JP2000232293A - Electromagnetic wave absorber - Google Patents

Electromagnetic wave absorber

Info

Publication number
JP2000232293A
JP2000232293A JP11034150A JP3415099A JP2000232293A JP 2000232293 A JP2000232293 A JP 2000232293A JP 11034150 A JP11034150 A JP 11034150A JP 3415099 A JP3415099 A JP 3415099A JP 2000232293 A JP2000232293 A JP 2000232293A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
molecular material
layer
wave absorber
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11034150A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Moriyama
義幸 森山
Toshiyuki Tamakai
俊之 玉飼
Kyozo Ogawa
共三 小川
Shunichi Nishiyama
俊一 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11034150A priority Critical patent/JP2000232293A/en
Publication of JP2000232293A publication Critical patent/JP2000232293A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic wave absorber, which absorbs electromagnetic waves in a specified wide-frequency range, by a method wherein the absorber is formed into a constitution, wherein electromagnetic wave reflective layers consisting of a flexible high-molecular material having a conductivity and electromagnetic wave absorbing layers, which consist of a flexible high-molecular material dispersed with metal magnetic metal powder and respectively have a plurality of pores, are laminated in order and the reflective layers and the absorbing layers are integrally formed. SOLUTION: 30 wt.% of a carbon fiber is dispersed in a flexible high-molecular material, such as chloroprene rubber, butyl rubber, urethane rubber, a silicone resin, a vinyl chloride resin and a phenol resin, the high-molecular material is formed into a sheet and an electromagnetic wave reflective layer 1 is formed. Then 78 wt.% of flatness-shaped powder consisting of an Fe-Cu-Nb-Si-B nano-crystalline alloy is dispersed in a flexible high-molecular material, the high-molecular material is formed into a sheet, an electromagnetic wave absorbing layer 2 is formed and a plurality of 2-mm diameter pores are irregularly provided in this layer 2. Moreover, a flexible high-molecular material is sheeted and a flexible high-molecular material layer 3 of a dielectric constant lower than 10 is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、準マイクロ波帯及
び準ミリ波帯の電磁波を吸収する電磁波吸収体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave absorber for absorbing electromagnetic waves in the quasi-microwave band and the quasi-millimeter wave band.

【0002】[0002]

【従来の技術】近年のデジタル機器の高度化、携帯電話
の飛躍的な普及に見られる情報・通信技術の進歩や、コ
ンピュータのCPUの高周波化及び高速無線LANの普
及などにともない、これらの機器から発生する電磁波に
よって、相互干渉や機器の誤作動などの電磁波障害とい
う問題が生じている。この対策として、これらの不要電
磁波を吸収する電磁波吸収体が求められ、準マイクロ波
帯及び準ミリ波帯の電磁波吸収体として、フェライト焼
結体の粉砕粉をゴムやプラスチックなどの樹脂と混合し
シート化したものに金属メッシュ材や格子状金属部材等
の金属製の電磁波反射層を貼り合わせた電磁波吸収体が
提案されている。
2. Description of the Related Art In recent years, with the advancement of digital devices, the advancement of information and communication technology seen in the rapid spread of mobile phones, the use of higher frequency CPUs in computers, and the spread of high-speed wireless LANs, these devices have been developed. The problem of electromagnetic interference such as mutual interference and malfunction of equipment has arisen due to the electromagnetic waves generated from. As a countermeasure, an electromagnetic wave absorber that absorbs these unnecessary electromagnetic waves is required, and as an electromagnetic wave absorber for the quasi-microwave band and the quasi-millimeter wave band, a powder of sintered ferrite is mixed with a resin such as rubber or plastic. An electromagnetic wave absorber in which a sheet made of a metal and an electromagnetic wave reflection layer made of a metal such as a metal mesh material or a lattice-shaped metal member are bonded has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来の電
磁波吸収体では、フェライト焼結体の粉砕粉と樹脂の混
合量を調節したり、電磁波吸収体の厚さを調節し、空間
インピーダンスと電磁波吸収体とのインピーダンスを整
合させることで、目的とする特定の周波数帯域で大きな
吸収が得られるものの、準マイクロ波帯から準ミリ波帯
域のように大きく離れた周波数帯域の何れをも一様に吸
収することはできない。
However, in the conventional electromagnetic wave absorber, the mixing amount of the pulverized powder of the ferrite sintered body and the resin or the thickness of the electromagnetic wave absorber is adjusted, so that the space impedance and the electromagnetic wave absorber are adjusted. By matching the impedances of the quasi-microwave band and the quasi-microwave band, it is possible to obtain a large absorption in the specific frequency band of interest. It is not possible.

