JP2007297232A - Method for producing oxide magnetic material - Google Patents

Method for producing oxide magnetic material Download PDF

Info

Publication number
JP2007297232A
JP2007297232A JP2006125342A JP2006125342A JP2007297232A JP 2007297232 A JP2007297232 A JP 2007297232A JP 2006125342 A JP2006125342 A JP 2006125342A JP 2006125342 A JP2006125342 A JP 2006125342A JP 2007297232 A JP2007297232 A JP 2007297232A
Authority
JP
Japan
Prior art keywords
mol
zno
oxygen
amount
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006125342A
Other languages
Japanese (ja)
Inventor
Kenichi Murai
健一 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006125342A priority Critical patent/JP2007297232A/en
Publication of JP2007297232A publication Critical patent/JP2007297232A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an oxide magnetic material having a low loss and a high saturation magnetic flux density by further enhancing the density of a sintered compact by reducing the releasing amount of oxygen in a temperature-raising step of a sintering process. <P>SOLUTION: In a mixing process, Fe<SB>2</SB>O<SB>3</SB>is mixed in an amount less than a desired Fe<SB>2</SB>O<SB>3</SB>amount so as to completely convert Fe<SB>2</SB>O<SB>3</SB>and Mn<SB>3</SB>O<SB>4</SB>into (MnZn)Fe<SB>2</SB>O<SB>4</SB>about 900°C and to complete releasing of oxygen in a following calcining process. Further, the composition is adjusted by adding Fe<SB>3</SB>O<SB>4</SB>and ZnO for adjusting the shortage amount of Fe<SB>2</SB>O<SB>3</SB>in a pulverization process, and after granulating, forming is performed. Thereby, the releasing amount of oxygen in the sintering process can be reduced. Consequently, it becomes possible to control the oxygen partial pressure in the temperature-raising step of the sintering process to be ≤0.1% of atmospheric pressure, and a sintered compact having a higher density can be obtained and a Mn-Zn-based ferrite having a low loss and a high saturation magnetic flux density can be obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電源トランス等に用いられる磁芯材料で、高周波数まで低損失であり、且つ高い飽和磁束密度を有する酸化物磁性材料の製造方法に関するものである。   The present invention relates to a method for producing an oxide magnetic material which is a magnetic core material used for a power transformer or the like and has a low loss up to a high frequency and a high saturation magnetic flux density.

携帯機器をはじめとして、近年、電子機器の小型化が急速に進んでいる。そして、それらに用いられる電源も同じ流れにある。電源の構成部品中でトランスは体積的にも、電力損失においても大きな割合を占めるため、その小型化、高効率化が急務である。   In recent years, downsizing of electronic devices has been progressing rapidly including portable devices. And the power source used for them is in the same flow. Since transformers occupy a large proportion in power supply components in terms of volume and power loss, miniaturization and high efficiency are urgently needed.

電源用トランス材料として求められる特性は、駆動周波数で損失が低いこと、飽和磁束密度が高いこと、初透磁率が高いこと等が挙げられる。飽和磁束密度は、主成分組成及び焼結体密度に依存する事が知られている。損失は、渦電流損失とヒステリシス損失、残留損失からなり、特に損失が大きいと、電源としての効率が悪いだけでなく、自己発熱するという問題も生じる。   Characteristics required as a transformer material for power supply include a low loss at a driving frequency, a high saturation magnetic flux density, and a high initial permeability. It is known that the saturation magnetic flux density depends on the main component composition and the sintered body density. The loss is composed of eddy current loss, hysteresis loss, and residual loss. When the loss is particularly large, not only the efficiency as a power source is bad but also a problem of self-heating occurs.

渦電流損失は、主に直流比抵抗に依存し、渦電流損失低減のためにSiO2やCaOなどの副成分を添加して結晶粒界に析出させ高抵抗化が図られている(例えば、特許文献1)。 The eddy current loss mainly depends on the direct current resistance, and in order to reduce the eddy current loss, subcomponents such as SiO 2 and CaO are added and precipitated at the grain boundaries to increase the resistance (for example, Patent Document 1).

ヒステリシス損失は、主に結晶組織に依存し、ヒステリシス損失低減のためには、適度な結晶粒径で均一な結晶粒径の粒度分布を得ながら高い焼結体密度を得ることが重要となっている(例えば、特許文献2)。   Hysteresis loss mainly depends on the crystal structure, and in order to reduce hysteresis loss, it is important to obtain a high sintered body density while obtaining a uniform grain size distribution with an appropriate grain size. (For example, Patent Document 2).

