Common core shapes include bead core, toroidal core, rectangular core for flat cable (split type),
Examples of the core include a UI type core, and a core is used by directly applying a lead wire or a winding to the core, or attached to an interface cable between devices. In addition, SMDs are used for circuit boards that are small and thin, such as notebook computers and portable devices.
Many types of bead filters have been used as noise suppression components.

【0006】一方高層ビルは、ビル自体が電波の反射板
となり、TVのゴースト現象を発生する原因となってい
る。この不要電波を抑止するため、高層ビルの壁面に
は、電波吸収体として主にNi−Zn系フェライト(な
かにはMn−Zn系,Mg−Zn系フェライトを使用す
るものも有り)が使用されている。このNi−Zn系フ
ェライトは主に90MHzから220MHzの適応周波
数(VHF帯対応)で高いインピーダンスを有すること
から、前記周波数で良好な電波吸収特性を有し、電波吸
収体として優れた特性を備えている。また、ノイズに関
する評価・測定を行うことに用いられる電波暗室の壁面
にも電波吸収体として主にNi−Zn系フェライトが使
用されている。
On the other hand, in a high-rise building, the building itself becomes a reflector for radio waves, causing a ghost phenomenon of TV. In order to suppress this unnecessary radio wave, Ni-Zn ferrite (some use Mn-Zn ferrite or Mg-Zn ferrite) is mainly used as a radio wave absorber on the wall surface of the high-rise building. . Since this Ni—Zn ferrite has high impedance mainly at an adaptive frequency of 90 MHz to 220 MHz (corresponding to the VHF band), it has good radio wave absorption characteristics at the above-mentioned frequency and has excellent characteristics as a radio wave absorber. I have. In addition, Ni-Zn ferrite is mainly used as a radio wave absorber also on the wall surface of an anechoic chamber used for evaluating and measuring noise.

【0007】[0007]

【発明が解決しようとする課題】パソコンや携帯機器に
代表される電子機器の動作周波数は留まることを知らな
い勢いで高周波化が進んでいる。これに伴い、これら機
器から発生するノイズ周波数も高周波化し、300MH
zから3GHz程度(UHF帯対応)の高周波ノイズを
除去する必要が出て来ている。しかしながら、Ni−Z
n系フェライト材料を用いても上記周波数のノイズを除
去することは難しく、より高周波(UHF帯)でノイズ
除去効果に優れた材料が要望されている。
The operating frequency of electronic devices, such as personal computers and portable devices, is increasing at an ever increasing frequency. Along with this, the noise frequency generated from these devices has also been increased to 300 MHz.
There is a need to remove high-frequency noise from z to about 3 GHz (corresponding to the UHF band). However, Ni-Z
Even if an n-type ferrite material is used, it is difficult to remove noise at the above frequency, and a material having a higher frequency (UHF band) and an excellent noise removing effect has been demanded.

【0008】また、一般にフェライトの透磁率を下げる
ことによりインピーダンスの周波数特性(インピーダン
スが最大値を示す周波数:共振周波数)は高周波側へ移
行するが、300MHzから3GHz程度(UHF帯対
応)の高周波におけるノイズ対策で目的のインダクタを
得ようとする場合、透磁率は10以下とする必要があ
る。しかしながら、このような材料をインダクタとして
用いた場合、漏れ磁束が多くインピーダンスの低下は避
けられず、ノイズフィルタとしての効果に乏しい。ま
た、巻線を増すことによりインダクタンスは増加する
が、巻線の浮遊容量が増し、インピーダンスの周波数特
性は低周波側へ移行し、結果として高周波でノイズ除去
効果が得られない。更に、体積を大きくしてインピーダ
ンスを大きくすることは可能であるが、実用上好ましく
ない。
In general, the frequency characteristic of the impedance (the frequency at which the impedance exhibits the maximum value: the resonance frequency) shifts to the high frequency side by lowering the magnetic permeability of the ferrite, but the frequency characteristic in the high frequency range from 300 MHz to about 3 GHz (corresponding to the UHF band). In order to obtain a target inductor for noise suppression, the magnetic permeability must be 10 or less. However, when such a material is used as an inductor, the amount of leakage magnetic flux is large and a decrease in impedance cannot be avoided, and the effect as a noise filter is poor. Further, although the inductance increases as the number of windings increases, the stray capacitance of the winding increases, and the frequency characteristic of impedance shifts to a lower frequency side. As a result, a noise removing effect cannot be obtained at a higher frequency. Further, it is possible to increase the impedance by increasing the volume, but this is not practically preferable.

【0009】例えば、一般的なフェライト材料のインピ
ーダンス(Z)の周波数特性は図1の様に表せる。イン
ピーダンスは周波数と共に増加して行き、ある周波数で
最大値を取り、その後減少する。また、インピーダンス
は、リアクタンスXとレジスタンスRの和として次の数
式1で表せる。 Z=jX+R・・・・・(1)
For example, the frequency characteristic of impedance (Z) of a general ferrite material can be expressed as shown in FIG. The impedance increases with frequency, reaches a maximum at some frequency, and then decreases. The impedance can be expressed by the following equation 1 as the sum of the reactance X and the resistance R. Z = jX + R (1)

【0010】ノイズ除去効果を発揮するには、インピー
ダンスZが大きいことも必須条件であるが、リアクタン
スXの周波数特性(透磁率の周波数特性に依存する)と
レジスタンスRの周波数特性(複素透磁率の周波数特性
に依存)も重要な要素である。優れたノイズ除去効果を
発揮する周波数の目安は、レジスタンスR > リアクタ
ンスXとなる周波数から、インピーダンスZが最大とな
る(リアクタンスXが最小となる)周波数(共振周波
数)までである。
In order to exhibit the noise removing effect, it is an essential condition that the impedance Z is large. However, the frequency characteristic of the reactance X (depending on the frequency characteristic of the magnetic permeability) and the frequency characteristic of the resistance R (the complex magnetic permeability Is dependent on the frequency characteristics). The guideline of the frequency at which an excellent noise removing effect is exhibited is from a frequency at which resistance R> reactance X to a frequency (resonance frequency) at which impedance Z becomes maximum (reactance X becomes minimum).

【0011】本発明は、上記の事を鑑みて提案されたも
のであり、300MHzから3GHz程度(UHF帯対
応)の高周波ノイズを除去する効果を有する複合磁性体
を提供することを目的とする。
The present invention has been proposed in view of the above, and has as its object to provide a composite magnetic material having an effect of removing high-frequency noise from 300 MHz to about 3 GHz (corresponding to the UHF band).

