JP2000091783A - Laminated wide-band wave absorber - Google Patents

Laminated wide-band wave absorber

Info

Publication number
JP2000091783A
JP2000091783A JP10261529A JP26152998A JP2000091783A JP 2000091783 A JP2000091783 A JP 2000091783A JP 10261529 A JP10261529 A JP 10261529A JP 26152998 A JP26152998 A JP 26152998A JP 2000091783 A JP2000091783 A JP 2000091783A
Authority
JP
Japan
Prior art keywords
radio wave
thickness
layer
laminated
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10261529A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Moriyama
義幸 森山
Toshiyuki Tamakai
俊之 玉飼
Kyozo Ogawa
共三 小川
Shunichi Nishiyama
俊一 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP10261529A priority Critical patent/JP2000091783A/en
Publication of JP2000091783A publication Critical patent/JP2000091783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To make thin an absorber, make it flexible, and absorb an electromagnetic wave in a wide frequency range of a quasi-microwave band and quasi- millimeter wave band by sequentially laminating an electronic wave reflection layer, a wave absorption layer where metal magnetic material powder is flat, and an electronic wave absorption layer where the metal magnetic material powder is granular in one piece. SOLUTION: A carbon fiber with a fiber length of approximately 2 mm is dispersed into chloroprene rubber by 30 wt.% for forming into a sheet with a thickness of 0.5 mm, thus forming a wave reflection layer 1. Then, flat powder made of nano-crystallization alloy being made of Fe-Cu-Nb-Si-B family is dispersed into the chloroprene rubber by 78 wt.% and is formed into a sheet with a thickness of 0.5 mm, thus forming a wave absorption layer 2. Then, carbonyl iron alloy granular powder is dispersed into the chloroprene rubber by 73 wt.% for forming into a sheet with a thickness of 0.5 mm, thus forming a wave absorption layer 3. These three kinds of sheets are successively laminated in one piece, thus forming a lamination-type wide-band wave absorber with an entire thickness of 1.5 mm and hence absorbing electromagnetic waves in a wide frequency range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、準マイクロ波帯及
び準ミリ波帯の電磁波を吸収する積層型広帯域電波吸収
体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated broadband radio wave absorber for absorbing quasi-microwave and quasi-millimeter-wave electromagnetic waves.

【0002】[0002]

【従来の技術】近年のデジタル機器の高度化、携帯電話
の飛躍的な普及に見られる情報・通信技術の進歩や、コ
ンピュータのCPUの高周波化及び高速無線LANの普
及などにともない、これらの機器から発生する電磁波に
よって、相互干渉や機器の誤作動などの電磁波障害とい
う問題が生じている。この対策として、これらの不要電
磁波を吸収する電波吸収体が求められ、準マイクロ波帯
及び準ミリ波帯の電磁波吸収体として、フェライト焼結
体の粉砕粉をゴムやプラスチックなどの樹脂と混合しシ
ート化したものに金属メッシュ材や格子状金属部材等の
金属製の電磁波反射層を貼り合わせたものが提案されて
いる。
2. Description of the Related Art In recent years, with the advancement of digital devices, the advancement of information and communication technology seen in the rapid spread of mobile phones, the use of higher frequency CPUs in computers, and the spread of high-speed wireless LANs, these devices have been developed. The problem of electromagnetic interference such as mutual interference and malfunction of equipment has arisen due to the electromagnetic waves generated from. As a countermeasure, a radio wave absorber that absorbs these unnecessary electromagnetic waves is required, and as an electromagnetic wave absorber in the quasi-microwave band and quasi-millimeter wave band, powder of sintered ferrite is mixed with a resin such as rubber or plastic. There has been proposed a sheet formed by attaching a metal electromagnetic wave reflection layer such as a metal mesh material or a lattice-shaped metal member to a sheet.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来の電
波吸収体では、フェライト焼結体の粉砕粉と樹脂の混合
量を調節したり、電波吸収体の厚さを調節し、空間イン
ピーダンスと電波吸収体とのインピーダンスを整合させ
ることで、目的とする特定の周波数帯域で大きな吸収が
得られるものの、準マイクロ波帯から準ミリ波帯域のよ
うに大きく離れた周波数帯域の何れをも一様に吸収する
ことはできない。
However, in the conventional radio wave absorber, the mixing amount of the pulverized powder of the ferrite sintered body and the resin or the thickness of the radio wave absorber is adjusted, so that the spatial impedance and the radio wave absorber are adjusted. By matching the impedances of the quasi-microwave band and the quasi-microwave band, it is possible to obtain a large absorption in the specific frequency band of interest. It is not possible.