したがって、低損失で高飽和磁束密度を有するMn−Zn系フェライトを得るためには、適当な粉末組成を選択し、高密度で緻密な焼結体を得る必要がある。緻密化は焼結工程における昇温部で最も進行し、昇温部を低酸素分圧化することによりMnO、Fe23、ZnO、の固溶体化が促進され、より緻密な焼結体が得られる(例えば、特許文献3)。また、保持温度を高温化することによっても、より高密度化するが、結晶粒径が大きくなりすぎ、また結晶粒径の粒度分布が広くなり損失が増大するため好ましくない。 Therefore, in order to obtain a Mn—Zn-based ferrite having a low loss and a high saturation magnetic flux density, it is necessary to select an appropriate powder composition and obtain a dense and dense sintered body. Densification progresses most at the temperature rising part in the sintering process, and by lowering the oxygen partial pressure in the temperature rising part, solid solution of MnO, Fe 2 O 3 , ZnO is promoted, and a denser sintered body is obtained. Obtained (for example, Patent Document 3). Further, although the density is further increased by increasing the holding temperature, it is not preferable because the crystal grain size becomes too large, and the grain size distribution of the crystal grain size becomes wide and loss increases.

特開2004−22619号公報JP 2004-22619 A 特開2001−126911号公報JP 2001-126911 A 特開2003−109813号公報JP 2003-109813 A

従来のMn−Zn系フェライトの製造方法においては、造粒工程後の粉末組成が所望の組成になるように混合工程において原料を混合し、その後、仮焼、粉砕、造粒を行い、その後、焼結を行っている。また、焼結工程の昇温部を低酸素分圧化するためにN2フローを行っている。しかし、N2をフローし焼結工程の昇温部を低酸素分圧化しようとすると、800℃〜1050℃において、式(1)、式(2)に示すMn34及びFe23の還元反応が起こり、O2が放出されるため、大流量のN2をフローしなければ所望の酸素分圧までさげることは困難であった。特に、焼結炉内の製品近傍は、大流量のN2をフローしても放出酸素を排除しきれず、高い酸素分圧となってしまう。更に、量産連続炉での焼成のように一度に大量に焼成を行う際には、酸素分圧の上昇が著しく、酸素分圧が不安定となり、酸素分圧のコントロールが困難となっている。 In the conventional method for producing Mn—Zn ferrite, the raw materials are mixed in the mixing process so that the powder composition after the granulation process becomes a desired composition, and then calcined, pulverized, granulated, Sintering is performed. Further, an N 2 flow is performed in order to reduce the oxygen partial pressure in the temperature raising portion in the sintering process. However, when N 2 is flowed and the temperature rising part of the sintering process is to be reduced in oxygen partial pressure, at 800 ° C. to 1050 ° C., Mn 3 O 4 and Fe 2 O shown in the formulas (1) and (2) Since a reduction reaction of 3 occurs and O 2 is released, it is difficult to reduce the oxygen partial pressure to a desired level without flowing a large flow rate of N 2 . In particular, in the vicinity of the product in the sintering furnace, even if a large flow rate of N 2 is flowed, the released oxygen cannot be completely removed and the oxygen partial pressure becomes high. Furthermore, when firing in large quantities at once, such as firing in a mass production continuous furnace, the oxygen partial pressure rises remarkably, the oxygen partial pressure becomes unstable, and it is difficult to control the oxygen partial pressure.

Mn34→3MnO+(1/2)O2 ・・・・・(1)
3Fe23→2Fe34+(1/2)O2 ・・・・・(2)
Mn 3 O 4 → 3MnO + (1/2) O 2 (1)
3Fe 2 O 3 → 2Fe 3 O 4 + (1/2) O 2 (2)

本発明の課題は、前記の問題点を解決し、焼結工程における昇温部での酸素放出を軽減し、より焼結体密度を向上させることにより、低損失で高飽和磁束密度を有する酸化物磁性材料の製造方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems, reduce oxygen release at the temperature rising part in the sintering process, and further improve the sintered body density, thereby reducing the oxidation with low loss and high saturation magnetic flux density. The object is to provide a method for producing a magnetic material.

