JP2001332826A - Electronic circuit board having decoupling function - Google Patents

Electronic circuit board having decoupling function

Info

Publication number
JP2001332826A
JP2001332826A JP2000151391A JP2000151391A JP2001332826A JP 2001332826 A JP2001332826 A JP 2001332826A JP 2000151391 A JP2000151391 A JP 2000151391A JP 2000151391 A JP2000151391 A JP 2000151391A JP 2001332826 A JP2001332826 A JP 2001332826A
Authority
JP
Japan
Prior art keywords
powder
electronic circuit
circuit board
matrix material
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000151391A
Other languages
Japanese (ja)
Inventor
Akihiko Saito
章彦 齋藤
Yasuhiko Iriyama
恭彦 入山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2000151391A priority Critical patent/JP2001332826A/en
Publication of JP2001332826A publication Critical patent/JP2001332826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate whose decoupling performance is improved in an electronic circuit substrate that has an electromagnetic wave absorption performance and hence prevents the decoupling between signal and ground lines. SOLUTION: Fe powder whose average particle diameter is equal to or less than 5 μm, preferably 3 μm or less, and more preferably 1 μm or less which is fine soft magnetic powder having the covering layer of Fe nitride on the surface is dispersed into an organic matrix material that is selected from rubber or plastic, or is dispersed into an inorganic matrix material that is combined using water glass with the inorganic powder as a binder so that the fine soft magnetic powder occupies 30%, preferably 50% or higher in terms of vol.% before forming in a flat shape as a substrate 1. A feature where a signal line 2 is formed on the front and a conductor layer 4A with ground potential is provided on the rear, and a feature where the signal line 2 and a ground line 3 are formed on the front, and a conductive layer 4B with the ground potential is provided on the rear are available.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、デカップリング機
能をもつ電子回路基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic circuit board having a decoupling function.

【0002】[0002]

【従来の技術】電子回路の基板として以前から用いられ
てきたものは、ベークライト樹脂やガラス・エポキシ樹
脂の板の両面に銅箔を貼り付けたものであって、表面の
銅箔を回路のライン形成に使用し、裏面の銅箔にGnd
電位を与えるという使い方が一般的である。ところが、
高周波領域においては、この裏面の銅箔層がラインから
の信号を拾って発信するアンテナの役目をするため、そ
こからノイズ電磁波が放射される。
2. Description of the Related Art A board that has been used for a long time as a board of an electronic circuit is a board made of a bakelite resin or a glass / epoxy resin with copper foil attached to both sides thereof. Used for forming, Gnd on the copper foil on the back
A common use is to apply a potential. However,
In the high-frequency region, the copper foil layer on the back surface functions as an antenna for picking up and transmitting a signal from the line, and noise electromagnetic waves are radiated therefrom.

【0003】このような、信号ラインとGnd電位層と
のカップリングを防止し、ノイズ電磁波の放射を抑制す
るため、電子回路の基板自体にシールド効果のある材料
を使用して、信号ラインからGnd電位層への影響を減
衰させることが行なわれている。たとえば、絶縁層を挟
んでその両側に導体層を設けた回路基板において、絶縁
層として、強磁性金属粉末と絶縁樹脂とを混合した複合
材料を使用することが提案された(特開平8−7879
8)。具体的には、鉄の粒径2μm程度の粉末をフェノ
ール樹脂中に60容量%混合して、複合材料とする。
In order to prevent such coupling between the signal line and the Gnd potential layer and suppress the emission of noise electromagnetic waves, a material having a shielding effect is used for the substrate of the electronic circuit itself, and the signal line is connected to the Gnd. The effect on the potential layer has been attenuated. For example, it has been proposed to use a composite material obtained by mixing a ferromagnetic metal powder and an insulating resin as an insulating layer in a circuit board provided with a conductive layer on both sides of the insulating layer (see JP-A-8-7879).
8). Specifically, a powder having a particle size of about 2 μm of iron is mixed in a phenol resin at 60% by volume to obtain a composite material.

