WO2020189036A1 - MnZn-BASED FERRITE AND METHOD FOR MANUFACTURING SAME - Google Patents

MnZn-BASED FERRITE AND METHOD FOR MANUFACTURING SAME Download PDF

Info

Publication number
WO2020189036A1
WO2020189036A1 PCT/JP2020/003153 JP2020003153W WO2020189036A1 WO 2020189036 A1 WO2020189036 A1 WO 2020189036A1 JP 2020003153 W JP2020003153 W JP 2020003153W WO 2020189036 A1 WO2020189036 A1 WO 2020189036A1
Authority
WO
WIPO (PCT)
Prior art keywords
mnzn
based ferrite
less
mass ppm
ferrite
Prior art date
Application number
PCT/JP2020/003153
Other languages
French (fr)
Japanese (ja)
Inventor
由紀子 中村
裕史 吉田
多津彦 平谷
哲哉 田川
Original Assignee
Jfeケミカル株式会社
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeケミカル株式会社, Jfeスチール株式会社 filed Critical Jfeケミカル株式会社
Priority to JP2020524251A priority Critical patent/JP6732158B1/en
Priority to CN202080002285.6A priority patent/CN112041273B/en
Publication of WO2020189036A1 publication Critical patent/WO2020189036A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites

Definitions

  • the present invention relates to MnZn-based ferrite and a method for producing the same, which are particularly suitable for magnetic cores of automobile-mounted parts.
  • MnZn ferrite is a material widely used as a magnetic core for noise filters such as switching power supplies, transformers, and antennas.
  • MnZn ferrite has high magnetic permeability and low loss in the kHz region, and is cheaper than amorphous metals and the like.
  • the magnetic core of electronic devices for automobile mounting applications whose needs are expanding due to the recent hybridization and electrical equipment of automobiles, is that they are not damaged during their use, that is, their fracture toughness value (Kic) is particularly high. Desired. This is because oxide magnetic materials such as MnZn ferrite are ceramics and are easily damaged because they are brittle materials. In addition, they are constantly vibrated in automobile-mounted applications compared to conventional home appliance applications. This is because it will continue to be used in a fragile environment. However, in automobile applications, weight reduction and space saving are also required at the same time. Therefore, it is important that MnZn ferrite has not only a high fracture toughness value but also suitable magnetic properties as in the conventional application.
  • Patent Documents 1 and 2 and the like are reported as references to good magnetic properties
  • Patent Documents 3 and 4 and the like are reported as MnZn ferrite having an increased fracture toughness value.
  • JP-A-2007-51052 Japanese Unexamined Patent Publication No. 2012-76983 Japanese Unexamined Patent Publication No. 4-318904 Japanese Unexamined Patent Publication No. 4-177808
  • MnZn-based ferrite in order to reduce the loss of MnZn-based ferrite, it is effective to reduce the magnetic anisotropy and magnetostriction. In order to realize these, it is necessary to set the blending amounts of Fe 2 O 3 , ZnO and MnO, which are the main components of MnZn-based ferrite, in a suitable range. Further, as a method for reducing the loss of MnZn-based ferrite in the high frequency region, there are the following methods. That is, by applying sufficient heat in the firing step to appropriately grow the crystal grains in the ferrite, the movement of the domain wall in the crystal grains in the magnetization step is facilitated, and a component that segregates at the grain boundaries is further added. Produces grain boundaries of appropriate and uniform thickness. By this method, the specific resistance of the MnZn-based ferrite is maintained to reduce the eddy current loss, and thus the low loss in the 100 kHz to 500 kHz region is realized.
  • the magnetic core of electronic components for automobiles is required to have a high fracture toughness value so that it will not be damaged even in an environment subject to constant vibration. If the MnZn-based ferrite, which is the magnetic core, is damaged, the inductance is greatly reduced, so that the electronic component cannot perform the desired function, and as a result, the entire automobile becomes inoperable. From the above, the magnetic core of an electronic component for an automobile is required to have both a low loss magnetic property and a high fracture toughness value.
  • the value of loss at 100 ° C., 300 kHz and 100 mT (also referred to as core loss in units of kW / m 3 in the present invention) is 450 kW / m 3 or less.
  • Excellent mechanical properties with a fracture toughness value of 1.10 MPa ⁇ m 1/2 or more are required.
  • Patent Document 1 and Patent Document 2 although the composition for realizing the desired magnetic properties is mentioned, the fracture toughness value is not described at all, and it is not suitable as a magnetic core of an in-vehicle electronic component. I think that the. Further, although Patent Document 3 and Patent Document 4 mention the improvement of the fracture toughness value, the magnetic characteristics are insufficient as the magnetic core of an in-vehicle electronic component, and it can be said that it is also unsuitable for this application.
  • the present inventors first examined the appropriate amounts of iron (Fe 2 O 3 conversion) and zinc (Zn O conversion) among the basic components of MnZn-based ferrite that can reduce the loss at 100 ° C. and 300 kHz. As a result, the present inventors can make a secondary peak having a small magnetic anisotropy and magnetostriction, a resistivity, and a minimum loss temperature characteristic appear in the vicinity of 100 ° C., and as a result, it is low. We have found an appropriate range of basic components that can realize loss.
  • the present inventors add appropriate amounts of SiO 2 , CaO, and Nb 2 O 5 , which are non-magnetic components segregating at the grain boundaries, to generate grain boundaries having a uniform thickness in MnZn-based ferrite, and to generate specific resistance. Was raised. Then, they have found that it is possible to further reduce the loss in MnZn-based ferrite by using this component.
  • Abnormal grain growth referred to in the present invention means coarse particles having a size of about 100 normal particles (abnormal particles in the present invention) due to the imbalance of grain growth during firing due to the presence of impurities or the like. (Also known as) appears.
  • this abnormal grain growth occurs, the strength of the portion is extremely low, so that the ferrite core is likely to break from this portion. Therefore, suppressing the growth of abnormal grains in ferrite is indispensable for improving the fracture toughness value of ferrite.
  • the present inventors measured and considered the residual stress of the ferrite material from the X-ray diffraction of the ferrite surface. As a result, the present inventors have found that there is a correlation between the residual stress value and the fracture toughness value. That is, the brittle material breaks due to tensile stress, but if the residual stress on the surface is compressive stress or tensile stress below a certain value, crack propagation during fracture can be suppressed, so MnZn. The fracture toughness value of the ferrite material is improved.
  • the present inventors further investigated and found a means for reducing the tensile stress remaining on the surface. It is a method of immersing a fired product after firing in the process of producing a ferrite core in an oxidizing liquid having a concentration of 10 N or more, for example, nitric acid, sulfuric acid, hydrochloric acid, or the like for more than 0.50 hours.
  • the surface of conventional MnZn ferrite is slightly oxygen-deficient due to the reduction reaction during firing, and tensile stress is generated due to this.
  • oxygen is applied to the ferrite surface portion, and the tensile stress of the ferrite surface portion can be reduced. Then, in the production method of the present invention, it is possible to effectively increase the fracture toughness value of the material by using this means.
  • Patent Document 5 and Patent Document 6 disclose a process of immersing a ferrite fired product in an acid.
  • the acid concentration is 1 to 5% (corresponding to about 0.2 to 1.1 N for sulfuric acid, about 0.2 to 0.8 N for nitric acid, and about 0.3 to 1.5 N for hydrochloric acid).
  • the immersion time is as short as 6 to 30 minutes, so that the surface residual stress cannot be sufficiently reduced in any case.
  • the purpose of immersing the ferrite is to elute Cu and adjust the inductance L value, respectively, and neither of them describes the surface residual stress.
  • Patent Document 1 and Patent Document 2 described above the fracture toughness value is not mentioned, and it can be said that improvement of such a value is impossible. Further, in Patent Documents 3 and 4, although the toughness is improved, the desired magnetic properties cannot be realized because an appropriate composition range cannot be selected.
  • Patent Document 7 and Patent Document 8 describe that the residual stress affects the bending strength.
  • the bending strength in Patent Documents 7 and 8 is a means for evaluating those in which the strength on the outermost surface is particularly important, and is a case where no pre-crack is formed in order to evaluate the strength of the portion on the outermost surface. This is to evaluate the bending strength.
  • the improvement of fracture toughness which is a subject of the present invention, utilizes treatment with a predetermined acid. Therefore, it is necessary to evaluate the strength at a certain depth from the surface. Therefore, the fracture toughness value in the present specification is evaluated by a bending test after making a pre-crack on the surface of the test piece.
  • Patent Document 7 and Patent Document 8 are different from each other. Evaluating in different ways. That is, it can be seen that there is a large technical difference between the above-mentioned Patent Documents 7 and 8 and the MnZn-based ferrite in the present specification from the strength evaluation method.
  • the gist structure of the present invention is as follows. 1.
  • MnZn-based ferrite consisting of basic components, sub-components and unavoidable impurities.
  • Iron 51.5 to 55.5 mol% in terms of Fe 2 O 3
  • Zinc 5.0 to 15.5 mol% in terms of ZnO and manganese: including the balance
  • SiO 2 50-300 massppm
  • CaO 100 to 1300 massppm
  • Nb 2 O 5 100 to 400 massppm
  • P less than 10 mass ppm
  • B suppressed to less than 10 mass ppm
  • Ti less than 50 mass ppm
  • the MnZn-based ferrite having a surface residual stress value of less than 40 MPa.
  • MnZn-based ferrite according to 1 above wherein the MnZn-based ferrite further contains one or two selected from CoO: 3500 mass ppm or less and NiO: 15000 mass ppm or less as subcomponents.
  • the fracture toughness value of the MnZn-based ferrite in the fracture toughness measurement based on JIS R1607 is 1.10 MPa ⁇ m 1/2 or more, and the loss value at 100 ° C., 300 kHz and 100 mT is 450 kW / m 3 or less.
  • a calcination step in which a mixture of the basic components is calcined and cooled to obtain a calcination powder, and a subcomponent is added to the calcination powder obtained in the calcination step, mixed and crushed to produce crushed powder.
  • the granulation step of granulating and the granulating powder obtained in the granulation step are molded.
  • a method for producing MnZn-based ferrite which comprises a firing step of firing and a dipping step of immersing in an acid to obtain the MnZn-based ferrite according to any one of 1 to 3 above.
  • the dipping step is a method for producing MnZn-based ferrite in which the fired product obtained in the firing step is immersed in an oxidizing liquid having a concentration of 10 N or more for more than 0.50 hours.
  • the MnZn-based ferrite of the present invention can achieve both good magnetic properties and excellent mechanical properties at a level that was not possible with conventional MnZn-based ferrites, and is particularly suitable for use in the magnetic core of electronic components mounted on automobiles.
  • Good magnetic properties include, for example, a loss value of 450 kW / m 3 or less at 100 ° C., 300 kHz and 100 mT
  • excellent mechanical properties include, for example, a fracture toughness value based on JIS R1607 of 1.10 MPa. It is m 1/2 or more.
  • Fe 2 O 3 51.5 to 55.5 mol%
  • the amount of Fe 2 O 3 is at least 51.5 mol%, while the upper limit is 55.5 mol%.
  • the amount of ZnO is preferably in the range of 8.0 to 14.5 mol%, more preferably 11.0 to 14.0 mol%.
  • the amount of ZnO is preferably 8.0 mol% or more, more preferably 11.0 mol% or more, preferably 14.5 mol% or less, and more preferably 14.0 mol% or less.
  • the present invention is MnZn-based ferrite, and the balance of the principal component composition is manganese.
  • the reason is that if it is not manganese, it is difficult to obtain good magnetic characteristics such as a loss of 450 kW / m 3 or less under exciting conditions at 100 ° C., 300 kHz and 100 mT.
  • the preferable range of the amount of manganese is 30.0 to 42.0 mol%, more preferably 30.5 to 41.5 mol% in terms of MnO.
  • the amount of MnO is preferably 30.0 mol% or more, more preferably 30.5 mol% or more, more preferably 42.0 mol% or less, still more preferably 41.5 mol% or less, still more preferably 40.0 mol% or less.
  • SiO 2 50-300 massppm SiO 2 is known to contribute to the homogenization of the crystal structure of ferrite, and by adding an appropriate amount, abnormal grain growth can be suppressed and specific resistance can be increased. Therefore, by adding an appropriate amount of SiO 2 , the loss under exciting conditions of 100 ° C., 300 kHz and 100 mT can be reduced, and the fracture toughness value can be increased. Therefore, at least 50 massppm of SiO 2 is to be contained.
  • the content of SiO 2 needs to be limited to 300 mass ppm or less.
  • the amount of SiO 2 is preferably in the range of 60 to 250 mass ppm, preferably 60 mass ppm or more, and preferably 250 mass ppm or less.
  • CaO 100 to 1300 massppm CaO segregates at the grain boundaries of MnZn-based ferrite and has a function of suppressing the growth of crystal grains. Therefore, by adding an appropriate amount of CaO, the specific resistance can be increased and the loss under exciting conditions of 100 ° C., 300 kHz and 100 mT can be reduced. In addition, the function of suppressing crystal grain growth suppresses the appearance of abnormal grain growth, so that the fracture toughness value can be increased. Therefore, it is assumed that CaO is contained at least 100 mass ppm. On the other hand, when the amount of CaO added is excessive, abnormal grains appear, the fracture toughness value decreases, and the loss also worsens. Therefore, the CaO content needs to be limited to 1300 mass ppm or less.
  • the preferably CaO content is in the range of 100 mass ppm or more and less than 1300 mass ppm, more preferably 150 to 1100 mass ppm.
  • the amount of CaO is preferably 150 mass ppm or more, preferably less than 1300 mass ppm, and more preferably 1100 mass ppm or less.