本発明は、Mn−Zn系フェライトの製造方法であって、組成がFe23の換算で50.0〜51.0mol%、ZnOの換算で3.0〜8.0mol%、残部がMnOとなるように調整した出発原料を混合し、仮焼を経て粉砕を行なうに際して、主成分組成としてFe23の換算で54.0〜60.0mol%、ZnOの換算で3.0〜8.0mol%、残部がMnOとなるようにFe34及びZnOを添加し組成調整を行ない、更に副成分として主成分に対する重量比率で表して0.005〜0.05wt%のSiO2、0.01〜0.1wt%のCaO、0.005〜0.06wt%のNb25を添加し、粉砕、造粒、成形し、成形した後行なう焼結工程において300℃以上の昇温部で酸素分圧を0.1%以下として焼結を行うことにより、焼結体密度が向上し、かつ、均一な結晶組織が得られ、低損失で高い飽和磁束密度を有する酸化物磁性材料の製造方法を提供する。 The present invention is a method for producing a Mn—Zn ferrite, the composition of which is 50.0 to 51.0 mol% in terms of Fe 2 O 3 , 3.0 to 8.0 mol% in terms of ZnO, and the balance is MnO. When starting materials adjusted to be mixed and pulverized through calcining, the main component composition is 54.0 to 60.0 mol% in terms of Fe 2 O 3 and 3.0 to 8 in terms of ZnO. The composition is adjusted by adding Fe 3 O 4 and ZnO so that the remaining amount is MnO, and 0.005 to 0.05 wt% of SiO 2 in terms of weight ratio to the main component as an auxiliary component, 0 .01 to 0.1 wt% CaO, 0.005 to 0.06 wt% Nb 2 O 5 is added, pulverized, granulated, molded, and heated at a temperature of 300 ° C. or higher in the sintering step Sintering with oxygen partial pressure of 0.1% or less It allows to improve the sintered density and uniform crystal structure is obtained, to provide a method of manufacturing an oxide magnetic material having a high saturation magnetic flux density with low loss.

本発明によれば、混合工程において、所望とするFe23量よりも、Fe23量を少なくして混合することにより、次の予焼工程において全てのFe23、Mn34は、900℃付近で(MnZn)Fe24となり酸素の放出が完了する。更に、不足分のFe23を紛砕工程においてFe34とZnOで組成調整を行った後、造粒、成形を行うことにより、焼結工程における酸素放出を軽減することができる。その結果、焼結工程の昇温部の酸素分圧を0.1%以下に制御することが可能となり、より高い焼結体密度が得られ、低損失で高い飽和磁束密度を有するMn−Zn系フェライトを得ることが可能となる。また、SiO2、CaO、Nb25を添加し、粒界層に濃縮させることにより、比抵抗が増大し、損失成分の1つである渦電流損失を低減することができる。 According to the present invention, by mixing the Fe 2 O 3 amount less than the desired Fe 2 O 3 amount in the mixing step, all Fe 2 O 3 and Mn 3 are mixed in the next pre-baking step. O 4 becomes (MnZn) Fe 2 O 4 around 900 ° C., and the release of oxygen is completed. Furthermore, after adjusting the composition of the deficient Fe 2 O 3 with Fe 3 O 4 and ZnO in the crushing process, oxygen release in the sintering process can be reduced by granulating and molding. As a result, it becomes possible to control the oxygen partial pressure in the temperature raising part of the sintering process to 0.1% or less, and a higher sintered body density is obtained, and Mn—Zn having a low saturation and a high saturation magnetic flux density. -Based ferrite can be obtained. Further, by adding SiO 2 , CaO, Nb 2 O 5 and concentrating it in the grain boundary layer, the specific resistance increases and eddy current loss, which is one of the loss components, can be reduced.

主成分及び副成分の組成をそれぞれ上記所望の範囲として低損失を達成し、主成分の組成調整にあっては、出発原料の主成分のFe23量を焼結後の所望のFe23量より少なく配合することにより、焼結工程の昇温部での酸素の放出を低減させ、酸素分圧0.1%以下を可能として焼結密度の向上をはかり、低損失、高飽和磁束密度を実現した。 In order to achieve a low loss with the composition of the main component and subcomponents in the above desired ranges, and to adjust the composition of the main component, the amount of Fe 2 O 3 of the main component of the starting material is changed to the desired Fe 2 after sintering. By blending less than the amount of O 3, the release of oxygen at the heating part of the sintering process is reduced, the oxygen partial pressure is 0.1% or less, and the sintering density is improved, resulting in low loss and high saturation. Realized the magnetic flux density.