【0004】発明者のひとりは、軟磁性金属の粉末、と
くにフレーク状の粉末をゴムまたはプラスチックからな
るマトリクス材料中に分散させることにより高い電磁波
吸収能を示す材料を、種々開発してきた。研究の過程
で、それらの電磁波吸収体を電子回路基板に使用するこ
とを試みて成功をおさめたので、これも開示した(特開
平2000−13086)。その電子回路基板は、Fe
−Cr−Al合金のような軟磁性金属の扁平な粉末を、
粉末が30容量%以上を占めるようにマトリクス中に分
散させたものを板状に成形してなり、粉末の扁平な面が
板の面に平行になるよう配列されていることと、比抵抗
を1010Ω・cm以上に確保したことが特徴である。
One of the inventors has developed various materials exhibiting high electromagnetic wave absorption by dispersing a soft magnetic metal powder, particularly a flake-like powder, in a matrix material made of rubber or plastic. During the course of the research, they attempted to use those electromagnetic wave absorbers for electronic circuit boards and succeeded, and this was also disclosed (JP-A-2000-13086). The electronic circuit board is made of Fe
-Flat powder of soft magnetic metal such as Cr-Al alloy,
A powder dispersed in a matrix so as to occupy 30% by volume or more is formed into a plate shape, and the flat surface of the powder is arranged so as to be parallel to the surface of the plate. The feature is that it is secured to 10 10 Ω · cm or more.

【0005】この種の電磁波吸収体に使用する軟磁性金
属の粉末は、通常、アトマイズ法すなわち金属溶湯を水
またはガスで噴霧することにより得た粉末を、アトライ
ター処理して扁平化することによって製造している。ア
トマイズ法により得られる金属粉末は、平均粒径が30
〜50μm程度ある。電磁波吸収性能を高めるという観
点からは、軟磁性粉末は、粒径がもっと小さいものの方
が好ましい。しかし、ミクロンオーダーの微細な金属粉
末は、空気中で発火しやすいなど、取り扱いに困難があ
り、電磁波吸収体を構成する軟磁性金属の粉末として
は、使用されたことがなかった。
The soft magnetic metal powder used in this type of electromagnetic wave absorber is usually obtained by atomizing a powder obtained by spraying a molten metal with water or gas and flattening the powder by an attritor treatment. Manufacturing. The metal powder obtained by the atomization method has an average particle size of 30.
About 50 μm. From the viewpoint of enhancing the electromagnetic wave absorption performance, the soft magnetic powder preferably has a smaller particle size. However, fine metal powder on the order of microns has difficulty in handling, such as being easily ignited in air, and has never been used as a soft magnetic metal powder constituting an electromagnetic wave absorber.

【0006】最近、発明者らは、ごく微細な鉄の粉末で
あって、表面が不活性な窒化鉄で被覆されていて、発火
のおそれがないものを製造する技術を確立し、その粉末
を電磁波吸収体の材料として使用して、好成績を得た。
この粉末は、従来の粉末よりはるかに微細であるから、
これを使用した電磁波吸収シートは電磁波吸収性能が従
来品より高い。その上、粉末表面が不導体で覆われてい
るため、多量にマトリクスに配合しても、比抵抗を低下
させることがないという利益もある。
Recently, the present inventors have established a technique for producing extremely fine iron powder whose surface is coated with inert iron nitride and has no risk of ignition. Good results were obtained when used as a material for electromagnetic wave absorbers.
Because this powder is much finer than conventional powders,
The electromagnetic wave absorbing sheet using this has higher electromagnetic wave absorbing performance than conventional products. In addition, since the powder surface is covered with a non-conductor, there is an advantage that even if a large amount of the powder is mixed with the matrix, the specific resistance is not reduced.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上記
した微細で不活性な軟磁性粉末、すなわち表面が窒化鉄
で被覆された鉄粉末を使用する電磁波吸収体の技術を電
子回路基板に適用して、デカップリング性能が向上した
基板を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a technique for an electromagnetic wave absorber using the above-mentioned fine and inert soft magnetic powder, that is, an iron powder whose surface is coated with iron nitride, to an electronic circuit board. It is an object of the present invention to provide a substrate having improved decoupling performance.

