WO2019044060A1 - Mncozn ferrite and method for producing same - Google Patents

Mncozn ferrite and method for producing same Download PDF

Info

Publication number
WO2019044060A1
WO2019044060A1 PCT/JP2018/019530 JP2018019530W WO2019044060A1 WO 2019044060 A1 WO2019044060 A1 WO 2019044060A1 JP 2018019530 W JP2018019530 W JP 2018019530W WO 2019044060 A1 WO2019044060 A1 WO 2019044060A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
mncozn
ferrite
mass ppm
mol
Prior art date
Application number
PCT/JP2018/019530
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 吉田
由紀子 中村
Original Assignee
Jfeケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeケミカル株式会社 filed Critical Jfeケミカル株式会社
Priority to JP2018553258A priority Critical patent/JP6439086B1/en
Priority to CN201880002001.6A priority patent/CN110325489B/en
Publication of WO2019044060A1 publication Critical patent/WO2019044060A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to a MnCoZn ferrite having a high specific resistance and a low squareness ratio which is a ratio of residual magnetic flux density to saturated magnetic flux density (residual magnetic flux density / saturated magnetic flux density) and which is not easily chipped, and a method of manufacturing the same.
  • the squareness ratio refers to the value at 23 ° C.
  • MnZn ferrite A representative example of the soft magnetic oxide magnetic material is MnZn ferrite.
  • the conventional MnZn ferrite contains Fe 2+ with positive magnetic anisotropy of about 2 mass% or more, and by offsetting it with Fe 3+ and Mn 2+ with negative magnetic anisotropy, high initial permeability material in kHz region And achieve low losses.
  • the MnZn ferrite is widely used as a noise filter for a switching power supply or the like, a core of a transformer, and an antenna because it is inexpensive as compared with an amorphous metal or the like.
  • MnZn ferrite has a large amount of Fe 2+ , exchange of electrons between Fe 3+ -Fe 2+ easily occurs, and there is a disadvantage that the specific resistance is as low as 0.1 ⁇ ⁇ m. Therefore, when the frequency range to be used becomes high, the loss due to the eddy current flowing in the ferrite increases rapidly, the initial permeability significantly decreases, and the loss also increases. For this reason, the service frequency of MnZn ferrite is limited to about several hundred kHz, and NiZn ferrite is mainly used in MHz order.
  • NiZn ferrite The specific resistance of this NiZn ferrite is 10 5 ( ⁇ ⁇ m) or more, about 10,000 times that of MnZn ferrite, and the eddy current loss is small, so the characteristics of high initial permeability and low loss are unlikely to be lost even in a high frequency region.
  • NiZn ferrite has a major problem. That is, Ni has a larger negative magnetic anisotropy energy than Mn, and has a large squareness ratio because it contains almost no Fe 2+ having positive magnetic anisotropy.
  • the squareness ratio is the residual magnetic flux density divided by the saturation magnetic flux density, and when this value is large, the initial permeability significantly decreases and the loss increases simultaneously after the magnetic field is applied from outside once. . Therefore, the characteristics as a soft magnetic material are greatly impaired.
  • Patent Document 4 Patent Document 5 and Patent Document 6, but these were intended to reduce the squareness ratio. It was not a thing. Moreover, since the countermeasure to the abnormal grain mentioned later was inadequate, it was inferior also in terms of cost and manufacturing efficiency.
  • Patent Document 7 reports high resistance MnCoZn ferrite having a low squareness ratio, which can suppress the appearance of abnormal grains by providing a specified impurity composition and can be stably manufactured.
  • abnormal grain growth is what occurs when the balance of grain growth is broken locally due to some cause, and is a phenomenon often seen in manufacturing using powder metallurgy.
  • a substance that greatly impedes the movement of the domain wall, such as impurities and lattice defects is mixed, so the residual magnetic flux density is increased, and as a result, the squareness ratio is increased.
  • the resistivity decreases due to the insufficient formation of grain boundaries.
  • MnCoZn ferrite having less than 50 mol% of Fe 2 O 3 component tends to sinter easily at the time of firing due to the small number of oxygen vacancies, so that the vacancies easily remain in the crystal grains and the formation of grain boundaries Is likely to be uneven.
  • the technique disclosed in Patent Document 7 has a problem in that the obtained magnetic properties are sufficient but the mechanical strength for the defect is not necessarily sufficient.
  • Patent Document 8 discloses a technique of adding TiO 2 in a range of 0.01 to 0.5 mass%.
  • the addition of TiO 2 causes Ti 4 + to be formed as a solid solution in the crystal grains, and a part of Fe 3 + is reduced to Fe 2 + from the valence balance, resulting in a significant decrease in specific resistance.
  • the present invention maintains the magnetic properties of the conventional high resistance and low squareness, and at the same time, suppresses abnormal grain growth while generating uniform grain boundaries, so that the defect resistance represented by the rattler value is achieved.
  • An object of the present invention is to propose an MnCoZn ferrite having mechanical strength as well as its properties together with its advantageous manufacturing method.
  • the inventors first examined the appropriate amounts of Fe 2 O 3 , ZnO, and CoO of MnCoZn ferrite necessary to obtain desirable magnetic properties, and as a result, they have high resistivity, small square ratio, and Curie temperature. We found a proper range that can realize all of the characteristics of high simultaneously.
  • the squareness ratio the value at 23 ° C. is a problem.
  • MnZn ferrite cores used for antenna and noise filter applications which are used at positions away from power source transformers and semiconductors serving as heat sources, and they operate at normal temperature (5 to 35 ° C) Do. Therefore, it is important that the magnetic properties at 23 ° C., which is a typical value in the normal temperature (5 to 35 ° C.) range, be good, that is, the squareness ratio be small.
  • Patent Document 1 Patent Document 2 and Patent Document 3 refer to high specific resistance
  • Patent Document 4 Patent Document 5 and Patent Document 6 show positive magnetic difference.
  • the addition of Co 2+ having the directionality is described, there is no description on the squareness ratio, and it is presumed that the mechanical strength is insufficient because there is no description on measures against abnormal grain.
  • Patent Document 7 mentioned with respect to low squareness ratio, sufficient mechanical strength which can suppress defects can not be desired because the definition of additives is insufficient.
  • Patent Document 8 that mentions improvement in chipping strength, a significant reduction in resistivity can not be avoided.
  • the essential features of the present invention are as follows. 1. As a basic ingredient, Iron: 45.0 mol% or more, less than 50.0 mol%, in terms of Fe 2 O 3 , Zinc: 15.5 to 24.0 mol% in terms of ZnO, Cobalt: 0.5 to 4.0 mol% in terms of CoO, and manganese: containing the balance, As a subcomponent to the above basic component, SiO 2 50 to 300 mass ppm and CaO 300 to 1300 mass ppm And the remainder is MnCoZn ferrite consisting of unavoidable impurities, The amounts of P, B, S and Cl in the above-mentioned unavoidable impurities are respectively P: less than 50 mass ppm, B: less than 20 mass ppm, S: less than 30 mass ppm and Cl: less than 50 mass ppm, Furthermore, in the above-mentioned MnCoZn ferrite, Latler value less than 0.85%, Squareness at 23 ° C is 0.35 or less,
  • MnCoZn ferrite according to 1 or 2 wherein the MnCoZn ferrite is a MnCoZn ferrite comprising a shaped-sintered body of granulated powder having a particle size distribution d90 of 300 ⁇ m or less.
  • MnCoZn ferrite according to any one of 1 to 3, wherein the MnCoZn ferrite is a MnCoZn ferrite made of a molded-sintered body of granulated powder having a crushing strength of less than 1.50 MPa.
  • Sub-components adjusted to a predetermined ratio are added to the calcined powder obtained in the calcination step of calcining the mixture of the basic components weighed to a predetermined component ratio and the above-mentioned calcination step, and mixed, Grinding-mixing-grinding process, A binder is added to and mixed with the pulverized powder obtained in the above mixing-pulverization step, and then granulated so that the value of the particle size distribution d90 of the granulated powder is 300 ⁇ m or less and / or the crushing strength is less than 1.50 MPa.
  • the formed granulated powder is sintered and fired under the conditions of maximum holding temperature: 1290 or more and holding time: 1 hour or more to obtain the MnCoZn-based ferrite described in 1 or 2 above. Production method.
  • the present invention not only having good magnetic properties such as high resistance and low squareness ratio, but also generating uniform grain boundaries and at the same time suppressing abnormal grain growth, it is mechanically excellent in defect resistance. It is possible to obtain MnCoZn ferrite having strength.
  • the MnCoZn ferrite of the present invention has excellent magnetic properties such as an initial permeability of 3000 or more at 23 ° C. and 1 kHz, an initial permeability of 2000 or more at 23 ° C. and 1 MHz, and an initial permeability of 150 or more at 23 ° C. and 10 MHz. .
  • the present invention will be specifically described. First, the reason why the composition of the MnCoZn ferrite is limited to the above range in the present invention will be described.
  • the iron and zinc are included in the present invention as a basic component, cobalt, all the manganese Fe 2 O 3, ZnO, CoO , a value in terms of MnO.
  • the contents of Fe 2 O 3 , ZnO, CoO, and MnO are expressed in mol%, and the contents of one subcomponent and the impurity component are expressed in mass ppm with respect to the entire ferrite.
  • Fe 2 O 3 45.0 mol% to less than 50.0 mol%
  • the amount of Fe 2+ increases, thereby reducing the specific resistance of the MnCoZn ferrite.
  • the amount of Fe 2 O 3 needs to be suppressed to less than 50 mol%.
  • the amount is too small, it causes an increase in squareness and a decrease in Curie temperature, and therefore iron is contained at least 45.0 mol% in terms of Fe 2 O 3 .
  • the preferred range of Fe 2 O 3 is 47.1 mol% or more and less than 50.0 mol%, more preferably 47.1 to 49.5 mol%.
  • ZnO 15.5 mol% to 24.0 mol%
  • ZnO works to increase the saturation magnetization of ferrite and to increase the sintered density due to its relatively low saturation vapor pressure, thereby increasing the saturation magnetic flux density, and is an effective component for decreasing the squareness ratio. Therefore, at least 15.5 mol% of zinc is contained in terms of ZnO as a minimum.
  • the upper limit of zinc is 24.0 mol% in terms of ZnO.
  • the preferred range of ZnO is 15.5 to 23.0 mol%, more preferably 17.0 to 23.0 mol%.
  • CoO 0.5 mol% to 4.0 mol%
  • Co 2+ in CoO is an ion having positive magnetic anisotropy energy, and as the addition of a proper amount of CoO reduces the absolute value of the sum of magnetic anisotropy energy, a reduction in squareness is realized. Ru.
  • it is essential to add 0.5 mol% or more of CoO.
  • a large amount of addition causes a decrease in specific resistance, induction of abnormal grain growth, and an increase in squareness ratio since the total of magnetic anisotropic energy is positively inclined to the positive.
  • CoO is limited to the addition of up to 4.0 mol%.
  • the preferred range of CoO is 1.0 to 3.5 mol%, more preferably 1.0 to 3.0 mol%.
  • MnO Remainder
  • the present invention is MnCoZn ferrite, and the remainder of the basic component composition needs to be MnO. The reason is that unless MnO is used, good magnetic characteristics of high saturation magnetic flux density, low loss and high permeability can not be obtained.
  • the preferred range of MnO is 26.5 to 32.0 mol%.
  • SiO 2 50 to 300 mass ppm SiO 2 is known to contribute to the homogenization of the crystal structure of ferrite, and decreases the void ratio remaining in the crystal grains with the addition of an appropriate amount, thereby reducing the squareness ratio by reducing the residual magnetic flux density.
  • SiO 2 segregates in grain boundaries to increase the specific resistance and simultaneously reduce coarse crystals, thereby reducing the Latler value, which is an index of defects in a sintered body. Therefore, at least 50 mass ppm of SiO 2 is included.
  • SiO 2 is limited to 300 mass ppm or less There is a need.
  • the preferred content of SiO 2 is 60 to 250 mass ppm.
  • CaO 300 to 1300 mass ppm CaO is segregated at grain boundaries of MnCoZn ferrite and has a function of suppressing the growth of crystal grains. Therefore, with the addition of an appropriate amount, the specific resistance is increased, and by reducing the residual magnetic flux density, it is possible to lower the squareness ratio, and to reduce coarse crystals, thereby reducing the rattler value. Therefore, at least 300 mass ppm of CaO is included. On the other hand, when the addition amount is excessive, abnormal grains appear and the rattler value and squareness ratio also increase, so the content of CaO needs to be limited to 1300 mass ppm or less. The preferred content of CaO is 350 to 1000 mass ppm.
  • P less than 50 mass ppm
  • B less than 20 mass ppm
  • S less than 30 mass ppm
  • Cl less than 50 mass ppm
  • the squareness ratio increases with the increase of the residual magnetic flux density, the generation of the grain boundaries becomes insufficient, the resistivity decreases, and the Latler value also increases because it becomes a starting point of defects. Therefore, in the present invention, the contents of P, B, S and Cl are suppressed to less than 50, 20, 30 and 50 ppm, respectively.
  • the allowable amount of unavoidable impurities is 65 mass ppm or less.
  • the total amount of impurities in the basic component and the subcomponents used as the raw material is preferably 70 mass ppm or less including P, B, S and Cl described above, and more preferably 65 mass ppm or less.
  • MnCoZn ferrite various properties of the MnCoZn ferrite are greatly affected by various parameters as well as the composition. Therefore, in the present invention, it is preferable to satisfy the following conditions in order to have desired magnetic properties and strength properties.
  • Sintered density 4.85 g / cm 3 or more
  • sintering and grain growth proceed by firing treatment to form crystal grains and grain boundaries.
  • a crystal structure capable of achieving high saturation magnetic flux density and low residual magnetic flux density, that is, nonmagnetic components to be present at grain boundaries are properly segregated at grain boundaries, and the grains maintain appropriate grain size and uniform magnetic properties
  • the sintering reaction needs to proceed sufficiently in order to realize the form constituted by the components having.
  • the strength is unfavorably reduced.
  • the MnCoZn ferrite of the present invention preferably has a sintered density of 4.85 g / cm 3 or more.
  • the maximum holding temperature is preferably 1290 to 1400 ° C., and the holding time is preferably 1 to 8 hours.
  • the sintered density does not increase when abnormal grain growth occurs, it is necessary to manufacture the additive amount and the impurity amount described above within an appropriate range so that abnormal grains do not appear.
  • MnCoZn ferrite is obtained by firing and sintering the obtained molded body through a powder forming process in which granulated powder is filled in a mold and then compressed at a pressure of about 100 MPa. On the surface of the ferrite, minute irregularities resulting from the gaps between the granulated powders remain even after sintering, and this becomes the starting point of fracture due to impact, so the Latler value becomes higher as the minute irregularities remain.
  • D90 represents a particle size of 90% of the total volume from the small particle size side in the particle size distribution curve. Further, the crushing strength of the granulated powder is measured by the method defined in JIS Z 8841. If the value of the particle size distribution d90 is too small, the flowability is reduced due to an increase in the contact point between the granulated powder, so that the mold filling failure of the powder during powder molding and the molding pressure during molding It is preferable to set the lower limit of d90 to 75 ⁇ m because an increase problem arises.
  • the lower limit of the crush strength is preferably set to 0.50 MPa, since the problem of an increase in molding pressure at the time occurs.
  • MnCoZn ferrite of the present invention
  • Fe 2 O 3 , ZnO, CoO and MnO powders are weighed so as to attain a predetermined ratio, and these are sufficiently mixed and then calcined.
  • the obtained calcined powder is pulverized to obtain a pulverized powder.
  • regulated by this invention is added by a predetermined
  • the powder is sufficiently homogenized so that the concentration of the added component is not uneven, and at the same time, the calcined powder is refined to the target average particle size.
  • the average particle diameter of the target pulverized powder is 1.4 to 1.0 ⁇ m.
  • an organic substance binder such as polyvinyl alcohol is added to the powder having the target composition, and granulated by spray drying or the like under appropriate conditions so as to obtain a sample having a desired particle size and crushing strength.
  • the spray drying method it is desirable to make the exhaust air temperature lower than 270.degree.
  • the preferred particle size of the granulated powder is 75 to 300 ⁇ m in terms of the particle size distribution d90.
  • the suitable crushing strength of granulated powder is 0.50 Mpa or more and less than 1.50 Mpa.
  • a forming machine to perform forming, and then firing is performed under suitable firing conditions.
  • suitable firing conditions are a maximum holding temperature of 1290 or more and a holding time of 1 hour or more.
  • the obtained ferrite sintered body may be subjected to processing such as surface polishing.
  • Latler value less than 0.85% Squareness ratio at 23 ° C. is 0.35 or less
  • Specific resistance is 30 ⁇ m or more
  • Curly temperature is 100 ° C or more simultaneously to obtain excellent MnCoZn ferrite it can.
  • SiO 2 and CaO were weighed after being respectively equivalent to 150 and 700 mass ppm, and then added, and ground in a ball mill for 12 hours.
  • polyvinyl alcohol is added to the obtained crushed slurry, spray-dried and granulated at an exhaust air temperature of 250 ° C., coarse particles are removed through a sieve with 350 ⁇ m openings, and a pressure of 118 MPa is applied to the toroidal core and rectangular solid core Molded into
  • the particle size distribution d90 of the granulated powder used for molding was 230 ⁇ m, and the crushing strength was 1.29 MPa.
  • this molded body is charged into a firing furnace, and fired in a gas flow appropriately mixed with nitrogen gas and air at a maximum temperature of 1350 ° C.
  • the obtained sample was measured based on JIS C 2560-2, the sintered density was 23 ° C., and the toroidal core was measured by the Archimedes method, and the resistivity was measured by the four-terminal method.
  • the initial permeability of the toroidal core was calculated based on the inductance measured by using a winding of 10 turns on the toroidal core and using an LCR meter (4980A manufactured by Keysight Co., Ltd.).
  • the Curie temperature was calculated from the temperature characteristic measurement result of the inductance.
  • the Latler value was measured according to the method defined in JPMA P11-1992.
  • the squareness ratio was calculated by dividing the residual magnetic flux density Br measured at 23 ° C. based on JIS C 2560-2 by the saturation magnetic flux density Bs. The results obtained are shown in Table 1.
  • Comparative Example 1-4 in which the amount of ZnO exceeds the appropriate range, a decrease in Curie temperature is observed.
  • Comparative Example 1-5 in which the amount of ZnO is less than the appropriate range the squareness ratio is increased, and both preferable magnetic characteristics can not be realized.
  • Comparative Example 1-6 in which the amount of CoO is less than the appropriate range the squareness ratio is high because the residual magnetic flux density is increased, while in Comparative Example 1-7 in which the amount of CoO exceeds the appropriate range, the magnetic anisotropy is increased. Therefore, the squareness ratio is high, and both deviate from the preferable range.
  • Example 2 When iron, zinc, cobalt and manganese contained are all converted as Fe 2 O 3 , ZnO, CoO and MnO, the amount of Fe 2 O 3 is 49.0 mol%, the amount of ZnO is 21.0 mol%, the amount of CoO is 2
  • the raw materials were weighed so as to have a composition of 0 mol% and the balance MnO, mixed for 16 hours using a ball mill, and then calcined in air at 925 ° C. for 3 hours. Next, SiO 2 and CaO in amounts shown in Table 2 were added to the calcined powder, and grinding was performed for 12 hours with a ball mill.
  • polyvinyl alcohol is added to the obtained pulverized slurry, spray-dried and granulated at an exhaust air temperature of 250 ° C., and coarse particles are removed through a sieve with 350 ⁇ m openings, and then a pressure of 118 MPa is applied to the toroidal core and cylindrical core.
  • Molded into The particle size distribution d90 of the granulated powder used for molding was 230 ⁇ m, the crushing strength was 1.29 MPa, and the amounts of impurities P, B, S and Cl in the ferrite were all 5 mass ppm. Thereafter, this molded body is charged into a firing furnace, and fired in a gas flow appropriately mixed with nitrogen gas and air at a maximum temperature of 1350 ° C.
  • the resistivity is less than 30 ⁇ ⁇ m.
  • the levels of Comparative Examples 2-2, 2-4 and 2-5 where one or more of the same components are excessive abnormal particles appear and sintering is inhibited, so the sintering density is low, Latler is also high.
  • the specific resistance is low, and the squareness ratio is also high as the residual magnetic flux density is increased.
  • Example 3 According to the method shown in Examples 1 and 2, the basic components and the auxiliary components have the same composition as in Example 1-2, but the amount of impurities contained is variously different, and the outer diameter is 25 mm.
  • the characteristics were evaluated using the same method and apparatus as in Example 1. The results are shown in Table 3.
  • molding was 230 micrometers, and crushing strength was 1.29 MPa.
  • Example 3-1 in which the P, B, S and Cl contents are less than or equal to the specified values, is represented by the strength represented by the Latler value, and the squareness ratio, the specific resistance and the Curie temperature. Good values are obtained for all of the magnetic properties that are obtained. On the other hand, abnormal particles appear in all of Comparative Examples 3-1 to 3-6 in which one or more of the four levels exceed the specified value, and sintering is inhibited. Since the sintered density is low, the Latler value is high, and the generation of grain boundaries is insufficient, so the specific resistance is low, and the squareness ratio is also high as the residual magnetic flux density increases.
  • Example 4 A molded product produced at a ratio such that the basic component, the accessory component, and the impurity component have the same composition as in Example 1-2 according to the method shown in Examples 1 and 2 was subjected to various temperature conditions shown in Table 4. Baked. The characteristics of each of these samples were evaluated using the same method and apparatus as in Example 1. The obtained results are shown in Table 4. In addition, the particle size distribution d90 of the granulated powder used for shaping
  • Examples 3-1 to 3-3 having a maximum holding temperature of 1290 ° C. or more and a holding time of 1 hour or more and a sintering density of 4.85 g / cm 3 or more.
  • both the strength represented by the Latler value and the magnetic properties represented by the specific resistance, squareness ratio and Curie temperature were good.
  • Comparative Examples 3-1 to 3-6 in which the sintering temperature is less than 1290 ° C. or the holding time is less than 1 hour and the sintering density is less than 4.85 g / cm 3 , the sintering density is low. Therefore, since the Latler value is high and the grain growth is insufficient, the hysteresis loss is increased, and as a result of the increase of the residual magnetic flux density Br, the square ratio is increased. It is not preferable from the viewpoint.
  • Example 5 Particle size distribution d90 shown in Table 5 by changing the screening conditions using granulated powder obtained with the same composition and the same spray dry conditions as in Example 1-2 according to the method shown in Examples 1 and 2
  • the toroidal core and the cylindrical core were formed by applying a pressure of 118 MPa to a value (crush strength: 1.29 MPa). Thereafter, this molded body is charged into a firing furnace, and fired in a gas flow appropriately mixed with nitrogen gas and air at a maximum temperature of 1350 ° C. for 2 hours, outer diameter: 25 mm, inner diameter: 15 mm, height: 5 mm
  • the sintered body toroidal core of the above and the cylindrical-shaped core of five diameter: 10 mm and height: 10 mm were obtained. The characteristics of each of these samples were evaluated using the same method and apparatus as in Example 1. The obtained results are shown in Table 5.
  • Example 5-1 in which the value of the granulated powder particle size distribution d90 is 300 ⁇ m or less, the residual porosity of the granulated powder is small and the origin of defects is small. It can be suppressed to less than%.
  • Comparative Examples 5-1 to 5-3 in which the value of d90 is larger than 300 ⁇ m there are many voids among the granulated powder and there are many origins of defects, so the rattler value is high and the strength is lowered.
  • Example 6 Granules having different crush strengths are obtained by spray-drying a slurry prepared with the same composition of Example 1-2 prepared by the method shown in Examples 1 and 2 under the exhaust air temperature conditions shown in Table 6. After removing the coarse powder through a sieve of 350 ⁇ m mesh, a pressure of 118 MPa was applied to form a toroidal core and a cylindrical core. The particle size distribution d90 of the granulated powder at this time was 230 ⁇ m. Thereafter, this molded body is charged into a firing furnace, and fired in a gas flow appropriately mixed with nitrogen gas and air at a maximum temperature of 1350 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

