JPH0462908A - Manufacture of low loss oxide magnetic material - Google Patents
Manufacture of low loss oxide magnetic materialInfo
- Publication number
- JPH0462908A JPH0462908A JP2172683A JP17268390A JPH0462908A JP H0462908 A JPH0462908 A JP H0462908A JP 2172683 A JP2172683 A JP 2172683A JP 17268390 A JP17268390 A JP 17268390A JP H0462908 A JPH0462908 A JP H0462908A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- oxide
- magnetic material
- loss
- oxide magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000696 magnetic material Substances 0.000 title claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 13
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 13
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 11
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 11
- VASIZKWUTCETSD-UHFFFAOYSA-N oxomanganese Chemical compound [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 claims abstract description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 8
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 8
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims abstract description 6
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 239000000292 calcium oxide Substances 0.000 claims abstract description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 claims abstract description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 3
- 239000011787 zinc oxide Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- SBEQWOXEGHQIMW-UHFFFAOYSA-N silicon Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 238000005245 sintering Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000011656 manganese carbonate Substances 0.000 description 1
- 235000006748 manganese carbonate Nutrition 0.000 description 1
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、低損失酸化物磁性材料の製造方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a low-loss oxide magnetic material.
[従来の技術及び発明か解決しようとする課題]従来、
スイッチング電源はその駆動周波数が〜100 kHz
程度であったか、近年小型、軽量化か求められ駆動周波
数は増加する傾向にある。しかしなから駆動周波数の増
加により、パワーロスも増大するため発熱が大きくなり
、スイッチング電源用のフェライトとしてはより低損失
のものか求められている。[Prior art and invention or problem to be solved] Conventionally,
The switching power supply has a driving frequency of ~100 kHz.
However, in recent years, there has been a trend toward an increase in drive frequency due to the demand for smaller size and lighter weight. However, as the driving frequency increases, the power loss also increases, resulting in increased heat generation, and therefore, ferrites with lower loss are required for switching power supplies.
これらのスイッチング電源用のフェライトと(。Ferrite for these switching power supplies and (.
では主成分として30〜40モル%の一酸化マンガン(
MnO)、5〜15モル%の酸化亜鉛(Zno)及び残
部として酸化第二鉄(Fe203)を含みむM n −
Z nフェライトが用いられ、さらに副成分として0.
04〜0.15重量%の酸化カルシウム(CaO)と、
0.010〜0.100重M%の二酸化ケイ素を加え
て低損失化がはかられている。しかし、更に高周波化、
小型、軽量化のためにはより低損失化が必要とされてい
る。The main component is 30 to 40 mol% manganese monoxide (
MnO), 5 to 15 mol% zinc oxide (Zno) and the balance ferric oxide (Fe203).
Zn ferrite is used, and 0.
04-0.15% by weight of calcium oxide (CaO);
0.010 to 0.100% by weight of silicon dioxide is added to reduce loss. However, even higher frequency,
In order to reduce the size and weight, lower loss is required.
そこで本発明の技術的課題は、スイッチング電源用とし
て使用される低損失磁性材料のパワーロスを改善するた
めの製造方法を提供することである。Therefore, a technical object of the present invention is to provide a manufacturing method for improving power loss of a low-loss magnetic material used for a switching power supply.
[課題を解決するための手段]
本発明によれば、主成分として30〜40モル%の一酸
化マンガン(MnO)、5〜15モル%の酸化亜鉛(Z
n O)及び、残部として酸化第二鉄(Fe2’03
)を含み、副成分として0.04−=O。[Means for Solving the Problem] According to the present invention, 30 to 40 mol% manganese monoxide (MnO) and 5 to 15 mol% zinc oxide (Z
n O) and the remainder ferric oxide (Fe2'03
) and 0.04-=O as a subcomponent.
15重量%の酸化カルシウム(Cab)と、 0.01
0〜0.1.00重量%の二酸化ケイ素(SiO2)と
を含む低損失酸化物磁性材料において。15% by weight of calcium oxide (Cab) and 0.01
0 to 0.1.00% by weight of silicon dioxide (SiO2).