【0008】[0008]

【課題を解決するための手段】本発明のデカップリング
機能をもつ電子回路基板の第一の態様は、図1に示すよ
うに、平均粒径が5μm以下、好ましくは3μm以下、
より好ましくは1μm以下のFe粉末であって、その表
面にFe窒化物の被覆層を有する微細軟磁性粉末を、ゴ
ムもしくはプラスチックからえらんだ有機質マトリクス
材料中に、または無機物粉末をバインダーとして水ガラ
スを用いて結合した無機質マトリクス材料中に、容積%
で、微細軟磁性粉末が少なくとも30%を占めるように
分散させたものを板状に成形してなる基板(1)であっ
て、表面に信号ライン(2)が形成され、裏面にGnd
電位の導体層(4A)を有する。
According to the first aspect of the electronic circuit board having a decoupling function of the present invention, as shown in FIG. 1, the average particle size is 5 μm or less, preferably 3 μm or less.
More preferably, Fe powder of 1 μm or less, fine soft magnetic powder having a coating layer of Fe nitride on its surface, an organic matrix material selected from rubber or plastic, or water glass using inorganic powder as a binder. % By volume in the inorganic matrix material bonded using
A substrate (1) formed by dispersing a fine soft magnetic powder so as to occupy at least 30% into a plate shape, wherein a signal line (2) is formed on a front surface and Gnd is formed on a rear surface.
It has a potential conductor layer (4A).

【0009】本発明のデカップリング機能をもつ電子回
路基板の第二の態様は、図2に示すように、平均粒径が
5μm以下のFe粉末であって、その表面にFe窒化物
の被覆層を有する微細軟磁性粉末を、ゴムもしくはプラ
スチックからえらんだ有機質マトリクス材料中に、また
は無機物粉末を水ガラスをバインダーとして結合した無
機質マトリクス材料の中に、容積%で、微細軟磁性粉末
が少なくとも30%を占めるように分散させたものを板
状に成形してなる基板(1)であって、表面に信号ライ
ン(2)とGndライン(3)が形成され、裏面にGn
d電位の導体層(4B)を有する。
A second embodiment of the electronic circuit board having a decoupling function according to the present invention is, as shown in FIG. 2, a Fe powder having an average particle diameter of 5 μm or less, and a coating layer of Fe nitride on the surface thereof. The fine soft magnetic powder having at least 30% by volume of the fine soft magnetic powder in an organic matrix material selected from rubber or plastic, or in an inorganic matrix material obtained by combining inorganic powder with water glass as a binder. A substrate (1) formed into a plate shape by dispersing so that the signal line (2) and the Gnd line (3) are formed on the front surface, and Gn is formed on the rear surface.
It has a conductor layer (4B) of d potential.

【0010】[0010]

【発明の実施形態】Fe粉末としては、平均粒径1μm
以下の、とくに微細なものを使用することが好ましい。
5μmを超える大きな粒径のものを使用すると、信号層
からGnd層へスルーホールをあけたときに、導通が生
じてしまうことがある。マトリクス材料としては、各種
のゴムおよびプラスチックが使用できる。耐熱性が高い
ことを要求される場合は、無機質マトリクス材料を水ガ
ラスバインダーで固めたものが有用である。この場合
は、アルミナ粉末、エキポシ樹脂、テフロン(登録商
標)などが使用できる。
BEST MODE FOR CARRYING OUT THE INVENTION The Fe powder has an average particle size of 1 μm.
It is preferable to use the following, particularly fine ones.
When a material having a large particle size exceeding 5 μm is used, conduction may occur when a through hole is opened from the signal layer to the Gnd layer. Various rubbers and plastics can be used as the matrix material. When high heat resistance is required, a material obtained by solidifying an inorganic matrix material with a water glass binder is useful. In this case, alumina powder, epoxy resin, Teflon (registered trademark) and the like can be used.

【0011】電子回路基板の厚さは任意であり、0.1
〜10mmの範囲で使用されるであろうが、通常は0.5
〜2mmが適切である。電子回路基板の特性インピーダン
スは、よく知られているように、信号ラインの幅、高さ
とGnd電位層との距離、基板の誘電率の絶対値などの
因子によって決定される。常用の電子回路の動作周波数
は40〜200MHzの範囲にあり、これを例にとれ
ば、高調波ノイズを除去するという観点からは、たとえ
ば1GHz以上の高い周波数をカットするローパスフィ
ルターとして基板が働くように、上記設計の因子を選択
して組み合わせればよい。
The thickness of the electronic circuit board is arbitrary, and is 0.1%.
It will be used in the range of
~ 2 mm is appropriate. As is well known, the characteristic impedance of an electronic circuit board is determined by factors such as the width and height of a signal line and the distance between the signal line and the Gnd potential layer, and the absolute value of the dielectric constant of the board. The operating frequency of a common electronic circuit is in the range of 40 to 200 MHz. For example, from the viewpoint of removing harmonic noise, the substrate operates as a low-pass filter that cuts a high frequency of 1 GHz or more, for example. Then, the above design factors may be selected and combined.