A MnCoZn ferrite having not only good magnetic characteristics such as high resistivity and low squareness ratio but also excellent mechanical strength. This is achieved by the following. The MnCoZn ferrite comprises: as basic ingredients, at least 45.0 mol% and less than 50.0 mol% of iron in terms of Fe2O3, 15.5 to 24.0 mol% of zinc in terms of ZnO, 0.5 to 4.0 mol% of cobalt in terms of CoO, and manganese as the remainder; as minor ingredients relative to the basic ingredients, 50 to 300 mass ppm of SiO2 and 300 to 1300 mass ppm of CaO; as the remainder, incidental impurities wherein the amounts of P, B, S, and Cl are controlled to respectively less than 50 mass ppm, less than 20 mass ppm, less than 30 mass ppm, and less than 50 mass ppm. Furthermore, for this MnCoZn ferrite, the rattler value is set to less than 0.85%, squareness ratio at 23°C to 0.35 or less, specific resistance to 30 Ω∙m or more, and Curie temperature to 100°C or higher.

Description

MnCoZn系フェライトおよびその製造方法MnCoZn ferrite and method for producing the same
 本発明は、比抵抗が高く、飽和磁束密度に対する残留磁束密度の比(残留磁束密度/飽和磁束密度)である角形比が小さく、かつ欠損しにくいMnCoZn系フェライトおよびその製造方法に関するものである。
 なお、本明細書において、角形比は23℃での値をいう。
The present invention relates to a MnCoZn ferrite having a high specific resistance and a low squareness ratio which is a ratio of residual magnetic flux density to saturated magnetic flux density (residual magnetic flux density / saturated magnetic flux density) and which is not easily chipped, and a method of manufacturing the same.
In the present specification, the squareness ratio refers to the value at 23 ° C.
 軟磁性酸化物磁性材料の代表的な例として、MnZnフェライトが挙げられる。従来のMnZnフェライトは、正の磁気異方性を持つFe2+を約2mass%以上含み、負の磁気異方性を持つFe3+、Mn2+と相殺させることにより、kHz領域において高い初透磁料や低い損失を達成している。
 このMnZnフェライトは、アモルファス金属等と比較して安価なことから、スイッチング電源等のノイズフィルタやトランスやアンテナの磁心として幅広く使用されている。
A representative example of the soft magnetic oxide magnetic material is MnZn ferrite. The conventional MnZn ferrite contains Fe 2+ with positive magnetic anisotropy of about 2 mass% or more, and by offsetting it with Fe 3+ and Mn 2+ with negative magnetic anisotropy, high initial permeability material in kHz region And achieve low losses.
The MnZn ferrite is widely used as a noise filter for a switching power supply or the like, a core of a transformer, and an antenna because it is inexpensive as compared with an amorphous metal or the like.
 しかし、MnZnフェライトは、Fe2+量が多いことから、Fe3+-Fe2+間での電子の授受が起こりやすく、比抵抗が0.1Ω・mオーダーと低いという欠点がある。そのため、使用する周波数領域が高くなると、フェライト内を流れる渦電流による損失が急増して、初透磁率が大きく低下し、損失も増大する。このため、MnZnフェライトの耐用周波数は数百kHz程度が限界であり、MHzオーダーでは主にNiZnフェライトが用いられる。このNiZnフェライトの比抵抗は10(Ω・m)以上でMnZnフェライトの約1万倍であり、渦電流損失が少ないため、高周波領域でも高初透磁率、低損失という特性が失われにくい。 However, since MnZn ferrite has a large amount of Fe 2+ , exchange of electrons between Fe 3+ -Fe 2+ easily occurs, and there is a disadvantage that the specific resistance is as low as 0.1 Ω · m. Therefore, when the frequency range to be used becomes high, the loss due to the eddy current flowing in the ferrite increases rapidly, the initial permeability significantly decreases, and the loss also increases. For this reason, the service frequency of MnZn ferrite is limited to about several hundred kHz, and NiZn ferrite is mainly used in MHz order. The specific resistance of this NiZn ferrite is 10 5 (Ω · m) or more, about 10,000 times that of MnZn ferrite, and the eddy current loss is small, so the characteristics of high initial permeability and low loss are unlikely to be lost even in a high frequency region.
 ただし、NiZnフェライトには大きな問題点がある。それは、NiはMnよりも負の磁気異方性エネルギーが大きく、また正の磁気異方性を持つFe2+をほとんど含まないことから角形比が大きくなることである。角形比とは、残留磁束密度を飽和磁束密度で除したもので、この値が大きい場合は、一旦外部から磁界が印加された後には、初透磁率が大きく低下し、同時に損失の増大を招く。そのため軟磁性材料としての特性を大きく損ねる。 However, NiZn ferrite has a major problem. That is, Ni has a larger negative magnetic anisotropy energy than Mn, and has a large squareness ratio because it contains almost no Fe 2+ having positive magnetic anisotropy. The squareness ratio is the residual magnetic flux density divided by the saturation magnetic flux density, and when this value is large, the initial permeability significantly decreases and the loss increases simultaneously after the magnetic field is applied from outside once. . Therefore, the characteristics as a soft magnetic material are greatly impaired.
 NiZnフェライト以外に比抵抗の大きいフェライトを得る方法として、MnZnフェライト中に含まれるFe2+量を減らすことで比抵抗を上昇させる、という手法がある。
 例えば、特許文献1、特許文献2及び特許文献3等には、Fe成分を50mol%未満としてFe2+含有量を減らすことで比抵抗を高めたMnZnフェライトが報告されている。しかし、これらもNiZnフェライトと同様に負の磁気異方性を持つイオンのみから成るため、角形比の低減という課題は全く解決されていない。
As a method of obtaining a ferrite having a large specific resistance other than the NiZn ferrite, there is a method of increasing the specific resistance by reducing the amount of Fe 2+ contained in the MnZn ferrite.
For example, in Patent Document 1, Patent Document 2 and Patent Document 3 etc., there are reported MnZn ferrites whose specific resistance is enhanced by reducing the Fe 2+ content by setting the Fe 2 O 3 component to less than 50 mol%. However, since these also consist only of ions having negative magnetic anisotropy as in the case of NiZn ferrite, the problem of reducing the squareness ratio has not been solved at all.
 そこで、Fe2+以外の正の磁気異方性を持つCo2+を添加させる、という技術が特許文献4、特許文献5及び特許文献6において開示されたが、これらは角形比の低下を目的としたものではなかった。また、後述する異常粒への対策が不十分であるためコストおよび製造効率の面でも劣っていた。 Therefore, techniques of adding Co 2+ having positive magnetic anisotropy other than Fe 2+ have been disclosed in Patent Document 4, Patent Document 5 and Patent Document 6, but these were intended to reduce the squareness ratio. It was not a thing. Moreover, since the countermeasure to the abnormal grain mentioned later was inadequate, it was inferior also in terms of cost and manufacturing efficiency.
 これに対し、特許文献7では、不純物組成に規定を設けることで異常粒の出現を抑制し、安定製造が可能で、角形比の低い高抵抗MnCoZnフェライトが報告されている。
 なお、異常粒成長とは、何らかの原因により局部的に粒成長のバランスが崩れた際に起こるもので、粉末冶金法を用いた製造時にしばしば見られる現象である。この異常成長粒内には、不純物や格子欠陥等の磁壁の移動を大きく妨げる物質が混入するため、残留磁束密度が上昇し、その結果角形比が上昇する。同時に、結晶粒界形成が不十分になることから比抵抗は低下する。
On the other hand, Patent Document 7 reports high resistance MnCoZn ferrite having a low squareness ratio, which can suppress the appearance of abnormal grains by providing a specified impurity composition and can be stably manufactured.
In addition, abnormal grain growth is what occurs when the balance of grain growth is broken locally due to some cause, and is a phenomenon often seen in manufacturing using powder metallurgy. In the abnormally grown grains, a substance that greatly impedes the movement of the domain wall, such as impurities and lattice defects, is mixed, so the residual magnetic flux density is increased, and as a result, the squareness ratio is increased. At the same time, the resistivity decreases due to the insufficient formation of grain boundaries.
特開平7-230909号公報Japanese Patent Application Laid-Open No. 7-230909 特開2000-277316号公報JP 2000-277316 A 特開2001-220222号公報JP 2001-220222 A 特許第3418827号公報Patent No. 3418827 gazette 特開2001-220221公報Japanese Patent Application Publication No. 2001-220221 特開2001-68325号公報Unexamined-Japanese-Patent No. 2001-68325 特許4508626号公報Patent No. 4508626 特開2006-44971号公報JP, 2006-44971, A
 前掲特許文献7の開発により、磁気特性的には満足のいくMnCoZnフェライトが得られるようになった。
 一方、近年の自動車の電装化の動きは目覚ましく、MnCoZnフェライトも自動車に搭載されるケースが増えているが、同用途にて重要視される特性が機械的強度である。それまでの主用途であった電気製品や産業用機器と比較して、自動車では走行時に振動が発生することから、車載用途ではセラミックスであるMnCoZnフェライトにも振動による衝撃に対し欠損しないものが求められるようになってきている。
With the development of Patent Document 7 mentioned above, MnCoZn ferrite having satisfactory magnetic characteristics has been obtained.
On the other hand, there is a remarkable movement of electrification of automobiles in recent years, and although MnCoZn ferrite is also increasingly mounted in automobiles, the mechanical strength is a property regarded as important in the same application. In comparison with electric products and industrial equipment that were the main applications until that time, vibrations occur during traveling in automobiles, so in vehicles applications it is also required that MnCoZn ferrites, which are ceramics, not be damaged by shock due to vibration It has become possible to
 しかし、Fe成分が50mol%未満であるMnCoZnフェライトは、酸素空孔が少ないために焼成時に焼結が進みやすく、そのため結晶粒内に空孔が残存しやすく、かつ結晶粒界の生成が不均一になりやすい。その結果、外部からの衝撃を受けた場合には、従来のMnCoZnフェライトと比較して欠損しやすいという問題があった。
 すなわち、特許文献7に開示された技術は、得られる磁気特性は十分である一方で、この欠損に対する機械的強度に関しては必ずしも十分ではないところに問題を残していた。
However, MnCoZn ferrite having less than 50 mol% of Fe 2 O 3 component tends to sinter easily at the time of firing due to the small number of oxygen vacancies, so that the vacancies easily remain in the crystal grains and the formation of grain boundaries Is likely to be uneven. As a result, when an external impact is received, there is a problem that the chip is easily broken compared to the conventional MnCoZn ferrite.
That is, the technique disclosed in Patent Document 7 has a problem in that the obtained magnetic properties are sufficient but the mechanical strength for the defect is not necessarily sufficient.
 なお、欠け強度を改善する技術としては、特許文献8に、TiOを0.01~0.5mass%の範囲で添加する技術が知られている。
 しかしながら、TiOの添加は一方で、結晶粒内に固溶しTi4+が生成され、価数バランスから一部のFe3+がFe2+に還元されるために、比抵抗の大幅な低下を招くという不利があった。
As a technique for improving chipping strength, Patent Document 8 discloses a technique of adding TiO 2 in a range of 0.01 to 0.5 mass%.
However, on the other hand, the addition of TiO 2 causes Ti 4 + to be formed as a solid solution in the crystal grains, and a part of Fe 3 + is reduced to Fe 2 + from the valence balance, resulting in a significant decrease in specific resistance. There was a disadvantage.
 本発明は、従来の高抵抗、低角形比という良好な磁気特性を保持しつつ、均一な結晶粒界を生成させると同時に異常粒成長を抑制することにより、ラトラー値にて表される耐欠損性という機械的強度も併せ持つMnCoZnフェライトを、その有利な製造方法と共に提案することを目的とする。 The present invention maintains the magnetic properties of the conventional high resistance and low squareness, and at the same time, suppresses abnormal grain growth while generating uniform grain boundaries, so that the defect resistance represented by the rattler value is achieved. An object of the present invention is to propose an MnCoZn ferrite having mechanical strength as well as its properties together with its advantageous manufacturing method.
 発明者らは、まず、望ましい磁気特性を得るために必要なMnCoZnフェライトのFe、ZnO、およびCoOの適正量について検討した結果、比抵抗が高く、角形比が小さく、かつキュリー温度が高いという特性の全てを同時に実現することができる適正範囲を見出した。
 なお、本明細書では、前述したとおり、角形比については23℃における値を問題とする。というのは、アンテナやノイズフィルタの用途で用いられるMnZnフェライトコアの中には、熱源となる電源トランスや半導体から離れた位置で用いられるものも多く、これらは常温(5~35℃)で作動する。そのため常温(5~35℃)範囲の代表値である23℃での磁気特性が良好、すなわち角形比が小さいことが重要だからである。
The inventors first examined the appropriate amounts of Fe 2 O 3 , ZnO, and CoO of MnCoZn ferrite necessary to obtain desirable magnetic properties, and as a result, they have high resistivity, small square ratio, and Curie temperature. We found a proper range that can realize all of the characteristics of high simultaneously.