副成分の二酸化ケイ素として組成相当量の、金属ケイ素
、炭化ケイ素、窒化ケイ素のうちいずれか一種又はこれ
らの混合物を添加することを特徴とする低損失酸化物磁
性材料の製造方法が得られる。A method for producing a low-loss oxide magnetic material is obtained, which is characterized in that a composition-equivalent amount of any one of silicon metal, silicon carbide, and silicon nitride, or a mixture thereof, is added as silicon dioxide as a subcomponent.
本発明者は、Mn−Znフェライトのパワーロスを改善
するための種々の検討を行った結果、主成分として30
〜40モル%の一酸化マンガン。As a result of various studies to improve the power loss of Mn-Zn ferrite, the inventor found that 30% as the main component.
~40 mol% manganese monoxide.
5〜15モル%の酸化亜鉛(ZnO)、残部を酸化第二
鉄(Fe20s)を含み、副成分として0゜04〜0.
15重量%の酸化カルシウム(Cab)と。Contains 5 to 15 mol% zinc oxide (ZnO), the remainder ferric oxide (Fe20s), and 0.04 to 0.04% as an accessory component.
and 15% by weight of calcium oxide (Cab).
0.010〜0.100重量%の二酸化ケイ素(SiO
□)とを含む低損失磁性材料において、副成分の二酸化
ケイ素として組成相当量の金属ケイ素、炭化ケイ素、窒
化ケイ素のうちいずれか一種又はこれらの混合物として
添加することにより従来よりパワーロスを低減すること
を可能とした。0.010-0.100% by weight of silicon dioxide (SiO
□) In a low-loss magnetic material containing □, power loss can be reduced more than before by adding silicon dioxide as a subcomponent in the form of a composition-equivalent amount of any one of metal silicon, silicon carbide, and silicon nitride, or a mixture thereof. made possible.
従来より、Mn−Znフェライトの主成分を適宜選定し
て副成分を調整して、さらに粉末調整。Conventionally, the main components of Mn-Zn ferrite are appropriately selected, the subcomponents are adjusted, and the powder is further adjusted.
焼結等の製造工程を厳密に制御することにより組織を調
整してパワーロスの低減がはかられており。By strictly controlling the manufacturing process such as sintering, we are able to adjust the structure and reduce power loss.
さらに副成分であるCaO,SiO□は粒界形成物とし
て重要であり、必要成分であることが知られているため
、酸化物、水酸化物、炭酸塩の形で添加がなされてきた
。しかるに本発明の特徴である。5in2の添加を金属
ケイ素、炭化ケイ素。Further, the subcomponents CaO and SiO□ are important as grain boundary formers and are known to be necessary components, and therefore they have been added in the form of oxides, hydroxides, and carbonates. However, this is a feature of the present invention. Addition of 5in2 to metallic silicon and silicon carbide.
又は窒化ケイ素として行うことにより、よりパワーロス
の低減されるのは以下のように推定される。Alternatively, by using silicon nitride, it is estimated that the power loss is further reduced as follows.
副成分であるCab、5in2は粒界形成物として必要
であるが、焼結の過程で低融点の液相を形成すると言わ
れており、ここで生成する液相が。The subcomponent Cab, 5in2 is necessary as a grain boundary formation material, but it is said that it forms a low melting point liquid phase during the sintering process;
焼結1粒成長に影響を及ぼすため、製品の最終的な組織
を最適に調整することを困難にしているが。This affects the growth of sintered grains, making it difficult to optimally adjust the final structure of the product.
SiO2を金属ケイ素、炭化ケイ素、又は窒化ケイ素と
して添加すると、これらが焼結過程で酸化して5i02
となるのが遅れ、液相の形成も遅れるために最終製品の
組織が改善されパワーロスが低減すると考えられる。When SiO2 is added as metallic silicon, silicon carbide, or silicon nitride, these are oxidized during the sintering process to form 5i02
It is thought that the structure of the final product is improved and power loss is reduced because the formation of the liquid phase is also delayed.
[実施例] 次に本発明の実施例について図面を参照して説明する。[Example] Next, embodiments of the present invention will be described with reference to the drawings.