【0012】[0012]

【課題を解決するための手段】本発明は、ノイズ除去効
果に優れたフェライト材料の特性を維持し、すなわち、
透磁率はなるべく大きいまま、インピーダンスの周波数
特性を高周波側へ移行することを目的とし、上記従来技
術の問題点を鑑みて、フェライト材料(Ni−Zn系フ
ェライト,Mg−Zn系フェライト)の組成と絶縁性セ
ラミック材料及び非磁性材料(フォルステライト,ステ
アタイト,アルミナ等)の配合方法を種々検討した。そ
の結果、磁性材料と絶縁性セラミック材料あるいは非磁
性材料を混合しただけでは、透磁率の低下は抑えられ
ず、磁性体から成る連続層中に絶縁性セラミックあるい
は非磁性体から成る非多孔性の分散層がある大きさで均
一に介在する構造を取ることにより、より透磁率の低下
が少なく、高周波でもノイズ除去効果を維持できること
を見出した。
SUMMARY OF THE INVENTION The present invention maintains the characteristics of a ferrite material having an excellent noise removing effect,
The purpose is to shift the frequency characteristic of impedance to a higher frequency side while keeping the magnetic permeability as high as possible. In view of the above-mentioned problems of the prior art, the composition and composition of ferrite materials (Ni-Zn-based ferrite, Mg-Zn-based ferrite) are considered. Various mixing methods of insulating ceramic materials and non-magnetic materials (forsterite, steatite, alumina, etc.) were studied. As a result, simply mixing a magnetic material with an insulating ceramic material or a non-magnetic material does not suppress a decrease in magnetic permeability, and a non-porous insulating ceramic or non-magnetic material It has been found that by adopting a structure in which the dispersion layer has a certain size and is evenly interposed, the magnetic permeability is less reduced and the noise removing effect can be maintained even at a high frequency.

【0013】本発明は、上述したような知見に基づき成
されたものであり、要旨構成は以下のとおりである。本
発明は、磁性体から成る連続層(第1層)と絶縁性セラ
ミックあるいは非磁性体から成る非多孔性の分散層(第
2層)を有する構造を持ち、かつ、初透磁率が10以上
500以下,100MHzにおける誘電率が50以下で
あることを特徴とする複合磁性体である。
The present invention has been made based on the above-mentioned findings, and the gist configuration is as follows. The present invention has a structure having a continuous layer (first layer) made of a magnetic material and a non-porous dispersion layer (second layer) made of an insulating ceramic or a non-magnetic material, and has an initial magnetic permeability of 10 or more. A composite magnetic material having a dielectric constant of not more than 500 and not more than 50 at 100 MHz.

【0014】また本発明において、前記第1層の磁性体
はNi−Zn系フェライトもしくはMg−Zn系フェラ
イトから成り、前記第2層の絶縁性セラミックあるいは
非磁性体はフォルステライト,ステアタイト,アルミナ
の少なくとも1種から成ることが望ましい。更に、本発
明の複合磁性体においては、非多孔性の第2層を形成す
る絶縁性セラミックあるいは非磁性体の分散層が体積比
率5〜55%で存在すること、前記分散層の大きさが
0.5〜200μmであることが望ましい。また本発明
の複合磁性体は、気孔率が8%以下であることが望まし
い。
In the present invention, the magnetic material of the first layer is made of Ni—Zn ferrite or Mg—Zn ferrite, and the insulating ceramic or non-magnetic material of the second layer is forsterite, steatite, alumina or the like. It is desirable to consist of at least one of the following. Further, in the composite magnetic material of the present invention, the dispersion layer of the insulating ceramic or the non-magnetic material forming the non-porous second layer is present at a volume ratio of 5 to 55%, and the size of the dispersion layer is It is desirable that the thickness be 0.5 to 200 μm. The composite magnetic material of the present invention preferably has a porosity of 8% or less.

【0015】また本発明は、磁性体を構成する主成分を
混合後仮焼成し得られた磁性材料粉末と絶縁性セラミッ
クあるいは非磁性体を構成する主成分を混合後熱処理し
得られた前記粉末を混合・焼成し得られた複合磁性体
が、磁性体から成る連続層(第1層)と絶縁性セラミッ
クあるいは非磁性体から成る非多孔性の分散層(第2
層)を有する構造を持ち、かつ、初透磁率が10以上5
00以下,100MHzにおける誘電率が50以下であ
ることを特徴とする複合磁性体の製造方法である。
Further, according to the present invention, the magnetic material powder obtained by mixing the main components constituting the magnetic material and then preliminarily firing is mixed with the main component forming the insulating ceramic or the non-magnetic material and then subjected to the heat treatment. The composite magnetic material obtained by mixing and firing is composed of a continuous layer (first layer) made of a magnetic material and a non-porous dispersion layer (second layer) made of an insulating ceramic or a non-magnetic material.
Layer) and the initial magnetic permeability is 10 or more and 5 or more.
A method for manufacturing a composite magnetic material, wherein the dielectric constant at 100 MHz or less and 100 MHz is 50 or less.

【0016】また本発明の複合磁性体の製造方法におい
ては、前記第2層を形成する絶縁性セラミック材料ある
いは非磁性材料の混合比率は3〜40wt%とするこ
と、又前記分散層の大きさは0.5〜200μmとする
ことが望ましい。また得られた複合磁性体の気孔率は9
2%以上とすることが望ましい。更に、本発明の複合磁
性体の製造方法においては、仮焼成後の磁性材料粉末の
平均粒径は0.5〜10μmに処理すること、絶縁性セ
ラミック材料あるいは非磁性材料の熱処理温度は800
〜1300℃とすること、熱処理後の前記粉末の平均粒
径は0.5〜50μmに処理することが望ましい。
In the method of manufacturing a composite magnetic body according to the present invention, the mixing ratio of the insulating ceramic material or the non-magnetic material forming the second layer is 3 to 40 wt%. Is desirably 0.5 to 200 μm. The porosity of the obtained composite magnetic material was 9
It is desirable to set it to 2% or more. Further, in the method for producing a composite magnetic material of the present invention, the magnetic material powder after calcination is processed to have an average particle size of 0.5 to 10 μm, and the heat treatment temperature of the insulating ceramic material or the nonmagnetic material is set to 800.
To 1300 ° C., and the average particle diameter of the powder after the heat treatment is desirably 0.5 to 50 μm.