  • Nb 2 O 5 100-400 massppm Nb 2 O 5 segregates at the grain boundaries of MnZn-based ferrite, and has the effect of gently suppressing the grain growth and relaxing the stress. Therefore, by adding an appropriate amount of Nb 2 O 5 , the loss can be reduced, and the fracture toughness value can be increased by suppressing the growth of abnormal grains having locally low strength. Therefore, it is assumed that at least Nb 2 O 5 is contained in 100 mass ppm. On the other hand, when the amount added is excessive, abnormal particles appear, which induces a significant decrease in fracture toughness value and deterioration of loss. Therefore, it is necessary to suppress the amount of Nb 2 O 5 to 400 mass ppm or less.
  • the content of Nb 2 O 5 is preferably in the range of 150 to 350 mass ppm, preferably 150 mass ppm or more, and preferably 350 mass ppm or less.
  • P less than 10 mass ppm
  • B less than 10 mass ppm
  • Ti less than 50 mass ppm
  • P and B are components inevitably contained mainly in the raw material iron oxide. There is no problem if the content of P and B is very small.
  • P and B are contained in a certain amount or more, abnormal grain growth of ferrite is induced, and this site becomes the starting point of fracture, so that the fracture toughness value is lowered and the core loss is deteriorated, which has a serious adverse effect. To exert. Therefore, the contents of P and B were both suppressed to less than 10 mass ppm.
  • both the amounts of P and B are 8 mass ppm or less.
  • the content of P is preferably 8 mass ppm or less, and the content of B is preferably 8 mass ppm or less. Further, when the Ti content is high, not only the fracture toughness but also the core loss value deteriorates. Therefore, the Ti content is controlled to less than 50 mass ppm. The Ti content is preferably less than 40 mass ppm, more preferably less than 30 mass ppm.
  • MnZn-based ferrite is greatly affected by various parameters regardless of the composition. Therefore, in the present invention, the following provisions can be further provided in order to have more preferable magnetic characteristics and strength characteristics.
  • the MnZn-based ferrite of the present invention is intended for use in automobiles where high toughness is required, and it is desirable that the fracture toughness value obtained by the SEBP method is 1.10 MPa ⁇ m 1/2 or more.
  • the value of the surface residual stress of the obtained MnZn-based ferrite needs to be less than 40 MPa.
  • the value of the surface residual stress is minute from the shift of the (551) plane peak appearing at 148.40 ° by X-ray diffraction, assuming that the surface of the MnZn-based ferrite (ferrite core) is MnFe 2 O 4. This is the result of calculating the stress. Since MnZn-based ferrite is a brittle material, it breaks due to tensile stress.
  • the fracture toughness value There is a correlation between the fracture toughness value and the surface residual stress, and in order to obtain the desired fracture toughness value of 1.10 MPa ⁇ m 1/2 or more, the surface residual stress must be less than 40 MPa, and 37 MPa. The following is preferable.
  • the surface residual stress value of the MnZn-based ferrite In order to keep the surface residual stress value of the MnZn-based ferrite less than 40 MPa, it is necessary to immerse the fired product after firing in the ferrite core manufacturing process in an oxidizing liquid having a concentration of 10 N or more for more than 0.50 hours.
  • the immersion temperature is preferably in the range of 20 to 60 ° C.
  • the surface of the conventional MnZn-based ferrite is slightly oxygen-deficient due to the reducing action during firing, so that tensile stress is generated, and the surface residual stress is 40 MPa or more. Therefore, in the production method of the present invention, ferrite is chemically oxidized by immersing it in an oxidizing liquid having a predetermined concentration.
  • the oxidizing liquid is preferably nitric acid, sulfuric acid or hydrochloric acid from the viewpoint of easy availability, ease of handling and the like.
  • the MnZn-based ferrite of the present invention may contain the following additives.
  • CoO 3500 massppm or less
  • CoO is a component containing Co 2+ ions having positive magnetic anisotropy, and the addition of this component can widen the temperature range of the secondary peak indicating the minimum temperature of loss.
  • the amount of CoO added is preferably 3000 mass ppm or less, more preferably 2500 mass ppm or less.
  • NiO 15,000 massppm or less
  • NiO is selectively incorporated into the B site of the spinel lattice, and has the effect of reducing the loss as a result of increasing the Curie temperature of the material and increasing the saturation magnetic flux density.
  • the amount of NiO added is preferably 12000 mass ppm or less, more preferably 10000 mass ppm or less, and further preferably 5000 mass ppm or less.
  • MnZn-based ferrite of the present invention Fe 2 O 3 , ZnO and MnO are first weighed so as to have a predetermined ratio, and after sufficiently mixing these, they are calcined and cooled to obtain a calcined powder (temporary firing step). .. Fe 2 O 3 , ZnO and MnO are usually powders. When crushing this calcined flour, an additive as an auxiliary component specified in the present invention is added at a predetermined ratio and mixed to obtain a pulverized powder (mixing-crushing step).
  • the powder is sufficiently homogenized so that the concentration of the added component is not biased, and the calcined powder is refined to the target average particle size.
  • An organic binder such as polyvinyl alcohol is added to the powdered pulverized powder having the target composition thus obtained, and the granulated powder is obtained through a granulation step by a spray-drying method or the like (granulation step).
  • steps such as sieving to adjust the particle size
  • pressure is applied with a molding machine to mold. After such molding, firing is performed under suitable firing conditions (calcination step), and the mixture is immersed in an oxidizing liquid having a concentration of 10 N or more, for example, nitric acid, sulfuric acid, hydrochloric acid, etc.
  • ferrite sintered body for more than 0.50 hours, that is, more than 30 minutes. (Immersion step). Then, if necessary, it is washed with water and dried to obtain a ferrite sintered body according to the present invention, that is, a MnZn-based ferrite.
  • the obtained ferrite sintered body may be subjected to surface polishing or other processing.
  • the MnZn-based ferrite thus obtained exhibits extremely excellent fracture toughness and magnetic properties, which was not possible with conventional MnZn-based ferrites.
  • These extremely excellent characteristics include, for example, a fracture toughness value of 1.10 MPa ⁇ m 1/2 or more (preferably 1.15 MPa ⁇ m 1/2 or more, as measured by a fracture toughness measurement based on JIS R1607 for a flat sample. More preferably 1.20 MPa ⁇ m 1/2 or more), and the loss value of the toughness-shaped core produced under the same conditions at 100 ° C., 300 kHz and 100 mT is 450 kW / m 3 or less (preferably 430 kW / m 3 or less). It is an extremely excellent characteristic.
  • Example 1 Each raw material powder weighed so that the amounts of Fe 2 O 3 , ZnO and MnO have the ratio shown in Table 1 is mixed for 16 hours using a ball mill, and then calcined in air at 900 ° C. for 3 hours. , It was cooled to room temperature in the air for 1.5 hours to obtain a calcined powder. Next, SiO 2 , CaO and Nb 2 O 5 were weighed equivalent to 150, 700 and 250 mass ppm, respectively, and then added to the calcined powder, and the mixture was pulverized in a ball mill for 12 hours.
  • MnZn-based ferrite After immersing in 13.0N (specified) nitric acid for 1.00 hours, it is taken out, washed with pure water and dried to obtain MnZn-based ferrite having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm.
  • a sintered toroidal core hereinafter, also simply referred to as a toroidal core
  • a sintered flat plate-shaped core hereinafter, simply referred to as a rectangular core having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained.
  • impurities P, B and Ti contained in the toroidal core and the rectangular parallelepiped core were contained.
  • the contents were 4, 3 and 15 mass ppm, respectively.
  • the contents of P, B and Ti were quantified according to JIS K 0102 (IPC mass spectrometry).
  • the loss of the obtained toroidal core is 100 ° C. and 300 kHz using a core loss measuring instrument (manufactured by Iwadori Measurement Co., Ltd .: SY-8232) after winding the core for 5 turns on the primary side and 5 turns on the secondary side. And the value of the loss at 100 mT was measured.
  • the surface residual stress was calculated by using a micro stress measuring device (AutoMATE manufactured by Rigaku), using Cr-K ⁇ rays, and using the parallel tilt method. At this time, assuming that the ferrite surface is MnFe 2 O 4 , the shift of the (551) plane peak appearing at 148.40 ° was measured, and calculated using the values of Poisson's ratio 0.28 and elastic constant 147 GPa.
  • Example 2 Fe 2 O 3 is 53.0mol%, ZnO is 12.0 mol%, materials were weighed so that the MnO is 35.0Mol%, were mixed for 16 hours using a ball mill, in air for 3 hours at 900 ° C. It was calcined and cooled to room temperature in the air for 1.5 hours to obtain calcined powder. Next, SiO 2 , CaO and Nb 2 O 5 , which are sub-ingredients in the amounts shown in Table 2, and CoO or NiO were added to some of the samples, and the mixture was pulverized with a ball mill for 12 hours.
  • MnZn-based ferrite After immersing in 13.0 N (specified) nitric acid for 1.00 hours, it is taken out, washed with pure water and dried to obtain MnZn-based ferrite having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm. A sintered toroidal core and a sintered rectangular core having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained. The contents of impurities P, B and Ti contained in the obtained toroidal core and rectangular parallelepiped core were 4, 3 and 15 mass ppm, respectively. The characteristics of each of these samples were evaluated using the same method and apparatus as in Example 1. The results of the obtained evaluation are also shown in Table 2.
  • the loss value at 100 ° C., 300 kHz and 100 mT is 450 kW / m 3 or less.
  • high toughness with a fracture toughness value of 1.10 MPa ⁇ m 1/2 or more is also obtained.
  • the loss values at 100 ° C., 300 kHz and 100 mT were further improved.
  • Comparative Examples 2-1, 2-3 and 2-5 in which even one of the three components of SiO 2 , CaO and Nb 2 O 5 is contained in less than the specified amount, the grain boundary generation is insufficient. As a result, the specific resistance decreases and the eddy current loss increases, resulting in deterioration of the loss. Furthermore, due to insufficient suppression of grain growth, some low-strength coarse grains appear. The fracture toughness value is low. On the contrary, in Comparative Examples 2-2, 2-4 and 2-6 in which even one of the three components is excessive, the loss is deteriorated due to the appearance of abnormal grains, and the site of the abnormal grains is locally located. Due to its low strength, the fracture toughness value is also greatly reduced.
  • the loss value is slightly degraded compared to.
  • Example 3 By the method shown in Example 1, the basic component and the sub-component have the same composition as in Example 1-2, while the amount of unavoidable impurities contained is different as shown in Table 3.
  • the granulated powder obtained in use was molded into a toroidal core shape and a flat core shape by applying a pressure of 118 MPa to obtain a molded product. Then, these compacts are charged into a firing furnace and fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air are appropriately mixed, and the fired products after firing are placed at room temperature of 23 ° C.
  • MnZn-based ferrite After immersing in 13.0 N (specified) nitric acid for 1.00 hours, it is taken out, washed with pure water and dried to obtain MnZn-based ferrite having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm. A sintered toroidal core and a sintered rectangular core having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained. The characteristics of each of these samples were evaluated using the same method and apparatus as in Example 1. The results of the obtained evaluation are also shown in Table 3.
  • Example 3-1 in which the unavoidable impurities P, B and Ti components are within the specified range, the loss value at 100 ° C., 300 kHz and 100 mT is only 450 kW / m 3 or less. However, an excellent fracture toughness value of 1.10 MPa ⁇ m 1/2 or more is also obtained.
  • Comparative Examples 3-1 to 3-4 in which any one or more of the above-mentioned impurity components exceeds the specified value the loss value deteriorates due to the appearance of abnormal grains, and at the same time, the fracture toughness The value also decreased, and neither of them obtained the desired value.
  • Example 4 The granulated powder obtained so as to have the same composition as that of Example 1-2 produced by the method shown in Example 1 was molded into a toroidal core shape and a flat core shape by applying a pressure of 118 MPa. And said. After that, these molded bodies were charged into a firing furnace and fired in a gas stream in which nitrogen gas and air were appropriately mixed for 2 hours at a maximum temperature of 1320 ° C., and the sintered products obtained are shown in Table 4.
  • MnZn-based ferrite With an outer diameter of 25 mm, an inner diameter of 15 mm, and a height.
  • a sintered toroidal core having a length of 5 mm and a sintered rectangular core having a length of 4 mm, a width of 35 mm and a thickness of 3 mm were obtained.
  • the amounts of P, B, and Ti components contained in the toroidal core and the rectangular parallelepiped core after immersion were 4, 3, and 15 mass ppm, respectively.
  • the characteristics of each of these samples were evaluated using the same method and apparatus as in Example 1. The results obtained are also shown in Table 4.
  • Comparative Examples 4-1 to 4-8 produced through a dipping step that does not satisfy the above conditions, the tensile stress remaining on the surface is not sufficiently eliminated because the chemical oxidation is insufficient. .. As a result, the desired fracture toughness value has not been obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Fertilizers (AREA)

Abstract

The present invention provides an MnZn-based ferrite having exceptional magnetic properties and exceptional mechanical properties, the MnZn-based ferrite being suitable for use in electronic parts for mounting in automobiles. In this MnZn-based ferrite: the basic components and accessory components are adjusted to suitable ranges; the amounts of P, B, and Ti, which are unavoidable impurities, are suppressed so as to be less than 10 mass ppm of P, less than 10 mass ppm of B, and less than 50 mass ppm of Ti; and the surface residual stress value is less than 40 MPa.

