WO2022014219A1 - Mncozn-based ferrite - Google Patents

Mncozn-based ferrite Download PDF

Info

Publication number
WO2022014219A1
WO2022014219A1 PCT/JP2021/022202 JP2021022202W WO2022014219A1 WO 2022014219 A1 WO2022014219 A1 WO 2022014219A1 JP 2021022202 W JP2021022202 W JP 2021022202W WO 2022014219 A1 WO2022014219 A1 WO 2022014219A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
mass ppm
mncozn
based ferrite
mol
Prior art date
Application number
PCT/JP2021/022202
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 吉田
由紀子 中村
多津彦 平谷
哲哉 田川
Original Assignee
Jfeケミカル株式会社
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeケミカル株式会社, Jfeスチール株式会社 filed Critical Jfeケミカル株式会社
Priority to CN202180003658.6A priority Critical patent/CN114269709B/en
Priority to JP2021555374A priority patent/JP7182016B2/en
Publication of WO2022014219A1 publication Critical patent/WO2022014219A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites

Definitions

  • the present disclosure relates to MnCoZn-based ferrites that are particularly suitable for the magnetic cores of automobile-mounted parts.
  • MnZn-based ferrite is a material widely used as a magnetic core for noise filters such as switching power supplies, transformers, and antennas.
  • the soft magnetic materials it has high magnetic permeability and low loss in the kHz region, and is cheaper than amorphous metals and the like.
  • MnZn-based ferrites have low resistivity, and it is difficult to maintain magnetic permeability in the 10 MHz region due to attenuation due to eddy current loss.
  • a region of less than 50 mol% is selected as the amount of Fe 2 O 3, and positive and negative magnetic anisotropy is achieved by the presence of Fe 2+ ions having positive magnetic anisotropy in ordinary MnZn-based ferrites.
  • MnCoZn-based ferrites are known in which the cancellation of the above is replaced by Co 2+ ions, which also exhibit positive magnetic anisotropy. This MnCoZn-based ferrite has a high specific resistance and is characterized by maintaining the initial magnetic permeability up to the 10 MHz region.
  • high fracture toughness is required for the magnetic core of electronic devices for automobile mounting, whose needs are expanding due to the recent hybridization and electrification of automobiles.
  • oxide magnetic materials such as MnZn-based ferrite are ceramics and are easily damaged because they are brittle materials.
  • they are constantly vibrated in automobile-mounted applications compared to conventional home appliance applications. This is because it will continue to be used in a fragile environment.
  • weight reduction and space saving are also required for automobile applications, it is important to have suitable magnetic properties as well as conventional applications in addition to high fracture toughness value.
  • Patent Documents 1 and 2 and the like are reported as long as they refer to good magnetic properties, and Patent Documents 3 and 4 and the like are reported as MnZn-based ferrites having an increased fracture toughness value. Further, Patent Documents 5 and 6 and the like have been reported as high-resistance MnCoZn-based ferrites that maintain the initial magnetic permeability up to the 10 MHz region.
  • Patent Document 1 and Patent Document 2 although the composition for realizing the desired magnetic properties is mentioned, the fracture toughness value is not mentioned at all, and it is used as a magnetic core of an electronic component for an automobile. Is unsuitable.
  • Patent Documents 5 and 6 do not mention the fracture toughness value, and are unsuitable as a magnetic core of an in-vehicle electronic component.
  • Patent Documents 3 and 4 refer to the improvement of the fracture toughness value, the magnetic properties are insufficient as the magnetic core of an electronic component for an automobile vehicle, which is also unsuitable for this application.
  • the present invention has been made in view of such circumstances, and has excellent mechanical properties such as a fracture toughness value of 1.00 MPa ⁇ m 1/2 or more measured in accordance with JIS R1607 of a flat plate core, and a specific resistance of 30 ⁇ ⁇ .
  • Excellent magnetic properties such as m or more, Curie temperature of 100 ° C or more, coercive force of toroidal shape core manufactured under the same conditions of 15.0 A / m or less, and initial magnetic permeability of 150 or more at 23 ° C and 10 MHz. It is an object of the present invention to provide MnCoZn-based ferrite having both.
  • the present inventors have obtained the following findings as a result of repeated diligent studies in order to achieve the above-mentioned problems.
  • the inventors first selected an appropriate composition of Fe 2 O 3 amount, Zn O and CoO amount of MnCoZn-based ferrite capable of achieving high initial magnetic permeability at 23 ° C. and 10 MHz of the toroidal shape core.
  • this composition range since it contains almost no Fe 2+ ions that cause a decrease in electrical resistance, it is possible to maintain a high specific resistance to some extent, and since magnetic anisotropy and magnetostriction are small, it is soft. It is possible to obtain a low coercive force, which is important as a magnetic material, and a high Curie temperature, which is not a problem in practice, and to maintain a high initial magnetic permeability even in the 10 MHz region.
  • the inventors can generate a uniform grain boundary by adding an appropriate amount of SiO 2 and CaO, which are non-magnetic components segregating at the grain boundary, further increase the specific resistance, and prepare the crystal structure. I found the facts that would be possible.
  • abnormal grain growth is a phenomenon in which the balance of grain growth during firing is lost due to the presence of impurities or the like, and coarse particles having a size of about 100 normal particles appear in some parts.
  • the abnormal grain growth site has extremely low strength, and the core breaks from this site. Therefore, suppressing abnormal grain growth is indispensable for improving the fracture toughness value.
  • the gist structure of the present invention is as follows.
  • MnCoZn-based ferrite composed of basic components, sub-components and unavoidable impurities.
  • the basic component is Fe 2 O 3 , ZnO, CoO, and iron, zinc, cobalt, and manganese in terms of MnO, assuming that the total is 100 mol%.
  • Cobalt 0.5-4.0 mol% in terms of CoO and manganese: balance.
  • the sub-component SiO 2 50 to 300 mass ppm and CaO: 300 to 1300 mass ppm
  • P, B, Na, Mg, Al and K in the unavoidable impurities respectively.
  • the fracture toughness value measured in accordance with JIS R1607 is 1.00 MPa ⁇ m 1/2 or more, and the initial magnetic permeability at 23 ° C. and 10 MHz is 150 or more. Specific resistance is 30 ⁇ ⁇ m or more, Coercive force at 23 ° C is 15.0 A / m or less, The MnCoZn-based ferrite according to the above [1], wherein the Curie temperature is 100 ° C. or higher.
  • the plate-shaped core has excellent mechanical properties with a breaking toughness value of 1.00 MPa ⁇ m 1/2 or more measured in accordance with JIS R1607, a specific resistance of 30 ⁇ ⁇ m or more, and a Curie temperature of 100 ° C.
  • a MnCoZn-based ferrite having an excellent magnetic property of a coercive force of 15.0 A / m or less and an initial magnetic permeability of 150 or more at 23 ° C. and 10 MHz of a toroidal-shaped core manufactured under the same conditions is formed.
  • the crack occurrence rate can be reduced to less than 2.0% to provide a good yield.
  • MnZn-based ferrite in order to increase the initial magnetic permeability of MnZn-based ferrite, it is effective to reduce the magnetic anisotropy and magnetostriction. In order to realize these, it is necessary to select the blending amount of Fe 2 O 3 , ZnO and MnO, which are the main components of the MnZn-based ferrite, from a suitable range. Further, by applying sufficient heat in the firing step to appropriately grow the crystal grains in the ferrite, it is possible to facilitate the movement of the domain wall in the crystal grains in the magnetization step.
  • the specific resistance is maintained and the attenuation due to the frequency increase of the initial permeability is suppressed, and the initial permeability is high even in the 100 kHz region. Has been realized.
  • MnZn-based ferrite may be used in automobile-mounted applications.
  • the magnetic core of in-vehicle electronic components in addition to the above magnetic characteristics, a high fracture toughness value is required so as not to be damaged even in an environment subject to constant vibration. If the MnCoZn-based ferrite, which is the magnetic core, is damaged, the inductance is greatly reduced, so that the electronic component cannot perform the desired function, and as a result, the entire automobile may become inoperable.
  • MnCoZn-based ferrites used in electronic components for automobiles are required to have both good magnetic properties represented by high initial permeability and high fracture toughness values.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the composition of MnCoZn-based ferrite is limited.
  • the reason why the composition of MnCoZn-based ferrite (hereinafter, also simply referred to as ferrite) is limited to the above range will be described. Incidentally, it indicated by value converted iron, zinc, all the manganese Fe 2 O 3, ZnO, of MnO contained in the present disclosure as a basic component.
  • Fe 2 O 3 45.0 mol% or more and less than 50.0 mol%
  • the amount of Fe 2+ increases, which lowers the specific resistance of MnCoZn-based ferrite.
  • the amount of Fe 2 O 3 should be suppressed to less than 50 mol%.
  • iron should be contained at least 45.0 mol% in terms of Fe 2 O 3.
  • the content of Fe 2 O 3 is preferably 47.1 mol% or more.
  • the content of Fe 2 O 3 is preferably 49.5 mol% or less.
  • ZnO 15.5 mol% to 24.0 mol%
  • ZnO has a function of increasing the saturation magnetization of ferrite and a function of increasing the sintering density because the saturated vapor pressure is relatively low, and is an effective component for lowering the coercive force. Therefore, it is assumed that at least zinc is contained in 15.5 mol% in terms of ZnO.
  • zinc content is higher than the appropriate value, the Curie temperature is lowered, which causes a practical problem. Therefore, zinc should be 24.0 mol% or less in terms of ZnO.
  • the ZnO content is preferably 23.0 mol% or less, more preferably 22.0 mol% or less.
  • CoO 0.5 mol% to 4.0 mol% Co 2+ in CoO is an ion having positive magnetic anisotropy energy, and as a result of the addition of an appropriate amount of CoO, the absolute value of the total magnetic anisotropy energy decreases, and as a result, the coercive force decreases. Therefore, 0.5 mol% or more of CoO is added.
  • CoO content is preferably 0.8 mol% or more, more preferably 1.0 mol% or more.
  • the CoO content is preferably 3.8 mol% or less, more preferably 3.5 mol% or less.
  • MnO Remaining This disclosure relates to MnCoZn-based ferrite, and the balance of the basic composition is MnO. This is because if it is not MnO, good magnetic characteristics typified by low coercive force and high magnetic permeability at 10 MHz cannot be obtained.
  • the MnO content is preferably 25.0 mol% or more, more preferably 26.0 mol% or more.
  • the MnO content is preferably 33.0 mol% or less, more preferably 32.0 mol% or less.
  • SiO 2 50-300 mass ppm SiO 2 is known to contribute to the homogenization of the crystal structure of ferrite, and by adding an appropriate amount, abnormal grain growth is suppressed and specific resistance is also increased. Therefore, the coercive force can be lowered and the fracture toughness value can be increased. Therefore, it is assumed that the SiO 2 is contained at least 50 mass ppm or more. On the other hand, when the content of SiO 2 is excessive, abnormal particles appear on the contrary, and the abnormal particles significantly reduce the fracture toughness value, and at the same time, the initial magnetic permeability and coercive force at 10 MHz are also significantly deteriorated.
  • the content of SiO 2 is limited to 300 mass ppm or less.
  • the content of SiO 2 is preferably 55 mass ppm or more, more preferably 60 mass ppm or more, and further preferably 180 mass ppm or more.
  • the content of SiO 2 is preferably 275 mass ppm or less, more preferably 250 mass ppm or less.
  • CaO 300-1300 mass ppm CaO has a function of segregating into the grain boundaries of MnZn-based ferrite and suppressing the growth of crystal grains, and with the addition of an appropriate amount, the resistivity increases, the coercive force decreases, and the fracture toughness value can also increase. .. Therefore, it is decided to contain at least 300 mass ppm of CaO. On the other hand, when the CaO content is excessive, abnormal particles appear and both the fracture toughness value and the coercive force are deteriorated. Therefore, the CaO content is limited to 1300 mass ppm or less.
  • the CaO content is preferably 325 mass ppm or more, more preferably 350 mass ppm or more, and further preferably more than 500 mass ppm.
  • the CaO content is most preferably 600 mass ppm or more and 700 mass ppm or more. In particular, when the CaO content is 600 mass ppm or more, or 700 mass ppm or more, a particularly excellent fracture toughness value can be obtained.
  • the CaO content is preferably 1150 mass ppm or less, more preferably 1000 mass ppm or less.
  • P and B are mainly components inevitably contained in the raw material iron oxide. There is no problem if these contents are in a very small amount, but if they are contained in a certain amount or more, abnormal grain growth of ferrite is induced, and the fracture toughness value decreases because the abnormal grain growth site becomes the starting point of fracture. It increases the coercive force and lowers the initial magnetic permeability, which has a serious adverse effect. Therefore, the contents of P and B are both limited to less than 10 mass ppm.
  • the content of P is preferably 8 mass ppm or less, more preferably 5 mass ppm or less.
  • the content of B is preferably 8 mass ppm or less, more preferably 5 mass ppm or less.
  • the lower limit of the contents of P and B is not particularly limited, and may be 0 mass ppm, respectively.
  • Na less than 200 mass ppm
  • Mg less than 200 mass ppm
  • Al less than 250 mass ppm
  • K less than 100 mass ppm Na, Mg, Al, K are low-purity iron oxide, manganese oxide, and zinc oxide that are raw materials for MnCoZn-based ferrite. It is contained in water and is present as a dissolved component in water such as tap water. Further, in the ferrite manufacturing process, components such as a dispersant containing these metal ions may be added. Further, those containing these components are mainly used as refractories of the furnace used for calcining and firing in the ferrite manufacturing process, and it is conceivable that these components may be mixed due to the furnace falling off or contact wear.
  • these components may react with iron oxide during firing to form a spinel structure and dissolve in MnCoZn-based ferrite.
  • These components themselves do not induce abnormal grain growth and do not adversely affect the magnetic properties, but the solid solution of these components has lower toughness than ordinary MnCoZn-based ferrites. Therefore, the presence of these components causes MnCoZn.
  • the toughness of the system ferrite may be significantly reduced. Therefore, in order to suppress the decrease in toughness, the content of these four components is limited.
  • Na less than 200 mass ppm
  • Mg less than 200 mass ppm
  • Al less than 250 mass ppm
  • K less than 100 mass ppm.
  • the Na content is preferably 130 mass ppm or less, more preferably 90 mass ppm or less.
  • the Mg content is preferably 150 mass ppm or less, more preferably 125 mass ppm or less.
  • the Al content is preferably 200 mass ppm or less, more preferably 180 mass ppm or less.
  • the content of K is preferably 85 mass ppm or less, and more preferably 75 mass ppm or less.
  • the lower limits of Na, Mg, Al, and K are not particularly limited and may be 0 ppm, respectively.
  • the Na content is preferably 10 mass ppm or more.
  • the Mg content is preferably 10 mass ppm or more.
  • the Al content is preferably 15 mass ppm or more.
  • the K content is preferably 5 mass ppm or more.
  • the MnCoZn-based ferrite will be described in detail later, but is produced by molding a granulated powder containing a binder by a powder compression method and then firing it. In this molding process, the molded body may be cracked mainly when the mold is removed from the mold. If cracks occur at this point, the product will be defective and its value as a product will be lost.
  • the Na, Mg, Al and K components have a composition within the above-mentioned specified range, the crack generation rate of the molded product can be suppressed. We are investigating the details of this mechanism, but the present inventors speculate as follows.
  • the content of Ti as an unavoidable impurity is preferably less than 50 mass ppm.
  • the lower limit of the Ti content is not particularly limited and may be 0 mass ppm.
  • the content of Nb 2 O 5 as an unavoidable impurity is preferably 50 mass ppm or less, and more preferably 10 mass ppm or less.
  • the content of Nb 2 O 5 is preferably 50 mass ppm or less, more preferably 10 mass ppm or less, fluctuations in the temperature characteristics of the initial magnetic permeability are preferably suppressed, and a decrease in the initial magnetic permeability at 23 ° C. and 10 MHz is preferable. Can be prevented.
  • the lower limit of the content of Nb 2 O 5 is not particularly limited and may be 0 mass ppm.
  • the total amount of P, B, Na, Mg, Al, and K is preferably 675 mass ppm or less, and more preferably 400 mass ppm or less. The smaller the total amount of these, the larger the fracture toughness value.
  • MnZn-based ferrite various characteristics are greatly affected by various parameters, not limited to the composition. Among them, in the present disclosure, it is preferable to provide the following provisions in order to obtain more preferable magnetic characteristics and mechanical characteristics.
  • the fracture toughness value is measured by the SEBP method (Single-Edge-Precracked-Beam method) specified in JIS R 1607.
  • the fracture toughness value is measured by imprinting a Vickers indenter in the center of the flat plate core and performing a bending test with a pre-crack.
  • the MnCoZn-based ferrite of the present disclosure is intended for use in automobiles where high toughness is required, and has a fracture toughness value of 1.00 MPa ⁇ m 1/2 or more. In order to satisfy this condition, it is necessary to control the component composition within the specified range as described above.
  • the fracture toughness value is preferably 1.05 MPa ⁇ m 1/2 or more, and more preferably 1.10 MPa ⁇ m 1/2 or more.
  • the method for producing MnCoZn-based ferrite of the present disclosure is as follows.
  • the molding process of molding the granulated powder to obtain a molded body can be a method for producing MnZn-based ferrite, which comprises a firing step of calcining the molded body to obtain MnCoZn-based ferrite.
  • MnCoZn-based ferrite In the production of MnCoZn-based ferrite, first, Fe 2 O 3 , ZnO, CoO and MnO powder, which are the basic components, are weighed so as to have the above-mentioned ratio, and these are sufficiently mixed to form a mixture, and then the mixture is obtained. (Turning process). At this time, unavoidable impurities are limited to the above-mentioned range.
  • the sub-ingredients specified in the present disclosure are added to the obtained calcined powder at a predetermined ratio, mixed with the calcined powder, and pulverized (mixing-crushing step).
  • the powder is sufficiently homogenized so that the concentration of the added component is not biased, and at the same time, the calcined powder is refined to the target average particle size to obtain a pulverized powder.
  • a known organic binder such as polyvinyl alcohol is added to the pulverized powder, and granulation is performed by a spray-drying method or the like to obtain granulated powder (granulation step). After that, if necessary, it is subjected to a step such as sieving for adjusting the particle size, and then pressure is applied by a molding machine to form a molded product (molding step). If cracks occur in the molded body in this molding step, cracks remain in the final product MnCoZn-based ferrite. MnZn-based ferrite containing cracks is inferior in strength and is synonymous with containing a gap, so that it is a defective product that cannot satisfy the desired magnetic characteristics. Therefore, the molded product containing cracks is removed at this point. Next, the molded product is fired under known firing conditions to obtain MnCoZn-based ferrite (firing step).
  • a known organic binder such as polyvinyl alcohol is added to the pulverized powder, and granulation is performed by
  • a raw material having a reduced amount of impurities is used. Further, during mixing, pulverization, and granulation, pure water or ion-exchanged water having a reduced amount of impurities is used as a solvent for the slurry containing the basic component or the sub-component. Also, as the binder and the surfactant to be added to reduce the viscosity of the slurry, select one having reduced metal ions. Further, the refractories of the furnace used in the calcining process and the firing process often contain these components.
  • Na, Mg, Al and K can be obtained by appropriately sieving in order to suppress contamination of these elements and by adopting a bedding powder at the time of firing in order to reduce the contact area between the molded body and the refractory material. Prevents contamination.
  • the obtained MnCoZn-based ferrite may be appropriately subjected to surface polishing or other processing.
  • the MnCoZn-based ferrite thus obtained is an excellent machine with a breaking toughness value of 1.00 MPa ⁇ m 1/2 or more measured in accordance with JIS R1607 of a flat plate core, which was not possible with conventional MnCoZn-based ferrites.
  • the specific resistance is 30 ⁇ ⁇ m or more
  • the Curie temperature is 100 °C or more
  • the coercive force of the toroidal shape core manufactured under the same conditions is 15.0A / m or less
  • the initial magnetic permeability at 23 °C and 10MHz At the same time, it realizes excellent magnetic characteristics of 150 or more.
  • the specific resistance is preferably 40 ⁇ ⁇ m or more, preferably 50 ⁇ ⁇ m or more.
  • the Curie temperature is preferably 150 ° C. or higher.
  • the coercive force of the toroidal shape core is preferably 13.0 A / m or less, more preferably 12.6 A / m or less.
  • the initial magnetic permeability at 23 ° C. and 10 MHz is preferably 160 or more, more preferably 170 or more.
  • the initial magnetic permeability of the toroidal shape core is calculated based on the impedance and the phase angle measured by applying a winding of 10 turns to the toroidal shape core and using an impedance analyzer (4294A manufactured by Keysight Co., Ltd.).
  • the coercive force Hc is measured at 23 ° C. in accordance with JIS C 2560-1.
  • the specific resistance is measured by the 4-terminal method.
  • the Curie temperature is calculated from the temperature characteristic measurement result of the inductance measured using an LCR meter (4980A manufactured by Keysight).
  • the fracture toughness value of the flat plate core is in accordance with JIS R1607, and after making a pre-crack in the sample dented in the center by the Vickers indenter, it breaks in a three-point bending test, and the breaking load and the dimensions of the test piece are determined. Calculated based on.
  • Example 1 Fe contained, Zn, all Co and Mn Fe 2 O 3, ZnO, when calculated as CoO and MnO, each Fe 2 O 3, ZnO, CoO, and MnO were weighed so that the ratio shown in Table 1
  • the raw material powder was mixed for 16 hours using a ball mill, then calcined in the air at 900 ° C. for 3 hours, and cooled to room temperature in the air for 1.5 hours to obtain a calcined powder.
  • SiO 2 and CaO were weighed equivalent to 150,700 mass ppm, respectively, and then added to the calcined powder, and pulverized with a ball mill for 12 hours to obtain pulverized powder.
  • Polyvinyl alcohol was added to the pulverized powder to perform spray-dry granulation, and a pressure of 118 MPa was applied to form a toroidal-shaped core and a flat plate-shaped core. After that, it was visually confirmed that these molded bodies were not cracked, and the molded bodies were placed in a firing furnace and fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air were appropriately mixed.
  • a sintered toroidal-shaped core having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm and a sintered flat plate-shaped core having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained.
  • the specific resistance is 30 ⁇ m or more
  • the coercive force at 23 ° C. is 15.0 A / m or less
  • the Curie temperature is 100 ° C. or more
  • the initial magnetic permeability at 10 MHz is 150 or more and the fracture toughness value is 1.00 MPa ⁇ m 1/2 or more, and it has both suitable magnetic properties and high toughness.
  • Comparative Example In Comparative Example (Comparative Example 1-4) in which ZnO is excessive, the Curie temperature is lowered to less than 100 ° C. On the contrary, in the comparative example (Comparative Example 1-5) in which ZnO is less than the specified range, the coercive force increases and is out of the desirable range.
  • Comparative Example 1-6 Comparative Example 1-6 in which the content is less than the specified range, the coercive force is high and excessively because the cancellation of the positive and negative magnetic anisotropy is insufficient.
  • Comparative Example 1--7 including, on the contrary, since the positive magnetic anisotropy is excessively increased, the coercive force is increased and the initial magnetic permeability at 10 MHz is also decreased.
  • Example 2 Fe contained, Zn, all Co and Mn Fe 2 O 3, ZnO, when calculated as CoO and MnO, Fe 2 O 3: 49.0mol %, CoO: 2.0mol%, ZnO: 21.0mol% , MnO: Weigh the raw materials to 28.0 mol%, mix for 16 hours using a ball mill, perform calcining at 900 ° C. in the air for 3 hours, and cool to room temperature in the air for 1.5 hours. And obtained the calcined powder. Next, the amounts of SiO 2 and CaO shown in Table 2 were added to the calcined powder, and the mixture was pulverized with a ball mill for 12 hours to obtain pulverized powder.
  • Polyvinyl alcohol was added to the pulverized powder to perform spray-dry granulation, and a pressure of 118 MPa was applied to form a toroidal-shaped core and a flat plate-shaped core. After that, it was visually confirmed that these molded bodies were not cracked, and the molded bodies were inserted into a firing furnace and fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air were appropriately mixed.
  • a sintered toroidal-shaped core having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm and a sintered flat plate-shaped core having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained.
  • the amounts of P and B contained in the obtained sintered toroidal-shaped core and the sintered flat plate-shaped core were 4 and 3 mass ppm, respectively, and Na, Mg, Al, and K were 80, 75, 120, and 30 mass ppm, respectively. Met.
  • the specific resistance is 30 ⁇ m or more
  • the coercive force is 15.0 A / m or less
  • the Curie temperature Has good magnetic properties of 100 ° C. or higher and an initial magnetic permeability of 150 or higher at 23 ° C. and 10 MHz, and a fracture toughness value of 1.00 MPa ⁇ m 1/2 or higher, achieving both high toughness.
  • Comparative Examples 2-1, 2-3 in which even one of the two components of SiO 2 and CaO is contained in less than the specified amount, the specific resistance is lowered due to insufficient grain boundary formation, and the crystal grains are crystallized.
  • the fracture toughness value is less than the desired value because some low-strength coarse grains appear due to insufficient suppression of growth.
  • Comparative Examples 2-2, 2-4 and 2-5 in which even one of the same components is excessive, the magnetic characteristics such as the initial magnetic permeability at 23 ° C. and 10 MHz deteriorate due to the appearance of abnormal grains.
  • the abnormal grains contain many intragranular voids, the void residual ratio is high, and as a result, the fracture toughness value is also greatly reduced.
  • Example 3 By the method shown in Example 1, the ratio of the basic component and the sub-ingredients is the same as that of Example 1-2, but the amount of P and B contained is different.
  • Got The granulated powder was formed into a toroidal-shaped core and a flat plate-shaped core by applying a pressure of 118 MPa. After that, it was visually confirmed that these compacts were not cracked, and the compacts were inserted into a firing furnace and fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air were appropriately mixed.
  • a sintered toroidal-shaped core having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm and a sintered flat plate-shaped core having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained.
  • the characteristics of each of these samples were evaluated using the same method and equipment as in Example 1. The obtained results are shown in Table 3.
  • Example 3-1 in which P and B are within the specified range, the desired magnetic properties such as resistivity, coercive force, initial magnetic permeability at 23 ° C. and 10 MHz are 150 or more, and fracture toughness value is 1.00 MPa ⁇ m. It is more than 1/2 , and has both high toughness. On the contrary, when one or both of the two components are contained more than the specified value, the appearance of abnormal particles deteriorates a plurality of magnetic properties, and at the same time, the fracture toughness value also decreases, and the desired values are not obtained for both.
  • Example 4 By the method shown in Example 1, the basic component and the sub-component have the same composition as in Example 1-2, but raw materials containing various amounts of impurities are used, and mixed, pulverized, and produced.
  • the water used as the solvent for the slurry at the time of granulation unlike ordinary pure water or ion-exchanged water, tap water or mineral water with different hardness is used, or by intentionally adding a reagent, the sample is finally prepared. Using granulated powder prepared so that the amounts of Na, Mg, Al and K contained were different, a toroidal-shaped core and a flat plate-shaped core were formed by applying a pressure of 118 MPa.
  • the crack occurrence rate of the molded product is as high as 2.0% or more in Comparative Examples 4-1 to 4-9. This is because the contents of Na, Mg, Al and K were not sufficiently suppressed in these comparative examples, so that the uniform dispersion of the binder was hindered, and the strength was weak because the amount of the binder was locally insufficient in the molded product. It is probable that this is because there are some spots and crack defects are more likely to appear.
  • the MnCoZn-based ferrite according to the present invention has excellent mechanical properties with a breaking toughness value of 1.00 MPa ⁇ m 1/2 or more measured in accordance with JIS R1607 of a flat plate core, and a specific resistance of 30 ⁇ ⁇ . It has excellent magnetic properties of m or more, Curie temperature of 100 ° C or more, coercive force of 15.0 A / m or less of toroidal shape core manufactured under the same conditions, and initial magnetic permeability of 150 or more at 23 ° C and 10 MHz. Since it is possible to reduce the cracking rate of the molded body to less than 2.0% and manufacture it with a good yield, it is particularly suitable for the magnetic core of electronic parts mounted on automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Fertilizers (AREA)