【0017】[0017]

【発明の実施の形態】本発明は、磁性材料の組成と絶縁
性セラミックあるいは非磁性材料の配合方法を種々検討
することにより、ノイズ除去効果に優れたフェライト材
料の特性を維持し、すなわち、透磁率はなるべく大きい
まま、インピーダンスの周波数特性を高周波側へ移行す
ることが出来ると考えた。その結果、磁性材料粉末と絶
縁性セラミック粉末あるいは非磁性材料粉末を混合した
だけでは、透磁率の低下は抑えられず、磁性材料と絶縁
性セラミック材料あるいは非磁性材料の配合方法を調整
し、磁性体から成る連続層中に絶縁性セラミックあるい
は非磁性体から成る非多孔性の分散層をある大きさで均
一に介在させることにより、より透磁率の低下が少な
く、かつ、高周波でもノイズ除去効果を維持できること
を見出した。これにより、300MHzから3GHz程
度(UHF帯対応)の高周波ノイズを除去する効果を有
する複合磁性体を提供することが可能となった。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention maintains the characteristics of a ferrite material excellent in a noise removing effect by examining various compositions of a magnetic material and a method of blending an insulating ceramic or a non-magnetic material. We thought that the frequency characteristics of the impedance could be shifted to the high frequency side while the magnetic susceptibility was as large as possible. As a result, simply mixing the magnetic material powder and the insulating ceramic powder or the non-magnetic material powder does not suppress the decrease in magnetic permeability, and adjusts the method of blending the magnetic material with the insulating ceramic material or the non-magnetic material to adjust the magnetic properties. By uniformly interposing a non-porous dispersion layer made of insulating ceramic or non-magnetic material in a certain size in a continuous layer made of a material, the decrease in magnetic permeability is reduced and the noise removal effect is obtained even at high frequencies. We found that we could maintain. As a result, it has become possible to provide a composite magnetic material having an effect of removing high-frequency noise from 300 MHz to about 3 GHz (corresponding to the UHF band).

【0018】本発明において、磁性材料・絶縁性セラミ
ック材料あるいは非磁性材料の組成、絶縁性セラミック
材料粉末あるいは非磁性材料粉末の混合比率・平均粒径
・熱処理温度、複合磁性体中の分散層の体積比率及びそ
の大きさ、複合磁性体の気孔率を前記の範囲に限定した
理由は、以下の通りである。
In the present invention, the composition of the magnetic material, the insulating ceramic material or the non-magnetic material, the mixing ratio of the insulating ceramic material powder or the non-magnetic material powder, the average particle diameter, the heat treatment temperature, the dispersion layer in the composite magnetic material, The reasons for limiting the volume ratio, its size, and the porosity of the composite magnetic body to the above ranges are as follows.

【0019】磁性材料の組成は、インピーダンスの周波
数特性に優れるNi−Zn系フェライト及びMg−Zn
系フェライトが望ましい。また、混合する絶縁性セラミ
ック材料あるいは非磁性材料の焼結温度が磁性材料の焼
結温度より低いと絶縁性セラミックあるいは非磁性体が
溶融してしまい均一な分散層が得られないため、絶縁性
セラミック材料あるいは非磁性材料の組成は、磁性材料
の焼成温度と同じ温度かそれ以上の温度で焼結する材料
(磁性材料と同じ融点かそれ以上の融点を有する材料)
が望ましく、なかでもフォルステライト、ステアタイ
ト、アルミナが望ましい。
The composition of the magnetic material includes Ni-Zn based ferrite and Mg-Zn
A system ferrite is desirable. If the sintering temperature of the insulating ceramic material or non-magnetic material to be mixed is lower than the sintering temperature of the magnetic material, the insulating ceramic or non-magnetic material is melted and a uniform dispersion layer cannot be obtained. The composition of the ceramic or non-magnetic material is a material that sinters at the same temperature or higher than the firing temperature of the magnetic material (a material that has the same melting point as or higher than the magnetic material)
And forsterite, steatite and alumina are particularly desirable.

【0020】また、絶縁性セラミック材料あるいは非磁
性材料の磁性材料への溶融を極力抑えるため、前記粉末
を磁性材料粉末に混合する前に、絶縁性セラミック材料
あるいは非磁性材料は熱処理する事が望ましい。熱処理
温度は、複合磁性材料の焼成温度と絶縁性セラミック材
料あるいは非磁性材料の種類により異なるが、800℃
〜1300℃程度で有れば、磁気特性を損なうことなく
目的の複合磁性体が得られる。
In order to minimize the melting of the insulating ceramic material or the non-magnetic material into the magnetic material, it is preferable to heat-treat the insulating ceramic material or the non-magnetic material before mixing the powder with the magnetic material powder. . The heat treatment temperature varies depending on the firing temperature of the composite magnetic material and the type of the insulating ceramic material or the non-magnetic material.
When the temperature is about 1300 ° C., a target composite magnetic material can be obtained without impairing magnetic properties.

【0021】磁性材料に添加する絶縁性セラミック材料
あるいは非磁性材料の混合比率が3wt%未満では磁性
材料単体の特性と優位差が無く、高周波での特性向上効
果が見られない。また、絶縁性セラミック材料あるいは
非磁性材料の混合比率が40wt%を超えると透磁率が
低下し、実用性に欠ける。このため、絶縁性セラミック
の混合比率は3〜40wt%が好ましく、更に好ましく
は、5〜35wt%である。
When the mixing ratio of the insulating ceramic material or the non-magnetic material added to the magnetic material is less than 3 wt%, there is no significant difference from the characteristics of the magnetic material alone, and no effect of improving the characteristics at a high frequency is observed. On the other hand, if the mixing ratio of the insulating ceramic material or the non-magnetic material exceeds 40% by weight, the magnetic permeability is reduced, which is not practical. For this reason, the mixing ratio of the insulating ceramic is preferably 3 to 40 wt%, more preferably 5 to 35 wt%.

【0022】第2層を構成する絶縁性セラミックあるい
は非磁性体の分散層の体積比率が5%未満では磁性材料
単体の特性と優位差が無く、高周波での特性向上効果が
見られない。また、前記分散層の体積比率が55%を超
えると透磁率が低下し、実用性に欠ける。このため、前
記分散層の体積比率は5〜55%が望ましく、更に好ま
しくは、9〜50%である。
If the volume ratio of the insulating ceramic or nonmagnetic dispersion layer constituting the second layer is less than 5%, there is no significant difference from the characteristics of the magnetic material alone, and no effect of improving the characteristics at high frequencies can be seen. On the other hand, if the volume ratio of the dispersion layer exceeds 55%, the magnetic permeability decreases, and the practicability is lacking. Therefore, the volume ratio of the dispersion layer is preferably 5 to 55%, and more preferably 9 to 50%.