【0004】また、フェライト焼結体の粉砕粉を混合し
た樹脂で大きな吸収を得る為には、少なくとも厚さを4
mm以上とせざるを得ず、小型かつ軽量化を要求される
電子機器には到底用いることは出来ない。また、建材と
して使用する場合であっても重量が重く、柔軟性が無い
ため壁や天井等に使用する場合には取付け作業性が著し
く悪く、取扱性に劣るものであった。
In order to obtain a large absorption by a resin mixed with a ground powder of a ferrite sintered body, the thickness must be at least 4 mm.
mm or more, and cannot be used at all for electronic devices that require small size and light weight. Further, even when used as a building material, it is heavy and inflexible, so that when it is used for a wall or a ceiling, the mounting workability is extremely poor, and the handleability is poor.

【0005】本発明は上述の問題点を解決するためにな
されたもので、薄くて可撓性が有り、準マイクロ波帯及
び準ミリ波帯の広い周波数範囲で電磁波を吸収する積層
型広帯域電波吸収体を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is a laminated type broadband radio wave which is thin and flexible and absorbs electromagnetic waves in a wide frequency range of a quasi-microwave band and a quasi-millimeter wave band. It is intended to provide an absorber.

【0006】[0006]

【課題を解決するための手段】すなわち第1の発明は、
導電性を有する可撓性樹脂からなる電波反射層と、可撓
性樹脂に金属磁性体粉を分散した複数の電波吸収層とを
有し、前記電波反射層と前記金属磁性体粉が扁平形状粉
の電波吸収層と前記金属磁性体粉が粒形状粉の電波吸収
層とを順次積層し一体化してなる積層型広帯域電磁波吸
収体である。
Means for Solving the Problems That is, the first invention is:
It has a radio wave reflection layer made of a flexible resin having conductivity, and a plurality of radio wave absorption layers in which a metal magnetic substance powder is dispersed in the flexible resin, wherein the radio wave reflection layer and the metal magnetic substance powder have a flat shape. This is a laminated broadband electromagnetic wave absorber obtained by sequentially laminating and integrating a radio wave absorption layer of powder and a radio wave absorption layer of the metal magnetic powder in the form of particles.

【0007】第2の発明は、導電性を有する可撓性樹脂
からなる電波反射層と、可撓性樹脂に金属磁性体粉を分
散したインピーダンス整合周波数の異なる複数の電波吸
収層とを順次積層し一体化した積層型広帯域電波吸収体
であって、複数の電波吸収層はインピーダンス整合周波
数の低い順に積層してなる積層型広帯域電波吸収体であ
る。
According to a second aspect of the present invention, a radio wave reflecting layer made of a conductive flexible resin and a plurality of radio wave absorbing layers having different impedance matching frequencies in which a metallic magnetic powder is dispersed in the flexible resin are sequentially laminated. The integrated broadband radio wave absorber is a laminated broadband radio wave absorber formed by laminating a plurality of radio wave absorbing layers in ascending order of impedance matching frequency.

【0008】第1および第2の発明において、前記電波
吸収層における金属磁性体粉の分散量が65〜92重量
%で、前記電波反射層と電波吸収層の一層当たりの厚さ
を0.2〜1.2mmとし、積層した全体の厚さを0.
6〜2.5mmとすることが望ましい。
In the first and second inventions, the dispersion amount of the metallic magnetic powder in the radio wave absorption layer is 65 to 92% by weight, and the thickness of one layer of the radio wave reflection layer and the radio wave absorption layer is 0.2%. To 1.2 mm, and the total thickness of the laminated
It is desirable to set it to 6 to 2.5 mm.

【0009】[0009]

【発明の実施の形態】本発明に係る積層型広帯域電波吸
収体を図1を用いて説明する。図1は本発明の一実施例
に係る積層型広帯域電波吸収体の断面図である。本発明
に係る積層型広帯域電波吸収体は、可撓性樹脂に導電性
を有する繊維状の材料を分散した電波反射層1と、可撓
性樹脂に金属磁性体扁平形状粉を分散した電波吸収層2
と、可撓性樹脂に金属磁性体粒形状粉を分散した電波吸
収層3とを順次積層し熱圧着して構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A laminated broadband radio wave absorber according to the present invention will be described with reference to FIG. FIG. 1 is a sectional view of a laminated broadband radio wave absorber according to one embodiment of the present invention. The laminated broadband radio wave absorber according to the present invention includes a radio wave reflection layer 1 in which a fibrous material having conductivity is dispersed in a flexible resin, and a radio wave absorption layer in which a flat metal powder is dispersed in a flexible resin. Layer 2
And a radio wave absorbing layer 3 in which a metal magnetic material granular powder is dispersed in a flexible resin is sequentially laminated and thermocompression-bonded.

