WO2020111159A1 - Quasi-millimeter wave/millimeter wave band electric wave absorption sheet and quasi-millimeter wave/millimeter wave band electric wave absorption method - Google Patents

Quasi-millimeter wave/millimeter wave band electric wave absorption sheet and quasi-millimeter wave/millimeter wave band electric wave absorption method Download PDF

Info

Publication number
WO2020111159A1
WO2020111159A1 PCT/JP2019/046459 JP2019046459W WO2020111159A1 WO 2020111159 A1 WO2020111159 A1 WO 2020111159A1 JP 2019046459 W JP2019046459 W JP 2019046459W WO 2020111159 A1 WO2020111159 A1 WO 2020111159A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
wave absorption
layer
millimeter
quasi
Prior art date
Application number
PCT/JP2019/046459
Other languages
French (fr)
Japanese (ja)
Inventor
利昭 長野
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Priority to JP2020557805A priority Critical patent/JPWO2020111159A1/en
Publication of WO2020111159A1 publication Critical patent/WO2020111159A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a radio wave absorption sheet and a radio wave absorption method.
  • Radio waves are radiated from communication devices such as radios, televisions, and wireless communications, but in addition to this, radio waves are also radiated from electronic devices such as mobile phones and personal computers, which have rapidly increased due to recent advances in information technology. Therefore, as a method for avoiding malfunctions due to radio waves in electronic devices, communication devices, etc., a radio wave absorber (Electro Magnetic Absorber, EMA) that efficiently absorbs radio waves and converts the absorbed radio waves into heat energy. Is often installed near or far from the radio wave generation site.
  • EMA Electro Magnetic Absorber
  • An example of installing a radio wave absorber far away from a radio wave generation site is, for example, an automatic toll collection system (ETC) application on a highway.
  • ETC automatic toll collection system
  • ETC uses microwaves with a frequency of 5.8 GHz between the roadside device antenna and the vehicle-mounted device antenna provided at the tollgate to provide billing information. It is a system to exchange.
  • microwaves radiated from the antenna may be reflected on the roof of the tollgate, and unnecessary radio waves may leak from the adjacent ETC lane, causing communication problems.
  • a radio wave absorber is installed between the roof of the tollgate and the ETC lane to suppress communication abnormality.
  • Patent Document 1 As described above, the electromagnetic wave absorber is widely used, and various electromagnetic wave absorbers of various materials and shapes have been developed according to the purpose and application.
  • a pyramid type electromagnetic wave absorber is a type of electromagnetic wave absorber in which the energy of the electromagnetic wave is attenuated while the electromagnetic wave passes through the inside of the absorber.
  • Patent Document 2 discloses a radio wave in which a material obtained by kneading a conductive material such as carbon black or graphite with a foamable organic resin such as foamed polyethylene as a base material is molded into a shape in which a plurality of pyramids are connected. An absorber is described.
  • the electromagnetic wave absorber itself has a shape like a pyramid, the cross-sectional area of the electromagnetic wave absorber surface (direction of arrival of electromagnetic waves) can be reduced, and the reflection of incident electromagnetic waves on the surface can be suppressed, and the inside of the absorber can be suppressed. It is considered that the radio waves entering the inside of the absorber can be efficiently converted into thermal energy as the radio waves easily enter and the cross-sectional area of the absorber increases.
  • a laminated type electromagnetic wave absorber absorbs an electromagnetic wave by laminating an electromagnetic wave reflection layer and a plurality of electromagnetic wave absorption layers.
  • a metal powder and a bond are formed on the surface of a metal plate.
  • a radio wave absorber having a magnetic loss layer containing an agent is disclosed.
  • the conventional laminated wave absorber did not reach a sufficient level regarding the absorption frequency bandwidth of the millimeter wave band. For this reason, it is technically difficult to design a lightweight and flexible electromagnetic wave absorber that absorbs a wide range of millimeter waves and can be attached to a curved surface.
  • the present inventor can sufficiently absorb radio waves in the millimeter wave band by combining a plurality of radio wave absorption layers having a specific dielectric constant with respect to the radio wave reflection layer in Patent Document 4.
  • the radio wave absorbing sheet described in Patent Document 4 has a thicker film because the radio wave absorbing layer has a laminated structure, and further thinning has been desired.
  • the radio wave absorption sheet is designed by paying attention to radio waves in the millimeter wave band, and has poor radio wave absorption characteristics in the quasi-millimeter wave band.
  • Millimeter waves and quasi-millimeter waves are not clearly defined, but quasi-millimeter waves refer to radio waves of 20 GHz to 30 GHz (wavelength is 10 mm to 15 mm) and millimeter waves are 30 GHz to 300 GHz (wavelength is 1 mm to 10 mm). There are many.
  • a millimeter-wave radar is suitable for detecting collision objects in front of a vehicle as a collision prevention support radar, but quasi-millimeter waves are used for detecting collision objects around the vehicle on the rear or side of the vehicle. There is.
  • quasi-millimeter-wave radio waves are about to be used in the next-generation wireless communication system “5G” (5th generation mobile communication system: 5th Generation) that enables high-speed, large-capacity, connection of a large number of terminals, and the like.
  • the present invention has an object to provide a sheet-shaped electromagnetic wave absorber having excellent electromagnetic wave absorption performance at high frequencies, particularly in the quasi-millimeter wave band, and an electromagnetic wave absorption method using the same.
  • the present inventor as a result of diligent studies on the above-mentioned problems, paid attention to the film thickness, relative permeability and relative permittivity of the radio wave absorption layer combined with the radio wave reflection layer. And when the film thickness of the electromagnetic wave absorption layer is in a specific range and the relative permeability and relative permittivity of the electromagnetic wave absorption layer at a frequency of 24 GHz have a specific relationship, the electromagnetic wave absorption characteristics should be greatly expressed especially in the quasi-millimeter wave band. Found.
  • the present invention is A radio wave absorption sheet for quasi-millimeter wave/millimeter wave band, comprising a radio wave reflection layer (A) and a radio wave absorption layer (B) arranged in parallel on the radio wave reflection layer (A),
  • the film thickness of the radio wave absorption layer (B) is in the range of 400 to 1000 ⁇ m
  • the radio wave absorption sheet of the present invention can exhibit a high level of radio wave absorption in the quasi-millimeter wave band.
  • This radio wave absorption sheet can absorb high frequency radio waves such as quasi-millimeter waves and millimeter waves efficiently, so installing it near equipment that uses high frequency radio waves prevents malfunctions. It is applicable to various uses.
  • this electromagnetic wave absorption sheet is thin, has excellent flexibility and durability, it can be attached to a wide variety of base materials.
  • FIG. 1 is a schematic diagram showing the relationship between the respective layers constituting the radio wave absorption sheet.
  • FIG. 2 is an example of a radio wave absorption characteristic chart in the quasi-millimeter wave band.
  • the quasi-millimeter wave band means 20 to 30 GHz including frequencies for automatic traveling and 5G communication
  • the millimeter wave band means 76 to 81 GHz which is a frequency for collision prevention and automatic traveling.
  • FIG. 1 is a schematic diagram showing the relationship of each layer constituting the radio wave absorption sheet according to the present invention.
  • a radio wave absorbing layer (B) and a protective layer (C) are sequentially stacked on the radio wave reflecting layer (A).
  • the radio wave absorption sheet is used so that the radio wave ⁇ enters from the protective layer (C) side.
  • spaces are provided between the layers in FIG. 1 for the sake of explanation, the layers are usually in close contact with each other in the present invention.
  • the radio wave reflection layer (A) reflects the radio wave ⁇ that has passed through the radio wave absorption layer (B) described later while being attenuated and reached the reflection layer A on its surface.
  • the material of the radio wave reflection layer (A) is not limited, but a metal sheet is generally used.
  • the metal sheet also includes a metal foil. Examples of the type of metal include tin, brass, copper, iron, nickel, stainless steel, aluminum, and the like, and a mesh-shaped metal sheet may be used.
  • the thickness of the radio wave reflection layer (A) is not particularly limited, but is preferably in the range of 25 to 500 ⁇ m from the viewpoint of flexibility of the finally obtained radio wave absorption sheet and installation workability. And particularly preferably in the range of 30 to 300 ⁇ m.
  • the film thickness can be obtained by observing a cross section of a test body using an SEM, arbitrarily selecting three positions from the obtained image, and averaging the selected values.
  • Radio wave absorption layer (B) >
  • the radio wave absorption layer (B) is arranged in parallel on the radio wave reflection layer (A), and the relative permittivity and the film thickness at 24 GHz satisfy specific conditions.
  • the frequency for determining the relative magnetic permeability and the relative permittivity is 24 GHz.
  • the relative magnetic permeability ⁇ r is a value represented by the following formula (1).
  • ⁇ r is the relative permeability
  • ⁇ ′ is the real part of the relative permeability
  • the magnetic permeability ⁇ at 24 GHz of the material is a value represented by the following formula (2).
  • the relative magnetic permeability ⁇ r defined in the present invention indicates the ratio of the magnetic permeability ⁇ of the material to the magnetic permeability ⁇ 0 of vacuum, and has no unit.
  • the real part ⁇ ′ of the relative permeability is 1.5
  • the relative permittivity ⁇ r is a value represented by the following formula (3).
  • ⁇ r is the relative permittivity
  • ⁇ ′ is the real part of the relative permittivity
  • ⁇ ′′ is the imaginary part of the relative permittivity
  • the dielectric constant ⁇ (F/m) of the material at 24 GHz is a value represented by the following formula (4).
  • the relative permittivity ⁇ r defined in the present invention indicates the ratio of the permittivity ⁇ (F/m) of the material to the permittivity ⁇ 0 (F/m) in vacuum, and has no unit.
  • the measurement of the relative permeability ⁇ r and the relative permittivity ⁇ r at a frequency of 24 GHz is performed by the free space S parameter method (reflection transmission method).