Description

MnZn系フェライトおよびその製造方法MnZn-based ferrite and its manufacturing method
 本発明は、特に自動車搭載部品の磁心に供して好適なMnZn系フェライトおよびその製造方法に関する。 The present invention relates to MnZn-based ferrite and a method for producing the same, which are particularly suitable for magnetic cores of automobile-mounted parts.
 MnZnフェライトは、スイッチング電源等のノイズフィルタやトランス、アンテナの磁心として幅広く使用されている材料である。MnZnフェライトの特長としては、軟磁性材料の中ではkHz領域において高透磁率、低損失であり、またアモルファス金属等と比較して安価なことが挙げられる。 MnZn ferrite is a material widely used as a magnetic core for noise filters such as switching power supplies, transformers, and antennas. Among the soft magnetic materials, MnZn ferrite has high magnetic permeability and low loss in the kHz region, and is cheaper than amorphous metals and the like.
 ここで、近年の自動車のハイブリッド化、電装化に伴いニーズが拡大している自動車搭載用途の電子機器の磁心としては、その使用時に破損しないこと、すなわち特に破壊靭性値(Kic)が高いことが求められる。というのは、MnZnフェライトをはじめとする酸化物磁性材料はセラミックスであり、脆性材料であることから破損しやすいこと、加えて従来の家電製品用途と比較して、自動車搭載用途では絶えず振動を受け、破損されやすい環境下で使用され続けるためである。
 しかし、自動車用途では、同時に、軽量化や省スペース化も求められる。したがって、MnZnフェライトは、高い破壊靭性値に加え、従来用途と同様に好適な磁気特性を併せ持つことが重要である。
Here, the magnetic core of electronic devices for automobile mounting applications, whose needs are expanding due to the recent hybridization and electrical equipment of automobiles, is that they are not damaged during their use, that is, their fracture toughness value (Kic) is particularly high. Desired. This is because oxide magnetic materials such as MnZn ferrite are ceramics and are easily damaged because they are brittle materials. In addition, they are constantly vibrated in automobile-mounted applications compared to conventional home appliance applications. This is because it will continue to be used in a fragile environment.
However, in automobile applications, weight reduction and space saving are also required at the same time. Therefore, it is important that MnZn ferrite has not only a high fracture toughness value but also suitable magnetic properties as in the conventional application.
 自動車搭載用途向けのMnZnフェライトとしては、過去に様々な開発が進められている。
 良好な磁気特性に言及したものとしては、特許文献1および2等が、また破壊靭性値を高めたMnZnフェライトとしては、特許文献3および4等が報告されている。
Various developments have been made in the past as MnZn ferrites for automobile mounting applications.
Patent Documents 1 and 2 and the like are reported as references to good magnetic properties, and Patent Documents 3 and 4 and the like are reported as MnZn ferrite having an increased fracture toughness value.
特開2007-51052号公報JP-A-2007-51052 特開2012-76983号公報Japanese Unexamined Patent Publication No. 2012-76983 特開平4-318904号公報Japanese Unexamined Patent Publication No. 4-318904 特開平4-177808号公報Japanese Unexamined Patent Publication No. 4-177808
 一般的にMnZn系フェライトの損失を低減するためには、磁気異方性と磁歪を小さくすることが有効である。これらの実現のためには、MnZn系フェライトの主成分であるFe、ZnOおよびMnOの配合量を、好適な範囲に設定する必要がある。
 また、高周波数領域におけるMnZn系フェライトの損失を低減させる手法として、以下の手法がある。すなわち、焼成工程において十分な熱を加え、フェライト内の結晶粒を適度に成長させることで、磁化工程における結晶粒内の磁壁の移動を容易化しつつ、さらに粒界に偏析する成分を添加し、適度で均一な厚みの粒界を生成させる。この手法により、MnZn系フェライトの比抵抗を保持させて渦電流損失を低減させ、もって100kHz~500kHz領域での低損失を実現している。
Generally, in order to reduce the loss of MnZn-based ferrite, it is effective to reduce the magnetic anisotropy and magnetostriction. In order to realize these, it is necessary to set the blending amounts of Fe 2 O 3 , ZnO and MnO, which are the main components of MnZn-based ferrite, in a suitable range.
Further, as a method for reducing the loss of MnZn-based ferrite in the high frequency region, there are the following methods. That is, by applying sufficient heat in the firing step to appropriately grow the crystal grains in the ferrite, the movement of the domain wall in the crystal grains in the magnetization step is facilitated, and a component that segregates at the grain boundaries is further added. Produces grain boundaries of appropriate and uniform thickness. By this method, the specific resistance of the MnZn-based ferrite is maintained to reduce the eddy current loss, and thus the low loss in the 100 kHz to 500 kHz region is realized.
 自動車車載用電子部品の磁心に関しては、上記の磁気特性に加え、絶えず振動を受ける環境下でも破損しないよう、高い破壊靭性値が求められる。もし磁心であるMnZn系フェライトが破損した場合、インダクタンスが大きく低下することから電子部品は所望の働きができなくなり、その影響で自動車全体が動作不能となる。
 以上から、自動車車載用電子部品の磁心は、低損失という磁気特性および高い破壊靭性値の両者が求められる。具体的な一例としては、100℃、300kHzおよび100mTにおける損失(本発明においてkW/mを単位とするコアロスともいう)の値が450kW/m以下という良好な磁気特性と、JIS R1607に基づく破壊靭性値が1.10MPa・m1/2以上という優れた機械的特性が求められる。
In addition to the above magnetic characteristics, the magnetic core of electronic components for automobiles is required to have a high fracture toughness value so that it will not be damaged even in an environment subject to constant vibration. If the MnZn-based ferrite, which is the magnetic core, is damaged, the inductance is greatly reduced, so that the electronic component cannot perform the desired function, and as a result, the entire automobile becomes inoperable.
From the above, the magnetic core of an electronic component for an automobile is required to have both a low loss magnetic property and a high fracture toughness value. As a specific example, it is based on JIS R1607 and good magnetic characteristics that the value of loss at 100 ° C., 300 kHz and 100 mT (also referred to as core loss in units of kW / m 3 in the present invention) is 450 kW / m 3 or less. Excellent mechanical properties with a fracture toughness value of 1.10 MPa · m 1/2 or more are required.
 しかし、特許文献1や特許文献2では、所望の磁気特性を実現するための組成については言及されているものの、破壊靭性値については一切述べられておらず、車載用電子部品の磁心としては不適と思われる。
 また、特許文献3および特許文献4では、破壊靭性値の改良については言及されているものの、磁気特性が車載用電子部品の磁心としては不十分であり、やはりこの用途には不適といえる。
However, in Patent Document 1 and Patent Document 2, although the composition for realizing the desired magnetic properties is mentioned, the fracture toughness value is not described at all, and it is not suitable as a magnetic core of an in-vehicle electronic component. I think that the.
Further, although Patent Document 3 and Patent Document 4 mention the improvement of the fracture toughness value, the magnetic characteristics are insufficient as the magnetic core of an in-vehicle electronic component, and it can be said that it is also unsuitable for this application.
 そこで、本発明者らは、まず、100℃、300kHzにおける損失を低減させ得るMnZn系フェライトの基本成分のうち、鉄(Fe換算)および亜鉛(ZnO換算)の適正量について検討した。
 その結果、本発明者らは、磁気異方性および磁歪が小さく、比抵抗も保持し、損失の温度特性が極小値を示すセカンダリピークも100℃近傍に出現させることができ、その結果、低損失を実現可能な、基本成分の適正範囲を見出した。
Therefore, the present inventors first examined the appropriate amounts of iron (Fe 2 O 3 conversion) and zinc (Zn O conversion) among the basic components of MnZn-based ferrite that can reduce the loss at 100 ° C. and 300 kHz.
As a result, the present inventors can make a secondary peak having a small magnetic anisotropy and magnetostriction, a resistivity, and a minimum loss temperature characteristic appear in the vicinity of 100 ° C., and as a result, it is low. We have found an appropriate range of basic components that can realize loss.
 次に、本発明者らは、粒界に偏析する非磁性成分であるSiO、CaOおよびNbを適量加えることで、MnZn系フェライトに均一な厚みの粒界を生成させ、比抵抗を上昇させた。そして、当該成分を用いることで、MnZn系フェライトにおいてさらなる損失の低減が可能であることを見出した。 Next, the present inventors add appropriate amounts of SiO 2 , CaO, and Nb 2 O 5 , which are non-magnetic components segregating at the grain boundaries, to generate grain boundaries having a uniform thickness in MnZn-based ferrite, and to generate specific resistance. Was raised. Then, they have found that it is possible to further reduce the loss in MnZn-based ferrite by using this component.
 さらに、本発明者らが破壊靭性値の向上に効果的な因子を調査したところ、以下の2つの知見を得ることができた。
 まず、本発明者らは、異常粒成長の抑制が必須であることを見出した。本発明にいう異常粒成長とは、不純物の存在等により、焼成時の粒成長のバランスが崩れることで一部に通常の粒子100個分程度の大きさの粗大な粒子(本発明において異常粒ともいう)が出現するものである。そして、この異常粒成長が生じた場合、当該部位は極端に強度が低いため、この部位を起点にフェライトコアが破断し易くなる。そのため、フェライト内の異常粒成長を抑えることが、フェライトの破壊靭性値向上には欠かせない。
Furthermore, when the present inventors investigated factors effective in improving the fracture toughness value, the following two findings could be obtained.
First, the present inventors have found that suppression of abnormal grain growth is essential. Abnormal grain growth referred to in the present invention means coarse particles having a size of about 100 normal particles (abnormal particles in the present invention) due to the imbalance of grain growth during firing due to the presence of impurities or the like. (Also known as) appears. When this abnormal grain growth occurs, the strength of the portion is extremely low, so that the ferrite core is likely to break from this portion. Therefore, suppressing the growth of abnormal grains in ferrite is indispensable for improving the fracture toughness value of ferrite.
 次に、本発明者らは、フェライト表面のX線回折からフェライト材の残留応力を測定し考察した。その結果、本発明者らは、残留応力の値と破壊靭性値の間に相関があることを突き止めた。すなわち、脆性材料は引張応力により破断するものであるが、表面の残留応力が圧縮応力、もしくはある一定値以下の引張応力であれば、破壊時のき裂伝播を抑制することができるので、MnZnフェライト材料の破壊靭性値は向上する。 Next, the present inventors measured and considered the residual stress of the ferrite material from the X-ray diffraction of the ferrite surface. As a result, the present inventors have found that there is a correlation between the residual stress value and the fracture toughness value. That is, the brittle material breaks due to tensile stress, but if the residual stress on the surface is compressive stress or tensile stress below a certain value, crack propagation during fracture can be suppressed, so MnZn. The fracture toughness value of the ferrite material is improved.
 この観点で本発明者らは、さらに調査を進めたところ、表面に残留する引張応力を低減させるための手段を見出した。
 それは、フェライトコアを製造する過程における焼成後の焼成品を、10N以上の濃度の酸化性液体、例えば、硝酸、硫酸または塩酸などに0.50時間超浸漬する手法である。従来のMnZnフェライトの表面は、焼成時の還元反応により若干酸素欠乏状態となっており、これに起因して引張応力が生じている。しかしながら、上述の酸化性液体による化学的酸化を行うと、フェライト表面部に酸素が付与され、フェライト表面部の引張応力を低減することができる。
 そして、本発明の製造方法では、この手段を用いることによって、効果的に材料の破壊靭性値を高めることが可能になる。
From this point of view, the present inventors further investigated and found a means for reducing the tensile stress remaining on the surface.
It is a method of immersing a fired product after firing in the process of producing a ferrite core in an oxidizing liquid having a concentration of 10 N or more, for example, nitric acid, sulfuric acid, hydrochloric acid, or the like for more than 0.50 hours. The surface of conventional MnZn ferrite is slightly oxygen-deficient due to the reduction reaction during firing, and tensile stress is generated due to this. However, when the above-mentioned chemical oxidation with the oxidizing liquid is performed, oxygen is applied to the ferrite surface portion, and the tensile stress of the ferrite surface portion can be reduced.
Then, in the production method of the present invention, it is possible to effectively increase the fracture toughness value of the material by using this means.