【0010】前記電波反射層1に分散する導電性を有す
る材料は例えばカーボン繊維や金属繊維であって、これ
を可撓性樹脂中に分散させシート状に成形する。電波反
射層1は面抵抗値を100kΩ□以下とするのが望まし
い。
The conductive material dispersed in the radio wave reflection layer 1 is, for example, carbon fiber or metal fiber, which is dispersed in a flexible resin and formed into a sheet. It is desirable that the radio wave reflection layer 1 has a sheet resistance value of 100 kΩ □ or less.

【0011】前記電波吸収層2に分散する金属磁性体扁
平形状粉は、比重が6.0以上の金属で例えばFe−C
u−Nb−Si−B系からなるナノ結晶化合金から水ア
トマイズ法により粒形状粉をアトライタにて摩砕するこ
とにより製造した扁平形状粉であって、これを可撓性樹
脂中に分散させシート状に成形する。金属磁性体扁平形
状粉としてカルボニル鉄合金、アモルファス合金、Fe
−Si系合金、モリブデンパーマロイ、スーパーマロイ
等の扁平形状粉を用いてもよい。またこれらの金属磁性
体扁平形状粉の表面は、酸化防止剤が施されていること
が好ましい。電波吸収層2の電磁気特性は1GHzにお
いて、μ’(複素透磁率の実数部)≧5かつμ”(複素
透磁率の虚数部)≧3かつε’(複素誘電率の実数部)
≧20かつε”(複素誘電率の虚数部)≧0.5である
のが望ましい。
The flat metal powder dispersed in the electromagnetic wave absorbing layer 2 is a metal having a specific gravity of 6.0 or more, for example, Fe--C
A flat powder produced by milling a granular powder with an attritor by a water atomizing method from a nano-crystallized alloy comprising a u-Nb-Si-B system, and dispersing this in a flexible resin. Form into a sheet. Carbonyl iron alloy, amorphous alloy, Fe
A flat-shaped powder such as a Si-based alloy, molybdenum permalloy, or supermalloy may be used. Further, it is preferable that an antioxidant is applied to the surface of the metal magnetic substance flat powder. The electromagnetic characteristics of the electromagnetic wave absorbing layer 2 at 1 GHz are μ ′ (real part of complex magnetic permeability) ≧ 5 and μ ″ (imaginary part of complex magnetic permeability) ≧ 3 and ε ′ (real part of complex dielectric constant).
It is desirable that ≧ 20 and ε ″ (imaginary part of complex permittivity) ≧ 0.5.

【0012】前記電波吸収層3に分散する金属磁性体粒
形状粉は、比重が6.0以上の金属で例えばカルボニル
鉄粉の粒形状粉であって、これを可撓性樹脂中に分散さ
せシート状に成形する。金属磁性体粒形状粉として、F
e−Cu−Nb−Si−B系からなるナノ結晶化合金、
アモルファス合金、Fe−Si系合金、モリブデンパー
マロイ、スーパーマロイ等の粒形状粉を用いてもよい。
またこれらの金属磁性体扁平形状粉の表面は、酸化防止
剤が施されていることが好ましい。電波吸収層3の電磁
気特性は5GHzにおいて、μ’(複素透磁率の実数
部)≧1.2かつμ”(複素透磁率の虚数部)≧0.5
かつε’(複素誘電率の実数部)≧5かつε”(複素誘
電率の虚数部)≧0.1であるのが望ましい。
The metal magnetic powder in the form of a metal having a specific gravity of 6.0 or more, such as carbonyl iron powder, is dispersed in the flexible resin. Form into a sheet. As magnetic metal powder, F
a nano-crystallized alloy composed of e-Cu-Nb-Si-B,
Granular powders such as amorphous alloys, Fe-Si alloys, molybdenum permalloy, and supermalloy may be used.
Further, it is preferable that an antioxidant is applied to the surface of the metal magnetic substance flat powder. The electromagnetic characteristics of the electromagnetic wave absorbing layer 3 at 5 GHz are μ ′ (real part of complex magnetic permeability) ≧ 1.2 and μ ″ (imaginary part of complex magnetic permeability) ≧ 0.5
It is desirable that ε ′ (real part of complex permittivity) ≧ 5 and ε ″ (imaginary part of complex permittivity) ≧ 0.1.