  • a vector type network analyzer (“PNA-X” product name, manufactured by KEYSIGHT) is used as a relative permittivity measuring device, a free space fixture and a calibration metal plate are used, and “N1500 material characteristic suite” (product name, KEYSIGHT (Manufactured by the company, software), and can be obtained by simulation from the measured value of the S parameter.
  • the relative permeability and the relative permittivity data for each frequency are acquired within the frequency range of 20 to 30 GHz, and the relative permeability at the frequency of 24 GHz is selected from the data.
  • the values of magnetic susceptibility and relative permittivity shall be selected.
  • the radio wave absorption layer (B) has a real part ⁇ ′ of relative permeability within a range of 1.0 to 1.5 at a frequency of 24 GHz and an imaginary part ⁇ ′′ of relative permeability. Is less than 1.0, the real part ⁇ ′ of the relative permittivity is in the range of 14 to 25, and the imaginary part ⁇ ′′ of the relative permittivity is in the range of 4 to 10. is there.
  • the real part ⁇ 'of the relative permeability is 1.0 to 1.3, the absolute value of the imaginary part ⁇ " of the relative permeability is less than 0.5, and the real part ⁇ 'of the relative permittivity is 18 to 23. More preferably, the absolute value of the imaginary part ⁇ ′′ of the dielectric constant is within the range of 5 to 8.
  • the real part ⁇ 'of the relative permeability of the electromagnetic wave absorbing layer (B) is less than 1.0, the electromagnetic wave absorption amount of the quasi-millimeter wave/millimeter wave band of the electromagnetic wave absorbing sheet decreases, while when it exceeds 1.5, the electromagnetic wave absorption becomes large. This is not preferable because the amount of electromagnetic wave absorption and durability in the quasi-millimeter wave/millimeter wave band of the sheet tend to decrease. Further, if the absolute value of the imaginary part ⁇ " of the relative magnetic permeability exceeds 1.0, the radio wave absorption amount and durability in the quasi-millimeter wave/millimeter wave band of the radio wave absorption sheet tend to be reduced, which is not preferable.
  • the electromagnetic wave absorption amount in the quasi-millimeter wave/millimeter wave band of this electromagnetic wave absorption sheet is low, and even when it exceeds 25, the electromagnetic wave in the quasi-millimeter wave/millimeter wave band of this electromagnetic wave absorption sheet is low.
  • the absolute value of the imaginary part ⁇ ′′ of the relative permittivity of the electromagnetic wave absorbing layer (B) is less than 4, the electromagnetic wave absorption amount in the quasi-millimeter wave/millimeter wave band is low, while the absorption amount tends to decrease. If it exceeds 10, the amount of radio wave absorption in the quasi-millimeter wave/millimeter wave band is reduced, which is not preferable.
  • the radio wave absorption layer (B) can be a film or coating containing a dielectric powder and a binder.
  • the film or coating may be, for example, a film obtained by molding a dispersion obtained by dispersing dielectric powder in a binder into a film, or a radio wave absorbing paint containing the binder, the dielectric powder and a solvent. It may be a coating film formed by applying the composition and drying it.
  • a polymer is mainly used as the binder.
  • Specific examples include ester rubber, chlorosulfonated polyethylene rubber, chlorinated rubber, ethylene propylene diene rubber, chloroprene rubber, natural rubber, styrene butadiene rubber, isoprene rubber, butadiene rubber, butyl rubber, ethylene propylene rubber, acrylonitrile butadiene rubber, chlorine.
  • Rubber components such as chlorinated butyl rubber, chlorinated polyethylene rubber, chlorinated polypropylene rubber, chlorinated ethylene propylene rubber, brominated butyl rubber; polyimide, polyphenylene sulfide, shellac, rosin, polyolefin resin, chlorinated polyolefin resin, hydrocarbon resin, vinylidene chloride Resin components such as resin, polyamide resin, polyetherketone resin, vinyl chloride resin, polyester resin, alkyd resin, phenol resin, epoxy resin, acrylic resin, urethane resin, silicone resin, cellulose resin, vinyl acetate resin, etc. A combination and the like can be mentioned.
  • ethylene propylene diene rubber chlorinated polyethylene rubber, chlorinated polypropylene rubber, chlorinated ethylene propylene rubber, chloroprene rubber, ethylene propylene rubber, polyolefin resin, chlorinated polyolefin resin, polyester resin, alkyd resin, phenol resin, Examples thereof include epoxy resin, acrylic resin, urethane resin, silicone resin, polyisocyanate resin, amino resin, and combinations thereof.
  • any material and shape can be used as long as it has dielectric properties.
  • Specific examples include, for example, ferrite, sendust, Fe-Cr-Al alloy, Fe-Si-Cr alloy, Fe-Al-Si alloy, permalloy, carbonyl iron, ⁇ -alumina, ⁇ -alumina, corundum, and chromium oxide.
  • the average particle diameter of the dielectric powder is preferably 0.001 to 500 ⁇ m, more preferably 0.01 to 100 ⁇ m.
  • the average minor axis is preferably 0.001 to 500 ⁇ m, and more preferably 0.01 to 100 ⁇ m.
  • the average particle size or the average minor axis of the dielectric powder can be obtained by observing the SEM image of the radio wave absorption sheet of the present invention using SEM.
  • the amount of the dielectric powder contained in the radio wave absorption layer (B) is preferably 100 to 700 parts by mass, more preferably 200 to 500 parts by mass, based on 100 parts by mass of the binder.
  • the powder having the above-mentioned dielectric property it is suitable to include ferrite as a part of its component from the viewpoint of the radio wave absorptivity in the quasi-millimeter wave/millimeter wave band of the radio wave absorption sheet of the present invention.
  • ferrite refers to a complex oxide containing iron oxide and a metal in a part of its structure, and there is no limitation on the manufacturing method, shape, structure and the like.
  • a metal compounded with iron at least one metal selected from manganese, zinc, nickel, cobalt, copper, barium, strontium, silicon, and aluminum, preferably at least two metals are chemically contained. Ferrite is preferred.
  • ferrites containing a chemical structure of at least one metal in a part of iron oxide include, for example, zinc-based ferrite, cobalt-based ferrite, magnesium-based ferrite, barium-based ferrite, strontium-based ferrite, and these Combinations and the like can be mentioned.
  • the ferrite containing at least two metals in a part of iron oxide in a chemical structure include, for example, manganese/zinc ferrite, manganese/nickel ferrite, nickel/zinc ferrite, copper/zinc ferrite, And combinations thereof.
  • the amount of ferrite contained in the radio wave absorption layer (B) is preferably 150 to 650 parts by mass, more preferably 200 to 650 parts by mass, based on 100 parts by mass of the binder. 500 parts by mass.
  • a silicon oxide-containing compound is included as a part of the component thereof from the viewpoint of the radio wave absorption and durability in the quasi-millimeter wave/millimeter wave band of the radio wave absorption sheet of the present invention. Are suitable.
  • silicon oxide-containing compound in the present invention examples include silicon dioxide such as silica, and talc, diatomaceous earth, wollastonite, and other various silicon dioxide and minerals composed of metal oxides, as well as compounds containing silicon oxide in their composition. Included.
  • the amount of the silicon oxide-containing compound contained in the radio wave absorbing layer (B) is preferably 0.5 to 50 parts by mass, based on 100 parts by mass of the binder. , And more preferably 1 to 10 parts by mass.
  • dielectric powder it is suitable to include carbons as a part of its components from the viewpoint of the radio wave absorption, flexibility and durability in the quasi-millimeter wave/millimeter wave band of the radio wave absorption sheet of the present invention. ing.
  • the carbons that can be used in the present invention are not limited in shape, manufacturing method, etc., and may be conductive or insulating. Specific examples include carbon black, acetylene black, carbon nanotubes, carbon nanofibers, graphene, fullerenes, artificial diamond, graphite, and combinations thereof.
  • the amount of carbons contained in the radio wave absorption layer (B) is preferably 1 to 50 parts by mass, and more preferably 100 parts by mass of the binder. It is 2 to 30 parts by mass.
  • the film thickness of the electromagnetic wave absorption layer (B) is also an important factor in achieving high level of electromagnetic wave absorption in the quasi-millimeter wave/millimeter wave band region.
  • the thickness of the radio wave absorbing layer (B) is in the range of 400 to 1000 ⁇ m, preferably 450 to 900 ⁇ m, and particularly preferably 500 to 800 ⁇ m.
  • the film thickness of the electromagnetic wave absorbing layer (B) is less than 400 ⁇ m, the electromagnetic wave absorbing property of this electromagnetic wave absorbing sheet in the quasi-millimeter wave/millimeter wave band deteriorates, while even when it exceeds 1000 ⁇ m, the electromagnetic wave in the quasi-millimeter wave/millimeter wave band Absorbency is reduced.
  • the tangent delta value is important as an index having radio wave absorptivity in the quasi-millimeter wave/millimeter wave band.
  • the electromagnetic wave absorbing layer (B) has a tangent delta value in the range of 0.25 to 0.70 in addition to the conditions of relative permeability, relative permittivity and film thickness, the electromagnetic wave absorbing sheet of the present invention. This is preferable because it has good radio wave absorption in the quasi-millimeter wave/millimeter wave band.
  • the tangent delta value is a numerical value representing the degree of electric energy loss in the dielectric body, and in this specification, it is a value obtained by calculating the absolute value of the imaginary part/real part ratio of the relative permittivity.
  • the radio wave absorption layer (B) may have a single layer structure or a multi-layer structure, but when the radio wave absorption layer (B) has a single layer structure, the radio wave absorption sheet which is the final product. It is effective because it can reduce the time required for manufacturing, and has moderate electromagnetic wave absorbability and flexibility in the quasi-millimeter wave/millimeter wave band.