 なお、特許文献5と特許文献6にはフェライト焼成品を酸に浸漬するプロセスが開示されている。しかし、特許文献5では酸の濃度が1~5%(硫酸では0.2~1.1N程度、硝酸では0.2~0.8N程度、塩酸では0.3~1.5N程度に相当)と低く、特許文献6では浸漬時間が6~30分と短いので、いずれも表面残留応力を十分に下げることができない。また、これらの文献では、フェライトを浸漬する目的が、それぞれCu溶出、インダクタンスL値の調整であり、表面残留応力についてはいずれも述べられていない。 Note that Patent Document 5 and Patent Document 6 disclose a process of immersing a ferrite fired product in an acid. However, in Patent Document 5, the acid concentration is 1 to 5% (corresponding to about 0.2 to 1.1 N for sulfuric acid, about 0.2 to 0.8 N for nitric acid, and about 0.3 to 1.5 N for hydrochloric acid). In Patent Document 6, the immersion time is as short as 6 to 30 minutes, so that the surface residual stress cannot be sufficiently reduced in any case. Further, in these documents, the purpose of immersing the ferrite is to elute Cu and adjust the inductance L value, respectively, and neither of them describes the surface residual stress.
特開2003-286072号公報Japanese Unexamined Patent Publication No. 2003-286072 特開平9-20554号公報Japanese Unexamined Patent Publication No. 9-20554
 先に述べた特許文献1および特許文献2では、破壊靭性値に関する言及がなされておらず、かかる値の改善は不可能といえる。
 また、特許文献3および特許文献4では、靭性は改善されているものの、適切な組成範囲を選択できていないために、所望の磁気特性を実現できていない。
In Patent Document 1 and Patent Document 2 described above, the fracture toughness value is not mentioned, and it can be said that improvement of such a value is impossible.
Further, in Patent Documents 3 and 4, although the toughness is improved, the desired magnetic properties cannot be realized because an appropriate composition range cannot be selected.
 ここで、特許文献7および特許文献8には、残留応力が抗折強度に影響する旨が記載されている。しかし、特許文献7および特許文献8における抗折強度は、特に最表面における強度が重要なものを評価する手段であって、最表面における部位の強度を評価するため予き裂を入れない場合の曲げ強度を評価するものである。
 一方、本発明で課題とする破壊靭性の改善は、所定の酸による処理を利用する。そのため、表面からある程度の深さにおける強度を評価する必要がある。よって、本明細書における破壊靭性値は、試験片の表面に予き裂を入れた後に曲げ試験で評価するものである。
 このように、本明細書におけるMnZn系フェライトでは、上記特許文献7および特許文献8とは異なる部位の強度が重要であって、かかる異なる部位を評価するために特許文献7および特許文献8とは異なる方法で評価している。すなわち、上記特許文献7および特許文献8と本明細書におけるMnZn系フェライトとは、強度の評価方法からも技術的に大きな差異があることがわかる。
Here, Patent Document 7 and Patent Document 8 describe that the residual stress affects the bending strength. However, the bending strength in Patent Documents 7 and 8 is a means for evaluating those in which the strength on the outermost surface is particularly important, and is a case where no pre-crack is formed in order to evaluate the strength of the portion on the outermost surface. This is to evaluate the bending strength.
On the other hand, the improvement of fracture toughness, which is a subject of the present invention, utilizes treatment with a predetermined acid. Therefore, it is necessary to evaluate the strength at a certain depth from the surface. Therefore, the fracture toughness value in the present specification is evaluated by a bending test after making a pre-crack on the surface of the test piece.
As described above, in the MnZn-based ferrite in the present specification, the strength of the portion different from that of Patent Document 7 and Patent Document 8 is important, and in order to evaluate such a different portion, Patent Document 7 and Patent Document 8 are different from each other. Evaluating in different ways. That is, it can be seen that there is a large technical difference between the above-mentioned Patent Documents 7 and 8 and the MnZn-based ferrite in the present specification from the strength evaluation method.
特開2015-178442号公報Japanese Unexamined Patent Publication No. 2015-178442 特開2015-178443号公報Japanese Unexamined Patent Publication No. 2015-178443
 そのため、これらの既知の技術のみでは実用上有用な自動車搭載部品、特には車載用電子部品の磁心に適したMnZn系フェライトを作製することはできない。
 本発明は、かかる問題を解決するためになされたものであり、上記の新規知見に立脚するものである。
Therefore, it is not possible to produce an MnZn-based ferrite suitable for the magnetic core of an automobile-mounted component, particularly an in-vehicle electronic component, which is practically useful only by these known techniques.
The present invention has been made to solve such a problem, and is based on the above-mentioned new findings.
 すなわち、本発明の要旨構成は次のとおりである。
1.基本成分、副成分および不可避的不純物からなるMnZn系フェライトであって、
 上記基本成分として、
  鉄:Fe換算で51.5~55.5mol%、
  亜鉛:ZnO換算で5.0~15.5mol%および
  マンガン:残部
を含み、
 上記基本成分に対して、上記副成分として、
  SiO:50~300massppm、
  CaO:100~1300massppmおよび
  Nb:100~400massppm
を含み、
 上記不可避的不純物におけるP、BおよびTi量をそれぞれ、
  P:10massppm未満、
  B:10massppm未満および
  Ti:50massppm未満
に抑制し、
 上記MnZn系フェライトの表面残留応力の値が40MPa未満であるMnZn系フェライト。
That is, the gist structure of the present invention is as follows.
1. 1. MnZn-based ferrite consisting of basic components, sub-components and unavoidable impurities.
As the above basic ingredients
Iron: 51.5 to 55.5 mol% in terms of Fe 2 O 3
Zinc: 5.0 to 15.5 mol% in terms of ZnO and manganese: including the balance
As opposed to the basic component, as the sub-component
SiO 2 : 50-300 massppm,
CaO: 100 to 1300 massppm and Nb 2 O 5 : 100 to 400 massppm
Including
The amounts of P, B and Ti in the above unavoidable impurities, respectively.
P: less than 10 mass ppm,
B: suppressed to less than 10 mass ppm and Ti: less than 50 mass ppm,
The MnZn-based ferrite having a surface residual stress value of less than 40 MPa.
2.前記MnZn系フェライトが、副成分として、さらに
 CoO:3500massppm以下および
 NiO:15000massppm以下
のうちから選んだ一種または二種を含有する前記1に記載のMnZn系フェライト。
2. 2. The MnZn-based ferrite according to 1 above, wherein the MnZn-based ferrite further contains one or two selected from CoO: 3500 mass ppm or less and NiO: 15000 mass ppm or less as subcomponents.
3.前記MnZn系フェライトの、JIS R1607に基づく破壊靭性測定の破壊靭性値が1.10MPa・m1/2以上であり、さらに100℃、300kHzおよび100mTにおける損失の値が450kW/m以下である前記1または2に記載のMnZn系フェライト。 3. 3. The fracture toughness value of the MnZn-based ferrite in the fracture toughness measurement based on JIS R1607 is 1.10 MPa · m 1/2 or more, and the loss value at 100 ° C., 300 kHz and 100 mT is 450 kW / m 3 or less. The MnZn-based ferrite according to 1 or 2.
4.前記基本成分の混合物を仮焼し、冷却して仮焼粉を得る仮焼工程と、上記仮焼工程で得られた仮焼粉に副成分を添加して、混合、粉砕して粉砕粉を得る混合-粉砕工程と、上記混合-粉砕工程で得られた粉砕粉にバインダーを添加、混合した後、造粒する造粒工程と、上記造粒工程で得られた造粒粉を成形後、焼成する焼成工程と、酸に浸漬する浸漬工程とを有する前記1~3のいずれかに記載のMnZn系フェライトを得るMnZn系フェライトの製造方法であって、
 前記浸漬工程は、前記焼成工程で得られた焼成品を、濃度10N以上の酸化性液体に0.50時間超浸漬するMnZn系フェライトの製造方法。
4. A calcination step in which a mixture of the basic components is calcined and cooled to obtain a calcination powder, and a subcomponent is added to the calcination powder obtained in the calcination step, mixed and crushed to produce crushed powder. After adding and mixing a binder to the crushed powder obtained in the mixing-crushing step and the mixing-crushing step, the granulation step of granulating and the granulating powder obtained in the granulation step are molded. A method for producing MnZn-based ferrite, which comprises a firing step of firing and a dipping step of immersing in an acid to obtain the MnZn-based ferrite according to any one of 1 to 3 above.
The dipping step is a method for producing MnZn-based ferrite in which the fired product obtained in the firing step is immersed in an oxidizing liquid having a concentration of 10 N or more for more than 0.50 hours.
5.前記酸化性液体が硝酸、硫酸または塩酸である、前記4に記載のMnZn系フェライトの製造方法。 5. The method for producing MnZn-based ferrite according to 4 above, wherein the oxidizing liquid is nitric acid, sulfuric acid or hydrochloric acid.
 本発明のMnZn系フェライトは、従来のMnZn系フェライトでは不可能であったレベルの良好な磁気特性と優れた機械的特性とを両立でき、特に自動車搭載用電子部品の磁心に用いて好適である。良好な磁気特性としては、例えば、100℃、300kHzおよび100mTにおける損失の値が450kW/m以下であり、優れた機械的特性としては、例えば、JIS R1607に基づく破壊靭性値が1.10MPa・m1/2以上である。 The MnZn-based ferrite of the present invention can achieve both good magnetic properties and excellent mechanical properties at a level that was not possible with conventional MnZn-based ferrites, and is particularly suitable for use in the magnetic core of electronic components mounted on automobiles. .. Good magnetic properties include, for example, a loss value of 450 kW / m 3 or less at 100 ° C., 300 kHz and 100 mT, and excellent mechanical properties include, for example, a fracture toughness value based on JIS R1607 of 1.10 MPa. It is m 1/2 or more.
 以下、本発明を具体的に説明する。
 まず、本発明において、MnZn系フェライトの組成を上述した範囲に限定した理由について説明する。なお、基本成分として本発明に含まれる鉄、亜鉛、マンガンについては、すべてFe、ZnO、MnOにそれぞれ換算した値で示す。また、これらFe、ZnO、MnOの含有量についてはmol%で、一方副成分および不純物成分の含有量については基本成分に対するmassppmで表す。
Hereinafter, the present invention will be specifically described.
First, in the present invention, the reason why the composition of MnZn-based ferrite is limited to the above-mentioned range will be described. In addition, iron, zinc, and manganese contained in the present invention as basic components are all shown as values converted into Fe 2 O 3 , ZnO, and MnO, respectively. The contents of Fe 2 O 3 , ZnO, and MnO are expressed in mol%, while the contents of sub-components and impurity components are expressed in mass ppm with respect to the basic component.
Fe:51.5~55.5mol%
 基本成分のうち、Feが適量範囲よりも少ない場合でも多い場合でも、磁気異方性が大きくなり、また磁歪も大きくなるために、損失の増大を招く。そのため、本発明では、最低でもFe量を51.5mol%とする一方で、55.5mol%を上限とする。
Fe 2 O 3 : 51.5 to 55.5 mol%
Of the basic components, whether Fe 2 O 3 is less than the appropriate amount range or more, the magnetic anisotropy becomes large and the magnetostriction also becomes large, which causes an increase in loss. Therefore, in the present invention, the amount of Fe 2 O 3 is at least 51.5 mol%, while the upper limit is 55.5 mol%.
ZnO:5.0~15.5mol%
 ZnOが少ない場合にはキュリー温度が過度に高くなるため、100℃における損失が増大することから、最低でも5.0mol%は含有させることとする。一方、含有量が適正量を超えた場合でも損失が極小値を示すセカンダリピーク温度が低下するため、100℃における損失の増大を招く。そこで、ZnO量の上限を15.5mol%とする。ZnO量は、好ましくは8.0~14.5mol%、より好ましくは11.0~14.0mol%の範囲である。ZnO量は、8.0mol%以上が好ましく、11.0mol%以上がより好ましく、14.5mol%以下が好ましく、14.0mol%以下がより好ましい。
ZnO: 5.0 to 15.5 mol%
When the amount of ZnO is small, the Curie temperature becomes excessively high, and the loss at 100 ° C. increases. Therefore, at least 5.0 mol% is contained. On the other hand, even when the content exceeds an appropriate amount, the secondary peak temperature at which the loss shows a minimum value decreases, which causes an increase in the loss at 100 ° C. Therefore, the upper limit of the amount of ZnO is set to 15.5 mol%. The amount of ZnO is preferably in the range of 8.0 to 14.5 mol%, more preferably 11.0 to 14.0 mol%. The amount of ZnO is preferably 8.0 mol% or more, more preferably 11.0 mol% or more, preferably 14.5 mol% or less, and more preferably 14.0 mol% or less.
 マンガン:残部
 本発明は、MnZn系フェライトであり、主成分組成の残部はマンガンとする。その理由は、マンガンでなければ、100℃、300kHzおよび100mTにおける励磁条件下における損失が450kW/m以下といった良好な磁気特性が得られ難いからである。マンガン量の好ましい範囲は、MnO換算で30.0~42.0mol%、より好ましくは30.5~41.5mol%の範囲である。MnO量は、30.0mol%以上が好ましく、30.5mol%以上がより好ましく、42.0mol%以下が好ましく、41.5mol%以下がより好ましく、40.0mol%以下が更に好ましい。