【0004】また、フェライト焼結体の粉砕粉を混合し
た樹脂で大きな吸収を得る為には、少なくとも一層あた
りの厚さを4mm以上とせざるを得ず、小型かつ軽量化
を要求される電子機器には到底用いることは出来ない。
また、建材として使用する場合であっても重量が重く、
柔軟性が無いため壁や天井等に使用する場合には取付け
作業性が著しく悪く、取扱性に劣るものであった。
Further, in order to obtain a large absorption by a resin mixed with a ground powder of a ferrite sintered body, the thickness of at least one layer must be at least 4 mm, and electronic equipment which is required to be small and lightweight. Can not be used at all.
Also, even when used as a building material, the weight is heavy,
Due to the lack of flexibility, when used on walls and ceilings, the mounting workability is extremely poor and the handling is inferior.

【0005】本発明は上述の問題点を解決するためにな
されたもので、薄くて可撓性が有り、準マイクロ波帯及
び準ミリ波帯の広い周波数範囲で電磁波を吸収する電磁
波吸収体を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide an electromagnetic wave absorber which is thin and flexible and absorbs electromagnetic waves in a wide frequency range of a quasi-microwave band and a quasi-millimeter wave band. The purpose is to provide.

【0006】[0006]

【問題を解決するための手段】すなわち本発明は導電性
を有する可撓性高分子材料からなる電磁波反射層と、可
撓性高分子材料に金属磁性体粉を分散した電磁波吸収層
とを順次積層し一体化した電磁波吸収体であって、前記
電磁波吸収層は複数の空孔を有する電磁波吸収体であ
る。
That is, according to the present invention, an electromagnetic wave reflection layer made of a conductive flexible polymer material and an electromagnetic wave absorption layer in which a metal magnetic powder is dispersed in the flexible polymer material are sequentially formed. An electromagnetic wave absorber laminated and integrated, wherein the electromagnetic wave absorbing layer is an electromagnetic wave absorber having a plurality of holes.

【0007】本発明において、空孔の体積割合を50%
から80%とするのが好ましい。また電磁波吸収層を空
孔の体積割合が異なる複数の層で構成してもよく、この
場合には空孔の体積割合が小なる層から順次積層するの
が好ましい。さらに電磁波吸収層側の外表面を誘電率が
10以下の可撓性高分子材料で略被覆することが望まし
く、この可撓性高分子材料に前記酸化物磁性体粉を分散
しても良い。
[0007] In the present invention, the volume ratio of the pores is 50%
To 80%. Further, the electromagnetic wave absorbing layer may be composed of a plurality of layers having different volume ratios of the holes, and in this case, it is preferable to sequentially stack the layers having the smaller volume ratio of the holes. Further, it is preferable that the outer surface on the side of the electromagnetic wave absorbing layer be substantially covered with a flexible polymer material having a dielectric constant of 10 or less, and the oxide magnetic powder may be dispersed in the flexible polymer material.

【0008】[0008]

【発明の実施の形態】本発明に係る電磁波吸収体を図1
を用いて説明する。図1は本発明の一実施例に係る電磁
波吸収体の断面図である。本発明に係る電磁波吸収体
は、可撓性高分子材料に導電性を有する繊維状の材料を
分散した電磁波反射層1と、可撓性高分子材料に金属磁
性体粉を分散した空孔を有する電磁波吸収層2と、誘電
率が10以下の可撓性高分子材料層3を順次積層し熱圧
着している。
FIG. 1 shows an electromagnetic wave absorber according to the present invention.
This will be described with reference to FIG. FIG. 1 is a sectional view of an electromagnetic wave absorber according to one embodiment of the present invention. The electromagnetic wave absorber according to the present invention comprises an electromagnetic wave reflecting layer 1 in which a conductive polymer fibrous material is dispersed in a flexible polymer material, and pores in which a metallic magnetic powder is dispersed in the flexible polymer material. The electromagnetic wave absorbing layer 2 and the flexible polymer material layer 3 having a dielectric constant of 10 or less are sequentially laminated and thermocompression-bonded.

【0009】前記可撓性高分子材料は、有機物で柔軟性
があり比重が1.5以下で耐候性を有し、例えばクロロ
プレンゴム、ブチルゴム、ウレタンゴム、シリコーン樹
脂、塩化ビニル樹脂、フェノール樹脂等であり、特に可
撓性高分子材料を電磁波吸収体の外装とする場合には、
誘電率が10以下のとするのが好ましい。誘電率が10
を超えると電磁波吸収性能の広帯域性が失われる為実用
上好ましくない。より好ましい誘電率は8以下である。
また外装に用いる可撓性高分子材料にFe−Ni−Zn
−Cu系、Fe−Mg−Zn−Cu系及びFe−Mn−
Zn系ソフトフェライト粉砕粉を分散させると、電磁波
の反射を低減でき好ましい。また可撓性高分子材料は、
電磁波吸収層2の金属磁性体粉が酸化されるのを防ぐ。
The above-mentioned flexible polymer material is an organic material which is flexible, has a specific gravity of 1.5 or less and has weather resistance, and includes, for example, chloroprene rubber, butyl rubber, urethane rubber, silicone resin, vinyl chloride resin, phenol resin and the like. In particular, when a flexible polymer material is used as the sheath of the electromagnetic wave absorber,
Preferably, the dielectric constant is 10 or less. Dielectric constant is 10
Exceeding this range is not preferable in practice because the broadband property of electromagnetic wave absorption performance is lost. A more preferable dielectric constant is 8 or less.
In addition, Fe—Ni—Zn is used as the flexible polymer material used for the exterior.
-Cu-based, Fe-Mg-Zn-Cu-based and Fe-Mn-
It is preferable to disperse the pulverized Zn-based soft ferrite powder because the reflection of electromagnetic waves can be reduced. The flexible polymer material is
The metal magnetic powder of the electromagnetic wave absorbing layer 2 is prevented from being oxidized.