  • the protective layer (C) is disposed in parallel with the upper portion of the radio wave absorption layer (B), and the radio wave absorption sheet of the present invention has a radio wave absorption property in desired quasi-millimeter wave/millimeter wave band. And, if necessary, to provide durability. Then, as shown in FIG. 1, it is important that the radio wave absorption layer (B) is disposed on the radio wave reflection layer (A) and the protection layer (C) is disposed on the radio wave absorption layer (B) in this order. Is.
  • the protective layer (C) it is possible to protect each layer located below the protective layer (C) and also to impart durability to the electromagnetic wave absorbing sheet.
  • the protective layer (C) may be a molded film or a coating film obtained by applying a coating composition and drying.
  • the protective layer (C) may have a single-layer structure or a multi-layer structure.
  • the material of the protective layer (C) is not particularly limited, but a film containing a polymer (synthetic resin) as a binder is suitable.
  • a polymer synthetic resin
  • examples of such a polymer include the same compounds as exemplified in the explanation of the radio wave absorption layer (B), and among them, a resin selected from vinyl chloride resin, polyurethane resin and polyolefin resin is preferable.
  • the film containing a polyurethane resin in the present specification not only a film using a polyurethane resin as a binder, but also a film obtained by mixing a component containing a hydroxyl group-containing resin and a polyisocyanate, coating and curing the same is a polyurethane resin. Include as a film.
  • the protective layer (C) contains a pigment from the viewpoint of the durability of the radio wave absorption sheet.
  • a pigment a color pigment and an extender pigment can be used.
  • the color pigment can be appropriately selected according to the design, use, and purpose. Further, as the coloring pigment, conventionally known pigments can be used. Specific examples of the coloring pigment include, for example, black pigments such as carbon black, copper oxide, ferrosoferric oxide, manganese dioxide, aniline black and activated carbon; yellow lead, zinc yellow, cadmium yellow, yellow iron oxide, mineral fast yellow, Yellow pigments such as nickel titanium yellow, navel yellow, naphthol yellow S, hansa yellow, benzidine yellow G, benzidine yellow GR, quinoline yellow lake, permanent yellow NCG, tartrazine lake; red iron oxide, cadmium red, red lead, mercury sulfide, cadmium.
  • black pigments such as carbon black, copper oxide, ferrosoferric oxide, manganese dioxide, aniline black and activated carbon
  • yellow lead zinc yellow, cadmium yellow
  • yellow iron oxide mineral fast yellow
  • Yellow pigments such as nickel titanium yellow, navel yellow, naphthol yellow S, hans
  • the blending amount of the coloring pigment varies depending on the type used, but in general, from the viewpoint of the concealing property of the protective layer (C), the radio wave absorbing property in the quasi-millimeter wave/millimeter wave band, flexibility and durability, the protective layer is generally used. It is preferably in the range of 0.1 to 300 parts by mass, particularly preferably in the range of 5 to 150 parts by mass, based on the mass of the polymer contained in the colored film constituting (C).
  • the amount of the extender pigment to be blended is preferably in the range of 1 to 200 parts by mass, based on the mass of the polymer contained in the colored film from the viewpoint of radio wave absorption in the quasi-millimeter wave/millimeter wave band, flexibility and durability. And particularly preferably in the range of 2 to 100 parts by mass.
  • the hiding ratio of the protective layer (C) is preferably 50% or more, and it is particularly preferable to use one having a hiding ratio of 70% or more.
  • the hiding ratio of the protective layer (C) is, for example, a hiding ratio test paper conforming to the B method of JIS K56004-1, the protective layer (C) is placed, and the tristimulus is applied via the protective layer (C).
  • the value Y is measured in each of the white part (YW) and the black part (YB), and YB/YW is calculated as a percentage.
  • the film thickness of the protective layer (C) is preferably in order to exert a high level of radio wave absorption in the quasi-millimeter wave/millimeter wave band region and to improve flexibility and durability. It is in the range of 30 to 200 ⁇ m, particularly preferably in the range of 50 to 100 ⁇ m.
  • the relative dielectric constant of the protective layer (C) alone at a frequency of 24 GHz is 1.5 to 8.0, preferably 2.0 to 5.0, and the relative dielectric constant is It is suitable that the absolute value of the imaginary part ⁇ ′′ is less than 1.0, particularly preferably less than 0.1, and the tangent delta value is less than 0.1, particularly less than 0.01. Are suitable.
  • the radio wave absorption sheet of the present invention comprises a radio wave reflection layer (A), a radio wave absorption layer (B), and, if necessary, a protective layer (C), and a known method can be used to attach each layer. Used. Each layer may be formed by applying a liquid coating material and drying it, but when forming by film sticking, an adhesive layer (P) may be provided between each film as needed.
  • the adhesive layer (P) is a layer provided as necessary for the purpose of improving the adhesiveness between the layers and improving the durability of the present radio wave absorption sheet, and a known adhesive or pressure-sensitive adhesive can be used.
  • the form of the adhesive or pressure-sensitive adhesive forming the adhesive layer (P) may be any of water dispersion system, solution system, two-liquid mixture system, solid system, and tape system.
  • the material is not particularly limited, it may be an organic adhesive or an adhesive, or an inorganic adhesive or an adhesive.
  • organic adhesives or adhesives examples include vinyl acetate-based, vinyl acetate resin emulsion-based, vinyl resin-based, ethylene-vinyl acetate resin-based, polyvinyl acetate resin-based, epoxy resin-based, polyvinyl alcohol-based, ethylene vinyl acetate System, vinyl chloride system, ⁇ -olefin system, acrylic resin system, polyamide system, polyimide system, cellulose system, polyvinylpyrrolidone system, polystyrene system, polystyrene resin system, cyanoacrylate system, polyvinyl acetal system, urethane resin system, polyolefin resin system , Polyvinyl butyral resin system, polyaromatic system, urea resin system, melamine resin system, phenol resin system, resorcinol system, chlorobrene rubber system, nitrile rubber system, styrene butadiene rubber system, polybenzimidazole system, thermoplastic elastomer -
  • inorganic adhesives or adhesives examples include sodium silicate, cement-based (Portland cement, plaster, gypsum, magnesium cement, litharge cement, dental cement, etc.) and ceramics.
  • the use of synthetic adhesives or pressure-sensitive adhesives is suitable from the viewpoint of the flexibility of the present electromagnetic wave absorption sheet, the electromagnetic wave absorption in the quasi-millimeter wave/millimeter wave band, and the durability. ..
  • the film thickness of the adhesive layer (P) is not particularly limited, but can be generally 100 ⁇ m or less from the viewpoint of radio wave absorption in the quasi-millimeter wave/millimeter wave band, and particularly 7 to 80 ⁇ m. Can be in the range of.
  • the outermost surface of the radio wave absorption sheet (the radio wave absorption layer (B) side, the protective layer if there is a protective layer (C))
  • the (C) side has a surface roughness Sa (arithmetic mean surface roughness) of 150 to 6000 nm, preferably 200 to 5500 nm, and a Sq (root mean square height surface roughness) of 200 to 7,000 nm, preferably 300. It is desirable to adjust the thickness within the range of up to 6000 nm.
  • the roughness parameters Sa (arithmetic mean roughness) and Sq (root mean square height) are based on the method specified in ISO 25178, using images of the surface of the test body taken under the following conditions. It was measured.
  • ⁇ Device Optical interference microscope (Counter GT-1 manufactured by Bruker AXS) -Objective lens: 5 times-Internal lens (eyepiece): 0.55 times-Measurement range: Width 6 mm/length: 1.7 mm.
  • the present invention provides a radio wave absorbing method for absorbing radio waves in the quasi-millimeter wave/millimeter wave band by using the radio wave absorbing sheet as described above.
  • the present invention is to install the above-mentioned radio wave absorbing sheet on a radio wave reflecting body which causes a radio wave trouble of malfunction, or to install the above radio wave absorbing sheet between the radio wave reflecting body and a radio wave receiving device. It is intended to provide a method of preventing electromagnetic interference that is installed.
  • the radio wave absorption sheet of the present invention described above can have a total film thickness of 0.5 to 1.5 mm, particularly 0.6 to 1 mm, and is extremely flexible. In the case of paint, the film thickness after drying may be within this range. Therefore, it can be easily attached to radio wave reflectors of various shapes.
  • the radio wave reflector for installing the radio wave absorbing sheet of the present invention directly or in the vicinity thereof is particularly a product/structure which is in an environment where radio waves in the quasi-millimeter wave and the millimeter wave, particularly in the quasi-millimeter wave band are generated. There is no limit.
  • car travel such as medians, tunnel inner walls, sound insulation walls, sound insulation walls, road signs, guardrails, road reflection mirrors, telephone poles, traffic lights, traffic signs, street trees, road lighting poles, etc.
  • Examples include goods and structures near roads, automobile factories and maintenance areas, and wall surfaces of rooms.
  • Example 1 An aluminum foil (Al foil) having a length of 30 cm, a width of 30 cm, and a thickness of 50 ⁇ m is provided with a 10 ⁇ m adhesive layer (acrylic adhesive), and 100 parts of chlorinated polyethylene rubber is coated with MnZn ferrite (manganese). -Zinc-based ferrite, average particle size 0.7 ⁇ m) 350 parts, insulating carbon 350 parts, and silica 3 parts are kneaded and molded to obtain a single-layer structure sheet having a thickness of 570 ⁇ m, which is further laminated. An adhesive layer (acrylic adhesive) having a thickness of 10 ⁇ m was provided thereon, and a protective sheet (note) having a thickness of 80 ⁇ m was attached to obtain a radio wave absorption sheet (X-1).
  • X-1 radio wave absorption sheet
  • Protective sheet Colored film containing vinyl chloride resin and titanium oxide. The amount of titanium oxide was 80 parts with respect to 100 parts of the vinyl chloride resin.