【0012】本発明で使用する微細軟磁性粉末を製造す
るには、平均粒径が5μm以下、好ましくは1μm以下
であるFeの酸化物の粉末を、容積比でH2:NH3=5
〜10:5〜0の水素または水素・アンモニア混合ガス
の雰囲気下に500℃以上の温度に加熱する還元工程、
および、H2:NH3=0〜9:10〜1のアンモニアま
たは水素・アンモニア混合ガスの雰囲気下に600℃以
上の温度に加熱する窒化工程を、順次行なう。
In order to produce the fine soft magnetic powder used in the present invention, an Fe oxide powder having an average particle size of 5 μm or less, preferably 1 μm or less is prepared by mixing H 2 : NH 3 = 5 by volume ratio.
A reduction step of heating to a temperature of 500 ° C. or more in an atmosphere of hydrogen or a mixed gas of hydrogen and ammonia of 10 to 5 to 0;
Then, a nitriding step of heating to a temperature of 600 ° C. or more in an atmosphere of ammonia or a hydrogen / ammonia mixed gas of H 2 : NH 3 = 0 to 9: 10-1 is sequentially performed.

【0013】原料とするきわめて微細なFeの酸化物
は、転炉ダスト、ミルスケールの粉砕物など、鉄鋼産業
の廃棄物に原料を求めることができる。これらは、Fe
23またはFe34の式で表され、粒径はミクロンオー
ダーである。そのほか、針状フェライトFe23OH
も、サブミクロンの粒径を示し、微細な鉄粉末を製造す
るのに好適な材料である。
Extremely fine Fe oxides as raw materials can be used as raw materials in wastes of the steel industry, such as converter dust and mill-scale pulverized materials. These are Fe
It is represented by the formula of 2 O 3 or Fe 3 O 4 , and the particle size is on the order of microns. In addition, acicular ferrite Fe 2 O 3 OH
Is also a material that exhibits a submicron particle size and is suitable for producing fine iron powder.

【0014】還元工程は水素ガスの雰囲気下に、窒化工
程はアンモニアガスの雰囲気下に実施する。このとき、
雰囲気にアンモニアガスまたは水素ガスが混在していて
もよい。500℃以上の温度になると、還元が実用的な
速度で進行する。600℃までの温度であれば、まず鉄
の酸化物の還元がおこって、酸化鉄の粒子が鉄の粒子に
変化し、ついで600℃以上の温度に加熱すれば、窒化
が起こって鉄の粒子の表面が窒化鉄に変化する。従っ
て、還元と窒化とは、H2+NH3混合ガスの雰囲気下
に、一定の高温で、または低温→高温と温度を変化させ
て行なうか、さもなければガス組成をH2→NH3または
2+NH3と変化させて、温度を一定にまたは低温→高
温と変化させて行なうことができる。反応は、ロータリ
ーキルンを用いて、ガスを循環流通させながら実施する
のが有利である。
The reduction step is performed in an atmosphere of hydrogen gas, and the nitriding step is performed in an atmosphere of ammonia gas. At this time,
Ammonia gas or hydrogen gas may be mixed in the atmosphere. When the temperature reaches 500 ° C. or higher, the reduction proceeds at a practical rate. If the temperature is up to 600 ° C., the reduction of iron oxide occurs first, and the iron oxide particles change into iron particles. Then, when heated to a temperature of 600 ° C. or higher, nitriding occurs and iron particles are generated. Changes to iron nitride. Therefore, reduction and nitridation are performed in a H 2 + NH 3 mixed gas atmosphere at a constant high temperature or by changing the temperature from a low temperature to a high temperature, or the gas composition is changed from H 2 → NH 3 or H 2. It can be performed by changing the temperature to be constant or changing from low temperature to high temperature by changing 2 + NH 3 . The reaction is advantageously carried out using a rotary kiln while circulating gas.