Manganese: Remaining The present invention is MnZn-based ferrite, and the balance of the principal component composition is manganese. The reason is that if it is not manganese, it is difficult to obtain good magnetic characteristics such as a loss of 450 kW / m 3 or less under exciting conditions at 100 ° C., 300 kHz and 100 mT. The preferable range of the amount of manganese is 30.0 to 42.0 mol%, more preferably 30.5 to 41.5 mol% in terms of MnO. The amount of MnO is preferably 30.0 mol% or more, more preferably 30.5 mol% or more, more preferably 42.0 mol% or less, still more preferably 41.5 mol% or less, still more preferably 40.0 mol% or less.
 以上、基本成分について説明したが、副成分については次のとおりである。
SiO:50~300massppm
 SiOは、フェライトの結晶組織の均一化に寄与することが知られており、適量の添加により異常粒成長を抑制し、また比抵抗も高めることができる。したがって、適量のSiO添加により、100℃、300kHzおよび100mTの励磁条件下における損失を低下させられるとともに、破壊靭性値を高めることができる。そのため、最低でもSiOを50massppm含有させることとする。一方、SiOの添加量が過多の場合には反対に局所的に低強度となる異常粒成長が生じ、破壊靭性値を著しく低下させると同時に、損失が著しく劣化する。よって、SiOの含有は300massppm以下に制限する必要がある。SiO量は、好ましくは60~250massppmの範囲であり、60massppm以上が好ましく、250massppm以下が好ましい。
The basic components have been described above, but the sub-components are as follows.
SiO 2 : 50-300 massppm
SiO 2 is known to contribute to the homogenization of the crystal structure of ferrite, and by adding an appropriate amount, abnormal grain growth can be suppressed and specific resistance can be increased. Therefore, by adding an appropriate amount of SiO 2 , the loss under exciting conditions of 100 ° C., 300 kHz and 100 mT can be reduced, and the fracture toughness value can be increased. Therefore, at least 50 massppm of SiO 2 is to be contained. On the other hand, when the amount of SiO 2 added is excessive, on the contrary, abnormal grain growth having a low strength locally occurs, the fracture toughness value is remarkably lowered, and at the same time, the loss is remarkably deteriorated. Therefore, the content of SiO 2 needs to be limited to 300 mass ppm or less. The amount of SiO 2 is preferably in the range of 60 to 250 mass ppm, preferably 60 mass ppm or more, and preferably 250 mass ppm or less.
CaO:100~1300massppm
 CaOは、MnZn系フェライトの結晶粒界に偏析し、結晶粒の成長を抑制する働きを持つ。よって、適量なCaOの添加により、比抵抗が上昇し、100℃、300kHzおよび100mTの励磁条件下における損失を低下させることができる。また、結晶粒成長の抑制させる働きは異常粒成長の出現を抑制するため、破壊靭性値を高めることができる。そのため、最低でもCaOを100massppm含有することとする。一方、CaO添加量過多の場合には異常粒が出現し、破壊靭性値が低下し損失も悪化する。よって、CaOの含有量は1300massppm以下に制限する必要がある。好ましいCaOの含有量は100massppm以上、1300massppm未満、より好ましくは150~1100massppmの範囲である。CaO量は、150massppm以上が好ましく、1300massppm未満が好ましく、1100massppm以下がより好ましい。
CaO: 100 to 1300 massppm
CaO segregates at the grain boundaries of MnZn-based ferrite and has a function of suppressing the growth of crystal grains. Therefore, by adding an appropriate amount of CaO, the specific resistance can be increased and the loss under exciting conditions of 100 ° C., 300 kHz and 100 mT can be reduced. In addition, the function of suppressing crystal grain growth suppresses the appearance of abnormal grain growth, so that the fracture toughness value can be increased. Therefore, it is assumed that CaO is contained at least 100 mass ppm. On the other hand, when the amount of CaO added is excessive, abnormal grains appear, the fracture toughness value decreases, and the loss also worsens. Therefore, the CaO content needs to be limited to 1300 mass ppm or less. The preferably CaO content is in the range of 100 mass ppm or more and less than 1300 mass ppm, more preferably 150 to 1100 mass ppm. The amount of CaO is preferably 150 mass ppm or more, preferably less than 1300 mass ppm, and more preferably 1100 mass ppm or less.
Nb:100~400massppm
 Nbは、MnZn系フェライトの結晶粒界に偏析し、結晶粒成長を緩やかに抑制し、かつかかる応力を緩和させる効果を有している。そのため、Nbの適量の添加により、損失を低減させることができ、かつ局所的に低強度となる異常粒成長を抑制することにより破壊靭性値も高めることができる。したがって、最低でもNbを100massppm含有することとする。一方、添加量過多の場合には異常粒が出現し、破壊靭性値の著しい低下および損失の悪化を誘発することから、Nb量を400massppm以下に抑制する必要がある。好ましいNbの含有量は150~350massppmの範囲であり、150massppm以上が好ましく、350massppm以下が好ましい。
Nb 2 O 5 : 100-400 massppm
Nb 2 O 5 segregates at the grain boundaries of MnZn-based ferrite, and has the effect of gently suppressing the grain growth and relaxing the stress. Therefore, by adding an appropriate amount of Nb 2 O 5 , the loss can be reduced, and the fracture toughness value can be increased by suppressing the growth of abnormal grains having locally low strength. Therefore, it is assumed that at least Nb 2 O 5 is contained in 100 mass ppm. On the other hand, when the amount added is excessive, abnormal particles appear, which induces a significant decrease in fracture toughness value and deterioration of loss. Therefore, it is necessary to suppress the amount of Nb 2 O 5 to 400 mass ppm or less. The content of Nb 2 O 5 is preferably in the range of 150 to 350 mass ppm, preferably 150 mass ppm or more, and preferably 350 mass ppm or less.
 次に、抑制すべき不可避的不純物成分について説明する。
P:10massppm未満、B:10massppm未満、Ti:50massppm未満
 これらは、主に原料酸化鉄中に不可避に含まれる成分である。PおよびBの含有がごく微量であれば問題ない。しかし、PおよびBがある一定以上含まれる場合にはフェライトの異常粒成長を誘発し、この部位が破壊の起点となることから破壊靭性値が低下するとともに、コアロスを劣化させ、重大な悪影響を及ぼす。よって、PおよびBの含有量はともに10massppm未満に抑制することとした。好ましくはP、B量とも8massppm以下である。Pの含有量は8massppm以下が好ましく、Bの含有量は8massppm以下が好ましい。
 また、Tiの含有量が多いと、破壊靭性のみならず、コアロスの値も悪くなる。よってTiの含有量は50massppm未満に制御する。Tiの含有量は、好ましくは40massppm未満、より好ましくは30massppm未満である。
Next, the unavoidable impurity components to be suppressed will be described.
P: less than 10 mass ppm, B: less than 10 mass ppm, Ti: less than 50 mass ppm These are components inevitably contained mainly in the raw material iron oxide. There is no problem if the content of P and B is very small. However, when P and B are contained in a certain amount or more, abnormal grain growth of ferrite is induced, and this site becomes the starting point of fracture, so that the fracture toughness value is lowered and the core loss is deteriorated, which has a serious adverse effect. To exert. Therefore, the contents of P and B were both suppressed to less than 10 mass ppm. Preferably, both the amounts of P and B are 8 mass ppm or less. The content of P is preferably 8 mass ppm or less, and the content of B is preferably 8 mass ppm or less.
Further, when the Ti content is high, not only the fracture toughness but also the core loss value deteriorates. Therefore, the Ti content is controlled to less than 50 mass ppm. The Ti content is preferably less than 40 mass ppm, more preferably less than 30 mass ppm.
 また、組成に限らず種々のパラメータによりMnZn系フェライトの諸特性は多大な影響を受ける。そこで、本発明では、より好ましい磁気特性、強度特性を有するために以下に述べる規定を更に設けることができる。
JIS R 1607に基づくファインセラミックスの破壊靭性値:1.10MPa・m1/2以上
 MnZn系フェライトはセラミックスであり、脆性材料であるためほとんど塑性変形しない。そのため、破壊靭性はJIS R 1607に規定されたSEPB法を用いる。このSEPB法は、測定物の中心部にビッカース圧痕を打痕し、予き裂を加えた状態で曲げ試験をすることで破壊靭性値(Kic)を測定する。本発明のMnZn系フェライトは、高靭性が求められる自動車搭載用を想定しており、SEPB法により求めた破壊靭性値が1.10MPa・m1/2以上であることが望ましい。
Further, various characteristics of MnZn-based ferrite are greatly affected by various parameters regardless of the composition. Therefore, in the present invention, the following provisions can be further provided in order to have more preferable magnetic characteristics and strength characteristics.
Fracture toughness value of fine ceramics based on JIS R 1607: 1.10 MPa · m 1/2 or more MnZn-based ferrite is a ceramic and is a brittle material, so it hardly plastically deforms. Therefore, the fracture toughness uses the SEBP method specified in JIS R 1607. In this SEBP method, the fracture toughness value (Kic) is measured by imprinting a Vickers indentation in the center of the object to be measured and performing a bending test with a pre-crack added. The MnZn-based ferrite of the present invention is intended for use in automobiles where high toughness is required, and it is desirable that the fracture toughness value obtained by the SEBP method is 1.10 MPa · m 1/2 or more.
 この破壊靭性値の条件を満たすためには、得られたMnZn系フェライトの表面残留応力の値が40MPa未満である必要がある。ここで、表面残留応力の値は、MnZn系フェライト(フェライトコア)の表面を、MnFeと仮定し、X線回折により、148.40°に出現する(551)面ピークのシフトから微小応力を算出した結果である。
 MnZn系フェライトは脆性材料であることから、引張応力によって破断する。同様に脆性材料であるガラスでは、この破断を引き起こす引張応力を相殺するために、予め表面に圧縮応力を付与した強化ガラスが知られている。これに着想を得て、MnZn系フェライトにおいても表面応力を制御することでフェライトの破壊靭性値を向上できるのではないか、と本発明者らは考え、鋭意研究を重ねた。その結果、通常のMnZn系フェライトの表面には、焼成時の還元反応による若干の酸素欠乏状態によって発生した引張応力が残留しており、この引張応力を低減することにより材料としてのMnZn系フェライトの破壊靭性値を高めることができることを突き止めた。そして破壊靭性値と表面残留応力との間には相関があり、1.10MPa・m1/2以上という望ましい破壊靭性値を得るためには、表面残留応力を40MPa未満とする必要があり、37MPa以下とすることが好ましい。
In order to satisfy the condition of the fracture toughness value, the value of the surface residual stress of the obtained MnZn-based ferrite needs to be less than 40 MPa. Here, the value of the surface residual stress is minute from the shift of the (551) plane peak appearing at 148.40 ° by X-ray diffraction, assuming that the surface of the MnZn-based ferrite (ferrite core) is MnFe 2 O 4. This is the result of calculating the stress.
Since MnZn-based ferrite is a brittle material, it breaks due to tensile stress. Similarly, for glass, which is a brittle material, tempered glass in which compressive stress is applied to the surface in advance is known in order to cancel the tensile stress that causes this fracture. Inspired by this, the present inventors thought that the fracture toughness value of ferrite could be improved by controlling the surface stress even in MnZn-based ferrite, and repeated diligent research. As a result, tensile stress generated due to a slight oxygen deficiency due to the reduction reaction during firing remains on the surface of normal MnZn-based ferrite, and by reducing this tensile stress, MnZn-based ferrite as a material can be used. It was found that the fracture toughness value can be increased. There is a correlation between the fracture toughness value and the surface residual stress, and in order to obtain the desired fracture toughness value of 1.10 MPa · m 1/2 or more, the surface residual stress must be less than 40 MPa, and 37 MPa. The following is preferable.
 MnZn系フェライトの表面残留応力の値を40MPa未満に保つためには、フェライトコア製造過程における焼成後の焼成品を、10N以上の濃度の酸化性液体に0.50時間超浸漬する必要がある。浸漬温度は20~60℃の範囲が好ましい。従来のMnZn系フェライトの表面は、焼成時の還元作用により若干酸素欠乏状態となるために引張応力が生じており、表面残留応力は40MPa以上となる。そこで、本発明の製造方法では、フェライトを所定濃度の酸化性液体に浸漬することで化学的に酸化させる。この手法により、フェライト表面部に酸素が付与される結果、表面の引張応力は低減して、残留応力が40MPa未満になる。
 ここで、酸化性液体は、入手のし易さ、取り扱い易さ等の点から、硝酸、硫酸または塩酸が好ましい。