【0023】第2層を構成する絶縁性セラミックあるい
は非磁性体の分散層の大きさを、0.5〜200μmに
限定した理由は、絶縁性セラミックの分散層の大きさが
0.5〜200μmであれば磁性体の結晶粒径とほぼ同
じ大きさとなり、結晶構造の歪み等で発生する内部応力
を極力抑えることが可能となり、結果として、磁気特性
(透磁率)の劣化を最小限に抑えたまま、インピーダン
スの周波数特性を高周波側に移行出来たと考えたからで
ある。更に好ましくは、1〜150μmである。
The reason that the size of the insulating ceramic or nonmagnetic dispersion layer constituting the second layer is limited to 0.5 to 200 μm is that the size of the insulating ceramic dispersion layer is 0.5 to 200 μm. In this case, the crystal grain size becomes substantially the same as the crystal grain size of the magnetic material, and it becomes possible to minimize internal stress caused by distortion of the crystal structure and the like, and as a result, deterioration of magnetic characteristics (magnetic permeability) is minimized. This is because it was considered that the frequency characteristics of the impedance could be shifted to the high frequency side while keeping the impedance. More preferably, it is 1 to 150 μm.

【0024】複合磁性体の気孔率が、8%を超えると吸
水し、磁気特性の不安定性や周辺部品への弊害を招くた
め、実用上好ましくない。よって、気孔率は8%以下で
あることが望ましい。
If the porosity of the composite magnetic material exceeds 8%, it absorbs water and causes instability of magnetic properties and adverse effects on peripheral components, which is not preferable in practical use. Therefore, the porosity is desirably 8% or less.

【0025】複合磁性体の透磁率の低下を極力抑えるた
め、磁性体が連続層を有し、絶縁性セラミックあるいは
非磁性体が非多孔性の均一な分散層を有する構造を取る
ためには、絶縁性セラミック材料粉末あるいは非磁性材
料粉末の平均粒径は、磁性材料粉末の平均粒径と同等か
少し大きい方が良い。これにより、磁性材料との反応を
極力抑えることが可能となり、より均一な分散層を形成
することが出来る。磁性材料粉末の平均粒径は混合性・
分散性・造粒性・成形性等のハンドリング性を考慮する
と、0.5μm〜10μm程度が望ましく、この磁性材
料粉末と混合する絶縁性セラミック材料粉末あるいは非
磁性材料粉末の平均粒径は同じか少し大きめの0.5〜
50μm程度が望ましく、更に好ましくは、1〜20μ
mである。
In order to minimize the decrease in the magnetic permeability of the composite magnetic material, in order to obtain a structure in which the magnetic material has a continuous layer and the insulating ceramic or non-magnetic material has a non-porous uniform dispersion layer, The average particle size of the insulating ceramic material powder or the nonmagnetic material powder is preferably equal to or slightly larger than the average particle size of the magnetic material powder. Thereby, the reaction with the magnetic material can be suppressed as much as possible, and a more uniform dispersion layer can be formed. The average particle size of the magnetic material powder is
In consideration of handling properties such as dispersibility, granulation properties, moldability, etc., it is desirable that the average particle size of the insulating ceramic material powder or the non-magnetic material powder mixed with this magnetic material powder is about 0.5 μm to 10 μm. 0.5 slightly larger
About 50 μm is desirable, and more preferably, 1 to 20 μm.
m.

【0026】[0026]

【実施例】実施例1 磁性材料としてFe 48モル%,NiO 19
モル%,ZnO 27モル%,CuO 6モル%の組成
のNi−Zn系フェライトを用い、前記組成となるよう
に各原料を秤量・混合し、これを850℃で仮焼成し、
その後振動ミルで粉砕した磁性材料粉末を作製した。こ
の磁性材料粉末の平均粒径は2μmであった。この磁性
材料粉末に絶縁性セラミック材料としてフォルステライ
ト粉末(熱処理温度800℃,粉砕処理後の平均粒径5
μm)を用い、前記磁性材料粉末に混合比率を種々変更
して混合し、バインダーを添加後、造粒し、この顆粒を
外径8.5mm,内径1.85mm,高さ7mmの円筒
状(形状1)と外径9mm,高さ6mmの円柱状(形状
2)に圧縮成形して1200℃で焼成した。
EXAMPLE 1 48 mol% of Fe 2 O 3 , NiO 19 as a magnetic material
Using Ni-Zn ferrite having a composition of mol%, ZnO 27 mol%, and CuO 6 mol%, the respective raw materials were weighed and mixed so as to have the above-mentioned composition, and were calcined at 850 ° C.
Thereafter, a magnetic material powder pulverized by a vibration mill was produced. The average particle size of the magnetic material powder was 2 μm. Forsterite powder (heat treatment temperature 800 ° C., average particle size 5 after pulverization) was added to this magnetic material powder as an insulating ceramic material.
μm), mixed with the magnetic material powder at various mixing ratios, added a binder, and granulated. The granules were formed into a cylindrical shape having an outer diameter of 8.5 mm, an inner diameter of 1.85 mm, and a height of 7 mm. It was compression-molded into a shape (shape 1) and a cylindrical shape (shape 2) having an outer diameter of 9 mm and a height of 6 mm, and was fired at 1200 ° C.

【0027】これらの試料の透磁率(μi)・インピー
ダンス(Z)(X:リアクタンス,R:レジスタンスを
同時評価)は形状1を用い評価し、誘電率(ε)・気孔
率は形状2を用い評価を行った。なお、透磁率・インピ
ーダンス・誘電率はインピーダンスアナライザ(横河・
ヒューレット・パッカード(株)製4191A等)にて同
軸式測定法で評価を行った。また、誘電率測定には、試
料上下面に電極を塗布したものを用いた。結果を表1に
示す。この表1において、本発明の範囲内のものは実施
例とし、範囲外のものは比較例としている。比較例とし
て、透磁率10のNi−Zn系フェライトの特性も記載
した(比較例5)。また、比較例1,比較例5と実施例
5のインピーダンスの周波数特性を図2に示した。
The magnetic permeability (μi) and impedance (Z) of these samples (X: reactance, R: simultaneous evaluation of resistance) were evaluated using shape 1, and the permittivity (ε) and porosity were obtained using shape 2. An evaluation was performed. The permeability, impedance, and permittivity are measured by an impedance analyzer (Yokogawa,
Evaluation was carried out by a coaxial measurement method using Hewlett-Packard Co., Ltd. 4191A). In the measurement of the dielectric constant, a sample in which electrodes were applied to upper and lower surfaces of a sample was used. Table 1 shows the results. In Table 1, those within the scope of the present invention are examples, and those outside the scope are comparative examples. As a comparative example, characteristics of a Ni—Zn ferrite having a magnetic permeability of 10 were also described (Comparative Example 5). FIG. 2 shows the frequency characteristics of impedance of Comparative Example 1, Comparative Example 5, and Example 5.