Abstract

Provided is an MnCoZn-based ferrite having an excellent mechanical property, that is to say, a fracture toughness value of 1.00 MPa·m1/2 or greater as measured according to JIS R1607 for a flat-plate-shaped core, combined with excellent magnetic properties, that is to say, a specific resistance of 30 Ω·m or greater, a Curie temperature of 100°C or higher, a magnetic coercivity of 15.0 A/m or less for a toroidal shape core produced under the same conditions, and an initial permeability value of 150 or greater at 23°C and 10 MHz. The MnCoZn-based ferrite comprises a fundamental ingredient, a secondary ingredient, and unavoidable impurities. In the MnCoZn-based ferrite, the contents of P, B, Na, Mg, Al, and K in the unavoidable impurities are limited to less than 10 mass ppm for P, less than 10 mass ppm for B, less than 200 mass ppm for Na, less than 200 mass ppm for Mg, less than 250 mass ppm for Al, and less than 100 mass ppm for K, respectively.

Description

MnCoZn系フェライトMnCoZn-based ferrite
 本開示は、特に自動車搭載部品の磁心に適したMnCoZn系フェライトに関する。 The present disclosure relates to MnCoZn-based ferrites that are particularly suitable for the magnetic cores of automobile-mounted parts.
 MnZn系フェライトは、スイッチング電源等のノイズフィルタやトランス、アンテナの磁心として幅広く使用されている材料である。特長としては軟磁性材料の中ではkHz領域において高透磁率、低損失であり、またアモルファス金属等と比較して安価なことが挙げられる。 MnZn-based ferrite is a material widely used as a magnetic core for noise filters such as switching power supplies, transformers, and antennas. Among the soft magnetic materials, it has high magnetic permeability and low loss in the kHz region, and is cheaper than amorphous metals and the like.
 一方、通常のMnZn系フェライトは比抵抗が低く、渦電流損失による減衰のため10MHz領域における透磁率の保持は難しい。この対策として、Fe23量として50mol%未満の領域を選択し、なおかつ、通常のMnZn系フェライトでは正の磁気異方性を有するFe2+イオンの存在によりなされる正負の磁気異方性の相殺を、同じく正の磁気異方性を示すCo2+イオンにより代替したMnCoZn系フェライトが知られている。このMnCoZn系フェライトは高い比抵抗を有すると共に、10MHz領域まで初透磁率を保持することが特長である。 On the other hand, ordinary MnZn-based ferrites have low resistivity, and it is difficult to maintain magnetic permeability in the 10 MHz region due to attenuation due to eddy current loss. As a countermeasure, a region of less than 50 mol% is selected as the amount of Fe 2 O 3, and positive and negative magnetic anisotropy is achieved by the presence of Fe 2+ ions having positive magnetic anisotropy in ordinary MnZn-based ferrites. MnCoZn-based ferrites are known in which the cancellation of the above is replaced by Co 2+ ions, which also exhibit positive magnetic anisotropy. This MnCoZn-based ferrite has a high specific resistance and is characterized by maintaining the initial magnetic permeability up to the 10 MHz region.
 ところで、近年の自動車のハイブリッド化、電装化に伴いニーズが拡大している自動車搭載用途の電子機器の磁心としては、破壊靭性値が高いことが求められる。これはMnZn系フェライトをはじめとする酸化物磁性材料はセラミックスであり、脆性材料であることから破損しやすいこと、加えて従来の家電製品用途と比較して、自動車搭載用途では絶えず振動を受け、破損されやすい環境下で使用され続けるためである。しかし同時に自動車用途では軽量化、省スペース化も求められるため、高い破壊靭性値に加え、従来用途と同様に好適な磁気特性も併せ持つことが重要である。 By the way, high fracture toughness is required for the magnetic core of electronic devices for automobile mounting, whose needs are expanding due to the recent hybridization and electrification of automobiles. This is because oxide magnetic materials such as MnZn-based ferrite are ceramics and are easily damaged because they are brittle materials. In addition, they are constantly vibrated in automobile-mounted applications compared to conventional home appliance applications. This is because it will continue to be used in a fragile environment. However, at the same time, since weight reduction and space saving are also required for automobile applications, it is important to have suitable magnetic properties as well as conventional applications in addition to high fracture toughness value.
 自動車搭載用途向けのMnZn系フェライトとしては、過去に様々な開発が進められている。良好な磁気特性に言及したものであれば、特許文献1および2等が、また、破壊靭性値を高めたMnZn系フェライトとしては、たとえば特許文献3および4等が報告されている。さらに、10MHz領域まで初透磁率を保持する高抵抗MnCoZn系フェライトとしては、特許文献5および6等が報告されている。 Various developments have been made in the past as MnZn-based ferrites for automobile mounting applications. Patent Documents 1 and 2 and the like are reported as long as they refer to good magnetic properties, and Patent Documents 3 and 4 and the like are reported as MnZn-based ferrites having an increased fracture toughness value. Further, Patent Documents 5 and 6 and the like have been reported as high-resistance MnCoZn-based ferrites that maintain the initial magnetic permeability up to the 10 MHz region.
特開2007-51052号公報Japanese Unexamined Patent Publication No. 2007-51052 特開2012-76983号公報Japanese Unexamined Patent Publication No. 2012-76983 特開平4-318904号公報Japanese Unexamined Patent Publication No. 4-318904 特開平4-177808号公報Japanese Unexamined Patent Publication No. 4-177808 特許第4508626号公報Japanese Patent No. 4508626 特許第4554959号公報Japanese Patent No. 4554959
 しかしながら、例えば特許文献1および特許文献2では、所望の磁気特性を実現するための組成については言及されているものの、破壊靭性値については一切述べられておらず、自動車車載用電子部品の磁心としては不適である。同じく、特許文献5および6においても破壊靭性値に関する言及がなく、車載用電子部品の磁心としては不適である。一方、特許文献3および特許文献4では破壊靭性値の改良について言及されている一方で、磁気特性が自動車車載用の電子部品の磁心としては不十分であり、やはりこの用途には不適である。 However, for example, in Patent Document 1 and Patent Document 2, although the composition for realizing the desired magnetic properties is mentioned, the fracture toughness value is not mentioned at all, and it is used as a magnetic core of an electronic component for an automobile. Is unsuitable. Similarly, Patent Documents 5 and 6 do not mention the fracture toughness value, and are unsuitable as a magnetic core of an in-vehicle electronic component. On the other hand, while Patent Documents 3 and 4 refer to the improvement of the fracture toughness value, the magnetic properties are insufficient as the magnetic core of an electronic component for an automobile vehicle, which is also unsuitable for this application.
 本発明は、かかる事情に鑑みてなされたもので、平板状コアのJIS R1607に準拠して測定した破壊靭性値が1.00MPa・m1/2以上という優れた機械特性と、比抵抗30Ω・m以上、キュリー温度が100℃以上、同条件で作製したトロイダル形状コアの保磁力が15.0A/m以下、かつ23℃、10MHzにおける初透磁率の値が150以上という優れた磁気特性とを併せ持つ、MnCoZn系フェライトを提供することを目的とする。 The present invention has been made in view of such circumstances, and has excellent mechanical properties such as a fracture toughness value of 1.00 MPa · m 1/2 or more measured in accordance with JIS R1607 of a flat plate core, and a specific resistance of 30 Ω ·. Excellent magnetic properties such as m or more, Curie temperature of 100 ° C or more, coercive force of toroidal shape core manufactured under the same conditions of 15.0 A / m or less, and initial magnetic permeability of 150 or more at 23 ° C and 10 MHz. It is an object of the present invention to provide MnCoZn-based ferrite having both.
 本発明者らは、上記した課題を達成するために、鋭意検討を重ねた結果、以下の知見を得た。 The present inventors have obtained the following findings as a result of repeated diligent studies in order to achieve the above-mentioned problems.
 発明者らはまず、トロイダル形状コアの23℃、10MHzにおける高い初透磁率を実現可能なMnCoZn系フェライトのFe23量、ZnOおよびCoO量の適切な組成を選択した。この組成範囲内であれば、電気抵抗が低下する原因となるFe2+イオンをほぼ含まないことから、ある程度高い比抵抗を保持可能であり、また磁気異方性および磁歪が小さいことから、軟磁性材料として重要な低い保磁力、および実用上問題とならない高いキュリー温度を得ることができ、さらに10MHz領域でも高い初透磁率を保持させることができる。 The inventors first selected an appropriate composition of Fe 2 O 3 amount, Zn O and CoO amount of MnCoZn-based ferrite capable of achieving high initial magnetic permeability at 23 ° C. and 10 MHz of the toroidal shape core. Within this composition range, since it contains almost no Fe 2+ ions that cause a decrease in electrical resistance, it is possible to maintain a high specific resistance to some extent, and since magnetic anisotropy and magnetostriction are small, it is soft. It is possible to obtain a low coercive force, which is important as a magnetic material, and a high Curie temperature, which is not a problem in practice, and to maintain a high initial magnetic permeability even in the 10 MHz region.
 次に、発明者らは、粒界に偏析する非磁性成分であるSiO2、およびCaOを適量加えることで均一な粒界を生成でき、比抵抗をさらに上昇させ、かつ結晶組織を整えることが可能になる事実を見出した。 Next, the inventors can generate a uniform grain boundary by adding an appropriate amount of SiO 2 and CaO, which are non-magnetic components segregating at the grain boundary, further increase the specific resistance, and prepare the crystal structure. I found the facts that would be possible.
 これらに加え、発明者らが破壊靭性値向上に効果的な因子を調査したところ、2つの知見を得ることができた。 In addition to these, the inventors investigated factors effective in improving the fracture toughness value, and obtained two findings.
(1)発明者らはまず、異常粒成長の抑制が必須であることを見出した。異常粒成長とは、不純物の存在等により焼成時の粒成長のバランスが崩れ、一部に通常の粒子100個分程度の大きさの粗大な粒子が出現する現象である。異常粒成長が出現した場合には、異常粒成長部位は極端に強度が低いため、この部位を起点にコアは破断する。そのため、異常粒成長を抑えることが、破壊靭性値を向上するためには欠かせない。 (1) The inventors first found that suppression of abnormal grain growth was essential. Abnormal grain growth is a phenomenon in which the balance of grain growth during firing is lost due to the presence of impurities or the like, and coarse particles having a size of about 100 normal particles appear in some parts. When abnormal grain growth appears, the abnormal grain growth site has extremely low strength, and the core breaks from this site. Therefore, suppressing abnormal grain growth is indispensable for improving the fracture toughness value.
(2)次に、異常粒は確認されないものの、同じ条件で作製した試料であっても、時折異常に靭性値が低い試料が得られることがあり、この原因究明を進めた。その結果、靭性値が低い試料では破壊破面に特定成分の不純物が存在すること、これら不純物は原料や水から混入することを突き止め、この不純物混入を抑制することにより、MnCoZn系フェライトの材料の破壊靭性値の向上が可能である、と検証することができた。 (2) Next, although no abnormal grains were confirmed, even if the sample was prepared under the same conditions, a sample with an abnormally low toughness value could occasionally be obtained, and the cause of this was investigated. As a result, it was found that impurities of specific components were present on the fracture surface in the sample with low toughness value, and that these impurities were mixed from the raw materials and water, and by suppressing the mixing of these impurities, the MnCoZn-based ferrite material was used. It was possible to verify that the fracture toughness value can be improved.
(3)さらに、不純物のうちでもNa、Mg、Al、Kについては成形体の割れに悪影響を及ぼすことがわかった。これらの不純物を低減することにより、工業的に効率よくMnCoZn系フェライトを製造することができることがわかった。 (3) Further, it was found that among the impurities, Na, Mg, Al and K had an adverse effect on the cracking of the molded product. It was found that by reducing these impurities, MnCoZn-based ferrite can be industrially and efficiently produced.
 本開示は、上記知見に基づいてなされたものである。すなわち、本発明の要旨構成は以下のとおりである。 This disclosure is based on the above findings. That is, the gist structure of the present invention is as follows.
[1] 基本成分、副成分および不可避的不純物からなるMnCoZn系フェライトであって、
 前記基本成分が、Fe23、ZnO、CoO、MnO換算での鉄、亜鉛、コバルト、マンガンの合計を100mol%として、
  鉄:Fe23換算で45.0mol%以上、50.0mol%未満、
  亜鉛:ZnO換算で15.5~24.0mol%、
  コバルト:CoO換算で0.5~4.0mol%および
  マンガン:残部
であり、
 前記基本成分に対して、前記副成分が、
  SiO2:50~300mass ppmおよび
  CaO:300~1300mass ppm
であり、
 前記不可避的不純物におけるP、B、Na、Mg、AlおよびKの含有量をそれぞれ、
  P:10mass ppm未満、
  B:10mass ppm未満、
  Na:200mass ppm未満、
  Mg:200mass ppm未満、
  Al:250mass ppm未満および
  K:100mass ppm未満
に抑制する、MnCoZn系フェライト。
[1] MnCoZn-based ferrite composed of basic components, sub-components and unavoidable impurities.
The basic component is Fe 2 O 3 , ZnO, CoO, and iron, zinc, cobalt, and manganese in terms of MnO, assuming that the total is 100 mol%.
Iron: 45.0 mol% or more and less than 50.0 mol% in terms of Fe 2 O 3,
Zinc: 15.5 to 24.0 mol% in terms of ZnO,
Cobalt: 0.5-4.0 mol% in terms of CoO and manganese: balance.
With respect to the basic component, the sub-component
SiO 2 : 50 to 300 mass ppm and CaO: 300 to 1300 mass ppm
And
The contents of P, B, Na, Mg, Al and K in the unavoidable impurities, respectively.
P: less than 10 mass ppm,