【0013】また前記可撓性樹脂は、有機物で柔軟性が
あり、比重が1.5以下であり、耐候性を有する樹脂
で、例えばクロロプレンゴム、ブチルゴム、ウレタンゴ
ム、シリコン樹脂、塩化ビニル樹脂、フェノール樹脂等
である。
[0013] The flexible resin is an organic material which is flexible, has a specific gravity of 1.5 or less, and has weather resistance, such as chloroprene rubber, butyl rubber, urethane rubber, silicone resin, vinyl chloride resin, and the like. Phenol resin and the like.

【0014】電波吸収層2、3の金属磁性体粉の分散量
は65〜92重量%が好ましい。65重量%未満である
と吸収性能が低下し、92重量%を超えると材料代が高
価になるばかりでなく、重量が重く、柔軟性、耐久性等
が低下し実用上好ましくない。より好ましい分散量は7
0〜88重量%である。
The amount of dispersion of the metallic magnetic powder in the radio wave absorbing layers 2 and 3 is preferably 65 to 92% by weight. If it is less than 65% by weight, the absorption performance is reduced, and if it exceeds 92% by weight, not only is the material cost high, but also the weight is heavy, and the flexibility and durability are reduced, which is not practically preferable. A more preferred dispersion amount is 7
0 to 88% by weight.

【0015】電波反射層1、電波吸収層2、3の層厚さ
は、それぞれ0.2〜1.2mmが好ましい。0.2m
m未満であると、吸収性能が低下し、1.2mmを超え
ると積層した場合の材料代が高価になるばかりでなく、
重量が重く、柔軟性が低下し実用上好ましくない。より
好ましい厚さは0.3〜1.0mmである。また積層し
た全体の厚さは0.6〜2.5mmとすることが好まし
い。0.6mm未満であると、吸収性能が低下し、2.
5mmを超えると積層した場合の材料代が高価になるば
かりでなく、重量が重く、柔軟性が低下し実用上好まし
くない。より好ましい全体の厚さは0.8〜2.2mm
である。
The thickness of each of the radio wave reflection layer 1 and the radio wave absorption layers 2 and 3 is preferably 0.2 to 1.2 mm. 0.2m
If it is less than m, the absorption performance decreases, and if it exceeds 1.2 mm, not only is the material cost in the case of lamination increased, but also
The weight is heavy, and the flexibility is lowered, which is not preferable for practical use. A more preferred thickness is 0.3 to 1.0 mm. The total thickness of the laminated layers is preferably 0.6 to 2.5 mm. If it is less than 0.6 mm, the absorption performance is reduced, and
When the thickness exceeds 5 mm, not only is the material cost when laminated is high, but also the weight is heavy and the flexibility is reduced, which is not preferable in practical use. A more preferable total thickness is 0.8 to 2.2 mm.
It is.

【0016】[0016]

【実施例】(実施例1)繊維長約2mmのカーボン繊維
をクロロプレンゴム中に30重量%分散させ、0.5m
mの厚さにシート化し電波反射層1を形成した。次に、
Fe−Cu−Nb−Si−B系からなるナノ結晶化合金
の扁平形状粉をクロロプレンゴム中に78重量%分散さ
せ、0.5mmの厚さにシート化し電波吸収層2を形成
した。次に、カルボニル鉄合金粒形状粉を、クロロプレ
ンゴム中に73重量%分散させ、0.5mmの厚さにシ
ート化し電波吸収層3を形成した。これら3種類のシー
トを順次積層し一体化することにより全体の厚さが1.
5mmの積層型広帯域電波吸収体を形成した。この積層
型広帯域電波吸収体の構造断面図を図1に示す。また、
この積層型広帯域電波吸収体の電波吸収性能を評価した
結果を図6に示す。1.3〜20GHzの広い周波数範
囲で70%以上の高い吸収率が得られた。
(Example 1) Carbon fiber having a fiber length of about 2 mm was dispersed in chloroprene rubber at 30% by weight, and 0.5 m
The radio wave reflection layer 1 was formed into a sheet having a thickness of m. next,
A flat powder of a nanocrystallized alloy composed of an Fe-Cu-Nb-Si-B system was dispersed in chloroprene rubber at 78% by weight, and a sheet having a thickness of 0.5 mm was formed to form a radio wave absorbing layer 2. Next, the carbonyl iron alloy granular powder was dispersed in chloroprene rubber by 73% by weight and sheeted to a thickness of 0.5 mm to form the radio wave absorbing layer 3. By sequentially laminating and integrating these three types of sheets, the overall thickness becomes 1.
A 5-mm laminated broadband radio wave absorber was formed. FIG. 1 shows a cross-sectional view of the structure of the laminated type broadband radio wave absorber. Also,
FIG. 6 shows the result of evaluating the radio wave absorption performance of this laminated broadband radio wave absorber. A high absorption rate of 70% or more was obtained in a wide frequency range of 1.3 to 20 GHz.