In the present specification, as described above, regarding the squareness ratio, the value at 23 ° C. is a problem. The reason is that there are many MnZn ferrite cores used for antenna and noise filter applications, which are used at positions away from power source transformers and semiconductors serving as heat sources, and they operate at normal temperature (5 to 35 ° C) Do. Therefore, it is important that the magnetic properties at 23 ° C., which is a typical value in the normal temperature (5 to 35 ° C.) range, be good, that is, the squareness ratio be small.
 次に、微細組織に着目し、結晶粒内の空孔を減らし、結晶粒度を整えかつ適度な厚みの粒界を実現することで、ラトラー値で表せる焼結コアの欠損を抑制できることを見出した。ここに、望ましい結晶組織を実現するには、結晶粒界に偏析する成分であるSiOおよびCaOの添加量が大きく影響することから、これらの成分の適量範囲を定めることに成功した。この範囲内であれば低いラトラー値を保持することができる。 Next, focusing on the microstructure, it was found that defects in the sintered core that can be represented by the Latler value can be suppressed by reducing the pores in the crystal grains, adjusting the grain size, and realizing grain boundaries of an appropriate thickness. . Here, in order to realize a desirable crystal structure, the addition amount of SiO 2 and CaO, which are components segregated in the crystal grain boundaries, greatly influences, and therefore, it was succeeded to set an appropriate range of these components. If it is in this range, a low Latler value can be held.
 さらに、好適な磁気特性および欠損に対する機械的強度を併有させるために不可欠な、異常粒出現の抑制については、異常粒が出現する際の作製条件に着目して検討した結果、上述のSiOおよびCaOが過多である場合、および原料由来の不純物であるP,B,SおよびClなどの成分がある一定値以上含有された場合に、異常粒が出現することを見出した。
 本発明は、上記の知見に立脚するものである。
Moreover, essential in order to having both the mechanical strength to the preferred magnetic characteristics and defects, the suppression of abnormal grain appearance as a result of abnormal grains was examined by focusing on making conditions for occurrence of the aforementioned SiO 2 And when CaO is excess and when components, such as P, B, S and Cl which are impurities derived from a raw material, contain a certain value or more, it discovered that an abnormal grain appeared.
The present invention is based on the above findings.
 なお、先に述べたが、特許文献1、特許文献2及び特許文献3等では、高比抵抗に関しては言及されており、また特許文献4、特許文献5及び特許文献6では、正の磁気異方性を有するCo2+の添加に関しては述べられているものの、角形比に関する記載は無く、かつ異常粒対策についての記載が一切ないことから機械的強度も不十分であると推定される。また、低い角形比に関して言及されている特許文献7に関しては、添加物の規定が不十分であるため、欠損を抑制し得る、十分な機械的強度は望み得ない。さらに、欠け強度の改善について言及されている特許文献8にしても、比抵抗の大幅な低下が免れ得ない。 As described above, Patent Document 1, Patent Document 2 and Patent Document 3 refer to high specific resistance, and Patent Document 4, Patent Document 5 and Patent Document 6 show positive magnetic difference. Although the addition of Co 2+ having the directionality is described, there is no description on the squareness ratio, and it is presumed that the mechanical strength is insufficient because there is no description on measures against abnormal grain. Also, with respect to Patent Document 7 mentioned with respect to low squareness ratio, sufficient mechanical strength which can suppress defects can not be desired because the definition of additives is insufficient. Furthermore, even in Patent Document 8 that mentions improvement in chipping strength, a significant reduction in resistivity can not be avoided.
 本発明の要旨構成は次のとおりである。
1.基本成分として、
  鉄:Fe換算で45.0mol%以上、50.0mol%未満、
  亜鉛:ZnO換算で15.5~24.0mol%、
  コバルト:CoO換算で0.5~4.0mol%および
  マンガン:残部
を含み、
 上記基本成分に対して、副成分として、
  SiO:50~300massppmおよび
  CaO:300~1300massppm
を含み、残部は不可避的不純物からなるMnCoZn系フェライトであって、
 上記不可避的不純物におけるP、B、SおよびCl量をそれぞれ、
  P:50massppm未満、
  B:20massppm未満、
  S:30massppm未満および
  Cl:50massppm未満
に抑制し、
 さらに、上記MnCoZn系フェライトにおいて、
  ラトラー値が0.85%未満、
  23℃における角形比が0.35以下、
  比抵抗が30Ω・m以上および
  キュリー温度が100℃以上
であるMnCoZn系フェライト。
The essential features of the present invention are as follows.
1. As a basic ingredient,
Iron: 45.0 mol% or more, less than 50.0 mol%, in terms of Fe 2 O 3 ,
Zinc: 15.5 to 24.0 mol% in terms of ZnO,
Cobalt: 0.5 to 4.0 mol% in terms of CoO, and manganese: containing the balance,
As a subcomponent to the above basic component,
SiO 2 50 to 300 mass ppm and CaO 300 to 1300 mass ppm
And the remainder is MnCoZn ferrite consisting of unavoidable impurities,
The amounts of P, B, S and Cl in the above-mentioned unavoidable impurities are respectively
P: less than 50 mass ppm,
B: less than 20 mass ppm,
S: less than 30 mass ppm and Cl: less than 50 mass ppm,
Furthermore, in the above-mentioned MnCoZn ferrite,
Latler value less than 0.85%,
Squareness at 23 ° C is 0.35 or less,
MnCoZn ferrite having a resistivity of 30 Ω · m or more and a Curie temperature of 100 ° C. or more.
2.前記MnCoZn系フェライトの焼結密度が4.85g/cm以上である前記1に記載のMnCoZn系フェライト。 2. 5. The MnCoZn ferrite according to 1, wherein a sintering density of the MnCoZn ferrite is 4.85 g / cm 3 or more.
3.前記MnCoZn系フェライトが、粒度分布d90の値が300μm以下の造粒粉の成形-焼結体からなるMnCoZn系フェライトである前記1または2に記載のMnCoZn系フェライト。 3. 5. The MnCoZn ferrite according to 1 or 2, wherein the MnCoZn ferrite is a MnCoZn ferrite comprising a shaped-sintered body of granulated powder having a particle size distribution d90 of 300 μm or less.
4.前記MnCoZn系フェライトが、圧壊強度が1.50MPa未満の造粒粉の成形-焼結体からなるMnCoZn系フェライトである前記1~3のいずれかに記載のMnCoZn系フェライト。 4. The MnCoZn ferrite according to any one of 1 to 3, wherein the MnCoZn ferrite is a MnCoZn ferrite made of a molded-sintered body of granulated powder having a crushing strength of less than 1.50 MPa.
5.所定の成分比率となるように秤量した基本成分の混合物を仮焼する仮焼工程と
 上記仮焼工程で得られた仮焼粉に、所定の比率に調整した副成分を添加して、混合、粉砕する混合-粉砕工程と、
 上記混合-粉砕工程で得られた粉砕粉にバインダーを添加、混合した後、造粒粉の粒度分布d90の値が300μm以下および/または圧壊強度が1.50MPa未満となるよう造粒し、得られた造粒粉を成形後、最高保持温度:1290以上、保持時間:1時間以上の条件で焼成して、前記1または2に記載のMnCoZn系フェライトを得る焼成工程と
を有するMnCoZn系フェライトの製造方法。
5. Sub-components adjusted to a predetermined ratio are added to the calcined powder obtained in the calcination step of calcining the mixture of the basic components weighed to a predetermined component ratio and the above-mentioned calcination step, and mixed, Grinding-mixing-grinding process,
A binder is added to and mixed with the pulverized powder obtained in the above mixing-pulverization step, and then granulated so that the value of the particle size distribution d90 of the granulated powder is 300 μm or less and / or the crushing strength is less than 1.50 MPa. The formed granulated powder is sintered and fired under the conditions of maximum holding temperature: 1290 or more and holding time: 1 hour or more to obtain the MnCoZn-based ferrite described in 1 or 2 above. Production method.
6.前記造粒がスプレードライ法である前記5に記載のMnCoZn系フェライトの製造方法。 6. 5. The method for producing MnCoZn ferrite according to 5 above, wherein the granulation is a spray drying method.
 本発明によれば、高抵抗、低角形比という良好な磁気特性を有するだけでなく、均一な結晶粒界を生成させると同時に異常粒成長を抑制することにより、優れた耐欠損性という機械的強度を兼備したMnCoZnフェライトを得ることができる。
 本発明のMnCoZnフェライトは、23℃、1kHzにおける初透磁率が3000以上、23℃、1MHzにおける初透磁率が2000以上、23℃、10MHzにおける初透磁率が150以上という、優れた磁気特性を有する。
According to the present invention, not only having good magnetic properties such as high resistance and low squareness ratio, but also generating uniform grain boundaries and at the same time suppressing abnormal grain growth, it is mechanically excellent in defect resistance. It is possible to obtain MnCoZn ferrite having strength.
The MnCoZn ferrite of the present invention has excellent magnetic properties such as an initial permeability of 3000 or more at 23 ° C. and 1 kHz, an initial permeability of 2000 or more at 23 ° C. and 1 MHz, and an initial permeability of 150 or more at 23 ° C. and 10 MHz. .
 以下、本発明を具体的に説明する。
 まず、本発明において、MnCoZnフェライトの組成を前記の範囲に限定した理由について説明する。なお、基本成分として本発明に含まれる鉄や亜鉛、コバルト、マンガンについてはすべてFe、ZnO、CoO、MnOに換算した値で示す。また、これらFe、ZnO、CoO、MnOの含有量についてはmol%で、一方副成分および不純物成分の含有量についてはフェライト全体に対するmassppmで表すことにした。
Hereinafter, the present invention will be specifically described.
First, the reason why the composition of the MnCoZn ferrite is limited to the above range in the present invention will be described. Incidentally, showing the iron and zinc are included in the present invention as a basic component, cobalt, all the manganese Fe 2 O 3, ZnO, CoO , a value in terms of MnO. The contents of Fe 2 O 3 , ZnO, CoO, and MnO are expressed in mol%, and the contents of one subcomponent and the impurity component are expressed in mass ppm with respect to the entire ferrite.
Fe:45.0mol%~50.0mol%未満
 Feが過剰に含まれた場合、Fe2+量が増加し、それによりMnCoZnフェライトの比抵抗が低下する。これを避けるために、Fe量は50mol%未満に抑える必要がある。しかし、少なすぎた場合には、角形比の上昇及びキュリー温度の低下を招くため、最低でも鉄はFe換算で45.0mol%は含有させるものとする。好ましいFeの範囲は47.1mol%以上、50.0mol%未満であり、より好ましくは47.1~49.5mol%である。
Fe 2 O 3 : 45.0 mol% to less than 50.0 mol% When Fe 2 O 3 is contained in excess, the amount of Fe 2+ increases, thereby reducing the specific resistance of the MnCoZn ferrite. In order to avoid this, the amount of Fe 2 O 3 needs to be suppressed to less than 50 mol%. However, if the amount is too small, it causes an increase in squareness and a decrease in Curie temperature, and therefore iron is contained at least 45.0 mol% in terms of Fe 2 O 3 . The preferred range of Fe 2 O 3 is 47.1 mol% or more and less than 50.0 mol%, more preferably 47.1 to 49.5 mol%.
ZnO:15.5mol%~24.0mol%
 ZnOは、フェライトの飽和磁化を増加させること、また比較的飽和蒸気圧が低いことから焼結密度を上昇させ、飽和磁束密度を上昇させる働きがあり、角形比の低下に有効な成分である。そこで、最低でも亜鉛はZnO換算で15.5mol%は含有させるものとする。一方、亜鉛含有量が適正な値より多い場合には、キュリー温度の低下を招き、実用上問題がある。そのため、亜鉛はZnO換算で上限を24.0mol%とする。好ましいZnOの範囲は15.5~23.0mol%であり、より好ましくは17.0~23.0mol%である。
ZnO: 15.5 mol% to 24.0 mol%
ZnO works to increase the saturation magnetization of ferrite and to increase the sintered density due to its relatively low saturation vapor pressure, thereby increasing the saturation magnetic flux density, and is an effective component for decreasing the squareness ratio. Therefore, at least 15.5 mol% of zinc is contained in terms of ZnO as a minimum. On the other hand, when the zinc content is larger than the appropriate value, the Curie temperature is lowered and there is a problem in practical use. Therefore, the upper limit of zinc is 24.0 mol% in terms of ZnO. The preferred range of ZnO is 15.5 to 23.0 mol%, more preferably 17.0 to 23.0 mol%.
CoO:0.5mol%~4.0mol%
 CoOにおけるCo2+は正の磁気異方性エネルギーをもつイオンであり、このCoOの適正量の添加に伴い、磁気異方性エネルギーの総和の絶対値が低下する結果、角形比の低下が実現される。そのためには、CoOを0.5mol%以上添加することが必須である。一方、多量の添加は比抵抗の低下、異常粒成長の誘発、また磁気異方性エネルギーの総和が過度に正に傾くことから、逆に角形比の上昇を招く。これを防ぐため、CoOは最大4.0mol%の添加に止めるものとする。好ましいCoOの範囲は1.0~3.5mol%、より好ましくは1.0~3.0mol%である。
CoO: 0.5 mol% to 4.0 mol%