B: less than 10 mass ppm,
Na: less than 200 mass ppm,
Mg: less than 200 mass ppm,
MnCoZn-based ferrite that suppresses Al: less than 250 mass ppm and K: less than 100 mass ppm.
[2] JIS R1607に準拠して測定した破壊靭性値が1.00MPa・m1/2以上であり、さらに
 23℃、10MHzにおける初透磁率が150以上、
 比抵抗が30Ω・m以上、
 23℃における保磁力が15.0A/m以下、
 キュリー温度が100℃以上
である、前記[1]に記載のMnCoZn系フェライト。
[2] The fracture toughness value measured in accordance with JIS R1607 is 1.00 MPa · m 1/2 or more, and the initial magnetic permeability at 23 ° C. and 10 MHz is 150 or more.
Specific resistance is 30Ω ・ m or more,
Coercive force at 23 ° C is 15.0 A / m or less,
The MnCoZn-based ferrite according to the above [1], wherein the Curie temperature is 100 ° C. or higher.
 本発明によれば、平板状コアのJIS R1607に準拠して測定した破壊靭性値が1.00MPa・m1/2以上という優れた機械特性と、比抵抗30Ω・m以上、キュリー温度が100℃以上、同条件で作製したトロイダル形状コアの保磁力15.0A/m以下、かつ23℃、10MHzにおける初透磁率の値が150以上という優れた磁気特性とを併せ持つ、MnCoZn系フェライトを、成形体の割れ発生率を2.0%未満に低減して歩留まり良く提供することができる。 According to the present invention, the plate-shaped core has excellent mechanical properties with a breaking toughness value of 1.00 MPa · m 1/2 or more measured in accordance with JIS R1607, a specific resistance of 30 Ω · m or more, and a Curie temperature of 100 ° C. As described above, a MnCoZn-based ferrite having an excellent magnetic property of a coercive force of 15.0 A / m or less and an initial magnetic permeability of 150 or more at 23 ° C. and 10 MHz of a toroidal-shaped core manufactured under the same conditions is formed. The crack occurrence rate can be reduced to less than 2.0% to provide a good yield.
 一般的にMnZn系フェライトの初透磁率を上昇させるためには、磁気異方性と磁歪とを小さくすることが有効である。これらの実現のためには、MnZn系フェライトの主成分であるFe23,ZnOおよびMnOの配合量を、好適な範囲内から選択する必要がある。また焼成工程において十分な熱を加え、フェライト内の結晶粒を適度に成長させることで、磁化工程における結晶粒内の磁壁の移動を容易化することができる。なおかつ粒界に偏析する成分を添加し、適度で均一な厚みの粒界を生成させることで、比抵抗を保持さて初透磁率の周波数上昇に伴う減衰を抑制し、100kHz領域でも高い初透磁率を実現している。 Generally, in order to increase the initial magnetic permeability of MnZn-based ferrite, it is effective to reduce the magnetic anisotropy and magnetostriction. In order to realize these, it is necessary to select the blending amount of Fe 2 O 3 , ZnO and MnO, which are the main components of the MnZn-based ferrite, from a suitable range. Further, by applying sufficient heat in the firing step to appropriately grow the crystal grains in the ferrite, it is possible to facilitate the movement of the domain wall in the crystal grains in the magnetization step. Moreover, by adding a component that segregates to the grain boundaries and generating grain boundaries of appropriate and uniform thickness, the specific resistance is maintained and the attenuation due to the frequency increase of the initial permeability is suppressed, and the initial permeability is high even in the 100 kHz region. Has been realized.
 しかし、MnZn系フェライトでは比抵抗が最高でも20Ωm程度であり、それが原因で、初透磁率を10MHzまで維持することは不可能である。そこで上述した通り、自動車車載用用途においては、MnCoZn系フェライトが用いられることがある。 However, the specific resistance of MnZn-based ferrite is about 20 Ωm at the maximum, which makes it impossible to maintain the initial magnetic permeability up to 10 MHz. Therefore, as described above, MnCoZn-based ferrite may be used in automobile-mounted applications.
 一方、車載用電子部品の磁心に関しては、上記の磁気特性に加え、絶えず振動を受ける環境下でも破損しないよう、高い破壊靭性値が求められる。もし磁心であるMnCoZn系フェライトが破損した場合、インダクタンスが大きく低下することから電子部品は所望の働きができなくなり、その影響で自動車全体が動作不能となる虞がある。 On the other hand, regarding the magnetic core of in-vehicle electronic components, in addition to the above magnetic characteristics, a high fracture toughness value is required so as not to be damaged even in an environment subject to constant vibration. If the MnCoZn-based ferrite, which is the magnetic core, is damaged, the inductance is greatly reduced, so that the electronic component cannot perform the desired function, and as a result, the entire automobile may become inoperable.
 以上から、自動車車載用の電子部品に供するMnCoZn系フェライトには、高い初透磁率に代表される良好な磁気特性、および高い破壊靭性値の両立が求められる。 From the above, MnCoZn-based ferrites used in electronic components for automobiles are required to have both good magnetic properties represented by high initial permeability and high fracture toughness values.
 以下、本開示の実施形態について説明する。なお、本開示は以下の実施形態に限定されない。また、本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, embodiments of the present disclosure will be described. The present disclosure is not limited to the following embodiments. Further, in the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
 本開示において、MnCoZn系フェライトの組成は限定される。まず、本開示において、MnCoZn系フェライト(以下、単にフェライトとも称する)の組成を前記の範囲に限定した理由について説明する。なお、基本成分として本開示に含まれる鉄、亜鉛、マンガンについてはすべてFe23、ZnO、MnOに換算した値で示す。また、これらFe23、ZnO、MnOの含有量については、Fe23、ZnO、CoO、MnO換算での鉄、亜鉛、コバルト、マンガンの合計量100mol%に対するmol%で、一方副成分および不可避的不純物の含有量については基本成分に対するmass ppmで表すことにした。 In the present disclosure, the composition of MnCoZn-based ferrite is limited. First, in the present disclosure, the reason why the composition of MnCoZn-based ferrite (hereinafter, also simply referred to as ferrite) is limited to the above range will be described. Incidentally, it indicated by value converted iron, zinc, all the manganese Fe 2 O 3, ZnO, of MnO contained in the present disclosure as a basic component. These Fe 2 O 3, ZnO, for the content of MnO, Fe 2 O 3, ZnO, CoO, iron in terms of MnO, zinc, cobalt, in mol% relative to the total amount 100 mol% of manganese, whereas subcomponent And the content of unavoidable impurities is expressed in mass ppm with respect to the basic component.
 まずは、基本成分について説明する。
Fe23:45.0mol%以上、50.0mol%未満
 Fe23が過剰に含まれた場合、Fe2+量が増加し、それによりMnCoZn系フェライトの比抵抗が低下する。これを避けるために、Fe23量は50mol%未満に抑える必要がある。しかし、Fe23量が少なすぎた場合には、保磁力の上昇及びキュリー温度の低下を招くため、最低でも鉄はFe23換算で45.0mol%は含有させるものとする。Fe23の含有量は、好ましくは47.1mol%以上とする。また、Fe23の含有量は、好ましくは49.5mol%以下である。
First, the basic components will be described.
Fe 2 O 3 : 45.0 mol% or more and less than 50.0 mol% When Fe 2 O 3 is excessively contained, the amount of Fe 2+ increases, which lowers the specific resistance of MnCoZn-based ferrite. In order to avoid this, the amount of Fe 2 O 3 should be suppressed to less than 50 mol%. However, if the amount of Fe 2 O 3 is too small, the coercive force will increase and the Curie temperature will decrease. Therefore, iron should be contained at least 45.0 mol% in terms of Fe 2 O 3. The content of Fe 2 O 3 is preferably 47.1 mol% or more. The content of Fe 2 O 3 is preferably 49.5 mol% or less.
ZnO:15.5mol%~24.0mol%
 ZnOは、フェライトの飽和磁化を増加させること、また比較的飽和蒸気圧が低いことから焼結密度を上昇させる働きがあり、保磁力の低下に有効な成分である。そこで、最低でも亜鉛はZnO換算で15.5mol%は含有させるものとする。一方、亜鉛含有量が適正な値より多い場合には、キュリー温度の低下を招き、実用上問題がある。そのため、亜鉛はZnO換算で24.0mol%以下とする。ZnOの含有量は、好ましくは、23.0mol%以下、より好ましくは22.0mol%以下とする。
ZnO: 15.5 mol% to 24.0 mol%
ZnO has a function of increasing the saturation magnetization of ferrite and a function of increasing the sintering density because the saturated vapor pressure is relatively low, and is an effective component for lowering the coercive force. Therefore, it is assumed that at least zinc is contained in 15.5 mol% in terms of ZnO. On the other hand, when the zinc content is higher than the appropriate value, the Curie temperature is lowered, which causes a practical problem. Therefore, zinc should be 24.0 mol% or less in terms of ZnO. The ZnO content is preferably 23.0 mol% or less, more preferably 22.0 mol% or less.
CoO:0.5mol%~4.0mol%
 CoOにおけるCo2+は正の磁気異方性エネルギーをもつイオンであり、CoOの適正量の添加に伴い、磁気異方性エネルギーの総和の絶対値が低下する結果、保磁力が低下する。そのために、CoOを0.5mol%以上添加する。一方、CoOを多量に添加すると比抵抗の低下、異常粒成長の誘発が生じ、また磁気異方性エネルギーの総和が過度に正に傾くことから、逆に保磁力の上昇を招く。これらを防ぐため、CoOは最大4.0mol%以下の添加に止めるものとする。CoOの含有量は、好ましくは、0.8mol%以上、より好ましくは1.0mol%以上とする。また、CoOの含有量は、好ましくは、3.8mol%以下、より好ましくは3.5mol%以下とする。
CoO: 0.5 mol% to 4.0 mol%
Co 2+ in CoO is an ion having positive magnetic anisotropy energy, and as a result of the addition of an appropriate amount of CoO, the absolute value of the total magnetic anisotropy energy decreases, and as a result, the coercive force decreases. Therefore, 0.5 mol% or more of CoO is added. On the other hand, when a large amount of CoO is added, the resistivity is lowered, abnormal grain growth is induced, and the total magnetic anisotropy energy is excessively positively inclined, which conversely leads to an increase in coercive force. In order to prevent these, CoO shall be added only at a maximum of 4.0 mol% or less. The CoO content is preferably 0.8 mol% or more, more preferably 1.0 mol% or more. The CoO content is preferably 3.8 mol% or less, more preferably 3.5 mol% or less.
 MnO:残部
 本開示はMnCoZn系フェライトに関し、基本成分組成の残部はMnOとする。なぜなら、MnOでなければ、低い保磁力や10MHzでの高透磁率に代表される良好な磁気特性が得られないためである。MnOの含有量は、好ましくは25.0mol%以上、より好ましくは26.0mol%以上とする。また、MnOの含有量は、好ましくは33.0mol%以下、より好ましくは32.0mol%以下とする。
MnO: Remaining This disclosure relates to MnCoZn-based ferrite, and the balance of the basic composition is MnO. This is because if it is not MnO, good magnetic characteristics typified by low coercive force and high magnetic permeability at 10 MHz cannot be obtained. The MnO content is preferably 25.0 mol% or more, more preferably 26.0 mol% or more. The MnO content is preferably 33.0 mol% or less, more preferably 32.0 mol% or less.
 以上、基本成分について説明したが、副成分については次のとおりである。
SiO2:50~300mass ppm
 SiO2は、フェライトの結晶組織の均一化に寄与することが知られており、適量の添加により異常粒成長を抑制し、また比抵抗も高める。そのため、保磁力を低下させるとともに、破壊靭性値を高めることができる。よって、最低でもSiO2を50mass ppm以上含有することとする。一方、SiO2の含有量が過多の場合には反対に異常粒が出現し、該異常粒が破壊靭性値を著しく低下させると同時に、10MHzにおける初透磁率および保磁力も著しく劣化することから、SiO2の含有量は300mass ppm以下に制限する。SiO2の含有量は、好ましくは55mass ppm以上、より好ましくは60mass ppm以上、さらに好ましくは180mass ppm以上とする。また、SiO2の含有量は、好ましくは275mass ppm以下、より好ましくは250mass ppm以下とする。
The basic components have been described above, but the sub-components are as follows.
SiO 2 : 50-300 mass ppm
SiO 2 is known to contribute to the homogenization of the crystal structure of ferrite, and by adding an appropriate amount, abnormal grain growth is suppressed and specific resistance is also increased. Therefore, the coercive force can be lowered and the fracture toughness value can be increased. Therefore, it is assumed that the SiO 2 is contained at least 50 mass ppm or more. On the other hand, when the content of SiO 2 is excessive, abnormal particles appear on the contrary, and the abnormal particles significantly reduce the fracture toughness value, and at the same time, the initial magnetic permeability and coercive force at 10 MHz are also significantly deteriorated. The content of SiO 2 is limited to 300 mass ppm or less. The content of SiO 2 is preferably 55 mass ppm or more, more preferably 60 mass ppm or more, and further preferably 180 mass ppm or more. The content of SiO 2 is preferably 275 mass ppm or less, more preferably 250 mass ppm or less.
CaO:300~1300mass ppm
 CaOはMnZn系フェライトの結晶粒界に偏析し結晶粒の成長を抑制する働きを持ち、適量の添加に伴い、比抵抗が上昇し、保磁力も下げ、なおかつ破壊靭性値も上昇させることができる。そのため、最低でもCaOを300mass ppm含有させることとする。一方、CaOの含有量が過多の場合には異常粒が出現し、破壊靭性値および保磁力をともに劣化させることから、CaOの含有量は1300mass ppm以下に制限する。CaOの含有量は、好ましくは325mass ppm以上、より好ましくは350mass ppm以上、さらに好ましくは、500mass ppm超とする。CaOの含有量は、最も好ましくは600mass ppm以上、700mass ppm以上とする。特に、CaOの含有量が600mass ppm以上、または700mass ppm以上であれば、特に優れた破壊靭性値が得られる。また、CaOの含有量は、好ましくは1150mass ppm以下、より好ましくは1000mass ppm以下とする。
CaO: 300-1300 mass ppm