【0010】前記電磁波反射層1に分散する導電性を有
する材料は例えばカーボン繊維や金属繊維であって、こ
れを可撓性高分子材料中に分散させシート状に成形す
る。電磁波反射層1は面抵抗値を1kΩ□以下とするの
が望ましい。
The conductive material dispersed in the electromagnetic wave reflecting layer 1 is, for example, carbon fiber or metal fiber, which is dispersed in a flexible polymer material and formed into a sheet. The electromagnetic wave reflecting layer 1 preferably has a sheet resistance of 1 kΩ □ or less.

【0011】前記電磁波吸収層2は、分散する金属磁性
体粉を、例えば比重が6.0以上の金属でFe−Cu−
Nb−Si−B系ナノ結晶化合金から水アトマイズ法に
より粒形状粉をアトライタにて摩砕することにより製造
した平均粒径が0.1〜50μmで平均厚さが3μm以
下の扁平形状粉やカルボニル鉄合金、アモルファス合
金、Fe−Si系合金、モリブデンパーマロイ、スーパ
ーマロイ等の扁平形状粉を用いて、これを可撓性高分子
材料中に分散させシート状に成形し、周波数1GHzに
おいて、μ’(複素透磁率の実数部)≧5かつμ”(複
素透磁率の虚数部)≧3かつε’(複素誘電率の実数
部)≧20かつε”(複素誘電率の虚数部)≧0.5と
するのが望ましい。扁平形状粉は磁気異方性が大きくな
り易く、300MHz以上であってもμ”(複素透磁率
の虚数部)が十分に大きくなるため、広い周波数で大き
な磁気損失を得ることが可能でとなる。他の金属磁性体
粉として、平均粒径が50μm以下のFe−Cu−Nb
−Si−B系ナノ結晶化合金、アモルファス合金、Fe
−Si系合金、モリブデンパーマロイ、スーパーマロイ
等の粒形状粉を用いてもよく、この場合、周波数5GH
zにおいて、μ’(複素透磁率の実数部)≧1.2かつ
μ”(複素透磁率の虚数部)≧0.5かつε’(複素誘
電率の実数部)≧5かつε”(複素誘電率の虚数部)≧
0.1であるのが望ましい。またこれらの金属磁性体粉
には酸化され易いため予め酸化防止剤で表面処理するの
が望ましい。
The electromagnetic wave absorbing layer 2 is formed by dispersing a metallic magnetic powder dispersed in Fe—Cu—metal with a specific gravity of, for example, 6.0 or more.
A flat powder having an average particle size of 0.1 to 50 μm and an average thickness of 3 μm or less produced by grinding a powder having a particle shape from an Nb—Si—B-based nanocrystallized alloy by a water atomization method using an attritor, Using flat shaped powder such as carbonyl iron alloy, amorphous alloy, Fe-Si alloy, molybdenum permalloy, supermalloy, etc., this is dispersed in a flexible polymer material and formed into a sheet, and at a frequency of 1 GHz, μ '(Real part of complex permeability) ≧ 5 and μ ″ (imaginary part of complex permittivity) ≧ 3 and ε ′ (real part of complex permittivity) ≧ 20 and ε ″ (imaginary part of complex permittivity) ≧ 0 .5 is desirable. The flat powder tends to have a large magnetic anisotropy, and has a sufficiently large μ ″ (the imaginary part of the complex magnetic permeability) even at 300 MHz or higher, so that a large magnetic loss can be obtained at a wide frequency. Fe—Cu—Nb having an average particle diameter of 50 μm or less as another metal magnetic powder.
-Si-B nanocrystalline alloy, amorphous alloy, Fe
Granular powder such as a Si-based alloy, molybdenum permalloy, and supermalloy may be used. In this case, the frequency is 5 GHz.
In z, μ ′ (real part of complex permeability) ≧ 1.2 and μ ″ (imaginary part of complex permeability) ≧ 0.5 and ε ′ (real part of complex permittivity) ≧ 5 and ε ″ (complex Imaginary part of permittivity) ≧
Preferably, it is 0.1. Further, since these metal magnetic powders are easily oxidized, it is desirable to perform a surface treatment with an antioxidant in advance.