【0015】[0015]

【実施例】針状フェライトの粉末を管状炉内に置き、容
積比でH2:NH3=9:1の混合ガスを炉内に通しなが
ら、500℃×1時間、ついで650℃×10分間加熱
して、表面に窒化鉄の被覆層をもつ鉄の粉末を得た。こ
の粉末は、平均粒径が1μm以下の微細粉末であった。
X線回折により分析したところ、約3%のFe4Nを含
有するα−Feであった。ただし、元素分析により得ら
れた窒化鉄の含有量は、約2%であった。異なる分析結
果は、粉末の表面が窒化鉄リッチであるために、X線回
折にその影響が大きく出たものと解される。
EXAMPLE A powder of acicular ferrite was placed in a tubular furnace, and a mixed gas of H 2 : NH 3 = 9: 1 by volume was passed through the furnace at 500 ° C. × 1 hour, then at 650 ° C. × 10 minutes. By heating, an iron powder having an iron nitride coating layer on the surface was obtained. This powder was a fine powder having an average particle size of 1 μm or less.
When analyzed by X-ray diffraction, it was α-Fe containing about 3% Fe 4 N. However, the content of iron nitride obtained by elemental analysis was about 2%. The different analysis results indicate that the powder surface was rich in iron nitride, which greatly affected the X-ray diffraction.

【0016】マトリクス材料としてナイロンを選び、上
記のようにして製造した鉄粉末を、容積比で粉末が50
%を占めるように混合した。混合物を射出成形して、厚
さが1.0mmの板とした。
Nylon is selected as a matrix material, and iron powder produced as described above is mixed with a powder having a volume ratio of 50%.
%. The mixture was injection molded into a 1.0 mm thick plate.

【0017】上記の板を使用して、図1に示す断面構造
をもった電子回路基板を製作し、その上に、図3に示す
ように、発振器(Osc)、送信器(Drv)および受
信器機(Rcv)を配置した。発信器のクロックは25
MHz、終端は1kΩの抵抗、ドライバーは74HCO
4Aである。送信器と受信器をつなぐラインから放射さ
れる高調波ノイズを、電波暗室(3m法)内で、垂直偏
波として、556〜778MHzの領域において測定し
た。
Using the above-mentioned plate, an electronic circuit board having the cross-sectional structure shown in FIG. 1 is manufactured, and an oscillator (Osc), a transmitter (Drv) and a receiver are formed thereon as shown in FIG. The equipment (Rcv) was arranged. The transmitter clock is 25
MHz, termination is 1kΩ resistor, driver is 74HCO
4A. Harmonic noise radiated from a line connecting the transmitter and the receiver was measured in a anechoic chamber (3 m method) as a vertically polarized wave in the range of 556 to 778 MHz.

【0018】比較のため、在来のガラス・エポキシ樹脂
を用いた電子回路基板についても、同じ条件で試験をし
た。その結果を、図4の棒グラフに示す。図において、
塗りつぶした棒が比較例、白抜きの棒が実施例である。
最も効果が高い651MHzにおいては、約10dBの
減衰効果が認められた。
For comparison, an electronic circuit board using a conventional glass epoxy resin was also tested under the same conditions. The results are shown in the bar graph of FIG. In the figure,
Solid bars are comparative examples, and white bars are examples.
At 651 MHz, which is the highest effect, an attenuation effect of about 10 dB was observed.

【0019】[0019]

【発明の効果】本発明のデカップリング性能をもつ電子
回路基板は、軟磁性粉末を有機質のマトリクス材料中
に、または無機質のマトリクス材料中に分散してなる電
磁波吸収体において、軟磁性粉末として粒径がきわめて
微細な鉄粉末を使用したから、電磁波吸収性能が格段に
高く、したがってデカップリング性能がすぐれている。
According to the electronic circuit board having decoupling performance of the present invention, the soft magnetic powder is dispersed in an organic matrix material or an inorganic matrix material, and is used as a soft magnetic powder. Since the iron powder having a very fine diameter is used, the electromagnetic wave absorbing performance is remarkably high, and thus the decoupling performance is excellent.

【0020】この効果は、電子回路が動作する周波数領
域に応じて基板の特性インピーダンスを適切に選ぶこと
により、所望の周波数領域にある高調波が効果的にカッ
トされる、という機構を通じて得られる。基板の特性イ
ンピーダンスは、組み合わせるマトリクス材料の種類、
鉄粉末の配合割合、基板の厚さ、信号ライン(およびラ
インに形成する場合はGndラインも)の幅、高さその
ほかの因子によって決定される。
This effect is obtained through a mechanism in which harmonics in a desired frequency range are effectively cut by appropriately selecting the characteristic impedance of the substrate according to the frequency range in which the electronic circuit operates. The characteristic impedance of the substrate depends on the type of matrix material to be combined,
It is determined by the compounding ratio of the iron powder, the thickness of the substrate, the width and height of the signal line (and the Gnd line if formed into a line), and other factors.