CaO has a function of segregating into the grain boundaries of MnZn-based ferrite and suppressing the growth of crystal grains, and with the addition of an appropriate amount, the resistivity increases, the coercive force decreases, and the fracture toughness value can also increase. .. Therefore, it is decided to contain at least 300 mass ppm of CaO. On the other hand, when the CaO content is excessive, abnormal particles appear and both the fracture toughness value and the coercive force are deteriorated. Therefore, the CaO content is limited to 1300 mass ppm or less. The CaO content is preferably 325 mass ppm or more, more preferably 350 mass ppm or more, and further preferably more than 500 mass ppm. The CaO content is most preferably 600 mass ppm or more and 700 mass ppm or more. In particular, when the CaO content is 600 mass ppm or more, or 700 mass ppm or more, a particularly excellent fracture toughness value can be obtained. The CaO content is preferably 1150 mass ppm or less, more preferably 1000 mass ppm or less.
P:10mass ppm未満、B:10mass ppm未満
 PおよびBは主に原料酸化鉄中に不可避的に含まれる成分である。これらの含有がごく微量であれば問題ないが、ある一定以上含まれる場合にはフェライトの異常粒成長を誘発し、異常粒成長部位が破壊の起点となることから破壊靭性値が低下するとともに、保磁力を増大させ、また初透磁率を低下させて、重大な悪影響を及ぼす。よってPおよびBの含有量はともに10mass ppm未満に制限する。好ましくは、Pの含有量は8massppm以下、より好ましくは5mass ppm以下とする。また、好ましくは、Bの含有量は8massppm以下、より好ましくは5mass ppm以下とする。PおよびBの含有量の下限は特に限定されず、それぞれ0mass ppmであってもよい。
P: less than 10 mass ppm, B: less than 10 mass ppm P and B are mainly components inevitably contained in the raw material iron oxide. There is no problem if these contents are in a very small amount, but if they are contained in a certain amount or more, abnormal grain growth of ferrite is induced, and the fracture toughness value decreases because the abnormal grain growth site becomes the starting point of fracture. It increases the coercive force and lowers the initial magnetic permeability, which has a serious adverse effect. Therefore, the contents of P and B are both limited to less than 10 mass ppm. The content of P is preferably 8 mass ppm or less, more preferably 5 mass ppm or less. Further, the content of B is preferably 8 mass ppm or less, more preferably 5 mass ppm or less. The lower limit of the contents of P and B is not particularly limited, and may be 0 mass ppm, respectively.
Na:200mass ppm未満
Mg:200mass ppm未満
Al:250mass ppm未満
K:100mass ppm未満
 Na、Mg、Al、Kは、MnCoZn系フェライトの原料となる酸化鉄、酸化マンガン、酸化亜鉛の中でも低純度のものに含まれ、また水道水等の水に溶存成分として存在している。またフェライトの製造工程において、これらの金属イオンを含有する分散剤等の成分が添加されることがある。さらにフェライトの製造工程における仮焼、焼成時に用いられる炉の耐火物としてこれら成分を含むものが主に用いられており、炉の脱落、接触摩耗によるこれら成分の混入が考えられる。これら成分の一部が成形体の時点で残存していると、焼成時に酸化鉄と反応し、スピネル構造を取りMnCoZn系フェライトの中に固溶することがある。これら成分自体は異常粒成長は誘発せず、磁気特性には悪影響を及ぼさない反面、これら成分の固溶部が通常のMnCoZn系フェライトよりも靭性が低いため、これら成分が存在することにより、MnCoZn系フェライトの靭性を著しく低下させることがある。よって、靭性の低下を抑制するために、これら4成分の含有量に制限を設ける。
Na: less than 200 mass ppm Mg: less than 200 mass ppm Al: less than 250 mass ppm K: less than 100 mass ppm Na, Mg, Al, K are low-purity iron oxide, manganese oxide, and zinc oxide that are raw materials for MnCoZn-based ferrite. It is contained in water and is present as a dissolved component in water such as tap water. Further, in the ferrite manufacturing process, components such as a dispersant containing these metal ions may be added. Further, those containing these components are mainly used as refractories of the furnace used for calcining and firing in the ferrite manufacturing process, and it is conceivable that these components may be mixed due to the furnace falling off or contact wear. If some of these components remain at the time of molding, they may react with iron oxide during firing to form a spinel structure and dissolve in MnCoZn-based ferrite. These components themselves do not induce abnormal grain growth and do not adversely affect the magnetic properties, but the solid solution of these components has lower toughness than ordinary MnCoZn-based ferrites. Therefore, the presence of these components causes MnCoZn. The toughness of the system ferrite may be significantly reduced. Therefore, in order to suppress the decrease in toughness, the content of these four components is limited.
 具体的には、Na:200mass ppm未満、Mg:200mass ppm未満、Al:250mass ppm未満、K:100mass ppm未満とする。好ましくは、Naの含有量は、130mass ppm以下、より好ましくは、90mass ppm以下とする。好ましくは、Mgの含有量は、150mass ppm以下、より好ましくは、125mass ppm以下とする。好ましくは、Alの含有量は、200mass ppm以下、より好ましくは、180mass ppm以下とする。また好ましくは、Kの含有量は、85mass ppm以下、より好ましくは、75mass ppm以下とする。Na、Mg、Al、およびKの下限は特に限定されず、それぞれ0ppmであってもよい。生産技術上の観点から、好ましくは、Naの含有量は、10mass ppm以上とする。生産技術上の観点から、好ましくは、Mgの含有量は、10mass ppm以上とする。生産技術上の観点から、好ましくは、Alの含有量は、15mass ppm以上とする。また、生産技術上の観点から、好ましくは、Kの含有量は、5mass ppm以上とする。 Specifically, Na: less than 200 mass ppm, Mg: less than 200 mass ppm, Al: less than 250 mass ppm, K: less than 100 mass ppm. The Na content is preferably 130 mass ppm or less, more preferably 90 mass ppm or less. The Mg content is preferably 150 mass ppm or less, more preferably 125 mass ppm or less. The Al content is preferably 200 mass ppm or less, more preferably 180 mass ppm or less. Further, the content of K is preferably 85 mass ppm or less, and more preferably 75 mass ppm or less. The lower limits of Na, Mg, Al, and K are not particularly limited and may be 0 ppm, respectively. From the viewpoint of production technology, the Na content is preferably 10 mass ppm or more. From the viewpoint of production technology, the Mg content is preferably 10 mass ppm or more. From the viewpoint of production technology, the Al content is preferably 15 mass ppm or more. Further, from the viewpoint of production technology, the K content is preferably 5 mass ppm or more.
 なお、Na,Mg,AlおよびK成分を減少させることで副次的に得られる効果として、成形工程における歩留まり向上が挙げられる。MnCoZn系フェライトは、詳細は後述するが、バインダーを含有する造粒粉を粉末圧縮法により成形した後に焼成することで作製される。この成形工程において主に金型からの脱型時に成形体に割れが生じることがある。この時点で割れが生じた場合には不良品となり、製品としての価値は失われる。Na,Mg,AlおよびK成分が上記規定範囲内の組成であれば、成形体の割れ発生率を抑制することができる。このメカニズムに関しては詳細を調査中であるが、本発明者らは以下の通り推測している。主にバインダーとして用いられるポリビニルアルコール等の有機物バインダーと、Na、Mg、AlおよびK等の金属イオンとの間には架橋反応が起きることが知られている。よって、Na、Mg、AlおよびK等の金属イオンは、バインダーの均一な分散を阻害する働きがあると考えられる。したがって、Na、Mg、AlおよびKの含有量に規定を設けることで、これを抑制できているのではないか、と本発明者らは考えている。Na,Mg,AlおよびK成分を減少させることで、成形体の割れ発生率を2.0%未満に低減して、MnCoZn系フェライトを歩留まり良く製造することが可能である。 As a secondary effect obtained by reducing the Na, Mg, Al and K components, there is an improvement in yield in the molding process. The MnCoZn-based ferrite will be described in detail later, but is produced by molding a granulated powder containing a binder by a powder compression method and then firing it. In this molding process, the molded body may be cracked mainly when the mold is removed from the mold. If cracks occur at this point, the product will be defective and its value as a product will be lost. When the Na, Mg, Al and K components have a composition within the above-mentioned specified range, the crack generation rate of the molded product can be suppressed. We are investigating the details of this mechanism, but the present inventors speculate as follows. It is known that a cross-linking reaction occurs between an organic binder such as polyvinyl alcohol, which is mainly used as a binder, and metal ions such as Na, Mg, Al and K. Therefore, it is considered that metal ions such as Na, Mg, Al and K have a function of inhibiting the uniform dispersion of the binder. Therefore, the present inventors consider that this can be suppressed by setting the contents of Na, Mg, Al and K. By reducing the Na, Mg, Al and K components, the crack generation rate of the molded product can be reduced to less than 2.0%, and MnCoZn-based ferrite can be produced with good yield.
 また、不可避的不純物としてのTiの含有量は50mass ppm未満とすることが好ましい。Tiの含有量が50mass ppm未満であれば、初透磁率の温度特性の変動を好適に抑制し、23℃、10MHzにおける初透磁率の低下を好適に防ぐことができる。Tiの含有量の下限は特に限定されず、0mass ppmであってもよい。また、不可避的不純物としてのNb25の含有量は50mass ppm以下とすることが好ましく、10mass ppm以下とすることがより好ましい。Nb25の含有量が好ましくは50mass ppm以下、より好ましくは10mass ppm以下であれば、初透磁率の温度特性の変動を好適に抑制し、23℃、10MHzにおける初透磁率の低下を好適に防ぐことができる。Nb25の含有量の下限は特に限定されず、0mass ppmであってもよい。 Further, the content of Ti as an unavoidable impurity is preferably less than 50 mass ppm. When the Ti content is less than 50 mass ppm, fluctuations in the temperature characteristics of the initial magnetic permeability can be suitably suppressed, and a decrease in the initial magnetic permeability at 23 ° C. and 10 MHz can be suitably prevented. The lower limit of the Ti content is not particularly limited and may be 0 mass ppm. The content of Nb 2 O 5 as an unavoidable impurity is preferably 50 mass ppm or less, and more preferably 10 mass ppm or less. When the content of Nb 2 O 5 is preferably 50 mass ppm or less, more preferably 10 mass ppm or less, fluctuations in the temperature characteristics of the initial magnetic permeability are preferably suppressed, and a decrease in the initial magnetic permeability at 23 ° C. and 10 MHz is preferable. Can be prevented. The lower limit of the content of Nb 2 O 5 is not particularly limited and may be 0 mass ppm.
 P,B,Na,Mg,Al,Kの合計量は675mass ppm以下とすることが好ましく、400mass ppm以下とすることがより好ましい。これらの合計量を少なくすると破壊靭性値がより大きくなる。 The total amount of P, B, Na, Mg, Al, and K is preferably 675 mass ppm or less, and more preferably 400 mass ppm or less. The smaller the total amount of these, the larger the fracture toughness value.
 なお、P,B,Na,Mg,Al,K、およびその他の不可避的不純物の含有量は、JIS K 0102(ICP質量分析法)に従って定量する。 The contents of P, B, Na, Mg, Al, K, and other unavoidable impurities are quantified according to JIS K 0102 (ICP mass spectrometry).
 また、組成に限らず種々のパラメータによりMnZn系フェライトの諸特性は多大な影響を受ける。その中で、本開示においてはより好ましい磁気特性および機械特性を得るために下記の規定を設けることが好ましい。 In addition, various characteristics of MnZn-based ferrite are greatly affected by various parameters, not limited to the composition. Among them, in the present disclosure, it is preferable to provide the following provisions in order to obtain more preferable magnetic characteristics and mechanical characteristics.
 MnCoZn系フェライトはセラミックスであり、脆性材料であるためほとんど塑性変形しない。そのため破壊靭性値はJIS R 1607に規定されたSEPB法(Single-Edge-Precracked-Beam method)によって測定される。SEPB法においては、平板状コアの中心部にビッカース圧子を打痕し、予き裂を加えた状態で曲げ試験をすることで破壊靭性値を測定する。本開示のMnCoZn系フェライトは高靱性が求められる自動車搭載用を想定しており、破壊靱性値が1.00MPa・m1/2以上を満たす。この条件を満たすためには、上記の通り成分組成を規定範囲内に制御する必要がある。破壊靭性値は、好ましくは1.05MPa・m1/2以上と、より好ましくは1.10MPa・m1/2以上とする。 Since MnCoZn-based ferrite is a ceramic and is a brittle material, it hardly undergoes plastic deformation. Therefore, the fracture toughness value is measured by the SEBP method (Single-Edge-Precracked-Beam method) specified in JIS R 1607. In the SEBP method, the fracture toughness value is measured by imprinting a Vickers indenter in the center of the flat plate core and performing a bending test with a pre-crack. The MnCoZn-based ferrite of the present disclosure is intended for use in automobiles where high toughness is required, and has a fracture toughness value of 1.00 MPa · m 1/2 or more. In order to satisfy this condition, it is necessary to control the component composition within the specified range as described above. The fracture toughness value is preferably 1.05 MPa · m 1/2 or more, and more preferably 1.10 MPa · m 1/2 or more.
 次に、本開示のMnCoZn系フェライトの製造方法について説明する。
 本開示のMnCoZn系フェライトの製造方法は、
 前記基本成分の混合物を仮焼し、冷却して仮焼粉を得る仮焼工程と、
 前記仮焼粉に前記副成分を添加して、混合、粉砕して粉砕粉を得る混合-粉砕工程と、
 前記粉砕粉にバインダーを添加、混合した後、造粒して造粒粉を得る造粒工程と、
 前記造粒粉を成形して成形体を得る成形工程と、
 前記成形体を焼成してMnCoZn系フェライトを得る焼成工程と、を有する、MnZn系フェライトの製造方法であり得る。
Next, a method for producing the MnCoZn-based ferrite of the present disclosure will be described.
The method for producing MnCoZn-based ferrite of the present disclosure is as follows.
A calcination step of calcifying a mixture of the basic components and cooling to obtain a calcination powder.
The mixing-crushing step of adding the sub-ingredient to the calcination powder, mixing and crushing to obtain crushed powder, and
A granulation step of adding a binder to the pulverized powder, mixing the mixture, and then granulating to obtain a granulated powder.
The molding process of molding the granulated powder to obtain a molded body, and