In order to keep the surface residual stress value of the MnZn-based ferrite less than 40 MPa, it is necessary to immerse the fired product after firing in the ferrite core manufacturing process in an oxidizing liquid having a concentration of 10 N or more for more than 0.50 hours. The immersion temperature is preferably in the range of 20 to 60 ° C. The surface of the conventional MnZn-based ferrite is slightly oxygen-deficient due to the reducing action during firing, so that tensile stress is generated, and the surface residual stress is 40 MPa or more. Therefore, in the production method of the present invention, ferrite is chemically oxidized by immersing it in an oxidizing liquid having a predetermined concentration. As a result of oxygen being applied to the ferrite surface portion by this method, the tensile stress on the surface is reduced and the residual stress becomes less than 40 MPa.
Here, the oxidizing liquid is preferably nitric acid, sulfuric acid or hydrochloric acid from the viewpoint of easy availability, ease of handling and the like.
 なお、本発明のMnZn系フェライトでは、以下の添加物を含有しても良い。
CoO:3500massppm以下
 CoOは、正の磁気異方性を有するCo2+イオンを含有する成分であり、同成分の添加により損失の極小温度を示すセカンダリピークの温度幅を広げることができる。一方、CoOの添加量過多の場合には、他の成分の有する負の磁気異方性と相殺できないことから損失の著しい増大を招く。そのため、CoOを添加する場合には3500massppm以下に制限する必要がある。CoOを添加する場合の量は、好ましくは3000massppm以下、より好ましくは2500massppm以下である。
The MnZn-based ferrite of the present invention may contain the following additives.
CoO: 3500 massppm or less CoO is a component containing Co 2+ ions having positive magnetic anisotropy, and the addition of this component can widen the temperature range of the secondary peak indicating the minimum temperature of loss. On the other hand, when the amount of CoO added is excessive, the loss cannot be offset by the negative magnetic anisotropy of other components, resulting in a significant increase in loss. Therefore, when adding CoO, it is necessary to limit it to 3500 mass ppm or less. The amount of CoO added is preferably 3000 mass ppm or less, more preferably 2500 mass ppm or less.
NiO:15000massppm以下
 NiOは、スピネル格子のBサイトに選択的に組み込まれ、材料のキュリー温度を高めて飽和磁束密度を高める結果、損失を低減する効果を有する。一方、NiOの添加量過多の場合には磁歪が大きくなるため、損失が著しく増大する。そのため、NiOを添加する場合には15000massppm以下に制限する必要がある。NiOを添加する場合の量は、好ましくは12000massppm以下であり、より好ましくは10000massppm以下であり、更に好ましくは5000massppm以下である。
NiO: 15,000 massppm or less NiO is selectively incorporated into the B site of the spinel lattice, and has the effect of reducing the loss as a result of increasing the Curie temperature of the material and increasing the saturation magnetic flux density. On the other hand, when the amount of NiO added is excessive, the magnetostriction becomes large, so that the loss increases remarkably. Therefore, when NiO is added, it is necessary to limit it to 15,000 mass ppm or less. The amount of NiO added is preferably 12000 mass ppm or less, more preferably 10000 mass ppm or less, and further preferably 5000 mass ppm or less.
 次に、本発明のMnZn系フェライトの製造方法について詳細に説明する。
 MnZn系フェライトの製造については、まず所定の比率となるようFe、ZnOおよびMnOを秤量し、これらを十分に混合した後に仮焼及び冷却を行い仮焼粉とする(仮焼工程)。Fe、ZnOおよびMnOは、通常、粉末である。この仮焼粉を粉砕する際に、本発明にて規定された副成分としての添加物を所定の比率で加え、混合し、粉砕粉を得る(混合-粉砕工程)。この工程では、添加した成分の濃度に偏りがないよう粉末が充分に均質化され、かつ仮焼粉を目標の平均粒径の大きさに微細化する。かくして得られた目標組成の粉末状の粉砕粉にポリビニルアルコール等の有機物バインダーを加え、スプレードライ法等による造粒工程を経て造粒粉とし(造粒工程)、必要であればかかる造粒粉を粒度調整のために篩通し等の工程を行った後、成形機にて圧力を加えて成形する。かかる成形を行った後、適した焼成条件の下で焼成を行い(焼成工程)、濃度10N以上の酸化性液体、例えば、硝酸、硫酸または塩酸などに0.50時間超、すなわち30分超浸漬する(浸漬工程)。その後、必要に応じて水洗して乾燥し、本発明に従うフェライト焼結体すなわちMnZn系フェライトとなる。
 得られた上記フェライト焼結体は、表面研磨等加工を施しても構わない。
Next, the method for producing MnZn-based ferrite of the present invention will be described in detail.
Regarding the production of MnZn-based ferrite, Fe 2 O 3 , ZnO and MnO are first weighed so as to have a predetermined ratio, and after sufficiently mixing these, they are calcined and cooled to obtain a calcined powder (temporary firing step). .. Fe 2 O 3 , ZnO and MnO are usually powders. When crushing this calcined flour, an additive as an auxiliary component specified in the present invention is added at a predetermined ratio and mixed to obtain a pulverized powder (mixing-crushing step). In this step, the powder is sufficiently homogenized so that the concentration of the added component is not biased, and the calcined powder is refined to the target average particle size. An organic binder such as polyvinyl alcohol is added to the powdered pulverized powder having the target composition thus obtained, and the granulated powder is obtained through a granulation step by a spray-drying method or the like (granulation step). After performing steps such as sieving to adjust the particle size, pressure is applied with a molding machine to mold. After such molding, firing is performed under suitable firing conditions (calcination step), and the mixture is immersed in an oxidizing liquid having a concentration of 10 N or more, for example, nitric acid, sulfuric acid, hydrochloric acid, etc. for more than 0.50 hours, that is, more than 30 minutes. (Immersion step). Then, if necessary, it is washed with water and dried to obtain a ferrite sintered body according to the present invention, that is, a MnZn-based ferrite.
The obtained ferrite sintered body may be subjected to surface polishing or other processing.
 かくして得られたMnZn系フェライトは、従来のMnZn系フェライトでは不可能であった、極めて優れた破壊靭性及び磁気特性を示す。これらの極めて優れた特性とは、例えば、平板状試料のJIS R1607に基づく破壊靭性測定により、破壊靭性値が1.10MPa・m1/2以上(好ましくは1.15MPa・m1/2以上、より好ましくは1.20MPa・m1/2以上)、かつ同条件で作製したトロイダル形状コアの100℃、300kHzおよび100mTにおける損失の値が450kW/m以下(好ましくは430kW/m以下)という極めて優れた特性である。 The MnZn-based ferrite thus obtained exhibits extremely excellent fracture toughness and magnetic properties, which was not possible with conventional MnZn-based ferrites. These extremely excellent characteristics include, for example, a fracture toughness value of 1.10 MPa · m 1/2 or more (preferably 1.15 MPa · m 1/2 or more, as measured by a fracture toughness measurement based on JIS R1607 for a flat sample. More preferably 1.20 MPa · m 1/2 or more), and the loss value of the toughness-shaped core produced under the same conditions at 100 ° C., 300 kHz and 100 mT is 450 kW / m 3 or less (preferably 430 kW / m 3 or less). It is an extremely excellent characteristic.
(実施例1)
 Fe、ZnOおよびMnO量が表1に示す比率となるように秤量した各原料粉末を、ボールミルを用いて16時間混合した後、空気中にて900℃で3時間の仮焼を行い、大気中にて1.5時間かけて室温まで冷却し仮焼粉とした。次に、この仮焼粉に対し、SiO、CaOおよびNbをそれぞれ150,700および250massppm相当分秤量した後に添加し、ボールミルで12時間粉砕した。ついで、かかる粉砕により得られた粉砕粉に、ポリビニルアルコールを加えてスプレードライ造粒し、118MPaの圧力をかけトロイダルコア形状および平板状コア形状に成形し成形体とした。その後、これらの成形体を焼成炉に装入して、最高温度1320℃で2時間、窒素ガスと空気を適宜混合したガス流中で焼成し、これら焼成後の焼成品を23℃の室温下、13.0N(規定)の硝酸に1.00時間浸漬した後取り出し、純水で洗浄して乾燥することで、MnZn系フェライトとしての、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダルコア(以下単にトロイダルコアともいう)と、縦:4mm、横:35mm、厚み:3mmの焼結体平板状コア(以下単に直方体コアともいう)を得た。
 なお、原料として高純度原料を用い、かつボールミル等媒体は使用前に十分に洗浄し、他材質からの成分混入を抑制したことから、トロイダルコアおよび直方体コアに含まれる不純物P、BおよびTiの含有量はそれぞれ4、3および15massppmであった。また、P、BおよびTiの含有量は、JIS K 0102(IPC質量分析法)に従って定量した。
(Example 1)
Each raw material powder weighed so that the amounts of Fe 2 O 3 , ZnO and MnO have the ratio shown in Table 1 is mixed for 16 hours using a ball mill, and then calcined in air at 900 ° C. for 3 hours. , It was cooled to room temperature in the air for 1.5 hours to obtain a calcined powder. Next, SiO 2 , CaO and Nb 2 O 5 were weighed equivalent to 150, 700 and 250 mass ppm, respectively, and then added to the calcined powder, and the mixture was pulverized in a ball mill for 12 hours. Then, polyvinyl alcohol was added to the pulverized powder obtained by such pulverization, spray-dried granulation was applied, and a pressure of 118 MPa was applied to form a toroidal core shape and a flat core shape to obtain a molded product. Then, these compacts were charged into a firing furnace and fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air were appropriately mixed, and the fired products after firing were placed at room temperature of 23 ° C. After immersing in 13.0N (specified) nitric acid for 1.00 hours, it is taken out, washed with pure water and dried to obtain MnZn-based ferrite having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm. A sintered toroidal core (hereinafter, also simply referred to as a toroidal core) and a sintered flat plate-shaped core (hereinafter, simply referred to as a rectangular core) having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained.
Since a high-purity raw material was used as the raw material and the medium such as a ball mill was thoroughly washed before use to suppress the mixing of components from other materials, impurities P, B and Ti contained in the toroidal core and the rectangular parallelepiped core were contained. The contents were 4, 3 and 15 mass ppm, respectively. The contents of P, B and Ti were quantified according to JIS K 0102 (IPC mass spectrometry).
 得られたトロイダルコアの損失は、コアに1次側5ターン、2次側5ターンの巻線を施した後に、コアロス測定器(岩通計測製:SY-8232)を用い、100℃、300kHzおよび100mTでの損失の値を測定した。
 表面残留応力は、微小応力測定装置(リガク製AutoMATE)を使用し、Cr-Kα線を用い、並傾法を用いて計算した。このとき、フェライト表面はMnFeであると仮定し、148.40°に出現する(551)面ピークのシフトを測定し、ポアソン比0.28、弾性定数147GPaの値を用いて算出した。なお、上記並傾法の詳細は、「材料」(J.Soc.Mat.Sci.,Japan),Vol.47,No.11,pp.1189-1194,Nov.1998に記載されている。
 直方体コアの破壊靭性値については、JIS R 1607に準じ、ビッカースにより中央部に打痕した試料に予き裂を加えた後に3点曲げ試験で破断し、その破断荷重と試験片の寸法を元に算出した。
 得られた結果をそれぞれ表1に併記する。
The loss of the obtained toroidal core is 100 ° C. and 300 kHz using a core loss measuring instrument (manufactured by Iwadori Measurement Co., Ltd .: SY-8232) after winding the core for 5 turns on the primary side and 5 turns on the secondary side. And the value of the loss at 100 mT was measured.
The surface residual stress was calculated by using a micro stress measuring device (AutoMATE manufactured by Rigaku), using Cr-Kα rays, and using the parallel tilt method. At this time, assuming that the ferrite surface is MnFe 2 O 4 , the shift of the (551) plane peak appearing at 148.40 ° was measured, and calculated using the values of Poisson's ratio 0.28 and elastic constant 147 GPa. .. For details of the above-mentioned parallel tilting method, refer to "Materials" (J. Soc. Mat. Sci., Japan), Vol. 47, No. 11, pp. 1189-1194, Nov. It is described in 1998.
The fracture toughness value of the rectangular parallelepiped core is based on JIS R 1607, which is based on the fracture load and the dimensions of the test piece after pre-cracking the sample dented in the center by Vickers and then breaking it in a three-point bending test. Calculated in.
The results obtained are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 同表に示したとおり、発明例である実施例1-1~1-5では、100℃、300kHzおよび100mTにおける損失の値が450kW/m以下で、かつ破壊靭性値が1.10MPa・m1/2以上という、良好な磁気特性と高靭性とが併せて得られている。