Co 2+ in CoO is an ion having positive magnetic anisotropy energy, and as the addition of a proper amount of CoO reduces the absolute value of the sum of magnetic anisotropy energy, a reduction in squareness is realized. Ru. For that purpose, it is essential to add 0.5 mol% or more of CoO. On the other hand, a large amount of addition causes a decrease in specific resistance, induction of abnormal grain growth, and an increase in squareness ratio since the total of magnetic anisotropic energy is positively inclined to the positive. In order to prevent this, CoO is limited to the addition of up to 4.0 mol%. The preferred range of CoO is 1.0 to 3.5 mol%, more preferably 1.0 to 3.0 mol%.
 MnO:残部
 本発明は、MnCoZnフェライトであり、基本成分組成の残部はMnOである必要がある。その理由は、MnOでなければ、高飽和磁束密度、低損失および高透磁率の良好な磁気特性が得られないためである。好ましいMnOの範囲は26.5~32.0mol%である。
MnO: Remainder The present invention is MnCoZn ferrite, and the remainder of the basic component composition needs to be MnO. The reason is that unless MnO is used, good magnetic characteristics of high saturation magnetic flux density, low loss and high permeability can not be obtained. The preferred range of MnO is 26.5 to 32.0 mol%.
 以上、基本成分について説明したが、副成分については次のとおりである。
SiO:50~300massppm
 SiOは、フェライトの結晶組織の均一化に寄与することが知られており、適量の添加に伴い結晶粒内に残留する空孔を減少させ、残留磁束密度を低下させることで角形比を低下させる。また、SiOは、粒界に偏析することで比抵抗を高め、同時に粗大な粒径の結晶を減少させることから、焼結体の欠損の指標であるラトラー値を低減することができる。そのため、最低でもSiOを50massppm含有させることとする。一方、添加量過多の場合には反対に異常粒が出現し、これは欠損の起点となるためラトラー値が上昇し、同時に角形比も上昇することから、SiOの含有は300massppm以下に制限する必要がある。SiOの好ましい含有量は、60~250massppmである。
The basic components have been described above, but the subcomponents are as follows.
SiO 2 : 50 to 300 mass ppm
SiO 2 is known to contribute to the homogenization of the crystal structure of ferrite, and decreases the void ratio remaining in the crystal grains with the addition of an appropriate amount, thereby reducing the squareness ratio by reducing the residual magnetic flux density. Let In addition, SiO 2 segregates in grain boundaries to increase the specific resistance and simultaneously reduce coarse crystals, thereby reducing the Latler value, which is an index of defects in a sintered body. Therefore, at least 50 mass ppm of SiO 2 is included. On the other hand, when the addition amount is excessive, abnormal grains appear on the contrary, which becomes the starting point of defects, so the rattler value rises and simultaneously the squareness ratio also rises, so the content of SiO 2 is limited to 300 mass ppm or less There is a need. The preferred content of SiO 2 is 60 to 250 mass ppm.
CaO:300~1300massppm
 CaOは、MnCoZnフェライトの結晶粒界に偏析し、結晶粒の成長を抑制する働きを持つ。そのため、適量の添加に伴い、比抵抗が上昇し、残留磁束密度を低下させることで角形比も下げ、なおかつ粗大な結晶を減少させるためラトラー値も低減することができる。そのため、最低でもCaOを300massppm含有させることとする。一方、添加量過多の場合には異常粒が出現し、ラトラー値および角形比も上昇することから、CaOの含有は1300massppm以下に制限する必要がある。CaOの好ましい含有量は、350~1000massppmである。
CaO: 300 to 1300 mass ppm
CaO is segregated at grain boundaries of MnCoZn ferrite and has a function of suppressing the growth of crystal grains. Therefore, with the addition of an appropriate amount, the specific resistance is increased, and by reducing the residual magnetic flux density, it is possible to lower the squareness ratio, and to reduce coarse crystals, thereby reducing the rattler value. Therefore, at least 300 mass ppm of CaO is included. On the other hand, when the addition amount is excessive, abnormal grains appear and the rattler value and squareness ratio also increase, so the content of CaO needs to be limited to 1300 mass ppm or less. The preferred content of CaO is 350 to 1000 mass ppm.
 次に、抑制すべき不純物成分について説明する。
P:50massppm未満、B:20massppm未満、S:30massppm未満及びCl:50massppm未満
 これらは、酸化鉄等の原料中に不可避的に含まれる成分である。これらの含有がごく微量であれば問題はないが、ある一定以上含まれる場合にはフェライトの異常粒成長を誘発し、得られるフェライトの諸特性に重大な悪影響を及ぼす。本発明のようにFeを50mol%未満しか含まない組成のフェライトは、50mol%以上含むものに比べて、結晶の粒成長が進行しやすく、そのためP,B,S及びCl量が多いと異常粒成長が発生しやすくなる。その場合、残留磁束密度の上昇に伴い角形比が上昇し、結晶粒界の生成が不十分となることから比抵抗は低下し、欠損の起点となるためラトラー値も上昇する。
 そこで、本発明では、P,B,S及びClの含有量はそれぞれ、50、20、30及び50ppm未満に抑制するものとした。
 なお、上記したP、B、SおよびClを含め、不可避的不純物の許容量は全体で70massppm以下とする必要がある。好ましくは該不可避的不純物の許容量は65massppm以下である。
Next, the impurity components to be suppressed will be described.
P: less than 50 mass ppm, B: less than 20 mass ppm, S: less than 30 mass ppm, and Cl: less than 50 mass ppm These are components inevitably contained in the raw material such as iron oxide. There is no problem if the content is very small, but if it is contained in a certain amount or more, abnormal grain growth of ferrite is induced, and the various properties of the obtained ferrite are seriously adversely affected. As in the present invention, ferrite having a composition containing less than 50 mol% of Fe 2 O 3 is more susceptible to the growth of crystal grains than those containing 50 mol% or more, and therefore has a large amount of P, B, S and Cl. And abnormal grain growth is likely to occur. In that case, the squareness ratio increases with the increase of the residual magnetic flux density, the generation of the grain boundaries becomes insufficient, the resistivity decreases, and the Latler value also increases because it becomes a starting point of defects.
Therefore, in the present invention, the contents of P, B, S and Cl are suppressed to less than 50, 20, 30 and 50 ppm, respectively.
In addition, it is necessary to make the allowable amount of unavoidable impurities into 70 mass ppm or less in total including P mentioned above, B, S, and Cl. Preferably, the allowable amount of the unavoidable impurities is 65 mass ppm or less.
 従って、原材料として用いる基本成分および副成分中の不純物の混入を極力抑制することが好ましい。原材料として用いる基本成分および副成分中の不純物の合計量が、上記したP、B、SおよびClを含め70massppm以下とするのが好ましく、65massppm以下とするのがより好ましい。 Therefore, it is preferable to minimize the mixing of impurities in the basic component and the auxiliary component used as the raw material. The total amount of impurities in the basic component and the subcomponents used as the raw material is preferably 70 mass ppm or less including P, B, S and Cl described above, and more preferably 65 mass ppm or less.
 また、組成に限らず、種々のパラメータによりMnCoZnフェライトの諸特性は多大な影響を受ける。それ故、本発明では、所望の磁気特性、強度特性を有するために次の条件を満足させることが好ましい。 In addition, various properties of the MnCoZn ferrite are greatly affected by various parameters as well as the composition. Therefore, in the present invention, it is preferable to satisfy the following conditions in order to have desired magnetic properties and strength properties.
・焼結密度:4.85g/cm以上
 MnCoZnフェライトは、焼成処理により焼結および粒成長が進み、結晶粒および結晶粒界が構成される。高い飽和磁束密度および低い残留磁束密度を実現可能な結晶組織、すなわち結晶粒界に存在すべき非磁性成分が適切に結晶粒界に偏析し、結晶粒は適度な粒径を保ちかつ均一な磁性を有する成分にて構成される形態を実現するためには、焼結反応が十分に進む必要がある。また欠損防止の観点からも、焼結が不十分な場合には強度が低下するため好ましくない。
 以上の観点から、本発明のMnCoZnフェライトは、焼結密度が4.85g/cm以上とすることが好ましい。これを満たすことで、角形比が低減し、かつラトラー値を低く抑制することができる。なお、この焼結密度を実現するためには、焼成時の最高保持温度を1290℃以上とし、かつこの温度での保持時間を1h以上で焼成する必要がある。最高保持温度は1290~1400℃が好ましく、保持時間は1~8時間が好ましい。また、異常粒成長が発生した場合には焼結密度が高まらないことから、異常粒が出現しないよう、先に述べた添加物量や不純物量を適切な範囲内に収めて作製する必要がある。
Sintered density: 4.85 g / cm 3 or more In the MnCoZn ferrite, sintering and grain growth proceed by firing treatment to form crystal grains and grain boundaries. A crystal structure capable of achieving high saturation magnetic flux density and low residual magnetic flux density, that is, nonmagnetic components to be present at grain boundaries are properly segregated at grain boundaries, and the grains maintain appropriate grain size and uniform magnetic properties The sintering reaction needs to proceed sufficiently in order to realize the form constituted by the components having. In addition, from the viewpoint of preventing defects, when the sintering is insufficient, the strength is unfavorably reduced.
From the above viewpoint, the MnCoZn ferrite of the present invention preferably has a sintered density of 4.85 g / cm 3 or more. By satisfying this, it is possible to reduce the squareness ratio and to suppress the rattler value to be low. In addition, in order to realize this sintering density, it is necessary to make the maximum holding temperature at the time of baking 1290 ° C. or more, and to hold the holding time at this temperature for 1 h or more. The maximum holding temperature is preferably 1290 to 1400 ° C., and the holding time is preferably 1 to 8 hours. In addition, since the sintered density does not increase when abnormal grain growth occurs, it is necessary to manufacture the additive amount and the impurity amount described above within an appropriate range so that abnormal grains do not appear.
・粒度分布d90の値が300μm以下である造粒粉を用いて作製する。
・造粒粉圧壊強度が1.50MPa未満である造粒粉を用いて作製する。
 一般的にMnCoZnフェライトは、造粒粉を金型に充填した後、約100MPaの圧力で圧縮する粉末成形工程を経て、得られた成形体を焼成し焼結させることで得られる。このフェライトの表面には造粒粉同士の隙間に起因する微小な凹凸が焼結後も残存し、これが衝撃に対する欠損の起点となるため、微小凹凸の残存の増加に伴いラトラー値が高くなる。そのため造粒粉同士の隙間を減らすべく、粒度の粗い造粒粉を除去しかつ造粒粉の圧壊強度も一定値以下に抑制することが好ましい。
 この条件を満たすために有効な手段としては、粒度に関しては得られた造粒粉を篩に通すことで粒度を調整することが効果的である。一方、造粒粉の圧壊強度を低下させるためには、噴霧造粒法のような熱をかけ造粒する際、温度が過度に高くならないようにすることが効果的である。粒度分布に関しては、JIS Z 8825に記載されたレーザ回折・散乱法による粒子径解析により測定する。「D90」とは、粒度分布曲線における、小粒径側から体積累計90%の粒径を表わす。また、造粒粉の圧壊強度についてはJIS Z 8841に規定された手法にて測定する。
 なお、粒度分布d90の値があまりに小さいと、造粒粉間の接触点の増加に起因し流動性が低下することから、粉体成形時の粉の金型充填の不具合および成形時の成形圧力増加の問題が生じるので、d90の下限は75μmとするのが好ましい。また、造粒粉圧壊強度が大きく低下すると輸送時および粉の金型充填の際に造粒粉が圧潰してしまい、流動性が低下することで、やはり粉の金型充填時の不具合および成形時の成形圧力増加の問題が生じるので、圧壊強度の下限は0.50MPaとするのが好ましい。
-It manufactures using granulated powder whose value of the particle size distribution d90 is 300 micrometers or less.
-It produces using granulated powder whose granulated powder crushing strength is less than 1.50 MPa.
In general, MnCoZn ferrite is obtained by firing and sintering the obtained molded body through a powder forming process in which granulated powder is filled in a mold and then compressed at a pressure of about 100 MPa. On the surface of the ferrite, minute irregularities resulting from the gaps between the granulated powders remain even after sintering, and this becomes the starting point of fracture due to impact, so the Latler value becomes higher as the minute irregularities remain. Therefore, in order to reduce the gaps between the granulated powders, it is preferable to remove the granulated powder having a coarse particle size and to suppress the crushing strength of the granulated powder to a certain value or less.
As an effective means for satisfying this condition, it is effective to adjust the particle size by passing the obtained granulated powder through a sieve in terms of particle size. On the other hand, in order to reduce the crushing strength of the granulated powder, it is effective to prevent the temperature from becoming excessively high when granulating by applying heat as in the spray granulation method. The particle size distribution is measured by particle size analysis by laser diffraction / scattering method described in JIS Z 8825. "D90" represents a particle size of 90% of the total volume from the small particle size side in the particle size distribution curve. Further, the crushing strength of the granulated powder is measured by the method defined in JIS Z 8841.