It can be a method for producing MnZn-based ferrite, which comprises a firing step of calcining the molded body to obtain MnCoZn-based ferrite.
 MnCoZn系フェライトの製造においては、まず上述した比率となるように、基本成分であるFe23、ZnO、CoO及びMnO粉末を秤量し、これらを十分に混合して混合物とした後に、該混合物を仮焼する(仮焼工程)。この際、不可避的不純物については、上述した範囲内に制限する。 In the production of MnCoZn-based ferrite, first, Fe 2 O 3 , ZnO, CoO and MnO powder, which are the basic components, are weighed so as to have the above-mentioned ratio, and these are sufficiently mixed to form a mixture, and then the mixture is obtained. (Turning process). At this time, unavoidable impurities are limited to the above-mentioned range.
 次に、得られた仮焼粉に、本開示にて規定された副成分を所定の比率で加え、仮焼粉と混合して粉砕を行う(混合-粉砕工程)。この工程にて、添加した成分の濃度に偏りがないよう粉末を充分に均質化し、同時に仮焼粉を目標の平均粒径の大きさまで微細化させ、粉砕粉とする。 Next, the sub-ingredients specified in the present disclosure are added to the obtained calcined powder at a predetermined ratio, mixed with the calcined powder, and pulverized (mixing-crushing step). In this step, the powder is sufficiently homogenized so that the concentration of the added component is not biased, and at the same time, the calcined powder is refined to the target average particle size to obtain a pulverized powder.
 次いで、粉砕粉に、ポリビニルアルコール等の公知の有機物バインダーを加え、スプレードライ法等により造粒して造粒粉を得る(造粒工程)。その後、必要であれば粒度調整のための篩通し等の工程を経て、成形機にて圧力を加えて成形して成形体とする(成形工程)。この成形工程において成形体に割れが生じた場合には、最終製品のMnCoZn系フェライトにも割れが残る。割れを含むMnZn系フェライトは強度が劣り、かつギャップを含むことと同義であることから所望の磁気特性を満たせない不良品となる。よって、割れを含む成形体はこの時点で取り除く。次いで、成形体を公知の焼成条件の下で焼成し、MnCoZn系フェライトを得る(焼成工程)。 Next, a known organic binder such as polyvinyl alcohol is added to the pulverized powder, and granulation is performed by a spray-drying method or the like to obtain granulated powder (granulation step). After that, if necessary, it is subjected to a step such as sieving for adjusting the particle size, and then pressure is applied by a molding machine to form a molded product (molding step). If cracks occur in the molded body in this molding step, cracks remain in the final product MnCoZn-based ferrite. MnZn-based ferrite containing cracks is inferior in strength and is synonymous with containing a gap, so that it is a defective product that cannot satisfy the desired magnetic characteristics. Therefore, the molded product containing cracks is removed at this point. Next, the molded product is fired under known firing conditions to obtain MnCoZn-based ferrite (firing step).
 なお、本開示のMnCoZn系フェライトの製造方法においては、含有する不純物量が低減された原料を用いる。また混合、粉砕、造粒時に、基本成分あるいはさらに副成分を含むスラリーの溶媒として、含有する不純物量が低減された純水もしくはイオン交換水を用いる。またバインダー、およびスラリーの粘度低下のために加える界面活性剤等も、金属イオンが低減されたものを選択する。さらに仮焼工程、焼成工程で使用される炉の耐火物にはこれら成分が含まれることが多い。このため、これら元素のコンタミを抑制するべく、適宜篩分けしたり、成形体と耐火物との接触面積を減らすべく焼成時に敷粉を採用したりすることにより、Na,Mg,AlおよびKのコンタミネーションを防いでいる。
 得られたMnCoZn系フェライトには、適宜表面研磨等加工を施しても構わない。
In the method for producing MnCoZn-based ferrite of the present disclosure, a raw material having a reduced amount of impurities is used. Further, during mixing, pulverization, and granulation, pure water or ion-exchanged water having a reduced amount of impurities is used as a solvent for the slurry containing the basic component or the sub-component. Also, as the binder and the surfactant to be added to reduce the viscosity of the slurry, select one having reduced metal ions. Further, the refractories of the furnace used in the calcining process and the firing process often contain these components. For this reason, Na, Mg, Al and K can be obtained by appropriately sieving in order to suppress contamination of these elements and by adopting a bedding powder at the time of firing in order to reduce the contact area between the molded body and the refractory material. Prevents contamination.
The obtained MnCoZn-based ferrite may be appropriately subjected to surface polishing or other processing.
 かくして得られたMnCoZn系フェライトは、従来のMnCoZn系フェライトでは不可能であった、平板状コアのJIS R1607に準拠して測定した破壊靭性値が1.00MPa・m1/2以上という優れた機械特性を有するだけでなく、比抵抗が30Ω・m以上、キュリー温度が100℃以上、同条件で作製したトロイダル形状コアの保磁力が15.0A/m以下、かつ23℃、10MHzにおける初透磁率が150以上という優れた磁気特性を同時に実現している。比抵抗は、好ましくは、40Ω・m以上、好ましくは、50Ω・m以上とする。キュリー温度は、好ましくは、150℃以上とする。トロイダル形状コアの保磁力は、好ましくは、13.0A/m以下、より好ましくは12.6A/m以下とする。23℃、10MHzにおける初透磁率は、好ましくは、160以上、より好ましくは、170以上とする。 The MnCoZn-based ferrite thus obtained is an excellent machine with a breaking toughness value of 1.00 MPa · m 1/2 or more measured in accordance with JIS R1607 of a flat plate core, which was not possible with conventional MnCoZn-based ferrites. Not only has the characteristics, the specific resistance is 30Ω ・ m or more, the Curie temperature is 100 ℃ or more, the coercive force of the toroidal shape core manufactured under the same conditions is 15.0A / m or less, and the initial magnetic permeability at 23 ℃ and 10MHz. At the same time, it realizes excellent magnetic characteristics of 150 or more. The specific resistance is preferably 40 Ω · m or more, preferably 50 Ω · m or more. The Curie temperature is preferably 150 ° C. or higher. The coercive force of the toroidal shape core is preferably 13.0 A / m or less, more preferably 12.6 A / m or less. The initial magnetic permeability at 23 ° C. and 10 MHz is preferably 160 or more, more preferably 170 or more.
 なお、トロイダル形状コアの初透磁率は、トロイダル形状コアに10ターンの巻線を施し、インピーダンスアナライザ(キーサイト社製4294A)を用いて測定したインピーダンスと位相角とを元に算出する。 The initial magnetic permeability of the toroidal shape core is calculated based on the impedance and the phase angle measured by applying a winding of 10 turns to the toroidal shape core and using an impedance analyzer (4294A manufactured by Keysight Co., Ltd.).
 また、保磁力HcはJIS C 2560-2に準拠して23℃にて測定する。 In addition, the coercive force Hc is measured at 23 ° C. in accordance with JIS C 2560-1.
 比抵抗は4端子法にて測定する。 The specific resistance is measured by the 4-terminal method.
 キュリー温度はLCRメータ(キーサイト社製4980A)を用いて測定したインダクタンスの温度特性測定結果より算出する。 The Curie temperature is calculated from the temperature characteristic measurement result of the inductance measured using an LCR meter (4980A manufactured by Keysight).
 平板状コアの破壊靭性値についてはJIS R1607に則り、ビッカース圧子により中央部に打痕した試料に予き裂を加えた後に3点曲げ試験で破断し、その破断荷重と試験片の寸法とを元に算出する。 The fracture toughness value of the flat plate core is in accordance with JIS R1607, and after making a pre-crack in the sample dented in the center by the Vickers indenter, it breaks in a three-point bending test, and the breaking load and the dimensions of the test piece are determined. Calculated based on.
(実施例1)
 含まれるFe、Zn、CoおよびMnをすべてFe23、ZnO、CoOおよびMnOとして換算した場合に、Fe23、ZnO、CoOおよびMnOが表1に示す比率となるように秤量した各原料粉末を、ボールミルを用いて16時間混合した後、大気中900℃で3時間の仮焼を行い、大気中にて1.5時間かけて室温まで冷却して仮焼粉とした。次に、この仮焼粉に対し、SiO2,およびCaOをそれぞれ150,700mass ppm相当分秤量した後に添加し、ボールミルで12時間粉砕を行なって、粉砕粉を得た。該粉砕粉にポリビニルアルコールを加えてスプレードライ造粒し、118MPaの圧力をかけトロイダル形状コアおよび平板状コアに成形した。その後、これらの成形体に割れがないことを目視で確認し、成形体を焼成炉に装入して、最高温度1320℃×2時間、窒素ガスと空気とを適宜混合したガス流中で焼成し、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダル形状コアと、縦:4mm、横:35mm、厚み:3mmの焼結体平板状コアとを得た。
(Example 1)
Fe contained, Zn, all Co and Mn Fe 2 O 3, ZnO, when calculated as CoO and MnO, each Fe 2 O 3, ZnO, CoO, and MnO were weighed so that the ratio shown in Table 1 The raw material powder was mixed for 16 hours using a ball mill, then calcined in the air at 900 ° C. for 3 hours, and cooled to room temperature in the air for 1.5 hours to obtain a calcined powder. Next, SiO 2 and CaO were weighed equivalent to 150,700 mass ppm, respectively, and then added to the calcined powder, and pulverized with a ball mill for 12 hours to obtain pulverized powder. Polyvinyl alcohol was added to the pulverized powder to perform spray-dry granulation, and a pressure of 118 MPa was applied to form a toroidal-shaped core and a flat plate-shaped core. After that, it was visually confirmed that these molded bodies were not cracked, and the molded bodies were placed in a firing furnace and fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air were appropriately mixed. A sintered toroidal-shaped core having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm and a sintered flat plate-shaped core having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained.
 なお、原料として高純度原料を用い、また副成分の混合、粉砕時には純水を用い、さらにスラリーに金属イオンを含有する潤滑剤等の成分を添加しないことで、Na,Mg,AlおよびKのコンタミネーションを抑制したため、焼結体トロイダル形状コアおよび焼結体平板状コアに含有されるPおよびBの量はそれぞれ4および3mass ppm、またNa,Mg,Al,およびKはそれぞれ80,75,120および30mass ppmであった。なお、P,B,Na,Mg,Al,およびKの含有量は、上述した通り、JIS K 0102(ICP質量分析法)に従って定量した。 By using a high-purity raw material as a raw material, using pure water when mixing and crushing auxiliary components, and by not adding components such as a lubricant containing metal ions to the slurry, Na, Mg, Al and K can be obtained. Since contamination was suppressed, the amounts of P and B contained in the sintered toroidal-shaped core and the sintered flat plate-shaped core were 4 and 3 mass ppm, respectively, and Na, Mg, Al, and K were 80 and 75, respectively. It was 120 and 30 mass ppm. The contents of P, B, Na, Mg, Al, and K were quantified according to JIS K 0102 (ICP mass spectrometry) as described above.
 上述した方法に従って、焼結体トロイダル形状コアの初透磁率、保磁力Hc、キュリー温度、および焼結体平板状コアの破壊靭性値を測定した。得られた結果を表1に示す。 According to the method described above, the initial magnetic permeability of the sintered toroidal-shaped core, the coercive force Hc, the Curie temperature, and the fracture toughness value of the sintered flat plate-shaped core were measured. The results obtained are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
同表に示したとおり、発明例である実施例1-1~1-7では、比抵抗が30Ωm以上、23℃における保磁力が15.0A/m以下、キュリー温度が100℃以上、23℃、10MHzにおける初透磁率の値が150以上かつ破壊靭性値が1.00MPa・m1/2以上であり、好適な磁気特性と高靱性を併せ持っている。 As shown in the table, in Examples 1-1 to 1-7, which are examples of the invention, the specific resistance is 30 Ωm or more, the coercive force at 23 ° C. is 15.0 A / m or less, the Curie temperature is 100 ° C. or more, and 23 ° C. The initial magnetic permeability at 10 MHz is 150 or more and the fracture toughness value is 1.00 MPa · m 1/2 or more, and it has both suitable magnetic properties and high toughness.
 これに対し、Fe23を50.0mol%以上含む比較例(比較例1-1,1-2)では、比抵抗が大幅に低下しており、渦電流損失の増大に伴う10MHzの初透磁率も大幅に劣化している。一方、Fe23が45.0mol%未満である比較例(比較例1-3)では、高靱性は実現できているものの、磁気異方性と磁歪とが大きくなったため保磁力が増加し、かつキュリー温度の低下がみられる。 On the other hand, in the comparative example (Comparative Examples 1-1 and 1-2) containing 50.0 mol% or more of Fe 2 O 3 , the specific resistance is significantly reduced, and the first 10 MHz due to the increase in eddy current loss. The magnetic permeability has also deteriorated significantly. On the other hand, in Comparative Example (Comparative Example 1-3) in which Fe 2 O 3 was less than 45.0 mol%, although high toughness was realized, the coercive force increased due to the increase in magnetic anisotropy and magnetostriction. And the Curie temperature is decreasing.
 ZnOが過剰である比較例(比較例1-4)では、キュリー温度が100℃未満まで低下している。反対にZnOが規定範囲よりも少ない比較例(比較例1-5)では、保磁力が上昇し、望ましい範囲を外れている。 In Comparative Example (Comparative Example 1-4) in which ZnO is excessive, the Curie temperature is lowered to less than 100 ° C. On the contrary, in the comparative example (Comparative Example 1-5) in which ZnO is less than the specified range, the coercive force increases and is out of the desirable range.
 CoOに着目すると、含有量が規定範囲より少ない比較例(比較例1-6)では、正負の磁気異方性の相殺が不十分であるために、保磁力が高くなっており、また過剰に含む比較例(比較例1-7)では、反対に正の磁気異方性が過剰に高まったために、保磁力が上昇し、10MHzにおける初透磁率も低下している。 Focusing on CoO, in Comparative Example (Comparative Example 1-6) in which the content is less than the specified range, the coercive force is high and excessively because the cancellation of the positive and negative magnetic anisotropy is insufficient. In the comparative example (Comparative Example 1-7) including, on the contrary, since the positive magnetic anisotropy is excessively increased, the coercive force is increased and the initial magnetic permeability at 10 MHz is also decreased.