【0012】電磁波吸収層2の金属磁性体粉の分散量は
65〜92重量%が好ましい。65重量%未満であると
吸収性能が低下し、92重量%を超えると材料代が高価
になるばかりでなく、重量が重く、柔軟性、耐久性等が
低下し実用上好ましくない。より好ましい分散量は70
〜88重量%である。
The amount of dispersion of the metallic magnetic powder in the electromagnetic wave absorbing layer 2 is preferably 65 to 92% by weight. If it is less than 65% by weight, the absorption performance is reduced, and if it exceeds 92% by weight, not only is the material cost high, but also the weight is heavy, and the flexibility and durability are reduced, which is not practically preferable. A more preferred dispersion amount is 70
~ 88% by weight.

【0013】電磁波吸収層2を、前記金属磁性体粉のい
ずれか一つを用いて形成した層のみで形成しても良い
が、他の金属磁性体粉と組み合わせて電磁波吸収層2を
構成すると電磁波吸収性能をより広帯域化出来る。さら
に電磁波反射層1側から金属磁性体粉が扁平形状粉の電
磁波吸収層と金属磁性体粉が粒形状粉の電磁波吸収層と
を順次積層して電磁波吸収層2を構成すれば、電磁波の
不要な反射を減少させることが出来より好ましい。また
インピーダンス整合周波数の異なる複数の層での電磁波
吸収層2を構成し、電磁波反射層1側からインピーダン
ス整合周波数が低い順に電磁波吸収層を形成すれば、電
磁波吸収性能を広帯域化出来るとともに電磁波吸収層で
の電磁波の不要な反射を防ぐことが出来好ましい。
The electromagnetic wave absorbing layer 2 may be formed of only a layer formed by using any one of the above-mentioned metal magnetic powders. However, when the electromagnetic wave absorbing layer 2 is constituted by combining with another metal magnetic powder. Electromagnetic wave absorption performance can be broadened. Further, if the electromagnetic wave absorbing layer 2 composed of the electromagnetic wave reflecting layer 1 and the electromagnetic wave absorbing layer of the flat metal powder and the electromagnetic wave absorbing layer of the metal magnetic powder in the form of granules are sequentially laminated to form the electromagnetic wave absorbing layer 2, unnecessary electromagnetic waves are generated. It is more preferable that the reflection can be reduced. If the electromagnetic wave absorbing layer 2 is composed of a plurality of layers having different impedance matching frequencies, and the electromagnetic wave absorbing layers are formed in ascending order of the impedance matching frequency from the electromagnetic wave reflecting layer 1, the electromagnetic wave absorbing performance can be broadened and the electromagnetic wave absorbing layer can be formed. This is preferable because unnecessary reflection of electromagnetic waves at the surface can be prevented.

【0014】前記電磁波吸収層2は空孔を有し、この空
孔は電磁波吸収層2の実効誘電率を低下させ電磁波の吸
収帯域を拡大する。空孔の電磁波吸収層2に占める体積
割合は50%から80%であることが好ましい。50%
未満であると広帯域の電磁波吸収性能を示さなくなり、
80%を超えると電磁波吸収性能そのものが低下する。
より好ましい空孔の電磁波吸収層2に占める体積割合は
55%から75%である。この空孔は例えば複数の打ち
抜きピンを有する金型で電磁波吸収層を打ち抜いて形成
する。空孔の形状は円形、矩形、楕円等特には限定され
ないが、空孔の大きさを0.5mmから50mm
するのが好ましい。また、電磁波吸収体の設置環境にも
よるが、環境温度変化が大きいと空孔の空気と可撓性高
分子材料との熱膨張差により膨れ等を生じる場合があ
り、これを防止するため前記空孔に誘電率5以下の誘電
体を充填するのが望ましい。誘電率が5を超えると空孔
を設けた効果が低減されるため好ましくない。
The electromagnetic wave absorbing layer 2 has holes, and the holes reduce the effective dielectric constant of the electromagnetic wave absorbing layer 2 and expand the electromagnetic wave absorption band. It is preferable that the volume ratio of the holes in the electromagnetic wave absorbing layer 2 is 50% to 80%. 50%
If it is less than, it will not show broadband electromagnetic wave absorption performance,
If it exceeds 80%, the electromagnetic wave absorption performance itself deteriorates.
A more preferable volume ratio of the holes in the electromagnetic wave absorbing layer 2 is 55% to 75%. The holes are formed by punching out the electromagnetic wave absorbing layer with a mold having a plurality of punching pins, for example. The shape of the hole is not particularly limited, such as a circle, a rectangle, and an ellipse, but it is preferable that the size of the hole be 0.5 mm 2 to 50 mm 2 . Also, depending on the installation environment of the electromagnetic wave absorber, if the environmental temperature change is large, swelling or the like may occur due to the difference in thermal expansion between the air in the pores and the flexible polymer material. It is desirable to fill the holes with a dielectric having a dielectric constant of 5 or less. If the dielectric constant exceeds 5, the effect of providing the holes is reduced, which is not preferable.