 これに対し、Feを51.5mol%未満しか含まない比較例(比較例1-1)およびFeが55.5mol%より多い比較例(比較例1-2)では、高靭性は実現できているものの、磁気異方性と磁歪が大きくなったため損失が増大しており、100℃、300kHzおよび100mTにおける損失の値が450kW/mを上回っている。
 また、ZnO量が不足した比較例(比較例1-3)では、キュリー温度が過度に上昇したため、反対にZnOを本発明範囲より多量に含む比較例(比較例1-4)では、損失が極小値を示すセカンダリピークが低下したため、いずれにおいても、100℃、300kHzおよび100mTにおける損失の値が450kW/mを上回っている。
As shown in the table, in Examples 1-1 to 1-5, which are examples of the invention, the loss value at 100 ° C., 300 kHz and 100 mT is 450 kW / m 3 or less, and the fracture toughness value is 1.10 MPa · m. Good magnetic properties of 1/2 or more and high toughness are obtained together.
On the other hand, in the comparative example containing less than 51.5 mol% of Fe 2 O 3 (Comparative Example 1-1) and the comparative example containing more Fe 2 O 3 than 55.5 mol% (Comparative Example 1-2), the value was high. Although toughness has been achieved, the loss has increased due to the increased magnetic anisotropy and magnetostriction, and the loss value at 100 ° C., 300 kHz and 100 mT exceeds 450 kW / m 3 .
Further, in the comparative example (Comparative Example 1-3) in which the amount of ZnO was insufficient, the Curie temperature rose excessively, so that on the contrary, in the comparative example (Comparative Example 1-4) containing a larger amount of ZnO than the range of the present invention, the loss was lost. Since the secondary peak showing the minimum value decreased, the loss value at 100 ° C., 300 kHz and 100 mT exceeded 450 kW / m 3 in each case.
(実施例2)
 Feが53.0mol%、ZnOが12.0mol%、MnOが35.0mol%となるよう原料を秤量し、ボールミルを用いて16時間混合した後、空気中、900℃で3時間の仮焼を行い、大気中にて1.5時間かけて室温まで冷却し仮焼粉とした。次に、この仮焼粉に表2に示す量の副成分であるSiO、CaOおよびNb、また一部試料にはCoOもしくはNiOを加え、ボールミルで12時間粉砕した。ついで、かかる粉砕により得られた粉砕粉に、ポリビニルアルコールを加えてスプレードライ造粒し、118MPaの圧力をかけトロイダルコア形状および平板状コア形状に成形し成形体とした。その後、これらの成形体を焼成炉に装入して、最高温度1320℃で2時間、窒素ガスと空気を適宜混合したガス流中で焼成し、これら焼成後の焼成品を23℃の室温下、13.0N(規定)の硝酸に1.00時間浸漬した後取り出し、純水で洗浄して乾燥することで、MnZn系フェライトとしての、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダルコアと、縦:4mm、横:35mm、厚み:3mmの焼結体直方体コアを得た。なお、得られたトロイダルコアおよび直方体コアに含まれる不純物P、BおよびTiの含有量は、いずれもそれぞれ4、3および15massppmであった。
 これらの各試料について、実施例1と同じ手法、装置を用いそれぞれの特性を評価した。得られた評価の結果を表2に併記する。
(Example 2)
Fe 2 O 3 is 53.0mol%, ZnO is 12.0 mol%, materials were weighed so that the MnO is 35.0Mol%, were mixed for 16 hours using a ball mill, in air for 3 hours at 900 ° C. It was calcined and cooled to room temperature in the air for 1.5 hours to obtain calcined powder. Next, SiO 2 , CaO and Nb 2 O 5 , which are sub-ingredients in the amounts shown in Table 2, and CoO or NiO were added to some of the samples, and the mixture was pulverized with a ball mill for 12 hours. Then, polyvinyl alcohol was added to the pulverized powder obtained by such pulverization, spray-dried granulation was applied, and a pressure of 118 MPa was applied to form a toroidal core shape and a flat core shape to obtain a molded product. Then, these compacts are charged into a firing furnace and fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air are appropriately mixed, and the fired products after firing are placed at room temperature of 23 ° C. After immersing in 13.0 N (specified) nitric acid for 1.00 hours, it is taken out, washed with pure water and dried to obtain MnZn-based ferrite having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm. A sintered toroidal core and a sintered rectangular core having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained. The contents of impurities P, B and Ti contained in the obtained toroidal core and rectangular parallelepiped core were 4, 3 and 15 mass ppm, respectively.
The characteristics of each of these samples were evaluated using the same method and apparatus as in Example 1. The results of the obtained evaluation are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 同表に示したとおり、SiO,CaO,Nbが規定の範囲内である実施例2-1~2-13では、100℃、300kHzおよび100mTにおける損失の値が450kW/m以下で、かつ破壊靭性値が1.10MPa・m1/2以上という高い靭性が併せて得られている。中でも、CoOおよびNiOを添加した場合の量が上述した好適範囲内である実施例2-1~2-11では、100℃、300kHzおよび100mTにおける損失の値が更に良好になっている。
 これに対し、SiO、CaOおよびNbの3成分のうち1つでも規定量未満しか含まない比較例2-1、2-3および2-5では、粒界生成が不十分となって比抵抗が低下し、渦電流損失が増大することで損失が劣化しており、さらには結晶粒成長の適度な抑制が不十分であるために低強度な粗大粒が一部出現して、破壊靭性値が低くなっている。反対に、同3成分のうち1つでも過多である比較例2-2、2-4および2-6では、異常粒の出現により損失が劣化しており、また異常粒の部位は局所的に低強度なため、破壊靭性値も大きく低下している。
 なお、CoO量およびNiO量がそれぞれ3500massppmおよび15000massppmよりも多い実施例2-12および2-13では、それぞれ磁気異方性および磁歪が比較的大きくなったために、実施例2-1~2-11と比較して、損失の値がやや劣化している。
As shown in the table, in Examples 2-1 to 2-13 in which SiO 2 , CaO, Nb 2 O 5 are within the specified range, the loss value at 100 ° C., 300 kHz and 100 mT is 450 kW / m 3 or less. In addition, high toughness with a fracture toughness value of 1.10 MPa · m 1/2 or more is also obtained. Above all, in Examples 2-1 to 2-11 in which the amounts when CoO and NiO were added were within the above-mentioned preferable range, the loss values at 100 ° C., 300 kHz and 100 mT were further improved.
On the other hand, in Comparative Examples 2-1, 2-3 and 2-5 in which even one of the three components of SiO 2 , CaO and Nb 2 O 5 is contained in less than the specified amount, the grain boundary generation is insufficient. As a result, the specific resistance decreases and the eddy current loss increases, resulting in deterioration of the loss. Furthermore, due to insufficient suppression of grain growth, some low-strength coarse grains appear. The fracture toughness value is low. On the contrary, in Comparative Examples 2-2, 2-4 and 2-6 in which even one of the three components is excessive, the loss is deteriorated due to the appearance of abnormal grains, and the site of the abnormal grains is locally located. Due to its low strength, the fracture toughness value is also greatly reduced.
In Examples 2-12 and 2-13 in which the amount of CoO and the amount of NiO were larger than 3500 mass ppm and 15000 mass ppm, respectively, the magnetic anisotropy and magnetostriction were relatively large, and therefore, Examples 2-1 to 2-11. The loss value is slightly degraded compared to.
(実施例3)
 実施例1に示した手法により、基本成分および副成分が実施例1-2と同じ組成となるような割合にする一方、含有する不可避的不純物量が表3に示すように種々に異なる原料を用いて得られた造粒粉を、118MPaの圧力をかけトロイダルコア形状および平板状コア形状に成形して成形体とした。その後、これらの成形体を焼成炉に装入して、最高温度1320℃で2時間、窒素ガスと空気を適宜混合したガス流中で焼成し、これら焼成後の焼成品を23℃の室温下、13.0N(規定)の硝酸に1.00時間浸漬した後取り出し、純水で洗浄して乾燥することで、MnZn系フェライトとしての、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダルコアと、縦:4mm、横:35mm、厚み:3mmの焼結体直方体コアを得た。
 これらの各試料について、実施例1と同じ手法、装置を用いてそれぞれの特性を評価した。得られた評価の結果を表3に併記する。
(Example 3)
By the method shown in Example 1, the basic component and the sub-component have the same composition as in Example 1-2, while the amount of unavoidable impurities contained is different as shown in Table 3. The granulated powder obtained in use was molded into a toroidal core shape and a flat core shape by applying a pressure of 118 MPa to obtain a molded product. Then, these compacts are charged into a firing furnace and fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air are appropriately mixed, and the fired products after firing are placed at room temperature of 23 ° C. After immersing in 13.0 N (specified) nitric acid for 1.00 hours, it is taken out, washed with pure water and dried to obtain MnZn-based ferrite having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm. A sintered toroidal core and a sintered rectangular core having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained.
The characteristics of each of these samples were evaluated using the same method and apparatus as in Example 1. The results of the obtained evaluation are also shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 同表に示したとおり、不可避的不純物P、BおよびTi成分が規定の範囲内である実施例3-1では、100℃、300kHzおよび100mTにおける損失の値が450kW/m以下となるだけでなく、1.10MPa・m1/2以上という優れた破壊靭性値も得られている。
 これに対し、上記不純物成分のうちいずれか一つ以上が規定値を超えて含まれる比較例3-1~3-4では、異常粒が出現することから損失の値が劣化し、同時に破壊靭性値も低下し、ともに所望の値が得られていない。
As shown in the table, in Example 3-1 in which the unavoidable impurities P, B and Ti components are within the specified range, the loss value at 100 ° C., 300 kHz and 100 mT is only 450 kW / m 3 or less. However, an excellent fracture toughness value of 1.10 MPa · m 1/2 or more is also obtained.
On the other hand, in Comparative Examples 3-1 to 3-4 in which any one or more of the above-mentioned impurity components exceeds the specified value, the loss value deteriorates due to the appearance of abnormal grains, and at the same time, the fracture toughness The value also decreased, and neither of them obtained the desired value.
(実施例4)
 実施例1に示した手法により作製した実施例1-2と同じ組成となるようして得られた造粒粉を、118MPaの圧力をかけトロイダルコア形状および平板状コア形状に成形して成形体とした。その後、これらの成形体を焼成炉に装入して、最高温度1320℃で2時間、窒素ガスと空気を適宜混合したガス流中で焼成して得られた焼結品を、表4に示す条件にて、酸化性液体である、硝酸、硫酸または塩酸に浸漬処理した後取り出し、純水で洗浄して乾燥することで、MnZn系フェライトとしての、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダルコアと、縦:4mm、横:35mm、厚み:3mmの焼結体直方体コアを得た。なお、浸漬後のトロイダルコアおよび直方体コアに含有するP、BおよびTi成分の量は、いずれもそれぞれ4、3および15massppmであった。
 これらの各試料について、実施例1と同じ手法、装置を用いてそれぞれの特性を評価した。得られた結果を表4に併記する。
(Example 4)
The granulated powder obtained so as to have the same composition as that of Example 1-2 produced by the method shown in Example 1 was molded into a toroidal core shape and a flat core shape by applying a pressure of 118 MPa. And said. After that, these molded bodies were charged into a firing furnace and fired in a gas stream in which nitrogen gas and air were appropriately mixed for 2 hours at a maximum temperature of 1320 ° C., and the sintered products obtained are shown in Table 4. Under the conditions, it is immersed in nitric acid, sulfuric acid or hydrochloric acid, which is an oxidizing liquid, then taken out, washed with pure water and dried to obtain MnZn-based ferrite with an outer diameter of 25 mm, an inner diameter of 15 mm, and a height. A sintered toroidal core having a length of 5 mm and a sintered rectangular core having a length of 4 mm, a width of 35 mm and a thickness of 3 mm were obtained. The amounts of P, B, and Ti components contained in the toroidal core and the rectangular parallelepiped core after immersion were 4, 3, and 15 mass ppm, respectively.
The characteristics of each of these samples were evaluated using the same method and apparatus as in Example 1. The results obtained are also shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 浸漬工程において
1)浸漬する酸化性液体の濃度が10規定(N)以上で、
2)浸漬時間が0.50時間(hr)超
の1)、2)の両方を満たす浸漬工程条件下で作製した実施例4-1~4-8では、MnZn系フェライトとしてのコアの表面が化学的に酸化されるため、コアの表面残留応力が40MPa未満となった。その結果、引張応力が低下し、コアの破壊靭性値が1.10MPa・m1/2以上という良好な破壊靭性値が得られている。
 これに対し、上記の条件を満足しない浸漬工程を経て作製した比較例4-1~4-8では、化学的酸化が不十分であることから表面に残留した引張応力の解消も不十分である。その結果、所望の破壊靭性値が得られていない。
 