【0028】図2から判る通り、本発明の実施例は透磁
率600の比較例1に比べ、インピーダンスの周波数特
性は高周波化しており、高周波特性に優れていることが
判る。更に、図2,表1から透磁率10の比較例5に比
べ、インピーダンスの周波数特性は広帯域化しており、
ノイズ吸収特性を発揮する周波数帯域も広くなっている
ことが判る。すなわち、本発明の複合磁性体は、透磁率
の低下を極力抑えたまま、インピーダンスの周波数特性
を高周波化でき、またノイズ吸収特性を広帯域化する事
が出来ており、300MHzから3GHzでノイズ吸収
特性に優れた複合磁性体であることが判る。
As can be seen from FIG. 2, the frequency characteristic of the impedance of the embodiment of the present invention is higher than that of the comparative example 1 having the magnetic permeability of 600, and is excellent in the high frequency characteristic. Further, as compared with Comparative Example 5 having a magnetic permeability of 10 from FIG.
It can be seen that the frequency band exhibiting the noise absorption characteristics is also wide. That is, the composite magnetic material of the present invention can increase the frequency characteristics of impedance and broaden the noise absorption characteristics while minimizing the decrease in magnetic permeability, and can increase the noise absorption characteristics from 300 MHz to 3 GHz. It can be seen that the composite magnetic material was excellent.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例2 磁性材料としてFe 48モル%,NiO 19
モル%,ZnO 27モル%,CuO 6モル%の組成
のNi−Zn系フェライトを用い、前記組成となるよう
に各原料を秤量・混合し、これを850℃で仮焼成し、
その後振動ミルで粉砕した磁性材料粉末を作製した。こ
の磁性材料粉末の平均粒径は2μmであった。この磁性
材料粉末に絶縁性セラミック材料粉末としてフォルステ
ライト粉末を用い、フォルステライトの製造工程中で生
成する混合処理粉末及び混合後の熱処理温度と粉砕処理
条件を種々変更した粉砕処理粉末を前記磁性材料粉末に
混合比率25wt%で混合した。その後、バインダーを
添加後、造粒し、この顆粒を外径8.5mm,内径1.
85mm,高さ7mmの円筒状(形状1)と外径9m
m,高さ6mmの円柱状(形状2)に圧縮成形して12
00℃ので焼成した。これらの試料の透磁率(μi)・
インピーダンス(Z)(X:リアクタンス,R:レジス
タンスを同時評価)は形状1を用い、誘電率(ε)・気
孔率は形状2を用い評価を行った。なお、透磁率・イン
ピーダンス・誘電率はインピーダンスアナライザ(横河
・ヒューレット・パッカード(株)製4191A等)にて
同軸式測定法で評価を行った。また、誘電率測定には、
試料上下面に電極を塗布したものを用いた。各試料の誘
電率(100MHz)を評価した所、比較例・実施例問
わず12〜13の値を示した。また、各試料の表面を走
査型電子顕微鏡(SEM)とエネルギー分散型X線分析
装置(EDX)を用い層構造の確認と分散層の大きさ
(最長径の分布)の測定を行った。観察領域は、磁性体
の結晶粒径の10倍程度の長さを一辺とする矩形内で、
その中に含まれる各分散層の最長径分布を評価した。結
果を表2に示す。また、図3に、実施例5と比較例6の
試料表面をSEM及びEDXを用い分析した結果を示
す。なお、表2において、本発明の範囲内のものは実施
例とし、範囲外のものは比較例としている。
Example 2 48 mol% of Fe 2 O 3 and NiO 19 as a magnetic material
Using Ni-Zn ferrite having a composition of mol%, ZnO 27 mol%, and CuO 6 mol%, the respective raw materials were weighed and mixed so as to have the above-mentioned composition, and were calcined at 850 ° C.
Thereafter, a magnetic material powder pulverized by a vibration mill was produced. The average particle size of the magnetic material powder was 2 μm. Forsterite powder was used as the insulating ceramic material powder for the magnetic material powder, and the mixed powder produced during the production process of forsterite and the pulverized powder obtained by variously changing the heat treatment temperature and the pulverization treatment conditions after mixing were mixed with the magnetic material. The powder was mixed at a mixing ratio of 25 wt%. Thereafter, after adding a binder, the mixture is granulated, and the granules have an outer diameter of 8.5 mm and an inner diameter of 1.
85mm, height 7mm cylindrical (shape 1) and outer diameter 9m
m, compression molded into a column (shape 2) with a height of 6 mm
It was baked at 00 ° C. The magnetic permeability of these samples (μi)
The impedance (Z) (X: reactance, R: resistance was evaluated simultaneously) was evaluated using shape 1, and the dielectric constant (ε) and porosity were evaluated using shape 2. The magnetic permeability, impedance, and permittivity were evaluated by a coaxial measurement method using an impedance analyzer (such as 4191A manufactured by Yokogawa Hewlett-Packard Co., Ltd.). Also, for dielectric constant measurement,
The electrode was applied to the upper and lower surfaces of the sample. When the dielectric constant (100 MHz) of each sample was evaluated, values of 12 to 13 were shown irrespective of the comparative examples and examples. The surface of each sample was checked for the layer structure and the size of the dispersion layer (the distribution of the longest diameter) was measured using a scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDX). The observation region is within a rectangle whose length is about 10 times the crystal grain size of the magnetic material on one side.
The longest diameter distribution of each dispersion layer contained therein was evaluated. Table 2 shows the results. FIG. 3 shows the results of analyzing the sample surfaces of Example 5 and Comparative Example 6 using SEM and EDX. In Table 2, those within the scope of the present invention are examples, and those outside the scope are comparative examples.