(実施例2)
 含まれるFe、Zn、CoおよびMnをすべてFe23、ZnO、CoOおよびMnOとして換算した場合に、Fe23:49.0mol%、CoO:2.0mol%、ZnO:21.0mol%、MnO:28.0mol%となるよう原料を秤量し、ボールミルを用いて16時間混合した後、大気中900℃で3時間仮焼を行い、大気中にて1.5時間かけて室温まで冷却して仮焼粉を得た。次に、この仮焼粉に表2に示す量のSiO2,およびCaOを加え、ボールミルで12時間粉砕を行なって粉砕粉を得た。該粉砕粉にポリビニルアルコールを加えてスプレードライ造粒し、118MPaの圧力をかけトロイダル形状コアおよび平板状コアを成形した。その後、これらの成形体に割れがないことを目視で確認し、成形体を焼成炉に挿入して、最高温度1320℃×2時間、窒素ガスと空気とを適宜混合したガス流中で焼成し、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダル形状コアと、縦:4mm、横:35mm、厚み:3mmの焼結体平板状コアとを得た。得られた焼結体トロイダル形状コアおよび焼結体平板状コアに含まれるPおよびBの量はそれぞれ4および3mass ppm、またNa,Mg,Al,およびKはそれぞれ80,75,120および30mass ppmであった。
(Example 2)
Fe contained, Zn, all Co and Mn Fe 2 O 3, ZnO, when calculated as CoO and MnO, Fe 2 O 3: 49.0mol %, CoO: 2.0mol%, ZnO: 21.0mol% , MnO: Weigh the raw materials to 28.0 mol%, mix for 16 hours using a ball mill, perform calcining at 900 ° C. in the air for 3 hours, and cool to room temperature in the air for 1.5 hours. And obtained the calcined powder. Next, the amounts of SiO 2 and CaO shown in Table 2 were added to the calcined powder, and the mixture was pulverized with a ball mill for 12 hours to obtain pulverized powder. Polyvinyl alcohol was added to the pulverized powder to perform spray-dry granulation, and a pressure of 118 MPa was applied to form a toroidal-shaped core and a flat plate-shaped core. After that, it was visually confirmed that these molded bodies were not cracked, and the molded bodies were inserted into a firing furnace and fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air were appropriately mixed. A sintered toroidal-shaped core having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm and a sintered flat plate-shaped core having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained. The amounts of P and B contained in the obtained sintered toroidal-shaped core and the sintered flat plate-shaped core were 4 and 3 mass ppm, respectively, and Na, Mg, Al, and K were 80, 75, 120, and 30 mass ppm, respectively. Met.
 これらの各試料について、実施例1と同じ手法、装置を用いそれぞれの特性を評価した。得られた結果を表2に示す。 The characteristics of each of these samples were evaluated using the same method and equipment as in Example 1. The obtained results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 同表に示したとおり、SiO2,およびCaOの量が規定の範囲内である実施例2-1~2-4では、比抵抗が30Ωm以上、保磁力が15.0A/m以下、キュリー温度が100℃以上、かつ23℃、10MHzにおける初透磁率の値が150以上という良好な磁気特性と、破壊靭性値が1.00MPa・m1/2以上であり高い靱性を両立できている。 As shown in the table, in Examples 2-1 to 2-4 in which the amounts of SiO 2 and CaO are within the specified range, the specific resistance is 30 Ωm or more, the coercive force is 15.0 A / m or less, and the Curie temperature. Has good magnetic properties of 100 ° C. or higher and an initial magnetic permeability of 150 or higher at 23 ° C. and 10 MHz, and a fracture toughness value of 1.00 MPa · m 1/2 or higher, achieving both high toughness.
 一方、SiO2およびCaOの2成分のうち1つでも規定量未満しか含まない比較例2-1,2-3では、粒界生成が不十分となることから比抵抗が低下し、かつ結晶粒成長の適度な抑制が不十分であるために低強度な粗大粒が一部出現することから、破壊靭性値が所望の値未満である。反対に同成分のうち1つでも過多である比較例2-2,2-4および2-5では、異常粒の出現により、23℃、10MHzにおける初透磁率をはじめとした磁気特性が劣化しており、また異常粒が多くの粒内ボイドを含むことからボイド残率が高くなった結果、破壊靭性値も大きく低下している。 On the other hand, in Comparative Examples 2-1, 2-3 in which even one of the two components of SiO 2 and CaO is contained in less than the specified amount, the specific resistance is lowered due to insufficient grain boundary formation, and the crystal grains are crystallized. The fracture toughness value is less than the desired value because some low-strength coarse grains appear due to insufficient suppression of growth. On the contrary, in Comparative Examples 2-2, 2-4 and 2-5 in which even one of the same components is excessive, the magnetic characteristics such as the initial magnetic permeability at 23 ° C. and 10 MHz deteriorate due to the appearance of abnormal grains. In addition, since the abnormal grains contain many intragranular voids, the void residual ratio is high, and as a result, the fracture toughness value is also greatly reduced.
(実施例3)
 実施例1に示した手法により、基本成分および副成分が実施例1-2と同じ組成となるような割合になる一方、含有するP,Bの量が種々に異なる原料を用いて造粒粉を得た。該造粒粉を、118MPaの圧力をかけトロイダル形状コアおよび平板状コアに成形した。その後、これらの成形体に割れがないことを目視で確認し、成形体を焼成炉に挿入して、最高温度1320℃×2時間、窒素ガスと空気を適宜混合したガス流中で焼成し、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダル形状コアと、縦:4mm、横:35mm、厚み:3mmの焼結体平板状コアとを得た。
 これらの各試料について、実施例1と同じ手法、装置を用いそれぞれの特性を評価した。得られた結果を表3に示す。
(Example 3)
By the method shown in Example 1, the ratio of the basic component and the sub-ingredients is the same as that of Example 1-2, but the amount of P and B contained is different. Got The granulated powder was formed into a toroidal-shaped core and a flat plate-shaped core by applying a pressure of 118 MPa. After that, it was visually confirmed that these compacts were not cracked, and the compacts were inserted into a firing furnace and fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air were appropriately mixed. A sintered toroidal-shaped core having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm and a sintered flat plate-shaped core having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained.
The characteristics of each of these samples were evaluated using the same method and equipment as in Example 1. The obtained results are shown in Table 3.
 また、同じ条件で成形体を1000個製造し、割れの有無を目視で観察した。なお割れの判断としては、成形体が完全に破断したもの、0.5mm以上のき裂もしくは部分的な剥奪が確認できたものを割れたコアと判断した。割れの発生率を表3に示す。 In addition, 1000 molded bodies were manufactured under the same conditions, and the presence or absence of cracks was visually observed. As for the judgment of cracks, those in which the molded body was completely broken, cracks of 0.5 mm or more, or those in which partial deprivation was confirmed were judged to be cracked cores. Table 3 shows the crack occurrence rate.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 PおよびBが規定の範囲内である実施例3-1では比抵抗、保磁力、23℃、10MHzにおける初透磁率の値が150以上という望ましい磁気特性と、破壊靭性値が1.00MPa・m1/2以上であり、高い靱性を両立できている。反対に両成分のうち一方もしくは両方が規定以上含まれる際には、異常粒が出現することから複数の磁気特性が劣化し、同時に破壊靭性値も低下し、ともに望ましい値が得られていない。 In Example 3-1 in which P and B are within the specified range, the desired magnetic properties such as resistivity, coercive force, initial magnetic permeability at 23 ° C. and 10 MHz are 150 or more, and fracture toughness value is 1.00 MPa · m. It is more than 1/2 , and has both high toughness. On the contrary, when one or both of the two components are contained more than the specified value, the appearance of abnormal particles deteriorates a plurality of magnetic properties, and at the same time, the fracture toughness value also decreases, and the desired values are not obtained for both.
(実施例4)
 実施例1に示した手法により、基本成分および副成分が実施例1-2と同じ組成となるような割合になる一方、含有する不純物量が種々に異なる原料を用い、また混合、粉砕、造粒時にスラリーの溶媒として用いる水に関し、通常の純水もしくはイオン交換水と異なり、水道水もしくは異なる硬度のミネラルウォーター等を用いたり、意図的に試薬を加えたりすることにより、最終的に試料が含有するNa,Mg,AlおよびKの量が異なるように作製した造粒粉を用いて、118MPaの圧力をかけトロイダル形状コアおよび平板状コアを成形した。その後、これらの成形体に割れがないことを目視で確認し、成形体を焼成炉に挿入して、最高温度1320℃×2時間、窒素ガスと空気とを適宜混合したガス流中で焼成することで、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダル形状コアと、縦:4mm、横:35mm、厚み:3mmの焼結体平板状コアとを得た。
 これらの各試料について、実施例1と同じ手法、装置を用いそれぞれの特性を評価した。得られた結果を表4に示す。
(Example 4)
By the method shown in Example 1, the basic component and the sub-component have the same composition as in Example 1-2, but raw materials containing various amounts of impurities are used, and mixed, pulverized, and produced. Regarding the water used as the solvent for the slurry at the time of granulation, unlike ordinary pure water or ion-exchanged water, tap water or mineral water with different hardness is used, or by intentionally adding a reagent, the sample is finally prepared. Using granulated powder prepared so that the amounts of Na, Mg, Al and K contained were different, a toroidal-shaped core and a flat plate-shaped core were formed by applying a pressure of 118 MPa. After that, it is visually confirmed that these compacts are not cracked, the compacts are inserted into a firing furnace, and the compacts are fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air are appropriately mixed. As a result, a sintered toroidal-shaped core having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm was obtained, and a sintered flat plate-shaped core having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm was obtained.
The characteristics of each of these samples were evaluated using the same method and equipment as in Example 1. The obtained results are shown in Table 4.
 また、同じ条件で成形体を1000個製造し、割れの有無を目視で観察した。割れの発生率を表4に示す。 In addition, 1000 molded bodies were manufactured under the same conditions, and the presence or absence of cracks was visually observed. Table 4 shows the crack occurrence rate.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 Na,Mg,AlおよびKの含有量が既定の範囲内である実施例4-1~4-9では、破壊靭性値が1.00MPa・m1/2以上という良好な値が得られている。
 一方、Na,Mg,AlおよびKの少なくとも1つを規定値以上含有する比較例4-1~4-9では、磁気特性は所望の値が得られている反面、破壊靭性値が1.00MPa・m1/2未満まで低下している。この靭性の低下は、Na,Mg,AlおよびKが結晶粒内に固溶し、局所的に低靭性の点が出現したためと推定される。
In Examples 4-1 to 4-9 in which the contents of Na, Mg, Al and K are within the predetermined range, a good value of fracture toughness value of 1.00 MPa · m 1/2 or more is obtained. ..
On the other hand, in Comparative Examples 4-1 to 4-9 containing at least one of Na, Mg, Al and K in a specified value or more, the desired value of the magnetic property is obtained, but the fracture toughness value is 1.00 MPa.・ It has decreased to less than m 1/2. It is presumed that this decrease in toughness is due to the solid dissolution of Na, Mg, Al and K in the crystal grains, and the appearance of locally low toughness points.
 成形体の割れ発生率に着目すると、比較例4-1~4-9では割れ発生率が2.0%以上と高い値になっている。これは、これら比較例においてはNa,Mg,AlおよびKの含有量が十分抑制されていないためバインダーの均一な分散が阻害され、成形体の中で局所的にバインダー量が不足した強度の弱い箇所が存在し、割れ不良が出現しやすくなったためであると考えられる。 Focusing on the crack occurrence rate of the molded product, the crack occurrence rate is as high as 2.0% or more in Comparative Examples 4-1 to 4-9. This is because the contents of Na, Mg, Al and K were not sufficiently suppressed in these comparative examples, so that the uniform dispersion of the binder was hindered, and the strength was weak because the amount of the binder was locally insufficient in the molded product. It is probable that this is because there are some spots and crack defects are more likely to appear.
 以上述べたように本発明に係るMnCoZn系フェライトは、平板状コアのJIS R1607に準拠して測定した破壊靭性値が1.00MPa・m1/2以上という優れた機械特性と、比抵抗30Ω・m以上、キュリー温度が100℃以上、同条件で作製したトロイダル形状コアの保磁力15.0A/m以下かつ23℃、10MHzにおける初透磁率の値が150以上という優れた磁気特性とを併せ持っており、成形体の割れ発生率を2.0%未満に低減して歩留まり良く製造することが可能であるため、特に自動車搭載用の電子部品の磁心に適している。 As described above, the MnCoZn-based ferrite according to the present invention has excellent mechanical properties with a breaking toughness value of 1.00 MPa · m 1/2 or more measured in accordance with JIS R1607 of a flat plate core, and a specific resistance of 30 Ω ·. It has excellent magnetic properties of m or more, Curie temperature of 100 ° C or more, coercive force of 15.0 A / m or less of toroidal shape core manufactured under the same conditions, and initial magnetic permeability of 150 or more at 23 ° C and 10 MHz. Since it is possible to reduce the cracking rate of the molded body to less than 2.0% and manufacture it with a good yield, it is particularly suitable for the magnetic core of electronic parts mounted on automobiles.