  • Sheet-shaped electromagnetic wave absorption sheets (X-2) to (X-24) were prepared in the same manner as in Example 1 except that the materials and thicknesses of the electromagnetic wave absorption layer and the protective layer were as shown in Tables 1 to 4.
  • phr means the mass ratio of each component to 100 parts by mass of the binder.
  • j described in the column of the relative dielectric constant of the protective layer has the same meaning as i representing the relative dielectric constant of the radio wave absorption layer. Therefore, the real part of the relative permittivity of the protective layer of Example 1 is 3.8, and the absolute value of the imaginary part is 0.08.
  • Comparative Example 10 An aluminum foil having a length of 30 cm, a width of 30 cm, and a thickness of 50 ⁇ m is provided with a 10 ⁇ m adhesive layer, and 790 parts of manganese-zinc ferrite is kneaded with 100 parts of EPDM rubber (ethylene propylene diene rubber).
  • EPDM rubber ethylene propylene diene rubber
  • the sheet (1) having a film thickness of 550 ⁇ m obtained by molding was laminated, and further, 300 parts of barium ferrite was kneaded with 100 parts of ethylene propylene diene rubber, and molded to obtain A sheet (2) with a film thickness of 950 ⁇ m is laminated, and a commercially available white marking film with a thickness of 80 ⁇ m (a design film with an adhesive, a fan tack sheet: Kampe Fan Tuck Center Co., Ltd.) is attached on the sheet (2) to form an electromagnetic wave absorption sheet. (X-25) was obtained.
  • the radio wave absorption sheet (X-25) has a total film thickness of 1.64 mm
  • the radio wave absorption layer portion has a laminated structure
  • the thickness of the portion is 1.5 mm.
  • MnZn ferrite Manganese/zinc ferrite, average particle size 0.7 ⁇ m
  • Insulating carbon Insulating carbon black, average particle size 20 nm
  • Conductive carbon conductive carbon black, average particle size 34 nm
  • Silica average particle diameter 6 ⁇ m
  • Ba ferrite barium ferrite, average particle diameter 2 ⁇ m
  • Barium titanate average particle size 2 ⁇ m
  • Fe-Al-Si alloy An alloy of iron, aluminum and silicon.
  • each radio wave absorption sheet is measured in an anechoic chamber with a radio wave absorber with a radio wave absorption amount of -30 dB or more installed on the wall and floor of the room. , was measured using a radio wave absorption measuring device.
  • the transmission horn antenna and the reception horn antenna included in the radio wave absorption measuring device are arranged so that the incident and reflection angles thereof are 10° with respect to a vertical plane from the floor.
  • a receiving horn antenna are installed, a metal reflector is placed at a distance of 45 cm from each antenna, and the reflected signal is received by the receiving horn antenna and the radio wave reflectance is set to 100%.
  • the metal reflector is removed, and the reflected signal is received by the receiving horn antenna, and the radio wave reflectance thereof is set to 0%.
  • the measurement sample is placed at the position where the metal reflector is placed, and the radio wave reflection amount reflected from the measurement sample surface is measured for frequencies near the quasi-millimeter wave, and the frequency (GHz) is taken as the horizontal axis, and the radio wave absorption amount (dB ) Is a vertical axis, and a radio wave absorption characteristic chart near the quasi-millimeter wave is obtained.
  • FIG. 2 shows an example of a radio wave absorption characteristic chart.
  • the symbol "-" in the table means that the width cannot be measured because the amount of radio wave absorption has not reached -20 dB.
  • Examples 1 to 15 are electromagnetic wave absorption sheets within the range specified by the present invention.
  • Comparative Examples 1 and 2 are radio wave absorption sheets in which the film thickness of the radio wave absorption layer (B) is out of the range specified in the present invention.
  • Comparative Examples 3 and 9 are radio wave absorption sheets in which the relative permittivity real part and the imaginary part of the radio wave absorption layer (B) are below the range specified in the present invention.
  • Comparative Examples 4 and 5 are radio wave absorption sheets in which the real part of the relative magnetic permeability of the radio wave absorption layer (B) exceeds the range specified in the present invention.
  • Comparative Example 6 is a radio wave absorption sheet in which the imaginary part of the relative magnetic permeability of the radio wave absorption layer (B) exceeds the range specified in the present invention.
  • Comparative Example 7 is a radio wave absorption sheet that does not have the radio wave reflection layer (A).
  • Comparative Example 8 is a radio wave absorption sheet in which the real and imaginary parts of the relative permittivity of the radio wave absorption layer (B) exceed the range specified by the present invention.
  • Comparative Example 10 is a radio wave absorption sheet in which the film thickness of the radio wave absorption layer portion exceeds the range of the present invention.
  • the following can be said from the electromagnetic wave absorption characteristics in the quasi-millimeter wave and millimeter wave bands, the flexibility test, and the durability test results using the electromagnetic wave absorption sheet prepared above.
  • the radio wave reflection layer (A) and the radio wave absorption layer (B) are provided and the positional relationship is as specified, the thickness of the radio wave absorption layer (B) is within a predetermined range, and the relative permittivity and relative permeability of the radio wave absorption layer are As long as the magnetic susceptibility is within the predetermined range of the present invention, it is possible to obtain a radio wave absorption sheet which is extremely excellent in quasi-millimeter wave absorption, has a wide bandwidth, has millimeter wave absorption, and is excellent in flexibility and durability.
  • the electromagnetic wave absorbing layer (B) does not satisfy the condition of the relative permittivity, the quasi-millimeter wave absorbing property of the electromagnetic wave absorbing sheet cannot be sufficiently exhibited, but the relative permittivity of the electromagnetic wave absorbing layer (B) falls within the range of the present invention. Only at certain times, millimeter wave absorption and bandwidth will increase dramatically. (Comparison between Example 1 and Comparative Examples 3, 8 and 9).

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

The present invention provides a light-weight and flexible sheet-like electric wave absorber particularly having an excellent electric wave absorption performance in the frequency of a quasi-millimeter wave band. This quasi-millimeter wave/millimeter wave band electric wave absorption sheet is provided with: an electric wave reflection layer (A); and an electric wave absorption layer (B) that is disposed in parallel on top of the electric wave reflection layer (A), wherein the film thickness of the electric wave absorption layer (B) is within the range of 400-1000 µm, regarding the relative permeability (µr=µ'+µ"i) of the electric wave absorption layer (B) in a frequency of 24 GHz, a real part µ' is 1.0-1.50, and the absolute value of an imaginary part µ" is 0 or more but less than 1.0, and regarding the relative dielectric constant (ɛr=ɛ'+ɛ"i) of the electric wave absorption layer (B) in the frequency of 24 GHz, a real part ɛ' is 14-25, and the absolute value of an imaginary part ɛ" is in the range of 4-10.

Description

準ミリ波・ミリ波帯域用電波吸収シート及び準ミリ波・ミリ波電波吸収方法Quasi-millimeter wave/millimeter wave band electromagnetic wave absorption sheet and quasi-millimeter wave/millimeter wave wave absorption method
 本発明は電波吸収シート及び電波吸収方法に関する。 The present invention relates to a radio wave absorption sheet and a radio wave absorption method.
 ラジオ、テレビ、無線通信などの通信機器からは電波が放射されているが、これに加え、最近の情報技術の進展により急増した携帯電話、パソコンなどの電子機器からも電波は放射されている。このため、電子機器、通信機器などの電波による誤作動を回避するための一手法として、効率よく電波を吸収し、吸収した電波を熱エネルギーに変換するという電波吸収体(Electro Magnetic Absorber、EMA)を電波発生部位近傍又は遠方に設置することがよく行われている。 Radio waves are radiated from communication devices such as radios, televisions, and wireless communications, but in addition to this, radio waves are also radiated from electronic devices such as mobile phones and personal computers, which have rapidly increased due to recent advances in information technology. Therefore, as a method for avoiding malfunctions due to radio waves in electronic devices, communication devices, etc., a radio wave absorber (Electro Magnetic Absorber, EMA) that efficiently absorbs radio waves and converts the absorbed radio waves into heat energy. Is often installed near or far from the radio wave generation site.
 電波発生部位遠方に電波吸収体を設置する例としては、例えば高速道路の自動料金収受システム(ETC)用途がある。ETCは、高速道路の料金所出口を自動車が通過する際に、料金所に備えられた路側機アンテナと車載器側アンテナとの間で周波数5.8GHzのマイクロ波を使用して課金情報等を交換するシステムである。このETCシステムが導入された料金所では、アンテナから放射されたマイクロ波が料金所屋根等にあたって反射されたり、隣接するETCレーンから不要な電波が漏洩する等の理由により、通信に異常を引き起こすことがある。そこで料金所屋根やETCレーンの間に電波吸収体を設置することによって、通信異常を抑制することが行われている。(特許文献1など)
 このように電波吸収体は広く利用され、目的や用途に応じて種々の材質、形状の電波吸収体が開発されてきた。
An example of installing a radio wave absorber far away from a radio wave generation site is, for example, an automatic toll collection system (ETC) application on a highway. When a car passes through the exit of a tollgate on an expressway, ETC uses microwaves with a frequency of 5.8 GHz between the roadside device antenna and the vehicle-mounted device antenna provided at the tollgate to provide billing information. It is a system to exchange. At the tollgate where this ETC system is installed, microwaves radiated from the antenna may be reflected on the roof of the tollgate, and unnecessary radio waves may leak from the adjacent ETC lane, causing communication problems. There is. Therefore, a radio wave absorber is installed between the roof of the tollgate and the ETC lane to suppress communication abnormality. (Patent Document 1, etc.)
As described above, the electromagnetic wave absorber is widely used, and various electromagnetic wave absorbers of various materials and shapes have been developed according to the purpose and application.