Fe23を50.0〜51.0mol%、ZnOを3.0〜8.0mol%としたのは、Fe23が51.0mol%より多く、ZnOが3.0mol%より少ないと、仮焼工程での酸素放出が十分でなくなるためである。Fe23が50.0mol%より少なくZnOが8.0より多いと、紛砕工程におけるFe34による組成調整量が多くなり、磁気特性が劣化してしまうためである。SiO2を0.005〜0.05wt%としたのは、0.005wt%より少ないと十分な比抵抗が得られず、損失が増大するためであり、0.05wt%より多いと異常粒成長し、損失が急激に増大するためである。 The reason why Fe 2 O 3 is 50.0 to 51.0 mol% and ZnO is 3.0 to 8.0 mol% is that Fe 2 O 3 is more than 51.0 mol% and ZnO is less than 3.0 mol%. This is because oxygen release in the calcination step is not sufficient. This is because if Fe 2 O 3 is less than 50.0 mol% and ZnO is more than 8.0, the amount of composition adjustment by Fe 3 O 4 in the crushing process increases and the magnetic properties deteriorate. To that of SiO 2 and 0.005 to 0.05% may not provide a sufficient resistivity less than 0.005 wt%, it is because the loss increases, abnormal grain growth is more than 0.05 wt% This is because the loss increases rapidly.

CaOを0.01〜0.1wt%としたのは、0.01wt%より少ないと十分な比抵抗が得られず損失が増大するためであり、0.1wt%より多いと焼結体密度が低下し、損失が急激に増大するためである。Nb25を0.005〜0.06wt%としたのは、0.005wt%より少ないと十分な比抵抗が得られず損失が増大するためであり、0.06wt%より多いと異常粒成長し、損失が急激に増大するためである。 The reason why CaO is set to 0.01 to 0.1 wt% is that if it is less than 0.01 wt%, a sufficient specific resistance cannot be obtained and loss increases. This is because the loss decreases and the loss increases rapidly. The reason why Nb 2 O 5 is 0.005 to 0.06 wt% is that if it is less than 0.005 wt%, sufficient resistivity cannot be obtained and loss increases, and if it exceeds 0.06 wt%, abnormal particles This is because it grows and the loss increases rapidly.

焼結工程の昇温部において酸素分圧を大気圧に対し0.1%以下にする温度を300℃以上としたのは、300℃未満で、成形のために添加されたバインダーを分解するため、ある程度の酸素分圧が必要だからである。又、300℃以上の昇温部で酸素分圧が大気圧に対し0.1%以下としたのは、酸素分圧が大気圧に対し0.1%を超えると焼結密度が低下し、低損失、高飽和磁束密度が得られないからである。   The reason why the temperature at which the oxygen partial pressure is set to 0.1% or less with respect to the atmospheric pressure in the temperature raising part of the sintering process is set to 300 ° C. or higher is to be less than 300 ° C. in order to decompose the binder added for molding. This is because a certain oxygen partial pressure is required. In addition, the oxygen partial pressure was set to 0.1% or less with respect to the atmospheric pressure at the temperature rising portion of 300 ° C. or higher. This is because low loss and high saturation magnetic flux density cannot be obtained.

主成分がFe23:49.5〜51.5mol%、ZnO:7.5〜10.5mol%、残部:MnOとなるように秤量し、ボールミルを用いて混合し、大気雰囲気中950℃で2時間仮焼した。 Weighed so that the main components were Fe 2 O 3 : 49.5 to 51.5 mol%, ZnO: 7.5 to 10.5 mol%, and the balance: MnO, mixed using a ball mill, and 950 ° C in an air atmosphere. And calcined for 2 hours.