Fe2O3,MnCO3、ZnOの粉末をそれぞれ53
.0 lllol%、 35.0 mo1%、 12.
0 lllol%となるよう秤量後、ボールミルで混合
後、約900℃で仮焼した。この仮焼粉末に副成分とし
てCaCO3を0.06重量%とSiO2として0.0
3重量%相当量の1)金属ケイ素、2)炭化ケイ素、3
)窒化ケイ素、4)金属ケイ素と窒化ケイ素(1: 1
)及び5)SiO2を添加した5種類の粉末を準備した
。さらにこれら粉末をボールミルで混合粉砕し、バイン
ダー添加後スプレー造粒し、トロイダルコア成形後13
00℃で本焼成を行った。第1表にこれら51”lfl
のパワーロア、 (100kHz 、 200 mT
、at 60°C)を比較して示す。53 powders each of Fe2O3, MnCO3, and ZnO
.. 0 llol%, 35.0 mo1%, 12.
After weighing to give 0 llol%, the mixture was mixed in a ball mill and calcined at about 900°C. This calcined powder contains 0.06% by weight of CaCO3 and 0.0% of SiO2 as subcomponents.
3% by weight equivalent of 1) metallic silicon, 2) silicon carbide, 3
) silicon nitride, 4) metallic silicon and silicon nitride (1:1
) and 5) Five types of powders to which SiO2 was added were prepared. Furthermore, these powders were mixed and ground in a ball mill, spray granulated after adding a binder, and after forming a toroidal core,
Main firing was performed at 00°C. Table 1 shows these 51”lfl
power lower, (100kHz, 200mT
, at 60°C).
第 1 表
また第7図にパワーロス(100kHz、200mT)
の温度特性を示す。これらより1本発明によるパワーロ
スの改善効果が認められる。Table 1 and Figure 7 show power loss (100kHz, 200mT)
shows the temperature characteristics of From these results, the effect of improving power loss by the present invention can be recognized.
[発明の効果]
以上述べた如く2本発明によれば、スイッチング電源に
使用可能な低損失酸化物磁性材料のパワロスを低減する
ことか可能となり、スイッチング電源の高周波数化、小
型軽量化が可能となる。[Effects of the Invention] As described above, according to the two inventions, it is possible to reduce the power loss of low-loss oxide magnetic materials that can be used in switching power supplies, and it is possible to increase the frequency of switching power supplies and make them smaller and lighter. becomes.
第1図は本発明の実施例において、副成分の8102相
当量の添加を1)金属ケイ素、2)炭化ケイ素、3)窒
化ケイ素、4)金属ケイ素と窒化ケイ素(1: 1)5
)S io2で行った場合の5試料の100kHz、2
00mTにおけるパワーロスの温度特性を比較したもの
である。図中の数字は第1表の試料No、に対応する。Figure 1 shows that in an example of the present invention, 8102 equivalent amounts of subcomponents were added to 1) metallic silicon, 2) silicon carbide, 3) silicon nitride, 4) metallic silicon and silicon nitride (1:1)5
) 100kHz of 5 samples when performed with S io2, 2
The temperature characteristics of power loss at 00 mT are compared. The numbers in the figure correspond to the sample numbers in Table 1.
Claims (1)
MnO),5〜15モル%の酸化亜鉛(ZnO)及び,
残部として酸化第二鉄(Fe_2O_3)を含み,副成
分として0.04〜0.15重量%の酸化カルシウム(
CaO)と,0.010〜0.100重量%の二酸化ケ
イ素(SiO_2)とを含む低損失酸化物磁性材料にお
いて, 副成分の二酸化ケイ素として組成相当量の金属ケイ素,
炭化ケイ素,窒化ケイ素のうちいずれか一種又はこれら
の混合物を添加することを特徴とする低損失酸化物磁性
材料の製造方法。[Scope of Claims] 1) 30 to 40 mol% manganese monoxide (
MnO), 5 to 15 mol% zinc oxide (ZnO), and
Contains ferric oxide (Fe_2O_3) as the balance, and 0.04-0.15% by weight of calcium oxide (Fe_2O_3) as an accessory component.