 広帯域に吸収する電波吸収体としてはピラミッド型電波吸収体と積層型電波吸収体等がある。 There are pyramid type electromagnetic wave absorbers and laminated type electromagnetic wave absorbers as electromagnetic wave absorbers that absorb in a wide band.
 ピラミッド型電波吸収体とは、吸収材内部を電波が透過する間に電波のエネルギーが減衰していくタイプの電波吸収体である。特許文献2には、発泡ポリエチレンなどの発泡性有機樹脂を基材として、カーボンブラックやグラファイトなどの導電性材料を混錬させた材料を、ピラミッド型がいくつも連なったような形状に成型した電波吸収体が記載されている。電波吸収体自体がピラミッド型のような形状であることによって、電波吸収体表面部(電波の到来方向)の断面積を小さくでき、表面部での入射電波の反射が抑制されて吸収体内部に電波が進入しやすくなり、吸収体断面積が増加するにしたがって、吸収体内部に進入した電波が効率よく熱エネルギーに変換できると考えられている。 A pyramid type electromagnetic wave absorber is a type of electromagnetic wave absorber in which the energy of the electromagnetic wave is attenuated while the electromagnetic wave passes through the inside of the absorber. Patent Document 2 discloses a radio wave in which a material obtained by kneading a conductive material such as carbon black or graphite with a foamable organic resin such as foamed polyethylene as a base material is molded into a shape in which a plurality of pyramids are connected. An absorber is described. Since the electromagnetic wave absorber itself has a shape like a pyramid, the cross-sectional area of the electromagnetic wave absorber surface (direction of arrival of electromagnetic waves) can be reduced, and the reflection of incident electromagnetic waves on the surface can be suppressed, and the inside of the absorber can be suppressed. It is considered that the radio waves entering the inside of the absorber can be efficiently converted into thermal energy as the radio waves easily enter and the cross-sectional area of the absorber increases.
 一方、積層型の電波吸収体は、電波反射層と複数の電波吸収層を積層することで、電波を吸収させたものであり、例えば特許文献3には、金属板の表面に金属粉末及び結合剤を含む磁性損失層を形成した電波吸収体が開示されている。 On the other hand, a laminated type electromagnetic wave absorber absorbs an electromagnetic wave by laminating an electromagnetic wave reflection layer and a plurality of electromagnetic wave absorption layers. For example, in Patent Document 3, a metal powder and a bond are formed on the surface of a metal plate. A radio wave absorber having a magnetic loss layer containing an agent is disclosed.
 近年、電子機器や通信機器は高周波数の電波を利用する製品へとシフトしてきた。例えば、自動車の衝突防止支援用にミリ波レーダーの適用が試みられている。ミリ波帯域の電波を吸収する電波吸収体は開発されているものの、その多くはピラミッド型であり、経年変化や熱等により基材が変質・変形して電波吸収性が低下するという問題があった。また、ピラミッド型電波吸収体は嵩高いため、設置場所によっては取り付け困難であり、製造工程も煩雑という問題もある。 In recent years, electronic devices and communication devices have shifted to products that use high-frequency radio waves. For example, application of millimeter-wave radar has been attempted to support collision prevention of automobiles. Although radio wave absorbers that absorb radio waves in the millimeter wave band have been developed, most of them are pyramid type, and there is a problem that the base material is deteriorated/deformed due to aging, heat, etc., and the radio wave absorption is reduced. It was Further, since the pyramid type electromagnetic wave absorber is bulky, it is difficult to attach the pyramid type electromagnetic wave absorber depending on the installation location, and the manufacturing process is complicated.
 更には、従来の積層型電波吸収体は、ミリ波帯域の吸収周波数帯域幅に関して十分なレベルに達していなかった。このため、ミリ波帯域幅で広域に吸収し、更には曲面に貼り付けできる軽量で可とう性のある電波吸収体を設計することは技術的に困難であった。 Furthermore, the conventional laminated wave absorber did not reach a sufficient level regarding the absorption frequency bandwidth of the millimeter wave band. For this reason, it is technically difficult to design a lightweight and flexible electromagnetic wave absorber that absorbs a wide range of millimeter waves and can be attached to a curved surface.
 こうしたニーズに応えるべく、本発明者は、特許文献4において電波反射層に対して比誘電率が特定の値を示す電波吸収層を複層組み合わせることで、ミリ波帯域において十分に電波を吸収できる電波吸収シートを提案した。しかしながら特許文献4記載の電波吸収シートは、電波吸収層が積層構造であることに伴い、膜厚が厚くなり、更なる薄膜化が望まれていた。また、当該電波吸収シートはミリ波帯域の電波に着目して設計されたものであり、準ミリ波帯域の電波吸収特性に乏しい。 In order to meet such needs, the present inventor can sufficiently absorb radio waves in the millimeter wave band by combining a plurality of radio wave absorption layers having a specific dielectric constant with respect to the radio wave reflection layer in Patent Document 4. Proposed an electromagnetic wave absorption sheet. However, the radio wave absorbing sheet described in Patent Document 4 has a thicker film because the radio wave absorbing layer has a laminated structure, and further thinning has been desired. Further, the radio wave absorption sheet is designed by paying attention to radio waves in the millimeter wave band, and has poor radio wave absorption characteristics in the quasi-millimeter wave band.
 ミリ波、準ミリ波については明確な定義はなされていないが、準ミリ波は20GHzから30GHz(波長は10mmから15mm)、ミリ波は30GHzから300GHz(波長は1mmから10mm)の電波を指す場合が多い。 Millimeter waves and quasi-millimeter waves are not clearly defined, but quasi-millimeter waves refer to radio waves of 20 GHz to 30 GHz (wavelength is 10 mm to 15 mm) and millimeter waves are 30 GHz to 300 GHz (wavelength is 1 mm to 10 mm). There are many.
 自動車の衝突防止支援レーダーとして、前方にある衝突物を検出するにはミリ波レーダーが適しているが、車体後方や側面にある車体周りの衝突物を検出するには準ミリ波が使用されている。また、高速・大容量化、超多数端末接続等を可能とする次世代無線通信システム「5G」(第5世代移動通信システム:5th Generation)にも準ミリ波の電波が利用されようとしている。 A millimeter-wave radar is suitable for detecting collision objects in front of a vehicle as a collision prevention support radar, but quasi-millimeter waves are used for detecting collision objects around the vehicle on the rear or side of the vehicle. There is. In addition, quasi-millimeter-wave radio waves are about to be used in the next-generation wireless communication system “5G” (5th generation mobile communication system: 5th Generation) that enables high-speed, large-capacity, connection of a large number of terminals, and the like.
 このように、近い将来、ミリ波だけではなく準ミリ波を利用した機器も増加することが予測されており、準ミリ波帯域の電波吸収特性に優れた電波吸収体の開発も必要とされている。 In this way, it is predicted that the number of devices that utilize not only millimeter waves but also quasi-millimeter waves will increase in the near future, and the development of radio wave absorbers with excellent radio wave absorption characteristics in the quasi-millimeter wave band is also required. There is.
特開2001-217645号公報Japanese Patent Laid-Open No. 2001-217645 特開平6-334382号公報JP-A-6-334382 特開平8-288684号公報Japanese Unexamined Patent Publication No. 8-288688 WO2018/124131号WO2018/124131
 本発明は、高周波数、特に準ミリ波帯域において優れた電波吸収性能を有するシート状の電波吸収体、及びこれを用いた電波吸収方法を提供することを目的とするものである。 The present invention has an object to provide a sheet-shaped electromagnetic wave absorber having excellent electromagnetic wave absorption performance at high frequencies, particularly in the quasi-millimeter wave band, and an electromagnetic wave absorption method using the same.
 本発明者は、上記した課題について鋭意検討した結果、電波反射層に組み合わせる電波吸収層の膜厚と比透磁率及び比誘電率に着目した。そして電波吸収層の膜厚が特定範囲であり、周波数24GHzにおける電波吸収層の比透磁率と比誘電率が特定の関係にある場合に、特に準ミリ波帯域において電波吸収特性が大きく発現することを見出した。 The present inventor, as a result of diligent studies on the above-mentioned problems, paid attention to the film thickness, relative permeability and relative permittivity of the radio wave absorption layer combined with the radio wave reflection layer. And when the film thickness of the electromagnetic wave absorption layer is in a specific range and the relative permeability and relative permittivity of the electromagnetic wave absorption layer at a frequency of 24 GHz have a specific relationship, the electromagnetic wave absorption characteristics should be greatly expressed especially in the quasi-millimeter wave band. Found.
 即ち本発明は、
 電波反射層(A)と、前記電波反射層(A)の上部に平行に配置された電波吸収層(B)と、を備えてなる準ミリ波・ミリ波帯域用電波吸収シートであって、
 前記電波吸収層(B)の膜厚が400~1000μmの範囲内であり、
 周波数24GHzにおける前記電波吸収層(B)の比透磁率(μr=μ’+μ”i)の実数部μ’が1.0~1.50の範囲内にあり、虚数部μ”の絶対値が0以上且つ1.0未満であって、
 周波数24GHzにおける前記電波吸収層(B)の比誘電率(εr=ε’+ε”i)の実数部ε’が14~25の範囲内であり、虚数部ε”の絶対値が4~10の範囲内にある、
準ミリ波・ミリ波帯域用電波吸収シート、及び、前記電波吸収シートを用いる、準ミリ・ミリ波帯域の電波吸収方法、並びに、誤作動の電波障害を生じる原因となる電波反射体に、前記電波吸収シートを設置するか、又は、前記電波反射体と電波受信装置との間に、前記記載の電波吸収シートを設置する、電波障害の防止方法、に関する。
That is, the present invention is
A radio wave absorption sheet for quasi-millimeter wave/millimeter wave band, comprising a radio wave reflection layer (A) and a radio wave absorption layer (B) arranged in parallel on the radio wave reflection layer (A),
The film thickness of the radio wave absorption layer (B) is in the range of 400 to 1000 μm,
The real part μ′ of the relative magnetic permeability (μr=μ′+μ″i) of the radio wave absorbing layer (B) at a frequency of 24 GHz is in the range of 1.0 to 1.50, and the absolute value of the imaginary part μ″ is 0 or more and less than 1.0,
The relative part of the relative permittivity (εr=ε′+ε″i) of the radio wave absorbing layer (B) at a frequency of 24 GHz is in the range of 14 to 25, and the absolute value of the imaginary part ε″ is 4 to 10 Within range,
A quasi-millimeter wave/millimeter wave band radio wave absorption sheet, and a quasi-millimeter/millimeter wave band radio wave absorption method using the radio wave absorption sheet, and a radio wave reflector that causes a malfunctioning radio wave interference, The present invention relates to a method for preventing radio interference, in which a radio wave absorption sheet is installed or the radio wave absorption sheet described above is installed between the radio wave reflector and the radio wave reception device.