If the value of the particle size distribution d90 is too small, the flowability is reduced due to an increase in the contact point between the granulated powder, so that the mold filling failure of the powder during powder molding and the molding pressure during molding It is preferable to set the lower limit of d90 to 75 μm because an increase problem arises. In addition, when the crushing strength of the granulated powder is largely reduced, the granulated powder is crushed during transportation and at the time of filling the powder mold, and the flowability is lowered, so that the defect at the filling of the powder mold and molding The lower limit of the crush strength is preferably set to 0.50 MPa, since the problem of an increase in molding pressure at the time occurs.
 次に、本発明のMnCoZnフェライトの製造方法について説明する。
 MnCoZnフェライトの製造については、まず所定の比率となるようFe、ZnO、CoO及びMnO粉末を秤量し、これらを十分に混合した後に仮焼を行う。次に得られた仮焼粉を粉砕し、粉砕粉を得る。この際、本発明にて規定された副成分を所定の比率で加え、仮焼粉とあわせて粉砕する。この工程にて、添加した成分の濃度に偏りがないよう粉末が充分に均質化し、同時に仮焼粉を目標の平均粒径の大きさまで微細化させる。ここに、目標とする粉砕粉の平均粒径は1.4~1.0μmである。
 ついで、目標組成とした粉末に、ポリビニルアルコール等の有機物バインダーを加え、望ましい粒度および圧壊強度の試料が得られるよう適切な条件下にてスプレードライ法等による造粒により造粒粉とする。スプレードライ法であれば、排風温度を270℃より低くすることが望ましい。ここに、造粒粉の好適粒度は、粒度分布d90の値で75~300μmである。また、造粒粉の好適圧壊強度は、0.50MPa以上1.50MPa未満である。
 次に、必要に応じて粒度調整のための篩通し等の工程を経たのち、成形機にて圧力を加えて成形後、適した焼成条件の下で焼成を行う。なお、篩では350μmの目開きのものを通し、篩上の粗粉を除去することが望ましい。また、適正な焼成条件は、最高保持温度は1290以上、保持時間は1時間以上である。
 なお、得られたフェライト焼結体は、表面研磨等加工を施しても構わない。
Next, the method for producing the MnCoZn ferrite of the present invention will be described.
In the production of MnCoZn ferrite, first, Fe 2 O 3 , ZnO, CoO and MnO powders are weighed so as to attain a predetermined ratio, and these are sufficiently mixed and then calcined. Next, the obtained calcined powder is pulverized to obtain a pulverized powder. Under the present circumstances, the subcomponent prescribed | regulated by this invention is added by a predetermined | prescribed ratio, and it grinds together with calcined powder. In this step, the powder is sufficiently homogenized so that the concentration of the added component is not uneven, and at the same time, the calcined powder is refined to the target average particle size. Here, the average particle diameter of the target pulverized powder is 1.4 to 1.0 μm.
Next, an organic substance binder such as polyvinyl alcohol is added to the powder having the target composition, and granulated by spray drying or the like under appropriate conditions so as to obtain a sample having a desired particle size and crushing strength. In the case of the spray drying method, it is desirable to make the exhaust air temperature lower than 270.degree. Here, the preferred particle size of the granulated powder is 75 to 300 μm in terms of the particle size distribution d90. Moreover, the suitable crushing strength of granulated powder is 0.50 Mpa or more and less than 1.50 Mpa.
Next, after passing through processes such as sifting for adjusting the particle size as required, pressure is applied by a forming machine to perform forming, and then firing is performed under suitable firing conditions. In addition, it is desirable to remove the coarse powder on a sieve through the sieve of 350 micrometers of openings. Further, appropriate firing conditions are a maximum holding temperature of 1290 or more and a holding time of 1 hour or more.
The obtained ferrite sintered body may be subjected to processing such as surface polishing.
 かくして、従来不可能であった、
・ラトラー値が0.85%未満
・23℃における角形比が0.35以下
・比抵抗が30Ω・m以上
・キュリー温度が100℃以上
という優れた特性を全て同時に満たす、MnCoZnフェライトを得ることができる。
Thus, conventionally it was impossible,
Latler value less than 0.85% Squareness ratio at 23 ° C. is 0.35 or less Specific resistance is 30 Ω m or more Curly temperature is 100 ° C or more simultaneously to obtain excellent MnCoZn ferrite it can.
実施例1
 含まれる鉄、亜鉛、コバルトおよびマンガンをすべてFe、ZnO、CoOおよびMnOとして換算した場合に、Fe、ZnO、CoOおよびMnO量が表1に示す比率となるように秤量した各原料粉末を、ボールミルを用いて16時間混合した後、空気中にて925℃、3時間の仮焼を行った。次に、この仮焼粉に対し、SiO、CaOをそれぞれ150、700massppm相当分秤量した後に添加し、ボールミルで12時間粉砕した。ついで、得られた粉砕スラリーに、ポリビニルアルコールを加えて、排風温度250℃でスプレードライ造粒し、目開き350μmの篩を通して粗粉を除去した後に、118MPaの圧力をかけトロイダルコアおよび直方体コアに成形した。成形に用いた造粒粉の粒度分布d90は230μm、また圧壊強度は1.29MPaであった。
 その後、この成形体を焼成炉に装入して、最高温度1350℃で2時間、窒素ガスと空気を適宜混合したガス流中で焼成し、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダルコアと、5個の直径:10mm、高さ:10mmの焼結体円柱形状コアを得た。
 なお、高純度原料を用いたことから、フェライト中に含有する不純物P,B,SおよびCl量は全て5massppmであった。また、P,B,SおよびClの含有量は、JIS K 0102(IPC質量分析法)に従って定量した。
Example 1
Iron contained, zinc, all cobalt and manganese Fe 2 O 3, ZnO, when calculated as CoO and MnO, Fe 2 O 3, ZnO, CoO, and MnO content was weighed so that the ratio shown in Table 1 Each raw material powder was mixed using a ball mill for 16 hours, and then calcined at 925 ° C. for 3 hours in air. Next, to this calcined powder, SiO 2 and CaO were weighed after being respectively equivalent to 150 and 700 mass ppm, and then added, and ground in a ball mill for 12 hours. Next, polyvinyl alcohol is added to the obtained crushed slurry, spray-dried and granulated at an exhaust air temperature of 250 ° C., coarse particles are removed through a sieve with 350 μm openings, and a pressure of 118 MPa is applied to the toroidal core and rectangular solid core Molded into The particle size distribution d90 of the granulated powder used for molding was 230 μm, and the crushing strength was 1.29 MPa.
Thereafter, this molded body is charged into a firing furnace, and fired in a gas flow appropriately mixed with nitrogen gas and air at a maximum temperature of 1350 ° C. for 2 hours, outer diameter: 25 mm, inner diameter: 15 mm, height: 5 mm The sintered toroidal core of the above was obtained, and a five-piece sintered cylindrical core having a diameter of 10 mm and a height of 10 mm was obtained.
In addition, since high purity raw materials were used, the amounts of impurities P, B, S and Cl contained in ferrite were all 5 mass ppm. In addition, the contents of P, B, S and Cl were quantified according to JIS K 0102 (IPC mass spectrometry).
 得られた試料は、JIS C 2560-2に基づき、焼結密度は23℃にてトロイダルコアをアルキメデス法により、比抵抗は4端子法により測定した。トロイダルコアの初透磁率はトロイダルコアに10ターンの巻線を施し、LCRメータ(キーサイト社製4980A)を用いて測定したインダクタンスを元に算出した。またキュリー温度はインダクタンスの温度特性測定結果より算出した。ラトラー値に関してはJPMA P11-1992に定める方法に則り測定した。角形比はJIS C 2560-2に基づき23℃にて測定した残留磁束密度Brを飽和磁束密度Bsで除すことで算出した。
 得られた結果を表1に併記する。
The obtained sample was measured based on JIS C 2560-2, the sintered density was 23 ° C., and the toroidal core was measured by the Archimedes method, and the resistivity was measured by the four-terminal method. The initial permeability of the toroidal core was calculated based on the inductance measured by using a winding of 10 turns on the toroidal core and using an LCR meter (4980A manufactured by Keysight Co., Ltd.). In addition, the Curie temperature was calculated from the temperature characteristic measurement result of the inductance. The Latler value was measured according to the method defined in JPMA P11-1992. The squareness ratio was calculated by dividing the residual magnetic flux density Br measured at 23 ° C. based on JIS C 2560-2 by the saturation magnetic flux density Bs.
The results obtained are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 同表に示したとおり、発明例である実施例1-1~1-7では、ラトラー値が0.85%未満という高強度、および23℃における比抵抗が30Ω・m以上、角形比が0.35以下かつキュリー温度100℃以上という優れた磁気特性を併せ持つMnCoZnフェライトを得ることができた。
 これに対し、Feを50.0mol%以上含有する比較例1-1、1-2では、Fe2+の生成に伴い比抵抗が大幅に低下している。一方、Fe量が45.0mol未満である比較例1-3では、角形比の上昇およびキュリー温度の低下が見られる。
 また、ZnO量が適正範囲を超える比較例1-4では、キュリー温度の低下が見られる。一方、ZnO量が適正範囲に満たない比較例1-5では、角形比が上昇し、ともに好ましい磁気特性を実現できていない。
 さらに、CoO量が適正範囲に満たない比較例1-6では、残留磁束密度が高まるため角形比が高く、一方CoO量が適正範囲を超える比較例1-7でも、磁気異方性の高まりのために角形比が高くなり、ともに好ましい範囲から逸脱している。
As shown in the table, in Examples 1-1 to 1-7 which are invention examples, the high strength that the Latler value is less than 0.85%, the specific resistance at 23 ° C. is 30 Ω · m or more, and the square ratio is 0 An MnCoZn ferrite having excellent magnetic properties such as .35 or less and Curie temperature of 100.degree. C. or more was obtained.
On the other hand, in Comparative Examples 1-1 and 1-2 containing 50.0 mol% or more of Fe 2 O 3 , the resistivity decreases significantly with the formation of Fe 2+ . On the other hand, in Comparative Example 1-3 in which the amount of Fe 2 O 3 is less than 45.0 mol, an increase in squareness and a decrease in Curie temperature are observed.
In addition, in Comparative Example 1-4 in which the amount of ZnO exceeds the appropriate range, a decrease in Curie temperature is observed. On the other hand, in Comparative Example 1-5 in which the amount of ZnO is less than the appropriate range, the squareness ratio is increased, and both preferable magnetic characteristics can not be realized.
Furthermore, in Comparative Example 1-6 in which the amount of CoO is less than the appropriate range, the squareness ratio is high because the residual magnetic flux density is increased, while in Comparative Example 1-7 in which the amount of CoO exceeds the appropriate range, the magnetic anisotropy is increased. Therefore, the squareness ratio is high, and both deviate from the preferable range.
実施例2
 含まれる鉄、亜鉛、コバルトおよびマンガンをすべてFe、ZnO、CoOおよびMnOとして換算した場合に、Fe量が49.0mol%、ZnO量が21.0mol%、CoO量が2.0mol%および残部MnO組成となるよう原料を秤量し、ボールミルを用いて16時間混合した後、空気中にて925℃、3時間の仮焼を行った。次に、この仮焼粉に対し、表2に示す量のSiO、CaOを加え、ボールミルで12時間粉砕を行った。ついで、得られた粉砕スラリーに、ポリビニルアルコールを加えて、排風温度250℃でスプレードライ造粒し、目開き350μmの篩を通して粗粉を除去した後に、118MPaの圧力をかけトロイダルコアおよび円柱コアに成形した。なお、成形に用いた造粒粉の粒度分布d90は230μmであり、圧壊強度は1.29MPaであり、フェライト中の不純物P,B,SおよびCl量は全て5massppmであった。
 その後、この成形体を焼成炉に装入して、最高温度1350℃で2時間、窒素ガスと空気を適宜混合したガス流中で焼成し、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダルコアと、5個の直径:10mm、高さ:10mmの円柱形状コアを得た。
 これらの各試料について、実施例1と同じ手法、装置を用いそれぞれの特性を評価した。
 得られた結果を表2に併記する。
Example 2
When iron, zinc, cobalt and manganese contained are all converted as Fe 2 O 3 , ZnO, CoO and MnO, the amount of Fe 2 O 3 is 49.0 mol%, the amount of ZnO is 21.0 mol%, the amount of CoO is 2 The raw materials were weighed so as to have a composition of 0 mol% and the balance MnO, mixed for 16 hours using a ball mill, and then calcined in air at 925 ° C. for 3 hours. Next, SiO 2 and CaO in amounts shown in Table 2 were added to the calcined powder, and grinding was performed for 12 hours with a ball mill. Next, polyvinyl alcohol is added to the obtained pulverized slurry, spray-dried and granulated at an exhaust air temperature of 250 ° C., and coarse particles are removed through a sieve with 350 μm openings, and then a pressure of 118 MPa is applied to the toroidal core and cylindrical core. Molded into The particle size distribution d90 of the granulated powder used for molding was 230 μm, the crushing strength was 1.29 MPa, and the amounts of impurities P, B, S and Cl in the ferrite were all 5 mass ppm.