【0017】(実施例2)繊維長約2mmのカーボン繊
維をクロロプレンゴム中に40重量%分散させ、0.4
mmの厚さにシート化し電波反射層1を形成した。次
に、Fe−Cu−Nb−Si−B系からなるナノ結晶化
合金の扁平形状粉をクロロプレンゴム中に73重量%分
散させ、0.5mmの厚さにシート化し電波吸収層2を
形成した。次に、Fe−Cu−Nb−Si−B系からな
るナノ結晶化合金の粒形状粉を、クロロプレンゴム中に
82重量%分散させ、0.5mmの厚さにシート化し電
波吸収層3を形成した。次に、カルボニル鉄合金粒形状
粉を、クロロプレンゴム中に70重量%分散させ、0.
4mmの厚さにシート化し電波吸収層3を形成した。こ
れら4種類のシートを順次積層し一体化することにより
全体の厚さが1.8mmの積層型広帯域電波吸収体を形
成した。この積層型広帯域電波吸収体の構造断面図を図
2に示す。また、この積層型広帯域電波吸収体の電波吸
収性能を評価した結果を図7に示す。0.5〜10GH
zの広い周波数範囲で70%以上の高い吸収率が得られ
た。
(Example 2) Carbon fiber having a fiber length of about 2 mm was dispersed in chloroprene rubber by 40% by weight,
The radio wave reflection layer 1 was formed into a sheet having a thickness of 1 mm. Next, a flat powder of a nano-crystallized alloy composed of an Fe-Cu-Nb-Si-B system was dispersed in chloroprene rubber by 73% by weight and sheeted to a thickness of 0.5 mm to form a radio wave absorbing layer 2. . Next, 82% by weight of Fe-Cu-Nb-Si-B nanocrystalline alloy powder was dispersed in chloroprene rubber and sheeted to a thickness of 0.5 mm to form a radio wave absorbing layer 3. did. Next, 70% by weight of the carbonyl iron alloy granular powder was dispersed in chloroprene rubber.
The sheet was formed into a sheet having a thickness of 4 mm, and the radio wave absorbing layer 3 was formed. These four types of sheets were sequentially laminated and integrated to form a laminated broadband electromagnetic absorber having a total thickness of 1.8 mm. FIG. 2 shows a cross-sectional view of the structure of the laminated type broadband radio wave absorber. FIG. 7 shows the results of evaluating the radio wave absorption performance of the laminated broadband radio wave absorber. 0.5-10GH
A high absorption rate of 70% or more was obtained in a wide frequency range of z.