次いで、主成分の原料の仮焼物とFe23:54mol%、ZnO:7mol%になるようにFe34及びZnOを加えて組成調整を行った。更に副成分として主成分に対する重量比率で表してSiO2を0.03wt%、CaOを0.05wt%、Nb25を0.05wt%添加した後、ボールミルで微粉砕を行った。微粉砕後、バインダーを添加し、スプレードライヤーにて造粒した。得られた粉末を蛍光X線分析により測定した時の粉末組成を表1に示す。 Subsequently, the composition was adjusted by adding Fe 3 O 4 and ZnO so that the calcined material of the main component, Fe 2 O 3 : 54 mol%, and ZnO: 7 mol% were added. Further, 0.02 wt% of SiO 2 , 0.05 wt% of CaO and 0.05 wt% of Nb 2 O 5 were added as subcomponents expressed by weight ratio to the main component, and then pulverized by a ball mill. After fine pulverization, a binder was added and granulated with a spray dryer. Table 1 shows the powder composition when the obtained powder was measured by fluorescent X-ray analysis.

次に、φ30×φ25×5mmのトロイダル形状に成形して焼結を行った。焼結は、昇温部はN2中で昇温を行い、保持部は酸素分圧をコントロールした還元雰囲気中で1250℃で6時間焼結した。また、従来材として従来の方法により、Fe23=54.0mol%、ZnO=7mol%、残部=MnOの主成分組成で、副成分としてSiO2を0.03wt%、CaOを0.05wt%、Nb25を0.05wt%添加し、同条件で焼結した。得られたコアに巻線をし、100kHz−200mTのコアロスを交流BHトレーサーより100℃まで測定した。次に、直流BHトレーサーで1194A/mでの磁束密度を100℃まで測定した。次に、アルキメデス法により焼結体密度の測定を行った。 Next, it was molded into a toroidal shape of φ30 × φ25 × 5 mm and sintered. In the sintering, the temperature raising portion was heated in N 2 , and the holding portion was sintered at 1250 ° C. for 6 hours in a reducing atmosphere in which the oxygen partial pressure was controlled. Further, as a conventional material, a main component composition of Fe 2 O 3 = 54.0 mol%, ZnO = 7 mol%, balance = MnO is used, and SiO 2 is 0.03 wt% and CaO is 0.05 wt. %, Nb 2 O 5 was added at 0.05 wt%, and sintering was performed under the same conditions. The obtained core was wound, and a core loss of 100 kHz-200 mT was measured up to 100 ° C. from an AC BH tracer. Next, the magnetic flux density at 1194 A / m was measured up to 100 ° C. with a direct current BH tracer. Next, the sintered body density was measured by the Archimedes method.

100℃でのコアロスPcv、飽和磁束密度Bs、初透磁率μi、焼結体密度を表1に示す。   Table 1 shows the core loss Pcv, saturation magnetic flux density Bs, initial permeability μi, and sintered body density at 100 ° C.

Figure 2007297232
Figure 2007297232

表1より、発明品は、従来品に較べ100℃でのコアロスPcv、100℃での飽和磁束密度Bs、初透磁率μiの全ての特性で優れた値を示していることが分かる。また、混合時の組成を発明の範囲外とした比較品は、100℃のコアロスPcv或いは100℃の飽和磁束密度Bsが従来品に較べ劣るか同等であることが分かる。   From Table 1, it can be seen that the inventive product shows superior values in all the characteristics of the core loss Pcv at 100 ° C., the saturation magnetic flux density Bs at 100 ° C., and the initial permeability μi as compared with the conventional product. Further, it can be seen that the comparative product in which the composition at the time of mixing is out of the scope of the invention is inferior or equivalent to the core loss Pcv at 100 ° C. or the saturation magnetic flux density Bs at 100 ° C. compared to the conventional product.

主成分がFe23:50.5mol%、ZnO:6.0mol%、残部:MnOとなるように秤量し、ボールミルを用いて混合し、大気雰囲気中950℃で2時間仮焼した。その後、Fe23:54mol%、ZnO:7mol%になるようにFe34及びZnO加えて組成調整を行った。更に、副成分としてSiO2を0.003〜0.06wt%、CaOを0.005〜0.11wt%、Nb25を0.003〜0.07wt%となるように添加した後、ボールミルで微粉砕を行った。微粉砕後、バインダーを添加し、スプレードライヤーにて造粒した。 They were weighed so that the main components were Fe 2 O 3 : 50.5 mol%, ZnO: 6.0 mol%, and the balance: MnO, mixed using a ball mill, and calcined at 950 ° C. for 2 hours in an air atmosphere. Thereafter, the composition was adjusted by adding Fe 3 O 4 and ZnO so as to be Fe 2 O 3 : 54 mol% and ZnO: 7 mol%. Furthermore, 0.003~0.06wt% SiO 2 as subcomponent, 0.005~0.11wt% of CaO, after addition of Nb 2 O 5 so that 0.003~0.07wt%, a ball mill And finely pulverized. After fine pulverization, a binder was added and granulated with a spray dryer.