Claims (2)

  1.  基本成分、副成分および不可避的不純物からなるMnCoZn系フェライトであって、
     前記基本成分が、Fe23、ZnO、CoO、MnO換算での鉄、亜鉛、コバルト、マンガンの合計を100mol%として、
      鉄:Fe23換算で45.0mol%以上、50.0mol%未満、
      亜鉛:ZnO換算で15.5~24.0mol%、
      コバルト:CoO換算で0.5~4.0mol%および
      マンガン:残部
    であり、
     前記基本成分に対して、前記副成分が、
      SiO2:50~300mass ppmおよび
      CaO:300~1300mass ppm
    であり、
     前記不可避的不純物におけるP、B、Na、Mg、AlおよびKの含有量をそれぞれ、
      P:10mass ppm未満、
      B:10mass ppm未満、
      Na:200mass ppm未満、
      Mg:200mass ppm未満、
      Al:250mass ppm未満および
      K:100mass ppm未満
    に抑制する、MnCoZn系フェライト。
    MnCoZn-based ferrite consisting of basic components, sub-components and unavoidable impurities.
    The basic component is Fe 2 O 3 , ZnO, CoO, and iron, zinc, cobalt, and manganese in terms of MnO, assuming that the total is 100 mol%.
    Iron: 45.0 mol% or more and less than 50.0 mol% in terms of Fe 2 O 3,
    Zinc: 15.5 to 24.0 mol% in terms of ZnO,
    Cobalt: 0.5-4.0 mol% in terms of CoO and manganese: balance.
    With respect to the basic component, the sub-component
    SiO 2 : 50 to 300 mass ppm and CaO: 300 to 1300 mass ppm
    And
    The contents of P, B, Na, Mg, Al and K in the unavoidable impurities, respectively.
    P: less than 10 mass ppm,
    B: less than 10 mass ppm,
    Na: less than 200 mass ppm,
    Mg: less than 200 mass ppm,
    MnCoZn-based ferrite that suppresses Al: less than 250 mass ppm and K: less than 100 mass ppm.
  2.  JIS R1607に準拠して測定した破壊靭性値が1.00MPa・m1/2以上であり、さらに
     23℃、10MHzにおける初透磁率が150以上、
     比抵抗が30Ω・m以上、
     23℃における保磁力が15.0A/m以下、
     キュリー温度が100℃以上
    である、請求項1に記載のMnCoZn系フェライト。
    The fracture toughness value measured in accordance with JIS R1607 is 1.00 MPa · m 1/2 or more, and the initial magnetic permeability at 23 ° C. and 10 MHz is 150 or more.
    Specific resistance is 30Ω ・ m or more,
    Coercive force at 23 ° C is 15.0 A / m or less,
    The MnCoZn-based ferrite according to claim 1, wherein the Curie temperature is 100 ° C. or higher.
PCT/JP2021/022202 2020-07-14 2021-06-10 Mncozn-based ferrite WO2022014219A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180003658.6A CN114269709B (en) 2020-07-14 2021-06-10 MnCoZn-based ferrite
JP2021555374A JP7182016B2 (en) 2020-07-14 2021-06-10 MnCoZn ferrite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020120981 2020-07-14
JP2020-120981 2020-07-14