 本発明の電波吸収シートは、準ミリ波帯域の電波吸収性を高いレベルで発現することができる。本電波吸収シートは準ミリ波、ミリ波などの高周波数の電波を効率的に吸収することができるため、高周波数の電波を利用した機器の付近に設置することで誤作動を防止するなど、種々の用途に適用可能である。 The radio wave absorption sheet of the present invention can exhibit a high level of radio wave absorption in the quasi-millimeter wave band. This radio wave absorption sheet can absorb high frequency radio waves such as quasi-millimeter waves and millimeter waves efficiently, so installing it near equipment that uses high frequency radio waves prevents malfunctions. It is applicable to various uses.
 また、本電波吸収シートは厚さが薄く、可とう性に優れ、耐久性にも優れているので、多種・多様な基材に取り付けることができる。 Also, since this electromagnetic wave absorption sheet is thin, has excellent flexibility and durability, it can be attached to a wide variety of base materials.
図1は、電波吸収シートを構成する各層の関係を表す概略図である。FIG. 1 is a schematic diagram showing the relationship between the respective layers constituting the radio wave absorption sheet. 図2は、準ミリ波帯域の電波吸収特性チャートの一例である。FIG. 2 is an example of a radio wave absorption characteristic chart in the quasi-millimeter wave band.
 以下、添付図面に基づき、本発明に従う準ミリ波・ミリ波帯域用電波吸収シートの実施形態を説明する。本明細書において、準ミリ波帯域とは、自動走行や5G通信用の周波数を含む20~30GHzを、ミリ波帯域とは衝突防止や自動走行用の周波数である76~81GHzを意味するものとする。 An embodiment of a quasi-millimeter wave/millimeter wave band electromagnetic wave absorption sheet according to the present invention will be described below with reference to the accompanying drawings. In the present specification, the quasi-millimeter wave band means 20 to 30 GHz including frequencies for automatic traveling and 5G communication, and the millimeter wave band means 76 to 81 GHz which is a frequency for collision prevention and automatic traveling. To do.
 図1は本発明における電波吸収シートを構成する各層の関係を表す概略図である。 FIG. 1 is a schematic diagram showing the relationship of each layer constituting the radio wave absorption sheet according to the present invention.
 この図1において、電波反射層(A)の上には電波吸収層(B)、保護層(C)が順に積層されている。本電波吸収シートは、電波αが前記保護層(C)側から入射するように用いる。尚、図1では説明のために各層の間に空間が設けられているが、本発明では通常は各層が互いに密着している。 In FIG. 1, a radio wave absorbing layer (B) and a protective layer (C) are sequentially stacked on the radio wave reflecting layer (A). The radio wave absorption sheet is used so that the radio wave α enters from the protective layer (C) side. Although spaces are provided between the layers in FIG. 1 for the sake of explanation, the layers are usually in close contact with each other in the present invention.
 <電波反射層(A)>
 前記電波反射層(A)は、後述の電波吸収層(B)を減衰しながら透過し反射層Aに達した電波αを、その表面で反射させるものである。
<Radio wave reflection layer (A)>
The radio wave reflection layer (A) reflects the radio wave α that has passed through the radio wave absorption layer (B) described later while being attenuated and reached the reflection layer A on its surface.
 前記電波反射層(A)の材質に制限はないが、一般には金属シートが用いられる。金属シートには金属箔も包含される。金属の種類としては例えば、ブリキ、真ちゅう、銅、鉄、ニッケル、ステンレススチール、アルミニウム等を挙げることができ、更にはメッシュ状の金属シートであっても良い。 The material of the radio wave reflection layer (A) is not limited, but a metal sheet is generally used. The metal sheet also includes a metal foil. Examples of the type of metal include tin, brass, copper, iron, nickel, stainless steel, aluminum, and the like, and a mesh-shaped metal sheet may be used.
 電波反射層(A)の膜厚としては、特に制限されるものではないが、最終的に得られる電波吸収シートの可とう性、設置作業性などの点から、好ましくは25~500μmの範囲内であり、特に好ましくは30~300μmの範囲内である。 The thickness of the radio wave reflection layer (A) is not particularly limited, but is preferably in the range of 25 to 500 μm from the viewpoint of flexibility of the finally obtained radio wave absorption sheet and installation workability. And particularly preferably in the range of 30 to 300 μm.
 本明細書において、膜厚は、SEMを用いて試験体の断面を観察し、得られた画像から任意に3箇所を選択し、その平均値によって求めることができる。 In this specification, the film thickness can be obtained by observing a cross section of a test body using an SEM, arbitrarily selecting three positions from the obtained image, and averaging the selected values.
 <電波吸収層(B)>
 図1において前記電波吸収層(B)は、電波反射層(A)の上部に平行に配置され、24GHzにおける比誘電率と膜厚が特定条件を満たしている。
<Radio wave absorption layer (B)>
In FIG. 1, the radio wave absorption layer (B) is arranged in parallel on the radio wave reflection layer (A), and the relative permittivity and the film thickness at 24 GHz satisfy specific conditions.
 《比透磁率及び比誘電率》
 本発明においては、比透磁率及び比誘電率を決定するための周波数が24GHzであることが重要である。本明細書において比透磁率μrとは、下記式(1)によって示される値である。
<<Relative permeability and relative permittivity>>
In the present invention, it is important that the frequency for determining the relative magnetic permeability and the relative permittivity is 24 GHz. In the present specification, the relative magnetic permeability μr is a value represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式(1)において、μrは比透磁率であり、μ’は比透磁率の実数部を示し、μ”は比透磁率の虚数部を示す。ただし、i=√(-1)とする。 In the above formula (1), μr is the relative permeability, μ′ is the real part of the relative permeability, and μ″ is the imaginary part of the relative permeability, where i=√(−1). ..
 また、材料の24GHzにおける透磁率μは下記式(2)によって示される値である。本発明で定義する比透磁率μrは、真空の透磁率μ0に対する材料の透磁率μの比を示すものであり、単位は無い。 Further, the magnetic permeability μ at 24 GHz of the material is a value represented by the following formula (2). The relative magnetic permeability μr defined in the present invention indicates the ratio of the magnetic permeability μ of the material to the magnetic permeability μ0 of vacuum, and has no unit.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 例えば比透磁率μrがμr=1.5-0.3iで表される場合、「比透磁率の実数部μ’」は1.5であり、「比透磁率の虚数部μ”の絶対値」は0.3であるものとする。 For example, when the relative permeability μr is represented by μr=1.5−0.3i, “the real part μ′ of the relative permeability” is 1.5, and the absolute value of “the imaginary part μ of the relative permeability”. Is 0.3.
 また、本明細書において比誘電率εrとは、下記式(3)によって示される値である。 Further, in the present specification, the relative permittivity εr is a value represented by the following formula (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記式(3)において、εrは比誘電率であり、ε’は比誘電率の実数部を示し、ε”は比誘電率の虚数部を示す。ただし、i=√(-1)とする。 In the above equation (3), εr is the relative permittivity, ε′ is the real part of the relative permittivity, and ε″ is the imaginary part of the relative permittivity, where i=√(−1). ..
 また、材料の24GHzにおける誘電率ε(F/m)は、下記式(4)によって示される値である。本発明で定義する比誘電率εrは、真空の誘電率ε0(F/m)に対する材料の誘電率ε(F/m)の比を示すものであり、単位は無い。 Also, the dielectric constant ε (F/m) of the material at 24 GHz is a value represented by the following formula (4). The relative permittivity εr defined in the present invention indicates the ratio of the permittivity ε (F/m) of the material to the permittivity ε0 (F/m) in vacuum, and has no unit.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 例えば比誘電率εrがεr=5-3iで表される場合、「比誘電率の実数部ε’」は5であり、「比誘電率の虚数部ε”の絶対値」は3であるものとする。 For example, when the relative permittivity εr is represented by εr=5-3i, the “real part of relative permittivity ε′” is 5 and the “absolute value of imaginary part ε” of relative permittivity” is 3. And
 本発明において、周波数24GHzにおける比透磁率μr及び比誘電率εrの測定は、フリースペースSパラメータ法(反射伝送法)により行うものとする。例えば、比誘電率測定機器としてベクトル型ネットワークアナライザー(「PNA-X」商品名、KEYSIGHT社製)を用い、フリースペースフィクチャと校正金属板を用い、「N1500材料特性スイート」(商品名、KEYSIGHT社製、ソフトウェア)を用いて、Sパラメーターの測定値からシミュレーションにより求めることができる。 In the present invention, the measurement of the relative permeability μr and the relative permittivity εr at a frequency of 24 GHz is performed by the free space S parameter method (reflection transmission method). For example, a vector type network analyzer (“PNA-X” product name, manufactured by KEYSIGHT) is used as a relative permittivity measuring device, a free space fixture and a calibration metal plate are used, and “N1500 material characteristic suite” (product name, KEYSIGHT (Manufactured by the company, software), and can be obtained by simulation from the measured value of the S parameter.