【0031】[0031]

【表2】 [Table 2]

【0032】表2,図3より、磁性材料に添加するフォ
ルステライト粉末に関し、フォルステライトを製造する
過程で生成する粉末の処理方法により、生成する複合磁
性体(磁性体)の形態が異なることが判る。すなわち、
フォルステライトを製造する過程で生成する混合処理粉
末を磁性材料粉末に添加した場合、磁性材料粉末とフォ
ルステライト粉末(実際にはMgOとSiO2)が焼成
時に反応したため、磁性材料中に固溶あるいは粒界に析
出し、透磁率・インピーダンスの低下が激しく、目的の
複合磁性体が得られなかったものと考える。
As shown in Table 2 and FIG. 3, regarding the forsterite powder to be added to the magnetic material, the form of the formed composite magnetic material (magnetic material) differs depending on the processing method of the powder generated in the process of manufacturing forsterite. I understand. That is,
When the mixed powder produced during the process of manufacturing forsterite is added to the magnetic material powder, the magnetic material powder and the forsterite powder (actually, MgO and SiO2) react during firing, so that solid solution or particles It is considered that the target composite magnetic material was not obtained because of precipitation in the magnetic field and a sharp decrease in magnetic permeability and impedance.

【0033】一方、フォルステライトを製造する過程で
生成する熱処理後の粉末を磁性材料粉末に添加した場
合、800℃から1300℃の熱処理温度であれば、焼
成後に磁性材料中に均一にフォルステライトが分散して
いることが確認できた。このフォルステライトの分散層
の各々の大きさは、熱処理温度及び熱処理後の粉砕条件
(平均粒径)により異なるが、その最長径は0.5〜2
00μm程度の楕円状の層であった。また、各分散層
は、フォルステライト結晶の集合体となっており、か
つ、非多孔性の構造を取っていることが確認できた。こ
こで、多孔体(多孔質)とは、特公平1−23884号
公報第1,2図に開示されている様な結晶粒子相互間に
多数の細孔(空孔)が独立して存在する構造のものを言
い、本発明の分散層は、この様な多孔体構造を有するも
のではない(本明細書中で非多孔性と表現)。これによ
り、磁性材料の磁気特性の劣化を極力抑えることが可能
となり、目的の複合磁性体を得ることが出来たものと考
える。
On the other hand, when the heat-treated powder generated in the process of manufacturing forsterite is added to the magnetic material powder, if the heat treatment temperature is from 800 ° C. to 1300 ° C., the forsterite is uniformly dispersed in the magnetic material after firing. It was confirmed that they were dispersed. The size of each of the forsterite dispersed layers varies depending on the heat treatment temperature and the pulverization conditions (average particle size) after the heat treatment.
It was an elliptical layer of about 00 μm. It was also confirmed that each dispersion layer was an aggregate of forsterite crystals and had a non-porous structure. Here, the porous body (porous) means that a large number of pores (voids) independently exist between crystal grains as disclosed in FIGS. 1 and 2 of JP-B-1-23884. The dispersion layer of the present invention does not have such a porous structure (expressed as non-porous in the present specification). Thus, it is considered that the deterioration of the magnetic properties of the magnetic material can be suppressed as much as possible, and the intended composite magnetic body can be obtained.

【0034】また、表2より、フォルステライトの熱処
理温度と熱処理後の粉砕により調整した平均粒径に関
し、フォルステライトの熱処理温度が800℃から13
00℃において、平均粒径が50μmを超えると気孔率
が8%より大きくなり、吸水したため、比較例とした。
Further, from Table 2, regarding the heat treatment temperature of forsterite and the average particle diameter adjusted by pulverization after heat treatment, the heat treatment temperature of forsterite was 800 ° C. to 13 ° C.
At 00 ° C., if the average particle size exceeds 50 μm, the porosity becomes larger than 8% and water was absorbed, so that the sample was taken as a comparative example.

【0035】上記のとおり、本発明に係る複合磁性体
は、インピーダンスの周波数特性の高周波化及びノイズ
吸収特性の効果を発揮する周波数の広帯域化を実現てお
り、従来材料に比べ高周波で優れたノイズ吸収特性を示
すことが予想される。このことは、ノイズフィルタ等の
フェライト磁心や電波吸収体等のフェライト板に極めて
適しており、この複合磁性体を用いることにより、30
0MHzから3GHzの周波数帯で優れた磁性材料部品
を得ることができる。
As described above, the composite magnetic material according to the present invention achieves a higher frequency characteristic of impedance and a wider frequency band exhibiting the effect of noise absorption characteristics, and has a higher noise at higher frequencies than conventional materials. It is expected to show absorption properties. This is very suitable for a ferrite core such as a noise filter or a ferrite plate such as a radio wave absorber.
Excellent magnetic material parts can be obtained in the frequency band from 0 MHz to 3 GHz.

【0036】[0036]

【発明の効果】本発明によれば、従来のNi−Zn系フ
ェライトに比べ300MHzから3GHzの周波数帯で
ノイズ吸収特性に優れた複合磁性体を得ることができ
る。また本発明の複合磁性体は、ノイズフィルタ、電波
吸収体、電波吸収シートとして極めて有効なものであ
る。
According to the present invention, a composite magnetic material having excellent noise absorption characteristics in a frequency band of 300 MHz to 3 GHz can be obtained as compared with the conventional Ni-Zn ferrite. Further, the composite magnetic material of the present invention is extremely effective as a noise filter, a radio wave absorber, and a radio wave absorption sheet.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係るインピーダンス(Z)・リアク
タンス(X)・レジスタンス(R)と周波数の関係を表
す特性図である。
FIG. 1 is a characteristic diagram showing a relationship between impedance (Z), reactance (X), resistance (R) and frequency according to the present invention.

【図2】 本発明に係る実施例5と比較例1,5のイン
ピーダンスの周波数特性を表す図である。
FIG. 2 is a diagram illustrating frequency characteristics of impedance of Example 5 and Comparative Examples 1 and 5 according to the present invention.