Publications (1)

Publication Number Publication Date
WO2022014219A1 true WO2022014219A1 (en) 2022-01-20

Family

ID=79555405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022202 WO2022014219A1 (en) 2020-07-14 2021-06-10 Mncozn-based ferrite

Country Status (4)

Country Link
JP (1) JP7182016B2 (en)
CN (1) CN114269709B (en)
TW (1) TWI796712B (en)
WO (1) WO2022014219A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406022B1 (en) 2022-07-26 2023-12-26 Jfeケミカル株式会社 MnZnCo ferrite
WO2023249248A1 (en) * 2022-06-23 2023-12-28 엘지이노텍(주) Ferrite composition and magnetic core comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204637A (en) * 2011-03-25 2012-10-22 Tdk Corp Ferrite composition for radio wave absorber and ferrite core for radio wave absorber
JP2016060656A (en) * 2014-09-17 2016-04-25 Tdk株式会社 Ferrite composition for electromagnetic wave absorber and electromagnetic wave absorber
WO2019044060A1 (en) * 2017-08-29 2019-03-07 Jfeケミカル株式会社 Mncozn ferrite and method for producing same
WO2019123681A1 (en) * 2017-12-20 2019-06-27 Jfeケミカル株式会社 Mncozn ferrite and production method therefor
JP6730546B1 (en) * 2019-01-31 2020-07-29 Jfeケミカル株式会社 MnCoZn ferrite and method for producing the same
JP6732159B1 (en) * 2019-03-18 2020-07-29 Jfeケミカル株式会社 MnCoZn ferrite and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070084472A (en) * 2004-11-19 2007-08-24 히타치 긴조쿠 가부시키가이샤 Low-loss mn-zn ferrite and utilizing the same, electronic part and switching power supply
JP5578766B2 (en) * 2008-01-23 2014-08-27 Jfeケミカル株式会社 MnZn ferrite and transformer core
JP5981813B2 (en) * 2012-09-11 2016-08-31 株式会社神戸製鋼所 High strength steel sheet with excellent low temperature toughness and method for producing the same
CN108147805B (en) * 2017-12-31 2020-08-04 南通冠优达磁业有限公司 Manganese-zinc ferrite and preparation method thereof
CN110418775B (en) * 2018-02-28 2022-02-22 杰富意化学株式会社 MnCoZn ferrite and method for producing same
CN109400139B (en) * 2018-09-17 2021-05-18 横店集团东磁股份有限公司 Preparation process of low-cost permanent magnetic ferrite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204637A (en) * 2011-03-25 2012-10-22 Tdk Corp Ferrite composition for radio wave absorber and ferrite core for radio wave absorber
JP2016060656A (en) * 2014-09-17 2016-04-25 Tdk株式会社 Ferrite composition for electromagnetic wave absorber and electromagnetic wave absorber
WO2019044060A1 (en) * 2017-08-29 2019-03-07 Jfeケミカル株式会社 Mncozn ferrite and method for producing same
WO2019123681A1 (en) * 2017-12-20 2019-06-27 Jfeケミカル株式会社 Mncozn ferrite and production method therefor
JP6730546B1 (en) * 2019-01-31 2020-07-29 Jfeケミカル株式会社 MnCoZn ferrite and method for producing the same
JP6732159B1 (en) * 2019-03-18 2020-07-29 Jfeケミカル株式会社 MnCoZn ferrite and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023249248A1 (en) * 2022-06-23 2023-12-28 엘지이노텍(주) Ferrite composition and magnetic core comprising same
JP7406022B1 (en) 2022-07-26 2023-12-26 Jfeケミカル株式会社 MnZnCo ferrite
WO2024024303A1 (en) * 2022-07-26 2024-02-01 Jfeケミカル株式会社 Mnznco-based ferrite

Also Published As

Publication number Publication date
CN114269709A (en) 2022-04-01
TW202214543A (en) 2022-04-16
TWI796712B (en) 2023-03-21
JPWO2022014219A1 (en) 2022-01-20
JP7182016B2 (en) 2022-12-01
CN114269709B (en) 2023-03-24

Similar Documents

Publication Publication Date Title
JP7182016B2 (en) MnCoZn ferrite
WO2019044060A1 (en) Mncozn ferrite and method for producing same
WO2019123681A1 (en) Mncozn ferrite and production method therefor
WO2020158335A1 (en) Mnzn-based ferrite and method for manufacturing same
CN112041952B (en) MnZn ferrite and method for producing same
JP6730546B1 (en) MnCoZn ferrite and method for producing the same
CN112041953B (en) MnZn ferrite and method for producing same
JP6732159B1 (en) MnCoZn ferrite and method for producing the same
CN112041951B (en) MnCoZn-based ferrite and method for producing same
CN110418775B (en) MnCoZn ferrite and method for producing same
JP7185791B2 (en) MnZn ferrite
JP7105385B2 (en) MnZn ferrite
JP6732160B1 (en) MnZn-based ferrite and method for producing the same
JP6732158B1 (en) MnZn-based ferrite and method for producing the same
TWI727622B (en) Manganese-zinc fertilizer granulated iron and its manufacturing method
CN110418776B (en) MnCoZn ferrite and method for producing same
WO2020189035A1 (en) MnCoZn FERRITE AND METHOD FOR PRODUCING SAME
WO2020189037A1 (en) MnZn-BASED FERRITE AND METHOD FOR MANUFACTURING SAME
WO2020189036A1 (en) MnZn-BASED FERRITE AND METHOD FOR MANUFACTURING SAME
WO2019167392A1 (en) Mncozn ferrite and production method for same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021555374

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842188

Country of ref document: EP

Kind code of ref document: A1