 比透磁率及び比誘電率は周波数により変化するものであるため、周波数20~30GHzの範囲内で周波数毎の比透磁率及び比誘電率データを取得し、そのデータの中から周波数24GHzにおける比透磁率及び比誘電率の値を選択するものとする。 Since the relative permeability and the relative permittivity change depending on the frequency, the relative permeability and the relative permittivity data for each frequency are acquired within the frequency range of 20 to 30 GHz, and the relative permeability at the frequency of 24 GHz is selected from the data. The values of magnetic susceptibility and relative permittivity shall be selected.
 本発明の電波吸収シートにおいて、電波吸収層(B)は、周波数24GHzのときの比透磁率の実数部μ’が1.0~1.5の範囲内、そして比透磁率の虚数部μ”の絶対値が1.0未満であり、比誘電率の実数部ε’が14~25の範囲内、そして比誘電率の虚数部ε”の絶対値が4~10の範囲内にあるものである。比透磁率の実数部μ’が1.0~1.3、比透磁率の虚数部μ”の絶対値が0.5未満であり、比誘電率の実数部ε’が18~23、比誘電率の虚数部ε”の絶対値が5~8の範囲内にあるとさらによい。 In the radio wave absorption sheet of the present invention, the radio wave absorption layer (B) has a real part μ′ of relative permeability within a range of 1.0 to 1.5 at a frequency of 24 GHz and an imaginary part μ″ of relative permeability. Is less than 1.0, the real part ε′ of the relative permittivity is in the range of 14 to 25, and the imaginary part ε″ of the relative permittivity is in the range of 4 to 10. is there. The real part μ'of the relative permeability is 1.0 to 1.3, the absolute value of the imaginary part μ" of the relative permeability is less than 0.5, and the real part ε'of the relative permittivity is 18 to 23. More preferably, the absolute value of the imaginary part ε″ of the dielectric constant is within the range of 5 to 8.
 電波吸収層(B)の比透磁率の実数部μ’が1.0未満では、電波吸収シートの準ミリ波・ミリ波帯域の電波吸収量が低下し、一方1.5を超えると電波吸収シートの準ミリ波・ミリ波帯域の電波吸収量及び耐久性が低下する傾向があり、好ましくない。また、比透磁率の虚数部μ”の絶対値が1.0を超えると本電波吸収シートの準ミリ波・ミリ波帯域の電波吸収量及び耐久性が低下する傾向があるので好ましくない。比誘電率の実数部ε’が14未満では、本電波吸収シートの準ミリ波・ミリ波帯域の電波吸収量が低く、25を超えても本電波吸収シートの準ミリ波・ミリ波帯域の電波吸収量が低下する傾向にあり好ましくない。また、電波吸収層(B)の比誘電率の虚数部ε”の絶対値が4未満では、準ミリ波・ミリ波帯域電波吸収量が低く、一方で10を超えると、準ミリ波・ミリ波帯域の電波吸収量が低下するため好ましくない。 When the real part μ'of the relative permeability of the electromagnetic wave absorbing layer (B) is less than 1.0, the electromagnetic wave absorption amount of the quasi-millimeter wave/millimeter wave band of the electromagnetic wave absorbing sheet decreases, while when it exceeds 1.5, the electromagnetic wave absorption becomes large. This is not preferable because the amount of electromagnetic wave absorption and durability in the quasi-millimeter wave/millimeter wave band of the sheet tend to decrease. Further, if the absolute value of the imaginary part μ" of the relative magnetic permeability exceeds 1.0, the radio wave absorption amount and durability in the quasi-millimeter wave/millimeter wave band of the radio wave absorption sheet tend to be reduced, which is not preferable. When the real part ε'of the dielectric constant is less than 14, the electromagnetic wave absorption amount in the quasi-millimeter wave/millimeter wave band of this electromagnetic wave absorption sheet is low, and even when it exceeds 25, the electromagnetic wave in the quasi-millimeter wave/millimeter wave band of this electromagnetic wave absorption sheet is low. If the absolute value of the imaginary part ε″ of the relative permittivity of the electromagnetic wave absorbing layer (B) is less than 4, the electromagnetic wave absorption amount in the quasi-millimeter wave/millimeter wave band is low, while the absorption amount tends to decrease. If it exceeds 10, the amount of radio wave absorption in the quasi-millimeter wave/millimeter wave band is reduced, which is not preferable.
 電波吸収層(B)は、誘電性粉末及び結合剤を含むフィルムあるいは塗膜であることができる。当該フィルムあるいは塗膜としては、例えば、誘電性粉末を結合剤中に分散させた分散物を膜状に成型したフィルムであってもよいし、結合剤、誘電性粉末及び溶媒を含む電波吸収塗料組成物を塗布し、乾燥させて形成された塗膜であってもよい。 The radio wave absorption layer (B) can be a film or coating containing a dielectric powder and a binder. The film or coating may be, for example, a film obtained by molding a dispersion obtained by dispersing dielectric powder in a binder into a film, or a radio wave absorbing paint containing the binder, the dielectric powder and a solvent. It may be a coating film formed by applying the composition and drying it.
  《結合剤》
 上記結合剤としては、主としてポリマーが用いられる。具体例としては、例えばエステルゴム、クロロスルホン化ポリエチレンゴム、塩化ゴム、エチレンプロピレンジエンゴム、クロロプレンゴム、天然ゴム、スチレンブタジエンゴム、イソプレンゴム、ブタジエンゴム、ブチルゴム、エチレンプロピレンゴム、アクリロニトリルブタジエンゴム、塩素化ブチルゴム、塩素化ポリエチレンゴム、塩素化ポリプロピレンゴム、塩素化エチレンプロピレンゴム、臭素化ブチルゴム等のゴム成分;ポリイミド、ポリフェニレンサルファイド、セラック、ロジン、ポリオレフィン樹脂、塩素化ポリオレフィン樹脂、炭化水素樹脂、塩化ビニリデン樹脂、ポリアミド樹脂、ポリエーテルケトン樹脂、塩化ビニル樹脂、ポリエステル樹脂、アルキド樹脂、フェノール樹脂、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、シリコン系樹脂、セルロース系樹脂、酢酸ビニル樹脂等の樹脂成分、並びにこれら組み合わせ等を挙げることができる。この中でも好ましくは、エチレンプロピレンジエンゴム、塩素化ポリエチレンゴム、塩素化ポリプロピレンゴム、塩素化エチレンプロピレンゴム、クロロプレンゴム、エチレンプロピレンゴム、ポリオレフィン樹脂、塩素化ポリオレフィン樹脂、ポリエステル樹脂、アルキド樹脂、フェノール樹脂、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、シリコン系樹脂、ポリイソシアネート樹脂、アミノ樹脂並びにこれらの組み合わせ等が挙げられる。
《Binder》
A polymer is mainly used as the binder. Specific examples include ester rubber, chlorosulfonated polyethylene rubber, chlorinated rubber, ethylene propylene diene rubber, chloroprene rubber, natural rubber, styrene butadiene rubber, isoprene rubber, butadiene rubber, butyl rubber, ethylene propylene rubber, acrylonitrile butadiene rubber, chlorine. Rubber components such as chlorinated butyl rubber, chlorinated polyethylene rubber, chlorinated polypropylene rubber, chlorinated ethylene propylene rubber, brominated butyl rubber; polyimide, polyphenylene sulfide, shellac, rosin, polyolefin resin, chlorinated polyolefin resin, hydrocarbon resin, vinylidene chloride Resin components such as resin, polyamide resin, polyetherketone resin, vinyl chloride resin, polyester resin, alkyd resin, phenol resin, epoxy resin, acrylic resin, urethane resin, silicone resin, cellulose resin, vinyl acetate resin, etc. A combination and the like can be mentioned. Among these, preferably ethylene propylene diene rubber, chlorinated polyethylene rubber, chlorinated polypropylene rubber, chlorinated ethylene propylene rubber, chloroprene rubber, ethylene propylene rubber, polyolefin resin, chlorinated polyolefin resin, polyester resin, alkyd resin, phenol resin, Examples thereof include epoxy resin, acrylic resin, urethane resin, silicone resin, polyisocyanate resin, amino resin, and combinations thereof.
  《誘電性を有する粉末》
 誘電性を有する粉末としては、誘電性を有すればどのような材質、形状のものでも使用することができる。具体例を挙げると、例えば、フェライト、センダスト、Fe-Cr-Al合金、Fe-Si-Cr合金、Fe-Al-Si合金、パーマロイ、カルボニル鉄、α-アルミナ、β-アルミナ、コランダム、酸化クロム、酸化セリウム、酸化チタン、ITO、含酸化珪素化合物、窒化珪素、窒化ホウ素、炭化ケイ素、炭化珪素、チタンカーバイト、炭酸カルシウム、硫酸バリウム、ベンゾグアナミン、架橋ポリスチレン、ポリエチレン、シリコン樹脂、ポリテトラフルオロエチレン、カーボン類、チタン酸バリウム、並びにこれらの組み合わせからなる群から選択される材料の粉末である。
<<Powder with dielectric properties>>
As the dielectric powder, any material and shape can be used as long as it has dielectric properties. Specific examples include, for example, ferrite, sendust, Fe-Cr-Al alloy, Fe-Si-Cr alloy, Fe-Al-Si alloy, permalloy, carbonyl iron, α-alumina, β-alumina, corundum, and chromium oxide. , Cerium oxide, titanium oxide, ITO, silicon oxide compounds, silicon nitride, boron nitride, silicon carbide, silicon carbide, titanium carbide, calcium carbonate, barium sulfate, benzoguanamine, crosslinked polystyrene, polyethylene, silicone resin, polytetrafluoroethylene A powder of a material selected from the group consisting of carbon, carbons, barium titanate, and combinations thereof.