Thereafter, this molded body is charged into a firing furnace, and fired in a gas flow appropriately mixed with nitrogen gas and air at a maximum temperature of 1350 ° C. for 2 hours, outer diameter: 25 mm, inner diameter: 15 mm, height: 5 mm The sintered body toroidal core of the above and the cylindrical-shaped core of five diameter: 10 mm and height: 10 mm were obtained.
The characteristics of each of these samples were evaluated using the same method and apparatus as in Example 1.
The obtained results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 同表に示したとおり、SiOおよび量が適正範囲内である実施例2-1~2-4では、ラトラー値が0.85%未満という高強度、および23℃における比抵抗が30Ω・m以上、角形比が0.35以下かつキュリー温度100℃以上という優れた磁気特性を併せ持つMnCoZnフェライトを得ることができた。
 これに対し、SiO、CaOのうちどちらか1つでも適正範囲に満たない比較例2-1、2-3では結晶粒界の生成が不十分であることから結晶粒の大きさが整っていないため、ラトラー値が0.85%より高く、また粒界厚みも不十分であることから比抵抗が30Ω・m未満に止まっている。
 また、同成分のうち1つでも過多である比較例2-2、2-4および2-5水準では、異常粒が出現しており、焼結が阻害されることから焼結密度が低く、ラトラー値も高い。加えて結晶粒界の生成が不十分であるため比抵抗が低く、かつ残留磁束密度の上昇に伴い、角形比も高くなっている。
As shown in the table, in Examples 2-1 to 2-4 in which the SiO 2 and the amount are within the appropriate range, the high strength that the Latler value is less than 0.85%, and the specific resistance at 23 ° C. is 30 Ω · m. As described above, it is possible to obtain the MnCoZn ferrite having excellent magnetic properties such as a squareness ratio of 0.35 or less and a Curie temperature of 100 ° C. or more.
On the other hand, in Comparative Examples 2-1 and 2-3 in which even one of SiO 2 and CaO does not reach the appropriate range, the size of the crystal grains is uniform because the generation of the grain boundaries is insufficient. Because the Latler value is higher than 0.85% and the grain boundary thickness is insufficient, the resistivity is less than 30 Ω · m.
In addition, at the levels of Comparative Examples 2-2, 2-4 and 2-5 where one or more of the same components are excessive, abnormal particles appear and sintering is inhibited, so the sintering density is low, Latler is also high. In addition, since the generation of grain boundaries is insufficient, the specific resistance is low, and the squareness ratio is also high as the residual magnetic flux density is increased.
実施例3
 実施例1、2に示した手法により、基本成分および副成分が実施例1-2と同じ組成となるような割合になる一方、含有する不純物量が種々に異なる原料を用いて外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダルコアと、5個の直径:10mm、高さ:10mmの円柱形状コアを作製し、実施例1と同じ手法、装置を用いて特性を評価した結果を表3に示す。なお、成形に用いた造粒粉の粒度分布d90は230μm、また圧壊強度は1.29MPaであった。
Example 3
According to the method shown in Examples 1 and 2, the basic components and the auxiliary components have the same composition as in Example 1-2, but the amount of impurities contained is variously different, and the outer diameter is 25 mm. Using a sintered toroidal core with an inner diameter of 15 mm and a height of 5 mm and a cylindrical core with five diameters of 10 mm and a height of 10 mm, the characteristics were evaluated using the same method and apparatus as in Example 1. The results are shown in Table 3. In addition, the particle size distribution d90 of the granulated powder used for shaping | molding was 230 micrometers, and crushing strength was 1.29 MPa.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 同表に示したとおり、P,B,SおよびClの含有量が規定値以下である実施例3-1は、ラトラー値で表される強度、ならびに角形比、比抵抗およびキュリー温度にて表される磁気特性の全てが良好な値が得られている。
 これに対し、これら4水準のうち1つ、もしくは複数が規定値を上回っている比較例3-1~3-6はいずれも、異常粒が出現しており、焼結が阻害されることから焼結密度が低いためラトラー値が高く、しかも結晶粒界の生成が不十分であるため比抵抗が低く、さらに残留磁束密度の上昇に伴い角形比も高くなっている。
As shown in the table, Example 3-1 in which the P, B, S and Cl contents are less than or equal to the specified values, is represented by the strength represented by the Latler value, and the squareness ratio, the specific resistance and the Curie temperature. Good values are obtained for all of the magnetic properties that are obtained.
On the other hand, abnormal particles appear in all of Comparative Examples 3-1 to 3-6 in which one or more of the four levels exceed the specified value, and sintering is inhibited. Since the sintered density is low, the Latler value is high, and the generation of grain boundaries is insufficient, so the specific resistance is low, and the squareness ratio is also high as the residual magnetic flux density increases.
実施例4
 実施例1、2に示した手法により、基本成分、副成分および不純物成分が実施例1-2と同じ組成となるような割合で作製した成形体を、表4に示す種々の温度条件下にて焼成した。
 これらの各試料について、実施例1と同じ手法、装置を用いてそれぞれの特性を評価した。得られた結果を表4に併記する。なお、成形に用いた造粒粉の粒度分布d90は230μm、また圧壊強度は1.29MPaであった。
Example 4
A molded product produced at a ratio such that the basic component, the accessory component, and the impurity component have the same composition as in Example 1-2 according to the method shown in Examples 1 and 2 was subjected to various temperature conditions shown in Table 4. Baked.
The characteristics of each of these samples were evaluated using the same method and apparatus as in Example 1. The obtained results are shown in Table 4. In addition, the particle size distribution d90 of the granulated powder used for shaping | molding was 230 micrometers, and crushing strength was 1.29 MPa.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 同表に示したとおり、焼成時の最高保持温度が1290℃以上、かつ保持時間が1時間以上で焼成し、焼結密度が4.85g/cm以上である実施例3-1~3-5では、ラトラー値で表される強度、および比抵抗、角形比およびキュリー温度にて表される磁気特性ともに良好であった。
 これに対し、焼成温度が1290℃未満、もしくは保持時間が1時間未満であり、焼結密度が4.85g/cm未満である比較例3-1~3-6では、焼結密度が低いため、ラトラー値が高くなっており、かつ結晶粒成長が不十分であるためヒステリシス損失が増大しており、残留磁束密度Brの上昇した結果角形比が高くなっており、強度、磁気特性両方の観点から好ましくない。
As shown in the table, Examples 3-1 to 3-3 having a maximum holding temperature of 1290 ° C. or more and a holding time of 1 hour or more and a sintering density of 4.85 g / cm 3 or more. In No. 5, both the strength represented by the Latler value and the magnetic properties represented by the specific resistance, squareness ratio and Curie temperature were good.
On the other hand, in Comparative Examples 3-1 to 3-6, in which the sintering temperature is less than 1290 ° C. or the holding time is less than 1 hour and the sintering density is less than 4.85 g / cm 3 , the sintering density is low. Therefore, since the Latler value is high and the grain growth is insufficient, the hysteresis loss is increased, and as a result of the increase of the residual magnetic flux density Br, the square ratio is increased. It is not preferable from the viewpoint.
実施例5
 実施例1、2に示した手法により、実施例1-2と同じ組成、同じスプレードライ条件にて得られた造粒粉を用い、篩通し条件を変更することで表5に示す粒度分布d90の値としたもの(圧壊強度:1.29MPa)を、118MPaの圧力をかけトロイダルコアおよび円柱コアを成形した。その後、この成形体を焼成炉に装入して、最高温度1350℃で2時間、窒素ガスと空気を適宜混合したガス流中で焼成し、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダルコアと、5個の直径:10mm、高さ:10mmの円柱形状コアを得た。
 これらの各試料について、実施例1と同じ手法、装置を用いてそれぞれの特性を評価した。得られた結果を表5に併記する。
Example 5
Particle size distribution d90 shown in Table 5 by changing the screening conditions using granulated powder obtained with the same composition and the same spray dry conditions as in Example 1-2 according to the method shown in Examples 1 and 2 The toroidal core and the cylindrical core were formed by applying a pressure of 118 MPa to a value (crush strength: 1.29 MPa). Thereafter, this molded body is charged into a firing furnace, and fired in a gas flow appropriately mixed with nitrogen gas and air at a maximum temperature of 1350 ° C. for 2 hours, outer diameter: 25 mm, inner diameter: 15 mm, height: 5 mm The sintered body toroidal core of the above and the cylindrical-shaped core of five diameter: 10 mm and height: 10 mm were obtained.
The characteristics of each of these samples were evaluated using the same method and apparatus as in Example 1. The obtained results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 同表に示したとおり、造粒粉粒度分布d90の値が300μm以下の実施例5-1は、造粒粉間の空隙の残存が少なく、欠損の起点が少ないため、ラトラー値を0.85%以下に抑制できている。
 これに対し、d90の値が300μmより大きい比較例5-1~5-3では、造粒粉間の空隙が多く、欠損の起点が多いことからラトラー値が高く、強度が低下している。
As shown in the table, in Example 5-1 in which the value of the granulated powder particle size distribution d90 is 300 μm or less, the residual porosity of the granulated powder is small and the origin of defects is small. It can be suppressed to less than%.
On the other hand, in Comparative Examples 5-1 to 5-3 in which the value of d90 is larger than 300 μm, there are many voids among the granulated powder and there are many origins of defects, so the rattler value is high and the strength is lowered.
実施例6
 実施例1、2に示した手法により作製した実施例1-2同じ組成で作製したスラリーを、表6に示す排風温度条件下にてスプレードライすることで圧壊強度の異なる造粒粉を得て、目開き350μmの篩を通して粗粉を除去した後に、118MPaの圧力をかけトロイダルコアおよび円柱コアに成形した。なおこの時の造粒粉の粒度分布d90は230μmであった。
 その後、この成形体を焼成炉に装入して、最高温度1350℃で2時間、窒素ガスと空気を適宜混合したガス流中で焼成し、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダルコアと、5個の直径:10mm、高さ:10mmの円柱形状コアを得た。
 これらの各試料について、実施例1と同じ手法、装置を用いてそれぞれの特性を評価した結果を表6に併記する。
Example 6
Granules having different crush strengths are obtained by spray-drying a slurry prepared with the same composition of Example 1-2 prepared by the method shown in Examples 1 and 2 under the exhaust air temperature conditions shown in Table 6. After removing the coarse powder through a sieve of 350 μm mesh, a pressure of 118 MPa was applied to form a toroidal core and a cylindrical core. The particle size distribution d90 of the granulated powder at this time was 230 μm.
Thereafter, this molded body is charged into a firing furnace, and fired in a gas flow appropriately mixed with nitrogen gas and air at a maximum temperature of 1350 ° C. for 2 hours, outer diameter: 25 mm, inner diameter: 15 mm, height: 5 mm The sintered body toroidal core of the above and the cylindrical-shaped core of five diameter: 10 mm and height: 10 mm were obtained.
The results of evaluating the properties of each of these samples using the same method and apparatus as in Example 1 are also shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
 同表に示したとおり、スプレードライ造粒の排風温度が過度に高くない実施例6-1~6-2では、造粒粉の圧壊強度が1.5MPa未満となり、成形時に造粒粉が十分に潰れることから、造粒粉間の隙間が残らず、そのため欠損の起点が少ないため、ラトラー値を0.85%未満に抑制できている。
 これに対し、排風温度が過度に高く造粒粉圧壊強度が1.5MPa以上である比較例6-1~6-3に着目すると、造粒粉潰れ不良に起因する欠損の起点が多いことからラトラー値が高くなっており、強度が低下している。
As shown in the table, in Examples 6-1 to 6-2 in which the discharge air temperature of spray drying granulation is not excessively high, the crushing strength of the granulated powder is less than 1.5 MPa, and the granulated powder Since it crushes sufficiently, there is no gap between the granulated powder, and hence there are few origins of defects, so the rattler value can be suppressed to less than 0.85%.
On the other hand, focusing on Comparative Examples 6-1 to 6-3 in which the exhaust air temperature is excessively high and the granulated powder crushing strength is 1.5 MPa or more, there are many starting points of defects caused by the granulated powder crushing failure. Since the Latler value is high, the strength is decreasing.