In a low-loss oxide magnetic material containing silicon dioxide (SiO_2) in an amount of 0.010 to 0.100% by weight, an equivalent amount of metallic silicon,
A method for producing a low-loss oxide magnetic material, characterized by adding one of silicon carbide and silicon nitride, or a mixture thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2172683A JPH0462908A (en) | 1990-07-02 | 1990-07-02 | Manufacture of low loss oxide magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2172683A JPH0462908A (en) | 1990-07-02 | 1990-07-02 | Manufacture of low loss oxide magnetic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0462908A true JPH0462908A (en) | 1992-02-27 |
Family
ID=15946429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2172683A Pending JPH0462908A (en) | 1990-07-02 | 1990-07-02 | Manufacture of low loss oxide magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0462908A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6439086B1 (en) * | 2017-08-29 | 2018-12-19 | Jfeケミカル株式会社 | MnCoZn-based ferrite and method for producing the same |
WO2019044060A1 (en) * | 2017-08-29 | 2019-03-07 | Jfeケミカル株式会社 | Mncozn ferrite and method for producing same |
WO2020235651A1 (en) * | 2019-05-22 | 2020-11-26 | 住友大阪セメント株式会社 | Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for manufacturing composite sintered body |
-
1990
- 1990-07-02 JP JP2172683A patent/JPH0462908A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6439086B1 (en) * | 2017-08-29 | 2018-12-19 | Jfeケミカル株式会社 | MnCoZn-based ferrite and method for producing the same |
WO2019044060A1 (en) * | 2017-08-29 | 2019-03-07 | Jfeケミカル株式会社 | Mncozn ferrite and method for producing same |
CN110325489A (en) * | 2017-08-29 | 2019-10-11 | 杰富意化学株式会社 | MnCoZn based ferrite and its manufacturing method |
CN110325489B (en) * | 2017-08-29 | 2021-11-12 | 杰富意化学株式会社 | MnCoZn-based ferrite and method for producing same |
WO2020235651A1 (en) * | 2019-05-22 | 2020-11-26 | 住友大阪セメント株式会社 | Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for manufacturing composite sintered body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100639770B1 (en) | Method for producing Mn-Zn ferrite | |
JP2001093718A (en) | Magnetic ferrite composition and method for manufacturing thereof | |
JP2017075085A (en) | MnZnLi-BASED FERRITE, MAGNETIC CORE AND TRANSFORMER | |
JP3607203B2 (en) | Manufacturing method of MnZn ferrite, MnZn ferrite, and ferrite core for power supply | |
KR20050087781A (en) | Method for producing ferrite material and ferrite material | |
JP2004161593A (en) | Ferritic material | |
JP3597673B2 (en) | Ferrite material | |
JP2002167272A (en) | METHOD OF MANUFACTURING Mn-Zn FERRITE | |
JP2001261344A (en) | Mn-zn ferrite and method of producing the same | |
JPH0462908A (en) | Manufacture of low loss oxide magnetic material | |
JPH06290925A (en) | High frequency low loss ferrite for power supply | |
JPH06290926A (en) | Mn-zn ferrite magnetic material | |
JP2007297232A (en) | Method for producing oxide magnetic material | |
JP4089970B2 (en) | Ferrite material manufacturing method | |
JP5845137B2 (en) | Method for producing Mn-Zn ferrite | |
JP3446082B2 (en) | Mn-Zn ferrite and method for producing the same | |
JP2914554B2 (en) | Method for producing high permeability MnZn ferrite | |
JP2005194134A (en) | Ferrite core and its production method | |
JP3584437B2 (en) | Method for producing Mn-Zn ferrite | |
JPH10270231A (en) | Mn-ni ferrite material | |
JPH06333724A (en) | Sintered ferrite with crystallite particle and manufacture thereof | |
JPH10270229A (en) | Mn-ni ferrite material | |
JP3499283B2 (en) | High permeability oxide magnetic material | |
JP3597605B2 (en) | High permeability oxide magnetic material | |
JP2005029416A (en) | Ferrite material |