In the dipping process 1) When the concentration of the oxidizing liquid to be immersed is 10 specified (N) or more,
2) In Examples 4-1 to 4-8 produced under the dipping process conditions satisfying both 1) and 2) with a dipping time of more than 0.50 hours (hr), the surface of the core as MnZn-based ferrite was formed. Due to chemical oxidation, the surface residual stress of the core was less than 40 MPa. As a result, the tensile stress is reduced, and a good fracture toughness value of 1.10 MPa · m 1/2 or more is obtained for the core.
On the other hand, in Comparative Examples 4-1 to 4-8 produced through a dipping step that does not satisfy the above conditions, the tensile stress remaining on the surface is not sufficiently eliminated because the chemical oxidation is insufficient. .. As a result, the desired fracture toughness value has not been obtained.

Claims (5)

  1.  基本成分、副成分および不可避的不純物からなるMnZn系フェライトであって、
     上記基本成分として、
      鉄:Fe換算で51.5~55.5mol%、
      亜鉛:ZnO換算で5.0~15.5mol%および
      マンガン:残部
    を含み、
     上記基本成分に対して、上記副成分として、
      SiO:50~300massppm、
      CaO:100~1300massppmおよび
      Nb:100~400massppm
    を含み、
     上記不可避的不純物におけるP、BおよびTi量をそれぞれ、
      P:10massppm未満、
      B:10massppm未満および
      Ti:50massppm未満
    に抑制し、
     上記MnZn系フェライトの表面残留応力の値が40MPa未満であるMnZn系フェライト。
    MnZn-based ferrite consisting of basic components, sub-components and unavoidable impurities.
    As the above basic ingredients
    Iron: 51.5 to 55.5 mol% in terms of Fe 2 O 3
    Zinc: 5.0 to 15.5 mol% in terms of ZnO and manganese: including the balance
    As opposed to the basic component, as the sub-component
    SiO 2 : 50-300 massppm,
    CaO: 100 to 1300 massppm and Nb 2 O 5 : 100 to 400 massppm
    Including
    The amounts of P, B and Ti in the above unavoidable impurities, respectively.
    P: less than 10 mass ppm,
    B: suppressed to less than 10 mass ppm and Ti: less than 50 mass ppm,
    The MnZn-based ferrite having a surface residual stress value of less than 40 MPa.
  2.  前記MnZn系フェライトが、副成分として、さらに
     CoO:3500massppm以下および
     NiO:15000massppm以下
    のうちから選んだ一種または二種を含有する請求項1に記載のMnZn系フェライト。
    The MnZn-based ferrite according to claim 1, wherein the MnZn-based ferrite further contains one or two selected from CoO: 3500 mass ppm or less and NiO: 15000 mass ppm or less as subcomponents.
  3.  前記MnZn系フェライトの、
    JIS R1607に基づく破壊靭性測定の破壊靭性値が1.10MPa・m1/2以上であり、さらに
    100℃、300kHzおよび100mTにおける損失の値が450kW/m以下である請求項1または2に記載のMnZn系フェライト。
    Of the MnZn-based ferrite
    The invention according to claim 1 or 2, wherein the fracture toughness value of the fracture toughness measurement based on JIS R1607 is 1.10 MPa · m 1/2 or more, and the loss value at 100 ° C., 300 kHz and 100 mT is 450 kW / m 3 or less. MnZn-based ferrite.
  4.  前記基本成分の混合物を仮焼し、冷却して仮焼粉を得る仮焼工程と、
     上記仮焼工程で得られた仮焼粉に副成分を添加して、混合、粉砕して粉砕粉を得る混合-粉砕工程と、
     上記混合-粉砕工程で得られた粉砕粉にバインダーを添加、混合した後、造粒する造粒工程と、
     上記造粒工程で得られた造粒粉を成形後、焼成する焼成工程と、
     酸に浸漬する浸漬工程と、
    を有する請求項1~3のいずれかに記載のMnZn系フェライトを得るMnZn系フェライトの製造方法であって、
     前記浸漬工程は、前記焼成工程で得られた焼成品を、濃度10N以上の酸化性液体に0.50時間超浸漬するMnZn系フェライトの製造方法。
    A calcining step of calcining a mixture of the basic components and cooling the mixture to obtain a calcined powder.
    A mixing-crushing step of adding sub-ingredients to the temporary baking powder obtained in the above temporary baking step, mixing and crushing to obtain crushed powder, and
    A granulation step of adding a binder to the crushed powder obtained in the above mixing-crushing step, mixing, and then granulating.
    A firing step in which the granulated powder obtained in the above granulation step is molded and then fired,
    The dipping process of dipping in acid and
    The method for producing MnZn-based ferrite according to any one of claims 1 to 3, wherein the MnZn-based ferrite is obtained.
    The dipping step is a method for producing MnZn-based ferrite in which the fired product obtained in the firing step is immersed in an oxidizing liquid having a concentration of 10 N or more for more than 0.50 hours.
  5.  前記酸化性液体が硝酸、硫酸または塩酸である、請求項4に記載のMnZn系フェライトの製造方法。
     
    The method for producing MnZn-based ferrite according to claim 4, wherein the oxidizing liquid is nitric acid, sulfuric acid or hydrochloric acid.
PCT/JP2020/003153 2019-03-18 2020-01-29 MnZn-BASED FERRITE AND METHOD FOR MANUFACTURING SAME WO2020189036A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020524251A JP6732158B1 (en) 2019-03-18 2020-01-29 MnZn-based ferrite and method for producing the same
CN202080002285.6A CN112041273B (en) 2019-03-18 2020-01-29 MnZn ferrite and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019049937 2019-03-18
JP2019-049937 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020189036A1 true WO2020189036A1 (en) 2020-09-24

Family

ID=72520729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003153 WO2020189036A1 (en) 2019-03-18 2020-01-29 MnZn-BASED FERRITE AND METHOD FOR MANUFACTURING SAME

Country Status (3)

Country Link
CN (1) CN112041273B (en)
TW (1) TWI761760B (en)
WO (1) WO2020189036A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177808A (en) * 1990-11-13 1992-06-25 Nippon Steel Corp High-tenacity mnzn ferrite core
JP2000095560A (en) * 1998-07-22 2000-04-04 Minebea Co Ltd Mn-Zn FERRITE HIGH IN MAGNETIC PERMEABILITY
JP2007204349A (en) * 2006-02-06 2007-08-16 Nec Tokin Corp Manufacturing method of low-loss oxide magnetic material
JP2009173483A (en) * 2008-01-23 2009-08-06 Jfe Chemical Corp MnZn BASED FERRITE AND MAGNETIC CORE FOR TRANSFORMER
CN101620907A (en) * 2009-06-05 2010-01-06 南京精研磁性技术有限公司 Broad temperature low standby power consumption FPT type soft magnetic ferrite and preparation method thereof
JP2013004946A (en) * 2011-06-22 2013-01-07 Tdk Corp Ferrite core and electronic component
WO2018189967A1 (en) * 2017-04-12 2018-10-18 Jfeケミカル株式会社 Rod-shaped mnzn ferrite core and method for producing same, and antenna

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068326A (en) * 1999-08-30 2001-03-16 Tdk Corp MnZn BASED FERRITE
JP2003286072A (en) * 2002-03-28 2003-10-07 Koa Corp Ferrite electronic part and production method thereof
JP4488051B2 (en) * 2007-10-19 2010-06-23 Tdk株式会社 Radio wave absorber
JP5546135B2 (en) * 2009-01-29 2014-07-09 Jfeケミカル株式会社 MnZn-based ferrite core and manufacturing method thereof
JP5546139B2 (en) * 2009-01-29 2014-07-09 Jfeケミカル株式会社 MnZnCo ferrite core and method for producing the same
JP5767135B2 (en) * 2012-02-14 2015-08-19 Jfeケミカル株式会社 Mn-Zn ferrite and transformer core
CN108793991B (en) * 2018-07-11 2020-10-30 横店集团东磁股份有限公司 MnZn ferrite magnetic isolation sheet and preparation method and application thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177808A (en) * 1990-11-13 1992-06-25 Nippon Steel Corp High-tenacity mnzn ferrite core
JP2000095560A (en) * 1998-07-22 2000-04-04 Minebea Co Ltd Mn-Zn FERRITE HIGH IN MAGNETIC PERMEABILITY
JP2007204349A (en) * 2006-02-06 2007-08-16 Nec Tokin Corp Manufacturing method of low-loss oxide magnetic material
JP2009173483A (en) * 2008-01-23 2009-08-06 Jfe Chemical Corp MnZn BASED FERRITE AND MAGNETIC CORE FOR TRANSFORMER
CN101620907A (en) * 2009-06-05 2010-01-06 南京精研磁性技术有限公司 Broad temperature low standby power consumption FPT type soft magnetic ferrite and preparation method thereof
JP2013004946A (en) * 2011-06-22 2013-01-07 Tdk Corp Ferrite core and electronic component
WO2018189967A1 (en) * 2017-04-12 2018-10-18 Jfeケミカル株式会社 Rod-shaped mnzn ferrite core and method for producing same, and antenna

Also Published As

Publication number Publication date
TWI761760B (en) 2022-04-21
CN112041273A (en) 2020-12-04
TW202035337A (en) 2020-10-01
CN112041273B (en) 2022-12-27

Similar Documents

Publication Publication Date Title
JPWO2019123681A1 (en) MnCoZn ferrite and method for producing the same
JP7182016B2 (en) MnCoZn ferrite
TWI724761B (en) Manganese-zinc fertilizer granulated iron and its manufacturing method
JP6732159B1 (en) MnCoZn ferrite and method for producing the same
JP6730546B1 (en) MnCoZn ferrite and method for producing the same
JP6730547B1 (en) MnZn-based ferrite and method for producing the same
JP6730545B1 (en) MnZn-based ferrite and method for producing the same
CN112041951B (en) MnCoZn-based ferrite and method for producing same
JP6732158B1 (en) MnZn-based ferrite and method for producing the same
JP6732160B1 (en) MnZn-based ferrite and method for producing the same
WO2020189036A1 (en) MnZn-BASED FERRITE AND METHOD FOR MANUFACTURING SAME
WO2020189037A1 (en) MnZn-BASED FERRITE AND METHOD FOR MANUFACTURING SAME
WO2020189035A1 (en) MnCoZn FERRITE AND METHOD FOR PRODUCING SAME
JPWO2019167393A1 (en) MnCoZn ferrite and method for producing the same
JP7185791B2 (en) MnZn ferrite
TWI727622B (en) Manganese-zinc fertilizer granulated iron and its manufacturing method
JP7105385B2 (en) MnZn ferrite
JPWO2019167392A1 (en) MnCoZn ferrite and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020524251

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774518

Country of ref document: EP

Kind code of ref document: A1