次に、φ30×φ25×5mmのトロイダル形状に成形して焼結を行った。焼結は、昇温部はN2中で昇温を行い、保持部は酸素分圧をコントロールした還元雰囲気中で1250℃で6時間焼結した。また、従来材として同様な方法により、Fe23=54.0mol%、ZnO=7mol%、残部=MnOの主成分組成で、副成分としてSiO2を0.03wt%、CaOを0.05wt%、Nb25を0.05wt%添加し、同条件で焼結した。得られたコアに巻線をし、100kHz−200mTのコアロスを交流BHトレーサーより100℃まで測定した。次に、直流BHトレーサーで1194A/mでの磁束密度を100℃まで測定した。次に、アルキメデス法により焼結体密度の測定を行った。 Next, it was molded into a toroidal shape of φ30 × φ25 × 5 mm and sintered. In the sintering, the temperature raising portion was heated in N 2 , and the holding portion was sintered at 1250 ° C. for 6 hours in a reducing atmosphere in which the oxygen partial pressure was controlled. Further, by the same method as the conventional material, Fe 2 O 3 = 54.0 mol%, ZnO = 7 mol%, balance = MnO, the main component composition, SiO 2 as the subcomponent, 0.03 wt%, CaO 0.05 wt% %, Nb 2 O 5 was added at 0.05 wt%, and sintering was performed under the same conditions. The obtained core was wound, and a core loss of 100 kHz-200 mT was measured up to 100 ° C. from an AC BH tracer. Next, the magnetic flux density at 1194 A / m was measured up to 100 ° C. with a direct current BH tracer. Next, the sintered body density was measured by the Archimedes method.

100℃でのコアロスPcv、飽和磁束密度Bs、初透磁率μi、焼結体密度を表2に示す。   Table 2 shows the core loss Pcv, saturation magnetic flux density Bs, initial permeability μi, and sintered body density at 100 ° C.

Figure 2007297232
Figure 2007297232

表2より、発明品は、従来品に較べ100℃でのコアロスPcv、飽和磁束密度Bs、初透磁率μiで優れていることが分かる。また、添加物の含有量を発明の範囲外とした比較品は、いずれも100℃でのコアロスの値が従来品よりも劣ることが分かる。   From Table 2, it can be seen that the inventive product is superior in core loss Pcv, saturation magnetic flux density Bs, and initial permeability μi at 100 ° C. compared to the conventional product. Moreover, it turns out that all the comparative products which made the content of the additive out of the scope of the invention are inferior in value of the core loss at 100 ° C. to the conventional products.

Claims (1)

Mn−Zn系フェライトの製造方法であって、組成がFe23の換算で50.0〜51.0mol%、ZnOの換算で3.0〜8.0mol%、残部がMnOとなるように調整した出発原料を混合し、仮焼を経て粉砕を行うに際して、主成分組成としてFe23の換算で54.0〜60.0mol%、ZnOの換算で3.0〜8.0mol%、残部がMnOとなるようにFe34及びZnOを加え組成調整し、更に副成分として主成分に対する重量比率で表して0.005〜0.05wt%のSiO2、0.01〜0.1wt%のCaO、0.005〜0.06wt%のNb25を添加し、粉砕、造粒、成形し、成形体を焼結する工程において、昇温部の300℃以上での酸素分圧を0.1%以下にすることを特徴とする酸化物磁性材料の製造方法。 A method for producing a Mn—Zn ferrite so that the composition is 50.0 to 51.0 mol% in terms of Fe 2 O 3 , 3.0 to 8.0 mol% in terms of ZnO, and the balance is MnO. When the adjusted starting materials are mixed and pulverized through calcination, the main component composition is 54.0 to 60.0 mol% in terms of Fe 2 O 3 , 3.0 to 8.0 mol% in terms of ZnO, The composition is adjusted by adding Fe 3 O 4 and ZnO so that the balance is MnO, and 0.005 to 0.05 wt% of SiO 2 , 0.01 to 0.1 wt. % Of CaO, 0.005 to 0.06 wt% of Nb 2 O 5 , pulverization, granulation, molding, and sintering of the molded body, oxygen partial pressure at 300 ° C. or higher in the temperature rising part Oxide magnetic material characterized by containing 0.1% or less The method of production.
JP2006125342A 2006-04-28 2006-04-28 Method for producing oxide magnetic material Withdrawn JP2007297232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125342A JP2007297232A (en) 2006-04-28 2006-04-28 Method for producing oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125342A JP2007297232A (en) 2006-04-28 2006-04-28 Method for producing oxide magnetic material