【0018】(実施例3)繊維長約2mmのカーボン繊
維をシリコンゴム中に40重量%分散させ、0.4mm
の厚さにシート化し電波反射層1を形成した。次に、ア
モルファス合金の扁平形状粉をシリコンゴム中に78重
量%分散させ、0.4mmの厚さにシート化し電波吸収
層2を形成した。次に、モリブデンパーマロイ合金の扁
平形状粉を、シリコンゴム中に86重量%分散させ、
0.4mmの厚さにシート化し電波吸収層2を形成し
た。次に、カルボニル鉄合金粒形状粉を、シリコンゴム
中に80重量%分散させ、0.6mmの厚さにシート化
し電波吸収層3を形成した。これら4種類のシートを順
次積層し一体化することにより全体の厚さが1.8mm
の積層型広帯域電波吸収体を形成した。この積層型広帯
域電波吸収体の構造断面図を図3に示す。また、この積
層型広帯域電波吸収体の電波吸収性能を評価した結果を
図8に示す。0.7〜30GHzの広い周波数範囲で7
0%以上の高い吸収率が得られた。
(Example 3) A carbon fiber having a fiber length of about 2 mm was dispersed at 40% by weight in
To form a sheet having a thickness of 1 mm. Next, the flat powder of the amorphous alloy was dispersed in silicon rubber at 78% by weight and sheeted to a thickness of 0.4 mm to form the radio wave absorbing layer 2. Next, a flat powder of molybdenum permalloy is dispersed in silicon rubber by 86% by weight,
The electromagnetic wave absorbing layer 2 was formed into a sheet having a thickness of 0.4 mm. Next, the carbonyl iron alloy granular powder was dispersed in silicon rubber at 80% by weight and sheeted to a thickness of 0.6 mm to form the radio wave absorbing layer 3. The total thickness is 1.8 mm by sequentially laminating and integrating these four types of sheets.
Was formed. FIG. 3 shows a cross-sectional view of the structure of the laminated type broadband radio wave absorber. FIG. 8 shows the results of evaluating the radio wave absorption performance of the laminated type broadband radio wave absorber. 7 in a wide frequency range of 0.7 to 30 GHz
A high absorption of 0% or more was obtained.

【0019】(比較例1)実施例1で形成した3種類の
シートを、電波反射層1、電波吸収層3、電波吸収層2
の順に積層して積層電波吸収体を作製した。この積層電
波吸収体の断面図を図4に示す。また、この積層シート
の電波吸収性能を評価した結果を図9に示す。70%以
上の高い吸収率が得られている周波数範囲は、実施例1
の構造での性能と比較し著しく狭帯域であった。
(Comparative Example 1) The three types of sheets formed in Example 1 were applied to a radio wave reflecting layer 1, a radio wave absorbing layer 3, and a radio wave absorbing layer 2.
In this order to produce a laminated electromagnetic wave absorber. FIG. 4 is a cross-sectional view of the laminated electromagnetic wave absorber. FIG. 9 shows the results of evaluating the radio wave absorption performance of this laminated sheet. The frequency range in which a high absorptance of 70% or more is obtained is described in Example 1.
The band was remarkably narrow compared to the performance of the structure.

【0020】(比較例2)繊維長約2mmのカーボン繊
維をクロロプレンゴム中に30重量%分散させ、0.5
mmの厚さにシート化し電波反射層1を形成した。次
に、Fe−Cu−Nb−Si−B系からなるナノ結晶化
合金の扁平形状粉をクロロプレンゴム中に78重量%分
散させ、1.0mmの厚さにシート化し電波吸収層2を
形成した。これら2種類のシートを積層し一体化するこ
とにより全体の厚さが1.5mmの積層電波吸収体を形
成した。この積層電波吸収体の構造断面図を図5に示
す。また、この積層電波吸収体の電波吸収性能を評価し
た結果を図10に示す。実施例1と同じ厚さでありなが
ら、70%以上の高い吸収率が得られている周波数範囲
は、実施例1の構造での性能と比較し、かなり狭くなっ
た。
Comparative Example 2 Carbon fibers having a fiber length of about 2 mm were dispersed in chloroprene rubber at 30% by weight,
The radio wave reflection layer 1 was formed into a sheet having a thickness of 1 mm. Next, a flat powder of a nano-crystallized alloy composed of an Fe-Cu-Nb-Si-B system was dispersed in chloroprene rubber at 78% by weight, and a sheet having a thickness of 1.0 mm was formed to form the radio wave absorbing layer 2. . By laminating and integrating these two types of sheets, a laminated electromagnetic wave absorber having an overall thickness of 1.5 mm was formed. FIG. 5 shows a sectional view of the structure of the laminated electromagnetic wave absorber. FIG. 10 shows the results of evaluating the radio wave absorption performance of the laminated radio wave absorber. The frequency range in which a high absorptance of 70% or more was obtained even though the thickness was the same as that of Example 1 was considerably narrower than the performance of the structure of Example 1.

【0021】[0021]

【発明の効果】本発明の積層型広帯域電波吸収体は、従
来のものに比べ薄くて柔軟性が有り、準マイクロ波帯及
び準ミリ波帯の広い周波数範囲で電磁波を吸収すること
が可能である。
The laminated type broadband radio wave absorber of the present invention is thinner and more flexible than the conventional one, and can absorb electromagnetic waves in a wide frequency range of the quasi-microwave band and the quasi-millimeter wave band. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係る積層型広帯域電波吸収
体の断面図である。
FIG. 1 is a sectional view of a laminated broadband radio wave absorber according to Embodiment 1 of the present invention.