【0021】微細軟磁性粉末の表面を被覆している窒化
鉄は電導性がないから、この粉末をマトリクス中に分散
させたとき、粉末の粒子が相互に接触しても、その間に
電気的な導通が生じることがない。その結果、電磁波吸
収体である本発明の電子回路基板の比抵抗は、従来の導
電性金属粉末を分散させたものよりも高い。したがっ
て、この電子回路基板は、粉末の配合割合が高い範囲に
おいても高い絶縁性が確保でき、各スルーホールの間の
絶縁も確実である。この利益は、基板設計上の制約を少
なくする。
Since the iron nitride coating the surface of the fine soft magnetic powder does not have electric conductivity, when the powder is dispersed in a matrix, even if the powder particles come into contact with each other, an electric current is not generated between them. No conduction occurs. As a result, the specific resistance of the electronic circuit board of the present invention, which is an electromagnetic wave absorber, is higher than that of the conventional electronic circuit board in which conductive metal powder is dispersed. Therefore, this electronic circuit board can ensure high insulation even in a range where the mixing ratio of the powder is high, and the insulation between the through holes is also ensured. This benefit reduces the constraints on board design.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明にしたがう電子回路基板のひとつの態
様を示す、部分的な断面図。
FIG. 1 is a partial cross-sectional view showing one embodiment of an electronic circuit board according to the present invention.

【図2】 本発明にしたがう電子回路基板のいまひとつ
の態様を示す、部分的な断面図。
FIG. 2 is a partial cross-sectional view showing another embodiment of the electronic circuit board according to the present invention.

【図3】 本発明にしたがう電子回路基板のデカップリ
ング性能を試験する回路を示す斜視図。
FIG. 3 is a perspective view showing a circuit for testing the decoupling performance of an electronic circuit board according to the present invention.

【図4】 実施例1の電子回路基板のデカップリング性
能を、従来品と比較して示した棒グラフ。塗りつぶしが
比較例、白抜きが実施例。
FIG. 4 is a bar graph showing the decoupling performance of the electronic circuit board of Example 1 in comparison with a conventional product. Fill-in is the comparative example, and white is the example.

【符号の説明】[Explanation of symbols]

1 基板 2 信号ライン 3 Gndライン 4A,4B Gnd電位の導体層 DESCRIPTION OF SYMBOLS 1 Substrate 2 Signal line 3 Gnd line 4A, 4B Conductive layer of Gnd potential

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が5μm以下のFe粉末であっ
て、その表面にFeの窒化物の被覆層を有する微細軟磁
性粉末を、ゴムもしくはプラスチックからえらんだ有機
質マトリクス材料中に、または無機物粉末をバインダー
として水ガラスを用いて結合した無機質マトリクス材料
中に、容積%で、微細軟磁性粉末が少なくとも30%を
占めるように分散させたものを板状に成形してなる基板
(1)であって、表面に信号ライン(2)が形成され、
裏面にGnd電位の導体層(4A)を有する、デカップ
リング機能をもつ電子回路基板。
1. A fine soft magnetic powder having an average particle size of 5 μm or less and having a coating layer of Fe nitride on its surface, in an organic matrix material selected from rubber or plastic, or in an inorganic material. A substrate (1) obtained by forming a dispersion in which a fine soft magnetic powder occupies at least 30% by volume in an inorganic matrix material in which the powder is bound by using water glass as a binder to form a plate (1). Then, a signal line (2) is formed on the surface,
An electronic circuit board having a decoupling function, having a conductor layer (4A) of Gnd potential on the back surface.
【請求項2】 平均粒径が5μm以下のFe粉末であっ
て、その表面にFe窒化物の被覆層を有する微細軟磁性
粉末を、ゴムもしくはプラスチックからえらんだ有機質
マトリクス材料中に、または無機物粉末をバインダーと
して水ガラスを用いて結合した無機質マトリクス材料の
中に、容積%で、微細軟磁性粉末が少なくとも30%を
占めるように分散させたものを板状に成形してなる基板
(1)であって、表面に信号ライン(2)とGndライ
ン(3)が形成され、裏面にGnd電位の導体層(4
B)を有する、デカップリング機能をもつ電子回路基
板。
2. A fine soft magnetic powder having an average particle size of 5 μm or less and having a coating layer of Fe nitride on its surface, in an organic matrix material selected from rubber or plastic, or in an inorganic powder. (1) is a plate (1) formed by dispersing so that a fine soft magnetic powder occupies at least 30% by volume in an inorganic matrix material bonded by using water glass as a binder. A signal line (2) and a Gnd line (3) are formed on the front surface, and a conductor layer (4
B) An electronic circuit board having a decoupling function.
【請求項3】 Fe粉末として、平均粒径1μm以下の
ものを使用した請求項1または2の電子回路基板。
3. The electronic circuit board according to claim 1, wherein the Fe powder has an average particle size of 1 μm or less.
【請求項4】 マトリクス材料として、塩素化ポリエチ
レン、ナイロンおよびアルミナ板からえらんだものを使
用した請求項1または2の電子回路基板。
4. The electronic circuit board according to claim 1, wherein the matrix material is selected from chlorinated polyethylene, nylon, and an alumina plate.
【請求項5】 厚さ0.1〜10mmのシート状をした請
求項1または2の電子回路基板。
5. The electronic circuit board according to claim 1, wherein the electronic circuit board has a sheet shape having a thickness of 0.1 to 10 mm.
JP2000151391A 2000-05-23 2000-05-23 Electronic circuit board having decoupling function Pending JP2001332826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000151391A JP2001332826A (en) 2000-05-23 2000-05-23 Electronic circuit board having decoupling function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000151391A JP2001332826A (en) 2000-05-23 2000-05-23 Electronic circuit board having decoupling function