【図3】 本発明に係る実施例5と比較例6の焼結体表
面組織構造の模式図である。
FIG. 3 is a schematic diagram of a sintered body surface structure of Example 5 and Comparative Example 6 according to the present invention.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 磁性体から成る連続層(第1層)と絶縁
性セラミックから成る非多孔性の分散層(第2層)を有
する構造を持ち、かつ、初透磁率が10以上500以
下,100MHzにおける誘電率が50以下であること
を特徴とする複合磁性体。
1. A structure having a continuous layer (first layer) made of a magnetic material and a non-porous dispersion layer (second layer) made of an insulating ceramic, and having an initial magnetic permeability of 10 or more and 500 or less. A composite magnetic material having a dielectric constant at 100 MHz of 50 or less.
【請求項2】 磁性体から成る連続層(第1層)と非磁
性体から成る非多孔性の分散層(第2層)を有する構造
を持ち、かつ、初透磁率が10以上500以下,100
MHzにおける誘電率が50以下であることを特徴とす
る複合磁性体。
2. A structure having a continuous layer (first layer) made of a magnetic material and a non-porous dispersion layer (second layer) made of a non-magnetic material, and having an initial permeability of 10 to 500, 100
A composite magnetic material having a dielectric constant of 50 or less at MHz.
【請求項3】 前記第1層を形成する磁性体はNi−Z
n系フェライトもしくはMg−Zn系フェライトから成
り、前記第2層を形成する絶縁性セラミックはフォルス
テライト,ステアタイト,アルミナの少なくとも1種か
ら成ることを特徴とする請求項1記載の複合磁性体。
3. The magnetic material forming the first layer is Ni-Z.
2. The composite magnetic body according to claim 1, wherein said insulating ceramic is made of n-based ferrite or Mg-Zn-based ferrite, and said insulating ceramic forming said second layer is made of at least one of forsterite, steatite and alumina.
【請求項4】 前記第2層の分散層の体積比率が5〜5
5%であることを特徴とする請求項1〜3のいずれかに
記載の複合磁性体。
4. The volume ratio of the dispersion layer of the second layer is 5-5.
The composite magnetic material according to any one of claims 1 to 3, wherein the content is 5%.
【請求項5】 前記第2層の分散層の大きさが0.5〜
200μmであることを特徴とする請求項1〜4のいず
れかに記載の複合磁性体。
5. The dispersion layer of the second layer has a size of 0.5 to 0.5.
The composite magnetic body according to claim 1, wherein the composite magnetic body has a thickness of 200 μm.
【請求項6】 気孔率が8%以下であることを特徴とす
る請求項1〜5のいずれかに記載の複合磁性体。
6. The composite magnetic body according to claim 1, wherein the porosity is 8% or less.
【請求項7】 磁性体を構成する主成分を混合後仮焼成
し得られた磁性材料粉末と、絶縁性セラミックを構成す
る主成分を混合後熱処理し得られた絶縁性セラミック材
料粉末を混合・焼成して得られた複合磁性体であって、
該複合磁性体は、磁性体から成る連続層(第1層)と絶
縁性セラミックから成る非多孔性の分散層(第2層)を
有する構造を持ち、かつ、初透磁率が10以上500以
下,100MHzにおける誘電率が50以下であること
を特徴とする複合磁性体の製造方法。
7. A mixture of a magnetic material powder obtained by preliminarily sintering after mixing a main component constituting a magnetic body and an insulating ceramic material powder obtained by mixing and heating a main component constituting an insulating ceramic. A composite magnetic material obtained by firing,
The composite magnetic material has a structure having a continuous layer (first layer) made of a magnetic material and a nonporous dispersion layer (second layer) made of insulating ceramic, and has an initial magnetic permeability of 10 or more and 500 or less. , A dielectric constant at 100 MHz is 50 or less.
【請求項8】 磁性体を構成する主成分を混合後仮焼成
し得られた磁性材料粉末と、非磁性体を構成する主成分
を混合後熱処理し得られた非磁性材料粉末を混合・焼成
して得られた複合磁性体であって、該複合磁性体は、磁
性体から成る連続層(第1層)と非磁性体から成る非多
孔性の分散層(第2層)を有する構造を持ち、かつ、初
透磁率が10以上500以下,100MHzにおける誘
電率が50以下であることを特徴とする複合磁性体の製
造方法。
8. Mixing and firing of a magnetic material powder obtained by mixing the main components of the magnetic material and pre-baking, and a non-magnetic material powder obtained by mixing the main components of the non-magnetic material and then heat-treating the mixture. Wherein the composite magnetic material has a structure having a continuous layer (first layer) made of a magnetic material and a non-porous dispersion layer (second layer) made of a non-magnetic material. A method for producing a composite magnetic material, comprising: an initial magnetic permeability of 10 to 500, and a dielectric constant at 100 MHz of 50 or less.
【請求項9】 前記第1層を形成する磁性体はNi−Z
n系フェライトもしくはMg−Zn系フェライトから成
り、前記第2層を形成する絶縁性セラミックはフォルス
テライト,ステアタイト,アルミナの少なくとも1種か
ら成ることを特徴とする請求項7記載の複合磁性体の製
造方法。
9. The magnetic material forming the first layer is Ni-Z.
8. The composite magnetic body according to claim 7, wherein said insulating ceramic is made of n-based ferrite or Mg-Zn-based ferrite, and said insulating ceramic forming said second layer is made of at least one of forsterite, steatite and alumina. Production method.
【請求項10】 前記第2層を形成する絶縁性セラミッ
ク材料あるいは非磁性材料の混合比率が3〜40wt%
であることを特徴とする請求項7〜9のいずれかに記載
の複合磁性体の製造方法。
10. The mixing ratio of an insulating ceramic material or a non-magnetic material for forming the second layer is 3 to 40 wt%.
The method for producing a composite magnetic material according to any one of claims 7 to 9, wherein
【請求項11】 前記分散層(第2層)の大きさが0.
5〜200μmであることを特徴とする請求項7〜10
のいずれかに記載の複合磁性体の製造方法。
11. The dispersion layer (second layer) having a size of 0.5.
The thickness is 5 to 200 μm.
The method for producing a composite magnetic material according to any one of the above.
【請求項12】 前記複合磁性体の気孔率が8%以下で
ある請求項7〜11のいずれかに記載の複合磁性体の製
造方法。
12. The method according to claim 7, wherein the porosity of the composite magnetic body is 8% or less.
【請求項13】 前記第1層を形成する磁性材料粉末の
平均粒径が0.5〜10μmであり、前記第2層を形成
する絶縁性セラミック材料粉末あるいは非磁性材料粉末
の平均粒径が0.5〜50μmであることを特徴とする
請求項7〜12のいずれかに記載の複合磁性体の製造方
法。
13. The magnetic material powder forming the first layer has an average particle size of 0.5 to 10 μm, and the insulating ceramic material powder or the nonmagnetic material powder forming the second layer has an average particle size of 0.5 to 10 μm. The method for producing a composite magnetic material according to any one of claims 7 to 12, wherein the thickness is 0.5 to 50 m.
【請求項14】 前記第2層を形成する絶縁性セラミッ
ク材料粉末あるいは非磁性材料粉末の熱処理温度が80
0℃〜1300℃であることを特徴とする請求項7〜1
3のいずれかに記載の複合磁性体の製造方法。
14. The heat treatment temperature of the insulating ceramic material powder or the non-magnetic material powder forming the second layer is 80.
The temperature is from 0 ° C. to 1300 ° C.
3. The method for producing a composite magnetic material according to any one of 3.
【請求項15】 請求項1〜6のいずれかに記載の複合
磁性体を用いることを特徴とするノイズフィルタ部品。
15. A noise filter component using the composite magnetic material according to claim 1.
【請求項16】 請求項1〜6のいずれかに記載の複合
磁性体を用いることを特徴とする電波吸収体。
16. A radio wave absorber using the composite magnetic material according to claim 1.
【請求項17】 請求項1〜6のいずれかに記載の複合
磁性体を用いることを特徴とする電波吸収シート及び電
波遮蔽シート。
17. A radio wave absorbing sheet and a radio wave shielding sheet using the composite magnetic material according to claim 1.
JP11114945A 1998-04-28 1999-04-22 Compound magnetic substance and manufacture thereof Pending JP2000021620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11114945A JP2000021620A (en) 1998-04-28 1999-04-22 Compound magnetic substance and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11804698 1998-04-28
JP10-118046 1998-04-28
JP11114945A JP2000021620A (en) 1998-04-28 1999-04-22 Compound magnetic substance and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000021620A true JP2000021620A (en) 2000-01-21