【0015】電磁波吸収層2の金属磁性体粉の分散量は
65〜92重量%が好ましい。65重量%未満であると
吸収性能が低下し、92重量%を超えると材料代が高価
になるばかりでなく、重量が重く、柔軟性、耐久性等が
低下し実用上好ましくない。より好ましい分散量は70
〜88重量%である。
The dispersion amount of the metallic magnetic powder in the electromagnetic wave absorbing layer 2 is preferably 65 to 92% by weight. If it is less than 65% by weight, the absorption performance is reduced, and if it exceeds 92% by weight, not only is the material cost high, but also the weight is heavy, and the flexibility and durability are reduced, which is not practically preferable. A more preferred dispersion amount is 70
~ 88% by weight.

【0016】電磁波反射層1、電磁波吸収層2の層厚さ
は、それぞれ0.2〜1.2mmが好ましい。0.2m
m未満であると、吸収性能が低下し、1.2mmを超え
ると積層した場合の材料代が高価になるばかりでなく、
重量が重く、柔軟性が低下し実用上好ましくない。より
好ましい厚さは0.3〜1.0mmである。また積層し
た全体の厚さは0.6〜2.5mmとすることが好まし
い。0.6mm未満であると、吸収性能が低下し、2.
5mmを超えると積層した場合の材料代が高価になるば
かりでなく、重量が重く、柔軟性が低下し実用上好まし
くない。より好ましい全体の厚さは0.8〜2.2mm
である。
The thickness of each of the electromagnetic wave reflecting layer 1 and the electromagnetic wave absorbing layer 2 is preferably 0.2 to 1.2 mm. 0.2m
If it is less than m, the absorption performance decreases, and if it exceeds 1.2 mm, not only is the material cost in the case of lamination increased, but also
The weight is heavy, and the flexibility is lowered, which is not preferable for practical use. A more preferred thickness is 0.3 to 1.0 mm. The total thickness of the laminated layers is preferably 0.6 to 2.5 mm. If it is less than 0.6 mm, the absorption performance is reduced, and
When the thickness exceeds 5 mm, not only is the material cost when laminated is high, but also the weight is heavy and the flexibility is reduced, which is not preferable in practical use. A more preferable total thickness is 0.8 to 2.2 mm.
It is.

【0017】可撓性高分子材料3の厚さは、0.1mm
〜0.5mmが好ましい。0.1mm未満であると、金
属磁性体粉の酸化防止効果が低下し、0.5mmを超え
ると電磁波の反射が大きくなり電磁波吸収性能が低下す
る為実用上好ましくない。より好ましい厚さは0.15
mmから0.4mmである。
The thickness of the flexible polymer material 3 is 0.1 mm
~ 0.5 mm is preferred. When the thickness is less than 0.1 mm, the effect of preventing the oxidation of the metal magnetic material powder is reduced. A more preferred thickness is 0.15
mm to 0.4 mm.

【0018】[0018]

【実施例】(実施例1)繊維長約2mmのカーボン繊維
をクロロプレンゴム中に30重量%分散させ、0.3m
mの厚さにシート化し電磁波反射層1を形成した。次
に、Fe−Cu−Nb−Si−B系ナノ結晶化合金の扁
平形状粉(平均粒径20μm、平均厚さ1μm)をクロ
ロプレンゴム中に78重量%分散させ、0.5mmの厚
さにシート化し電磁波吸収層2を形成した。この電磁波
吸収層2に、直径2mmの貫通穴を不規則に開けた。こ
の貫通穴の全体積はシート全体の体積の60%に相当す
る。さらに、クロロプレンゴムを0.3mmの厚さにシ
ート化し、誘電率が10以下の可撓性高分子材料層3を
形成した。この可撓性高分子材料層3の誘電率は3.4
であった。これら3種類のシートを順次積層し一体化す
ることにより全体の厚さが1.1mmの電磁波吸収体を
形成した。この電磁波吸収体の構造断面図を図1に、電
磁波吸収層部分の平面図を図2に示す。また、この電磁
波吸収体の電磁波吸収性能を評価した結果を図4に示
す。2〜15GHzの広い周波数範囲で50%以上の高
い吸収率が得られた。実施例1の比較例として、貫通穴
が無い電磁波吸収体の電磁波吸収性能を評価した結果を
図6に示す。50%以上の吸収率が得られる周波数範囲
は、1.5〜6GHzであり、実施例1の性能より狭帯
域であることがわかる。
EXAMPLES Example 1 A carbon fiber having a fiber length of about 2 mm was dispersed in chloroprene rubber at 30% by weight, and 0.3 m
The electromagnetic wave reflection layer 1 was formed into a sheet having a thickness of m. Next, a flat powder (average particle diameter: 20 μm, average thickness: 1 μm) of the Fe—Cu—Nb—Si—B-based nanocrystallized alloy is dispersed in chloroprene rubber by 78% by weight to a thickness of 0.5 mm. The sheet was formed into an electromagnetic wave absorbing layer 2. Through holes having a diameter of 2 mm were irregularly formed in the electromagnetic wave absorbing layer 2. The total volume of the through holes corresponds to 60% of the volume of the entire sheet. Further, a sheet of chloroprene rubber was formed to a thickness of 0.3 mm to form a flexible polymer material layer 3 having a dielectric constant of 10 or less. The dielectric constant of the flexible polymer material layer 3 is 3.4.
Met. An electromagnetic wave absorber having an overall thickness of 1.1 mm was formed by sequentially laminating and integrating these three types of sheets. FIG. 1 is a structural cross-sectional view of this electromagnetic wave absorber, and FIG. 2 is a plan view of the electromagnetic wave absorbing layer portion. FIG. 4 shows the results of evaluating the electromagnetic wave absorbing performance of this electromagnetic wave absorber. High absorption of 50% or more was obtained in a wide frequency range of 2 to 15 GHz. As a comparative example of Example 1, the result of evaluating the electromagnetic wave absorption performance of an electromagnetic wave absorber having no through hole is shown in FIG. The frequency range in which an absorptance of 50% or more can be obtained is 1.5 to 6 GHz, which indicates that the band is narrower than the performance of the first embodiment.