Publications (1)

Publication Number Publication Date
JP2007297232A true JP2007297232A (en) 2007-11-15

Family

ID=38767066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125342A Withdrawn JP2007297232A (en) 2006-04-28 2006-04-28 Method for producing oxide magnetic material

Country Status (1)

Country Link
JP (1) JP2007297232A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728048B (en) * 2010-02-06 2011-12-28 天通控股股份有限公司 Wide-temperature low-distortion mangan zinc ferrite and preparation method thereof
CN104124027A (en) * 2014-06-25 2014-10-29 蚌埠市英路光电有限公司 Cobalt-silicon-based rear earth ferromagnetic core material
JP2018504518A (en) * 2014-12-05 2018-02-15 ポスコPosco High silicon steel sheet with excellent magnetic properties and method for producing the same
CN113277840A (en) * 2021-05-10 2021-08-20 天通控股股份有限公司 High-frequency high-working-flux-density low-loss manganese-zinc ferrite and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728048B (en) * 2010-02-06 2011-12-28 天通控股股份有限公司 Wide-temperature low-distortion mangan zinc ferrite and preparation method thereof
CN104124027A (en) * 2014-06-25 2014-10-29 蚌埠市英路光电有限公司 Cobalt-silicon-based rear earth ferromagnetic core material
CN104124027B (en) * 2014-06-25 2016-10-19 张丽华 A kind of cobalt silicon base lanthanon ferromagnetic core material
JP2018504518A (en) * 2014-12-05 2018-02-15 ポスコPosco High silicon steel sheet with excellent magnetic properties and method for producing the same
CN113277840A (en) * 2021-05-10 2021-08-20 天通控股股份有限公司 High-frequency high-working-flux-density low-loss manganese-zinc ferrite and preparation method thereof
CN113277840B (en) * 2021-05-10 2023-05-12 天通控股股份有限公司 High-frequency high-working-density low-loss manganese zinc ferrite and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2005213100A (en) METHOD OF MANUFACTURING MnZn FERRITE AND MnZn FERRITE
JP2007238429A (en) Ferrite material
JP2011096977A (en) Ferrite composition, ferrite core, and electronic component
CN106915956A (en) MnZnLi based ferrites, magnetic core and transformer
JP2004217452A (en) Ferrite material and method of manufacturing the same
JP2006202796A (en) HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni BASED FERRITE
JP2008143744A (en) MnCoZn FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP2008127230A (en) MnZnNi FERRITE
JP2007204349A (en) Manufacturing method of low-loss oxide magnetic material
JP2007297232A (en) Method for producing oxide magnetic material
JP2012180258A (en) MnZn-BASED FERRITE POWDER, MnZn-BASED FERRITE GRANULES, METHOD OF MANUFACTURING MnZn-BASED FERRITE CORE AND MnZn-BASED FERRITE CORE
JP2004161593A (en) Ferritic material
JP2011195415A (en) MnZn-BASED FERRITE POWDER, METHOD FOR PRODUCING MnZn-BASED FERRITE CORE, AND FERRITE CORE
JP6314758B2 (en) MnZn ferrite and MnZn ferrite large core
JP2007031240A (en) METHOD FOR MANUFACTURING MnZn FERRITE AND MnZn FERRITE
JP4089970B2 (en) Ferrite material manufacturing method
JP5845137B2 (en) Method for producing Mn-Zn ferrite
JP2010150053A (en) SINTERED COMPACT OF SPINEL TYPE Ni-Cu-Zn-BASED FERRITE
JP2006165479A (en) Ferrite core and line filter
JP2007031210A (en) Mn-Zn FERRITE
JP2005179098A (en) Mn-Ni-Zn BASED FERRITE
JP2005075653A (en) Method for producing ferrite material and method for firing ferrite material
JP2004035372A (en) Low loss ferrite material
JP5929119B2 (en) Ferrite composition and electronic component
JP3654303B2 (en) Low loss magnetic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081201

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110425