【図2】本発明の実施例2に係る積層型広帯域電波吸収
体の断面図である。
FIG. 2 is a sectional view of a laminated broadband radio wave absorber according to Embodiment 2 of the present invention.

【図3】本発明の実施例3に係るその他の積層型広帯域
電波吸収体の断面図である。
FIG. 3 is a sectional view of another laminated broadband radio wave absorber according to Embodiment 3 of the present invention.

【図4】比較例1の断面図である。FIG. 4 is a sectional view of Comparative Example 1.

【図5】比較例2の断面図である。FIG. 5 is a sectional view of Comparative Example 2.

【図6】本発明に係る実施例1の電波吸収性能評価結果
を示す図である。
FIG. 6 is a diagram showing a result of evaluating radio wave absorption performance of Example 1 according to the present invention.

【図7】本発明に係る実施例2の電波吸収性能評価結果
を示す図である。
FIG. 7 is a diagram showing a result of evaluating radio wave absorption performance of Example 2 according to the present invention.

【図8】本発明に係る実施例3の電波吸収性能評価結果
を示す図である。
FIG. 8 is a diagram showing a result of evaluating radio wave absorption performance of Example 3 according to the present invention.

【図9】比較例1の電波吸収性能評価結果を示す図であ
る。
FIG. 9 is a diagram showing the results of evaluation of radio wave absorption performance of Comparative Example 1.

【図10】比較例2の電波吸収性能評価結果を示す図で
ある。
FIG. 10 is a view showing a result of evaluation of radio wave absorption performance of Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 電波反射層 2 電波吸収層 3 電波吸収層 1 Radio wave reflection layer 2 Radio wave absorption layer 3 Radio wave absorption layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 俊一 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社磁性材料研究所内 Fターム(参考) 5E321 AA41 BB25 BB32 BB34 BB44 GG05 GG12  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shunichi Nishiyama 5200 Sankashiri, Kumagaya-shi, Saitama F-term in the Magnetic Materials Research Laboratory, Hitachi Metals Co., Ltd. 5E321 AA41 BB25 BB32 BB34 BB44 GG05 GG12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導電性を有する可撓性樹脂からなる電波
反射層と、可撓性樹脂に金属磁性体粉を分散した複数の
電波吸収層とを有し、電波反射層と金属磁性体粉が扁平
形状粉の電波吸収層と金属磁性体粉が粒形状粉の電波吸
収層とを順次積層し一体化することを特徴とする積層型
広帯域電磁波吸収体。
1. A radio wave reflection layer comprising a conductive flexible resin, and a plurality of radio wave absorption layers in which a metal magnetic powder is dispersed in the flexible resin, wherein the radio wave reflection layer and the metal magnetic powder are provided. A laminated broadband electromagnetic wave absorber characterized in that a radio wave absorbing layer of flat powder and a radio wave absorbing layer of metal magnetic powder are sequentially laminated and integrated.
【請求項2】 導電性を有する可撓性樹脂からなる電波
反射層と、可撓性樹脂に金属磁性体粉を分散したインピ
ーダンス整合周波数の異なる複数の電波吸収層とを順次
積層し一体化した積層型広帯域電波吸収体であって、複
数の電波吸収層はインピーダンス整合周波数の低い順に
積層することを特徴とする積層型広帯域電波吸収体。
2. A radio wave reflecting layer made of a conductive flexible resin and a plurality of radio wave absorbing layers having different impedance matching frequencies in which a metallic magnetic powder is dispersed in the flexible resin are sequentially laminated and integrated. What is claimed is: 1. A multilayered broadband radio wave absorber, wherein a plurality of radio wave absorbing layers are stacked in ascending order of impedance matching frequency.
【請求項3】 前記電波吸収層における金属磁性体粉の
分散量が65〜92重量%であることを特徴とする請求
項1または2に記載の積層型広帯域電波吸収体。
3. The laminated broadband radio wave absorber according to claim 1, wherein the amount of dispersion of the metal magnetic substance powder in the radio wave absorption layer is 65 to 92% by weight.
【請求項4】 前記電波反射層と電波吸収層の一層当た
りの厚さを0.2〜1.2mmとし、積層した全体の厚
さを0.6〜2.5mmとすることを特徴とする請求項
1ないし3のいずれかに記載の積層型広帯域電波吸収
体。
4. The thickness of one layer of the radio wave reflection layer and the radio wave absorption layer is 0.2 to 1.2 mm, and the total thickness of the laminated layers is 0.6 to 2.5 mm. The multilayered broadband radio wave absorber according to any one of claims 1 to 3.
JP10261529A 1998-09-16 1998-09-16 Laminated wide-band wave absorber Pending JP2000091783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10261529A JP2000091783A (en) 1998-09-16 1998-09-16 Laminated wide-band wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10261529A JP2000091783A (en) 1998-09-16 1998-09-16 Laminated wide-band wave absorber