Claims (6)

  1.  基本成分として、
      鉄:Fe換算で45.0mol%以上、50.0mol%未満、
      亜鉛:ZnO換算で15.5~24.0mol%、
      コバルト:CoO換算で0.5~4.0mol%および
      マンガン:残部
    を含み、
     上記基本成分に対して、副成分として、
      SiO:50~300massppmおよび
      CaO:300~1300massppm
    を含み、残部は不可避的不純物からなるMnCoZn系フェライトであって、
     上記不可避的不純物におけるP、B、SおよびCl量をそれぞれ、
      P:50massppm未満、
      B:20massppm未満、
      S:30massppm未満および
      Cl:50massppm未満
    に抑制し、
     さらに、上記MnCoZn系フェライトにおいて、
      ラトラー値が0.85%未満、
      23℃における角形比が0.35以下、
      比抵抗が30Ω・m以上および
      キュリー温度が100℃以上
    であるMnCoZn系フェライト。
    As a basic ingredient,
    Iron: 45.0 mol% or more, less than 50.0 mol%, in terms of Fe 2 O 3 ,
    Zinc: 15.5 to 24.0 mol% in terms of ZnO,
    Cobalt: 0.5 to 4.0 mol% in terms of CoO, and manganese: containing the balance,
    As a subcomponent to the above basic component,
    SiO 2 50 to 300 mass ppm and CaO 300 to 1300 mass ppm
    And the remainder is MnCoZn ferrite consisting of unavoidable impurities,
    The amounts of P, B, S and Cl in the above-mentioned unavoidable impurities are respectively
    P: less than 50 mass ppm,
    B: less than 20 mass ppm,
    S: less than 30 mass ppm and Cl: less than 50 mass ppm,
    Furthermore, in the above-mentioned MnCoZn ferrite,
    Latler value less than 0.85%,
    Squareness at 23 ° C is 0.35 or less,
    MnCoZn ferrite having a resistivity of 30 Ω · m or more and a Curie temperature of 100 ° C. or more.
  2.  前記MnCoZn系フェライトの焼結密度が4.85g/cm以上である請求項1に記載のMnCoZn系フェライト。 The MnCoZn ferrite according to claim 1, wherein a sintered density of the MnCoZn ferrite is 4.85 g / cm 3 or more.
  3.  前記MnCoZn系フェライトが、粒度分布d90の値が300μm以下の造粒粉の成形-焼結体からなるMnCoZn系フェライトである請求項1または2に記載のMnCoZn系フェライト。 The MnCoZn-based ferrite according to claim 1 or 2, wherein the MnCoZn-based ferrite is a MnCoZn-based ferrite formed of a shaped-sintered body of granulated powder having a particle size distribution d90 of 300 μm or less.
  4.  前記MnCoZn系フェライトが、圧壊強度が1.50MPa未満の造粒粉の成形-焼結体からなるMnCoZn系フェライトである請求項1~3のいずれかに記載のMnCoZn系フェライト。 The MnCoZn-based ferrite according to any one of claims 1 to 3, wherein the MnCoZn-based ferrite is a MnCoZn-based ferrite formed of a shaped-sintered body of granulated powder having a crushing strength of less than 1.50 MPa.
  5.  所定の成分比率となるように秤量した基本成分の混合物を仮焼する仮焼工程と
     上記仮焼工程で得られた仮焼粉に、所定の比率に調整した副成分を添加して、混合、粉砕する混合-粉砕工程と、
     上記混合-粉砕工程で得られた粉砕粉にバインダーを添加、混合した後、造粒粉の粒度分布d90の値が300μm以下および/または圧壊強度が1.50MPa未満となるよう造粒し、得られた造粒粉を成形後、最高保持温度:1290以上、保持時間:1時間以上の条件で焼成して、請求項1または2に記載のMnCoZn系フェライトを得る焼成工程と
    を有するMnCoZn系フェライトの製造方法。
    Sub-components adjusted to a predetermined ratio are added to the calcined powder obtained in the calcination step of calcining the mixture of the basic components weighed to a predetermined component ratio and the above-mentioned calcination step, and mixed, Grinding-mixing-grinding process,
    A binder is added to and mixed with the pulverized powder obtained in the above mixing-pulverization step, and then granulated so that the value of the particle size distribution d90 of the granulated powder is 300 μm or less and / or the crushing strength is less than 1.50 MPa. MnCoZn ferrite having a firing step of obtaining the MnCoZn ferrite according to claim 1 or 2 by molding the granulated powder and firing under the conditions of maximum holding temperature: 1290 or more and holding time: 1 hour or more Manufacturing method.
  6.  前記造粒がスプレードライ法である請求項5に記載のMnCoZn系フェライトの製造方法。 The method for producing MnCoZn ferrite according to claim 5, wherein the granulation is a spray drying method.
PCT/JP2018/019530 2017-08-29 2018-05-21 Mncozn ferrite and method for producing same WO2019044060A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018553258A JP6439086B1 (en) 2017-08-29 2018-05-21 MnCoZn-based ferrite and method for producing the same
CN201880002001.6A CN110325489B (en) 2017-08-29 2018-05-21 MnCoZn-based ferrite and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-164698 2017-08-29
JP2017164698 2017-08-29