Publications (1)

Publication Number Publication Date
JP2001332826A true JP2001332826A (en) 2001-11-30

Family

ID=18656958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000151391A Pending JP2001332826A (en) 2000-05-23 2000-05-23 Electronic circuit board having decoupling function

Country Status (1)

Country Link
JP (1) JP2001332826A (en)

Similar Documents

Publication Publication Date Title
Abbas et al. Electromagnetic and microwave absorption properties of (Co2+–Si4+) substituted barium hexaferrites and its polymer composite
EP0785557B1 (en) Composite magnetic material and product for eliminating electromagnetic interference
JP3401650B2 (en) Electromagnetic interference suppressor
JP3812977B2 (en) Electromagnetic interference suppressor
KR20090103951A (en) Composite magnetic body, its manufacturing method, circuit substrate using the same, and electronic device using the same
WO2002041343A1 (en) Electronic component-use substrate and electronic component
KR101458839B1 (en) Electric wave absorption sheet for near-field and manufacturing method thereof
JP2007129179A (en) Conductive/magnetic filler, electromagnetic wave interference controlling sheet, flat cable for high frequency signal, flexible printed circuit board and method for manufacturing the sheet
EP2136613B1 (en) Sheet for prevention of electromagnetic wave interference, flat cable for high-frequency signal, flexible print substrate, and method for production of sheet for prevention of electromagnetic wave interference
JP2010103427A (en) Composite magnetic body, circuit board using composite magnetic body, and electronic component using composite magnetic body
JP2006179901A (en) Electromagnetic wave absorbing sheet
JP3722391B2 (en) Composite magnetic body and electromagnetic interference suppressor using the same
CN111902036A (en) Electromagnetic wave noise suppression sheet and high-frequency electronic equipment
KR102082810B1 (en) Sheet of complex shielding electromagnetic wave with high performance and manufacturing methods thereof
JPH10106839A (en) Multilayer high-frequency inductor
JP2003332113A (en) Flat soft magnetic powder and composite magnetic sheet using the same
JP2000244167A (en) Electromagnetic-wave-disturbance preventive material
JP2001332826A (en) Electronic circuit board having decoupling function
KR100755775B1 (en) Electromagnetic noise supression film and process of production thereof
JP3795432B2 (en) Method for manufacturing electromagnetic wave absorbing sheet
JP2000357893A (en) Electromagnetic wave shielding film and electromagnetic wave shielding paint
Azadmanjiri et al. The use of plasma treatment for simultaneous carbonization and reduction of iron oxide/polypyrrole core/shell nanoparticles
JP5912278B2 (en) Electromagnetic interference suppressor
JP2009290067A (en) Magnetic material for high frequency and method for manufacturing magnetic material for high frequency
JP2003124016A (en) Magnetic material for noise countermeasure and its manufacturing method