Publications (1)

Publication Number Publication Date
JP2000091783A true JP2000091783A (en) 2000-03-31

Family

ID=17363170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10261529A Pending JP2000091783A (en) 1998-09-16 1998-09-16 Laminated wide-band wave absorber

Country Status (1)

Country Link
JP (1) JP2000091783A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108718006A (en) * 2018-04-24 2018-10-30 西安理工大学 A kind of three wave band topology Meta Materials Terahertz wave absorbing devices
CN109219335A (en) * 2018-11-22 2019-01-15 昆山市中迪新材料技术有限公司 Wide-band and wave-absorbing piece and preparation method thereof
WO2020111159A1 (en) * 2018-11-27 2020-06-04 関西ペイント株式会社 Quasi-millimeter wave/millimeter wave band electric wave absorption sheet and quasi-millimeter wave/millimeter wave band electric wave absorption method
CN115674819A (en) * 2023-01-03 2023-02-03 湖南博翔新材料有限公司 Broadband wave-absorbing material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108718006A (en) * 2018-04-24 2018-10-30 西安理工大学 A kind of three wave band topology Meta Materials Terahertz wave absorbing devices
CN109219335A (en) * 2018-11-22 2019-01-15 昆山市中迪新材料技术有限公司 Wide-band and wave-absorbing piece and preparation method thereof
CN109219335B (en) * 2018-11-22 2024-04-30 江苏中迪新材料技术有限公司 Broadband wave absorbing plate and manufacturing method thereof
WO2020111159A1 (en) * 2018-11-27 2020-06-04 関西ペイント株式会社 Quasi-millimeter wave/millimeter wave band electric wave absorption sheet and quasi-millimeter wave/millimeter wave band electric wave absorption method
CN115674819A (en) * 2023-01-03 2023-02-03 湖南博翔新材料有限公司 Broadband wave-absorbing material and preparation method thereof

Similar Documents

Publication Publication Date Title
US20080053695A1 (en) Electromagnetic wave absorber and method of constructing the same
EP1274293A1 (en) Radio-wave absorber
US20110159317A1 (en) Flexible sheet with high magnetic permeability and fabrication method thereof
JP2000232296A (en) Electromagnetic wave absorber
KR20200015374A (en) Electromagnetic-wave-absorbing composite sheet
JP2009159588A (en) Antenna for cellular phone or personal computer
Shukoor et al. Compact polarisation insensitive wide angular stable triple band absorber for RF energy harvesting, RCS reduction, and sensor applications
Gaoui et al. Novel multilayer arrangement of conductive layers traps the electromagnetic interferences by multiple internal reflections at high frequency in the far field
KR101342660B1 (en) Shield film of electromagnetic wave
KR20030007398A (en) Radio wave absorber
CN100358402C (en) EMI answering part and CMI answering method
JP6674436B2 (en) Noise suppression sheet
JP2000091783A (en) Laminated wide-band wave absorber
JPH1126977A (en) Sheet for absorbing electromagnetic wave
JP2000232293A (en) Electromagnetic wave absorber
JP3079364B2 (en) Window glass with electromagnetic shielding performance
CN203105046U (en) Structure for inhibition of electromagnetic wave interference, and flexible printed circuit comprising the same
US11756714B2 (en) Composite magnetic material and method for manufacturing same
JP2000232297A (en) Electromagnetic wave absorber
JP2007059456A (en) Wave absorber
KR100712836B1 (en) Multi-layered film for shielding electromagnetic interference and circuit board including the same
Pratap et al. Structural design of radar absorber using glass fiber-epoxy composites loaded with BaU hexaferrite for defence applications
Tirkey et al. A paper based perfect electromagnetic wave absorber using conducting grid pattern
JP2000357893A (en) Electromagnetic wave shielding film and electromagnetic wave shielding paint
JP2003209387A (en) Electromagnetic wave absorber

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031219