Publications (1)

Publication Number Publication Date
WO2019044060A1 true WO2019044060A1 (en) 2019-03-07

Family

ID=65525771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019530 WO2019044060A1 (en) 2017-08-29 2018-05-21 Mncozn ferrite and method for producing same

Country Status (3)

Country Link
CN (1) CN110325489B (en)
TW (1) TWI667220B (en)
WO (1) WO2019044060A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6732159B1 (en) * 2019-03-18 2020-07-29 Jfeケミカル株式会社 MnCoZn ferrite and method for producing the same
WO2020189035A1 (en) * 2019-03-18 2020-09-24 Jfeケミカル株式会社 MnCoZn FERRITE AND METHOD FOR PRODUCING SAME
JPWO2022014219A1 (en) * 2020-07-14 2022-01-20

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111233452B (en) * 2019-10-18 2021-09-17 横店集团东磁股份有限公司 High-frequency high-impedance lean iron manganese zinc ferrite and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462908A (en) * 1990-07-02 1992-02-27 Tokin Corp Manufacture of low loss oxide magnetic material
JP2007197245A (en) * 2006-01-26 2007-08-09 Jfe Ferrite Corp Mn-Co-Zn FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP2008184363A (en) * 2007-01-30 2008-08-14 Fdk Corp MnZn-BASED FERRITE AND METHOD FOR PRODUCING THE SAME
JP2009096702A (en) * 2007-10-19 2009-05-07 Tdk Corp Radio-wave absorbing body
JP2010180101A (en) * 2009-02-06 2010-08-19 Jfe Chemical Corp HIGH RESISTANCE AND HIGHLY SATURATED MAGNETIC FLUX DENSITY MnZnCo FERRITE, AND METHOD FOR PRODUCING THE SAME

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5546139B2 (en) * 2009-01-29 2014-07-09 Jfeケミカル株式会社 MnZnCo ferrite core and method for producing the same
JP2016060656A (en) * 2014-09-17 2016-04-25 Tdk株式会社 Ferrite composition for electromagnetic wave absorber and electromagnetic wave absorber
JP2017075085A (en) * 2015-10-16 2017-04-20 Tdk株式会社 MnZnLi-BASED FERRITE, MAGNETIC CORE AND TRANSFORMER

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462908A (en) * 1990-07-02 1992-02-27 Tokin Corp Manufacture of low loss oxide magnetic material
JP2007197245A (en) * 2006-01-26 2007-08-09 Jfe Ferrite Corp Mn-Co-Zn FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP2008184363A (en) * 2007-01-30 2008-08-14 Fdk Corp MnZn-BASED FERRITE AND METHOD FOR PRODUCING THE SAME
JP2009096702A (en) * 2007-10-19 2009-05-07 Tdk Corp Radio-wave absorbing body
JP2010180101A (en) * 2009-02-06 2010-08-19 Jfe Chemical Corp HIGH RESISTANCE AND HIGHLY SATURATED MAGNETIC FLUX DENSITY MnZnCo FERRITE, AND METHOD FOR PRODUCING THE SAME

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6732159B1 (en) * 2019-03-18 2020-07-29 Jfeケミカル株式会社 MnCoZn ferrite and method for producing the same
WO2020189035A1 (en) * 2019-03-18 2020-09-24 Jfeケミカル株式会社 MnCoZn FERRITE AND METHOD FOR PRODUCING SAME
CN112041275A (en) * 2019-03-18 2020-12-04 杰富意化学株式会社 MnCoZn-based ferrite and method for producing same
CN112041275B (en) * 2019-03-18 2022-12-27 杰富意化学株式会社 MnCoZn-based ferrite and method for producing same
JPWO2022014219A1 (en) * 2020-07-14 2022-01-20
WO2022014219A1 (en) * 2020-07-14 2022-01-20 Jfeケミカル株式会社 Mncozn-based ferrite
CN114269709A (en) * 2020-07-14 2022-04-01 杰富意化学株式会社 MnCoZn-based ferrite
JP7182016B2 (en) 2020-07-14 2022-12-01 Jfeケミカル株式会社 MnCoZn ferrite

Also Published As

Publication number Publication date
TWI667220B (en) 2019-08-01
TW201912609A (en) 2019-04-01
CN110325489B (en) 2021-11-12
CN110325489A (en) 2019-10-11

Similar Documents

Publication Publication Date Title
JP6462959B1 (en) Rod-shaped MnZn ferrite core, manufacturing method thereof, and antenna
WO2019044060A1 (en) Mncozn ferrite and method for producing same
JP6742440B2 (en) MnCoZn ferrite and method for producing the same
KR20080037521A (en) Hexagonal z type ferrite sintered material and method of fabricating the same
TWI796712B (en) MnCoZn series iron fertilizer
JP6553833B1 (en) MnCoZn-based ferrite and method for producing the same
JP6730546B1 (en) MnCoZn ferrite and method for producing the same
TWI704122B (en) Manganese-cobalt-zinc fertilizer granular iron and its manufacturing method
JP6439086B1 (en) MnCoZn-based ferrite and method for producing the same
JP6553834B1 (en) MnCoZn-based ferrite and method for producing the same
JPWO2020189035A1 (en) MnCoZn-based ferrite and its manufacturing method
TWI692462B (en) MnCoZn series ferrite iron and its manufacturing method
JPWO2020158333A1 (en) MnZn-based ferrite and its manufacturing method
JPWO2020158335A1 (en) MnZn-based ferrite and its manufacturing method
TWI694059B (en) MnCoZn series ferrite iron and its manufacturing method
TWI721773B (en) Manganese-zinc fertilizer granulated iron and its manufacturing method
TWI761757B (en) Manganese-cobalt-zinc-based fertilizer granulated iron and method for producing the same
JP2005170763A (en) Mn/Zn FERRITE, ITS MANUFACTURING METHOD AND ELECTRONIC PART
WO2022014218A1 (en) Manganese-zinc ferrite
WO2020189036A1 (en) MnZn-BASED FERRITE AND METHOD FOR MANUFACTURING SAME
JPWO2020189036A1 (en) MnZn-based ferrite and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018553258

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851026

Country of ref document: EP

Kind code of ref document: A1