【0019】(実施例2)繊維長約2mmのカーボン繊
維をクロロプレンゴム中に40重量%分散させ、0.2
mmの厚さにシート化し反射層1を形成した。次に、F
e−Cu−Nb−Si−B系ナノ結晶化合金の扁平形状
粉(平均粒径20μm、平均厚さ1μm)をクロロプレ
ンゴム中に73重量%分散させ、0.5mmの厚さにシ
ート化し電磁波吸収層2aを形成した。この電磁波吸収
層2に、直径3.2mmの貫通穴を不規則に開けた。こ
の貫通穴の全面積はシート全体の面積の58%に相当す
る。次に、Fe−Cu−Nb−Si−B系ナノ結晶化合
金の粒形状粉(平均粒径20μm)を、クロロプレンゴ
ム中に82重量%分散させ、0.5mmの厚さにシート
化し電磁波吸収層2bを形成した。この電磁波吸収層2
に、直径6mmの貫通穴を不規則に開けた。この貫通穴
の全体積はシート全体の体積の65%に相当する。次
に、カルボニル鉄合金粒形状粉(平均粒径20μm)
を、クロロプレンゴム中に70重量%分散させ、0.4
mmの厚さにシート化し電磁波吸収層4を形成した。こ
の電磁波吸収層2に、直径4mmの貫通穴を不規則に開
けた。この貫通穴の全体積はシート全体の体積の72%
に相当する。さらに、クロロプレンゴムを0.2mmの
厚さにシート化し誘電率が10以下の可撓性高分子材料
層3を形成した。この可撓性高分子材料層3の誘電率は
3.4であった。これら5種類のシートを順次積層し一
体化することにより全体の厚さが1.8mmの電磁波吸
収体を形成した。この電磁波吸収体の構造断面図を図3
に示す。また、この電磁波吸収体の電磁波吸収性能を評
価した結果を図5に示す。0.7〜30GHzの広い周
波数範囲で70%以上の高い吸収率が得られた。実施例
2の比較例として、貫通穴が無い電磁波吸収体の電磁波
吸収性能を評価した結果を図7に示す。0.5〜10G
Hzの周波数範囲で50%以上の高い吸収率が得られて
いるが、実施例2の性能より狭帯域であることがわか
る。
(Example 2) Carbon fiber having a fiber length of about 2 mm was dispersed in chloroprene rubber by 40% by weight,
The reflective layer 1 was formed into a sheet having a thickness of 2 mm. Next, F
A flat powder of an e-Cu-Nb-Si-B-based nano-crystallized alloy (average particle size: 20 μm, average thickness: 1 μm) is dispersed in chloroprene rubber by 73% by weight to form a sheet having a thickness of 0.5 mm. The absorption layer 2a was formed. Through holes having a diameter of 3.2 mm were irregularly formed in the electromagnetic wave absorbing layer 2. The total area of this through hole corresponds to 58% of the area of the entire sheet. Next, 82% by weight of the Fe-Cu-Nb-Si-B nanocrystallized nanocrystalline alloy powder (average particle diameter: 20 µm) was dispersed in chloroprene rubber, and the sheet was formed into a sheet having a thickness of 0.5 mm to absorb electromagnetic waves. The layer 2b was formed. This electromagnetic wave absorbing layer 2
Then, a through-hole having a diameter of 6 mm was irregularly formed. The total volume of the through holes corresponds to 65% of the volume of the entire sheet. Next, carbonyl iron alloy granular powder (average particle diameter 20 μm)
Was dispersed in chloroprene rubber by 70% by weight,
The electromagnetic wave absorbing layer 4 was formed into a sheet having a thickness of 2 mm. Through holes having a diameter of 4 mm were irregularly formed in the electromagnetic wave absorbing layer 2. The total volume of this through hole is 72% of the total sheet volume
Is equivalent to Further, chloroprene rubber was sheeted to a thickness of 0.2 mm to form a flexible polymer material layer 3 having a dielectric constant of 10 or less. The dielectric constant of the flexible polymer material layer 3 was 3.4. These five types of sheets were sequentially laminated and integrated to form an electromagnetic wave absorber having a total thickness of 1.8 mm. FIG. 3 is a structural sectional view of the electromagnetic wave absorber.
Shown in FIG. 5 shows the results of evaluating the electromagnetic wave absorbing performance of this electromagnetic wave absorber. A high absorption rate of 70% or more was obtained in a wide frequency range of 0.7 to 30 GHz. As a comparative example of Example 2, the result of evaluating the electromagnetic wave absorption performance of an electromagnetic wave absorber having no through hole is shown in FIG. 0.5-10G
Although a high absorptance of 50% or more is obtained in the frequency range of Hz, it can be seen that the band is narrower than the performance of the second embodiment.