Family

ID=26453581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11114945A Pending JP2000021620A (en) 1998-04-28 1999-04-22 Compound magnetic substance and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000021620A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358493A (en) * 2000-04-10 2001-12-26 Hitachi Ltd Electromagnetic-wave absorber, its manufacturing method and various applications using the same
JP2002175916A (en) * 2000-12-07 2002-06-21 Murata Mfg Co Ltd Inductor
JP2002289413A (en) * 2001-03-23 2002-10-04 Miyagawa Kasei Ind Co Ltd Electromagnetic wave absorbent composite powder material, electromagnetic wave absorbent, and its manufacturing method
JP2004022892A (en) * 2002-06-18 2004-01-22 Kyocera Corp Electromagnetic wave absorber and high frequency circuit package using absorber
KR100455342B1 (en) * 2001-11-12 2004-11-15 김동일 Broad-band electromagnetic wave absorber
KR100606174B1 (en) 2004-08-20 2006-08-01 김동일 Broad-band electromagnetic wave absorber
JP2009238795A (en) * 2008-03-26 2009-10-15 Dowa Electronics Materials Co Ltd Ferrite powder for bond magnet, and method of manufacturing the same
JP2014017306A (en) * 2012-07-06 2014-01-30 Murata Mfg Co Ltd Ferrite-based magnetic body, method of manufacturing the same, and electronic component using the ferrite-based magnetic body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358493A (en) * 2000-04-10 2001-12-26 Hitachi Ltd Electromagnetic-wave absorber, its manufacturing method and various applications using the same
JP2002175916A (en) * 2000-12-07 2002-06-21 Murata Mfg Co Ltd Inductor
JP2002289413A (en) * 2001-03-23 2002-10-04 Miyagawa Kasei Ind Co Ltd Electromagnetic wave absorbent composite powder material, electromagnetic wave absorbent, and its manufacturing method
KR100455342B1 (en) * 2001-11-12 2004-11-15 김동일 Broad-band electromagnetic wave absorber
JP2004022892A (en) * 2002-06-18 2004-01-22 Kyocera Corp Electromagnetic wave absorber and high frequency circuit package using absorber
KR100606174B1 (en) 2004-08-20 2006-08-01 김동일 Broad-band electromagnetic wave absorber
JP2009238795A (en) * 2008-03-26 2009-10-15 Dowa Electronics Materials Co Ltd Ferrite powder for bond magnet, and method of manufacturing the same
JP2014017306A (en) * 2012-07-06 2014-01-30 Murata Mfg Co Ltd Ferrite-based magnetic body, method of manufacturing the same, and electronic component using the ferrite-based magnetic body

Similar Documents

Publication Publication Date Title
JP6637959B2 (en) Co2Z-type ferrite composite for use in very high frequency antennas
KR101210772B1 (en) Hexagonal ferrite, and antenna and communication equipment using the same
JPH10163018A (en) Soft-magnetic material for inductor and manufacture of inductor using the same
JP3422709B2 (en) Radio wave absorber
KR20160033037A (en) Ferrite composition for radio wave absorber and radio wave absorber
JP2014192327A (en) Radio wave absorbing sheet for neighborhood field and method of manufacturing the same
JP2000077222A (en) Porous composite magnetic body and manufacture of the same
JP2004247603A (en) MnZn-BASED FERRITE WAVE ABSORBER
WO2019044060A1 (en) Mncozn ferrite and method for producing same
JP2000021620A (en) Compound magnetic substance and manufacture thereof
JP4158081B2 (en) Soft magnetic hexagonal ferrite composite particle powder, green sheet using the soft magnetic hexagonal ferrite composite particle powder, and soft magnetic hexagonal ferrite sintered body
JP3492802B2 (en) Low loss ferrite material
KR101714895B1 (en) Ferrite composition for radio wave absorber and radio wave absorber
US6623879B2 (en) Soft-magnetic hexagonal ferrite composite particles, and green sheet using the same and soft-magnetic hexagonal ferrite sintered ceramics
JP4279393B2 (en) Plate-like soft magnetic ferrite particle powder and soft magnetic ferrite particle composite using the same
US6558566B2 (en) Oxide magnetic materials, chip components using the same, and method for producing oxide magnetic materials and chip components
JPWO2020158334A1 (en) MnCoZn-based ferrite and its manufacturing method
JP3449322B2 (en) Composite magnetic material and inductor element
JP7160720B2 (en) Heat resistant high permeability MnZn ferrite
JP2003124016A (en) Magnetic material for noise countermeasure and its manufacturing method
JP2002083708A (en) Oxide magnetic material, its manufacturing method and multilayer chip inductor
JP6718144B2 (en) Hexagonal ferrite sintered body and high-frequency magnetic component using the same
JP2003243218A (en) Soft magnetic hexagonal ferrite compound particle powder, green sheet using the same, and soft magnetic hexagonal ferrite sintered body
JP2005047783A (en) Hexagonal system z-type ferrite and method of manufacturing the same
JP6064732B2 (en) Magnetic oxide sintered body and high-frequency magnetic component using the same