【0020】[0020]

【発明の効果】本発明の電磁波吸収体は、従来のものに
比べ薄くて柔軟性が有り、準マイクロ波帯及び準ミリ波
帯の広い周波数範囲で電磁波を吸収することが可能であ
る。
The electromagnetic wave absorber of the present invention is thinner and more flexible than conventional ones, and can absorb electromagnetic waves in a wide frequency range of the quasi-microwave band and the quasi-millimeter wave band.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係る電磁波吸収体の断面図
である。
FIG. 1 is a sectional view of an electromagnetic wave absorber according to a first embodiment of the present invention.

【図2】本発明の実施例1に係る電磁波吸収層の平面図
である。
FIG. 2 is a plan view of an electromagnetic wave absorbing layer according to Embodiment 1 of the present invention.

【図3】本発明の実施例2に係る電磁波吸収体の断面図
である。
FIG. 3 is a sectional view of an electromagnetic wave absorber according to a second embodiment of the present invention.

【図4】本発明の実施例1に係る電磁波吸収性能評価結
果を示す図である。
FIG. 4 is a diagram showing an evaluation result of electromagnetic wave absorption performance according to Example 1 of the present invention.

【図5】本発明の実施例2に係る電磁波吸収性能評価結
果を示す図である。
FIG. 5 is a diagram showing an evaluation result of electromagnetic wave absorption performance according to Example 2 of the present invention.

【図6】比較例の電磁波吸収性能評価結果を示す図であ
る。
FIG. 6 is a diagram showing results of evaluation of electromagnetic wave absorption performance of a comparative example.

【図7】その他の比較例の電磁波吸収性能評価結果を示
す図である。
FIG. 7 is a diagram showing results of evaluation of electromagnetic wave absorption performance of another comparative example.

【符号の説明】[Explanation of symbols]

1 電磁波反射層 2、2a、2b 電磁波吸収層 3 誘電率が10以下の可撓性高分子材料 4 空孔 REFERENCE SIGNS LIST 1 electromagnetic wave reflecting layer 2, 2 a, 2 b electromagnetic wave absorbing layer 3 flexible polymer material having a dielectric constant of 10 or less 4 vacancy

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 俊一 埼玉県熊谷市三ヶ尻5200番地日立金属株式 会社磁性材料研究所内 Fターム(参考) 5E321 AA41 BB25 BB32 BB44 BB51 GG11  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Shunichi Nishiyama 5200 Sankajiri, Kumagaya-shi, Saitama F-term in the Magnetic Materials Research Laboratory, Hitachi Metals Co., Ltd. 5E321 AA41 BB25 BB32 BB44 BB51 GG11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導電性を有する可撓性高分子材料からな
る電磁波反射層と、可撓性高分子材料に金属磁性体粉を
分散した電磁波吸収層とを順次積層し一体化した電磁波
吸収体であって、前記電磁波吸収層は複数の空孔を有す
ることを特徴とする電磁波吸収体。
An electromagnetic wave absorber in which an electromagnetic wave reflecting layer made of a conductive flexible polymer material and an electromagnetic wave absorbing layer in which a metal magnetic powder is dispersed in the flexible polymer material are sequentially laminated and integrated. The electromagnetic wave absorber, wherein the electromagnetic wave absorbing layer has a plurality of holes.
【請求項2】 電磁波吸収層は空孔の体積割合が異なる
複数の層を備え、空孔の体積割合が小なる層から順次積
層することを特徴とする請求項1に記載の電磁波吸収
体。
2. The electromagnetic wave absorber according to claim 1, wherein the electromagnetic wave absorbing layer includes a plurality of layers having different volume ratios of holes, and is sequentially stacked from a layer having a smaller volume ratio of holes.
【請求項3】 空孔の体積割合が50%から80%であ
ることを特徴とする請求項1又は2のいずれかに記載の
電磁波吸収体。
3. The electromagnetic wave absorber according to claim 1, wherein the volume ratio of the holes is 50% to 80%.
【請求項4】 前記電磁波吸収体の少なくとも電磁波吸
収層側の外表面を誘電率が10以下の可撓性高分子材料
で略被覆することを特徴とする請求項1ないし3のいず
れかに記載の電磁波吸収体。
4. The electromagnetic wave absorber according to claim 1, wherein at least an outer surface of the electromagnetic wave absorber on the side of the electromagnetic wave absorbing layer is substantially covered with a flexible polymer material having a dielectric constant of 10 or less. Electromagnetic wave absorber.
【請求項5】 誘電率が10以下の可撓性高分子材料に
酸化物磁性体粉を分散することを特徴とする請求項4に
記載の電磁波吸収体。
5. The electromagnetic wave absorber according to claim 4, wherein the oxide magnetic powder is dispersed in a flexible polymer material having a dielectric constant of 10 or less.
JP11034150A 1999-02-12 1999-02-12 Electromagnetic wave absorber Pending JP2000232293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11034150A JP2000232293A (en) 1999-02-12 1999-02-12 Electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11034150A JP2000232293A (en) 1999-02-12 1999-02-12 Electromagnetic wave absorber

Publications (1)

Publication Number Publication Date
JP2000232293A true JP2000232293A (en) 2000-08-22

Family

ID=12406183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11034150A Pending JP2000232293A (en) 1999-02-12 1999-02-12 Electromagnetic wave absorber

Country Status (1)

Country Link
JP (1) JP2000232293A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514428B2 (en) * 2000-04-11 2003-02-04 Shin-Etsu Chemical Co., Ltd. Electromagnetic wave absorbing, heat conductive silicone rubber compositions
JP2012169604A (en) * 2011-01-25 2012-09-06 Mitsubishi Electric Corp Electromagnetic shielding door
JP2015159228A (en) * 2014-02-25 2015-09-03 横浜ゴム株式会社 Electromagnetic wave absorber
CN110337235A (en) * 2019-07-23 2019-10-15 苏州盛达飞智能科技股份有限公司 Carbon fiber electrically magnetic shielding material
JP2020009975A (en) * 2018-07-11 2020-01-16 北川工業株式会社 Heat transfer composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514428B2 (en) * 2000-04-11 2003-02-04 Shin-Etsu Chemical Co., Ltd. Electromagnetic wave absorbing, heat conductive silicone rubber compositions
JP2012169604A (en) * 2011-01-25 2012-09-06 Mitsubishi Electric Corp Electromagnetic shielding door
JP2015159228A (en) * 2014-02-25 2015-09-03 横浜ゴム株式会社 Electromagnetic wave absorber
JP2020009975A (en) * 2018-07-11 2020-01-16 北川工業株式会社 Heat transfer composition
JP7264391B2 (en) 2018-07-11 2023-04-25 北川工業株式会社 Thermal conductive composition
CN110337235A (en) * 2019-07-23 2019-10-15 苏州盛达飞智能科技股份有限公司 Carbon fiber electrically magnetic shielding material

Similar Documents

Publication Publication Date Title
KR101173732B1 (en) Magnetic sheet and production method thereof
CN109862769A (en) A kind of absorbing material and preparation method thereof of ultra-thin ultra-wide spectrum
JP2000232296A (en) Electromagnetic wave absorber
JP4108677B2 (en) Electromagnetic wave absorber
JP4528334B2 (en) Electromagnetic wave absorber
KR100615009B1 (en) Electromagnetic Wave-Absorbing, Thermal- Conductive Sheet
JP2009159588A (en) Antenna for cellular phone or personal computer
KR20200015374A (en) Electromagnetic-wave-absorbing composite sheet
JP5140348B2 (en) Radio wave absorber, radio wave absorption panel structure, wireless communication improvement system
KR101342660B1 (en) Shield film of electromagnetic wave
JP2000232293A (en) Electromagnetic wave absorber
JP6674436B2 (en) Noise suppression sheet
KR101530624B1 (en) Multiple funtional antenna for near filed communication and method for manufacturing the same
JPH1126977A (en) Sheet for absorbing electromagnetic wave
CN115189142A (en) Electromagnetic metamaterial and preparation thereof
JP2000091783A (en) Laminated wide-band wave absorber
JP2008270793A (en) Electromagnetic wave absorber, building material, and electromagnetic absorption method
CN203876309U (en) Wave-absorbing heat-dissipating bi-functional compound device
JP2000232297A (en) Electromagnetic wave absorber
JP2000244167A (en) Electromagnetic-wave-disturbance preventive material
CN203105046U (en) Structure for inhibition of electromagnetic wave interference, and flexible printed circuit comprising the same
KR100712836B1 (en) Multi-layered film for shielding electromagnetic interference and circuit board including the same
JP6939551B2 (en) Ferrite laminate and noise suppression sheet
JP3159558B2 (en) Radio wave antireflective body and radio wave antireflection method
JP2007059456A (en) Wave absorber