 誘電性粉末の平均粒子径としては0.001~500μmが好ましく、更には、0.01~100μmが好ましい。また、誘電性粉末が針状形状である場合は、平均短径が0.001~500μmが好ましく、更には、0.01~100μmが好ましい。 The average particle diameter of the dielectric powder is preferably 0.001 to 500 μm, more preferably 0.01 to 100 μm. When the dielectric powder has a needle-like shape, the average minor axis is preferably 0.001 to 500 μm, and more preferably 0.01 to 100 μm.
 本明細書において、誘電性粉末の平均粒子径又は平均短径は、SEMを用い、本発明電波吸収シートのSEM像を観察することにより測定することにより得られる。 In the present specification, the average particle size or the average minor axis of the dielectric powder can be obtained by observing the SEM image of the radio wave absorption sheet of the present invention using SEM.
 電波吸収層(B)に含まれる誘電性粉末の量としては、結合剤100質量部を基準として、好ましくは100~700質量部であり、より好ましくは200~500質量部である。 The amount of the dielectric powder contained in the radio wave absorption layer (B) is preferably 100 to 700 parts by mass, more preferably 200 to 500 parts by mass, based on 100 parts by mass of the binder.
 なお、上記誘電性を有する粉末としては、その成分の一部としてフェライトを含むことが、本発明の電波吸収シートの準ミリ波・ミリ波帯域の電波吸収性の点から適している。 Note that, as the powder having the above-mentioned dielectric property, it is suitable to include ferrite as a part of its component from the viewpoint of the radio wave absorptivity in the quasi-millimeter wave/millimeter wave band of the radio wave absorption sheet of the present invention.
 本明細書においてフェライトとは、酸化鉄とその構造の一部に金属を含有した複合酸化物をいい、製法、形状、構造などに制限はない。中でも、鉄に複合される金属として、マンガン、亜鉛、ニッケル、コバルト、銅、バリウム、ストロンチウム、ケイ素、アルミニウムの中から選ばれる少なくとも1種、好ましくは少なくとも2種の金属を化学構造的に含有するフェライトが好ましい。 In the present specification, ferrite refers to a complex oxide containing iron oxide and a metal in a part of its structure, and there is no limitation on the manufacturing method, shape, structure and the like. Among them, as a metal compounded with iron, at least one metal selected from manganese, zinc, nickel, cobalt, copper, barium, strontium, silicon, and aluminum, preferably at least two metals are chemically contained. Ferrite is preferred.
 酸化鉄の一部に少なくとも1種の金属を化学構造的に含有するフェライトの好ましい例としては、例えば、亜鉛系フェライト、コバルト系フェライト、マグネシウム系フェライト、バリウム系フェライト、ストロンチウム系フェライト、並びにこれらの組み合わせ等が挙げられる。 Preferable examples of ferrites containing a chemical structure of at least one metal in a part of iron oxide include, for example, zinc-based ferrite, cobalt-based ferrite, magnesium-based ferrite, barium-based ferrite, strontium-based ferrite, and these Combinations and the like can be mentioned.
 酸化鉄の一部に少なくとも2種の金属を化学構造的に含有するフェライトの好ましい例としては、例えばマンガン・亜鉛系フェライト、マンガン・ニッケル系フェライト、ニッケル・亜鉛系フェライト、銅・亜鉛系フェライト、並びにこれらの組み合わせ等が挙げられる。 Preferable examples of the ferrite containing at least two metals in a part of iron oxide in a chemical structure include, for example, manganese/zinc ferrite, manganese/nickel ferrite, nickel/zinc ferrite, copper/zinc ferrite, And combinations thereof.
 誘電性を有する粉末がフェライトを含む場合、電波吸収層(B)に含まれるフェライトの量としては、結合剤100質量部を基準として、好ましくは150~650質量部であり、より好ましくは200~500質量部である。 When the dielectric powder contains ferrite, the amount of ferrite contained in the radio wave absorption layer (B) is preferably 150 to 650 parts by mass, more preferably 200 to 650 parts by mass, based on 100 parts by mass of the binder. 500 parts by mass.
 また、上記誘電性を有する粉末としては、その成分の一部として含酸化ケイ素化合物を含むことが、本発明の電波吸収シートの準ミリ波・ミリ波帯域の電波吸収性及び耐久性の点から適している。 Further, as the powder having the above-mentioned dielectric property, it is preferable that a silicon oxide-containing compound is included as a part of the component thereof from the viewpoint of the radio wave absorption and durability in the quasi-millimeter wave/millimeter wave band of the radio wave absorption sheet of the present invention. Are suitable.
 本発明における含酸化ケイ素化合物としては、シリカ等の二酸化ケイ素が挙げられるが、タルク、珪藻土、ウォラストナイト等の各種二酸化ケイ素と金属酸化物からなる鉱物など、その組成に酸化ケイ素を含む化合物も包含される。 Examples of the silicon oxide-containing compound in the present invention include silicon dioxide such as silica, and talc, diatomaceous earth, wollastonite, and other various silicon dioxide and minerals composed of metal oxides, as well as compounds containing silicon oxide in their composition. Included.
 誘電性粉末が含酸化ケイ素化合物を含む場合、電波吸収層(B)に含まれる含酸化ケイ素化合物の量としては、結合剤100質量部を基準として、好ましくは0.5~50質量部であり、より好ましくは1~10質量部である。 When the dielectric powder contains a silicon oxide-containing compound, the amount of the silicon oxide-containing compound contained in the radio wave absorbing layer (B) is preferably 0.5 to 50 parts by mass, based on 100 parts by mass of the binder. , And more preferably 1 to 10 parts by mass.
 また、上記誘電性粉末としては、その成分の一部としてカーボン類を含むことが本発明の電波吸収シートの準ミリ波・ミリ波帯域の電波吸収性、可とう性及び耐久性の点から適している。 Further, as the above-mentioned dielectric powder, it is suitable to include carbons as a part of its components from the viewpoint of the radio wave absorption, flexibility and durability in the quasi-millimeter wave/millimeter wave band of the radio wave absorption sheet of the present invention. ing.
 本発明に用いることのできるカーボン類としては、形状、製法等制限はなく、また導電性であっても絶縁性であってもよい。具体例としては、カーボンブラック、アセチレンブラック、カーボンナノチューブ、カーボンナノファイバー、グラフェン、フラーレン、人造ダイヤモンド、グラファイト、並びにこれらの組み合わせ等を挙げることができる。 The carbons that can be used in the present invention are not limited in shape, manufacturing method, etc., and may be conductive or insulating. Specific examples include carbon black, acetylene black, carbon nanotubes, carbon nanofibers, graphene, fullerenes, artificial diamond, graphite, and combinations thereof.
 誘電性を有する粉末がカーボン類を含む場合、電波吸収層(B)に含まれるカーボン類の量としては、結合剤100質量部を基準として、好ましくは1~50質量部であり、より好ましくは2~30質量部である。 When the powder having dielectric properties contains carbons, the amount of carbons contained in the radio wave absorption layer (B) is preferably 1 to 50 parts by mass, and more preferably 100 parts by mass of the binder. It is 2 to 30 parts by mass.
 準ミリ波・ミリ波帯領域の電波吸収性を高レベルで発揮するためには、電波吸収層(B)の膜厚も重要なファクターである。本発明では、電波吸収層(B)の膜厚が400~1000μmの範囲内にあり、好ましくは450~900μmの範囲内であり、特に好ましくは500~800μmの範囲内である。電波吸収層(B)の膜厚が400μm未満では、本電波吸収シートの準ミリ波・ミリ波帯域の電波吸収性が低下し、一方、1000μmを越えても準ミリ波・ミリ波帯域の電波吸収性が低下してしまう。 The film thickness of the electromagnetic wave absorption layer (B) is also an important factor in achieving high level of electromagnetic wave absorption in the quasi-millimeter wave/millimeter wave band region. In the present invention, the thickness of the radio wave absorbing layer (B) is in the range of 400 to 1000 μm, preferably 450 to 900 μm, and particularly preferably 500 to 800 μm. When the film thickness of the electromagnetic wave absorbing layer (B) is less than 400 μm, the electromagnetic wave absorbing property of this electromagnetic wave absorbing sheet in the quasi-millimeter wave/millimeter wave band deteriorates, while even when it exceeds 1000 μm, the electromagnetic wave in the quasi-millimeter wave/millimeter wave band Absorbency is reduced.
 また、本発明では、電波吸収層(B)の比誘電率、膜厚に加えて、タンジェントデルタ値が準ミリ波・ミリ波帯域での電波吸収性を有する指標として重要である。 In addition, in the present invention, in addition to the relative permittivity and film thickness of the radio wave absorption layer (B), the tangent delta value is important as an index having radio wave absorptivity in the quasi-millimeter wave/millimeter wave band.
 電波吸収層(B)が、比透磁率、比誘電率、膜厚の条件に加えて、タンジェントデルタ値が0.25~0.70の範囲内のものであると、本発明の電波吸収シートの準ミリ波・ミリ波帯域での電波吸収性が良好なものとなり、好ましい。 If the electromagnetic wave absorbing layer (B) has a tangent delta value in the range of 0.25 to 0.70 in addition to the conditions of relative permeability, relative permittivity and film thickness, the electromagnetic wave absorbing sheet of the present invention. This is preferable because it has good radio wave absorption in the quasi-millimeter wave/millimeter wave band.
 タンジェントデルタ値とは、誘電体内での電気エネルギー損失の度合いを表す数値であり、本明細書では比誘電率の虚数部/実数部比の絶対値を算出することによって得られる値である。 The tangent delta value is a numerical value representing the degree of electric energy loss in the dielectric body, and in this specification, it is a value obtained by calculating the absolute value of the imaginary part/real part ratio of the relative permittivity.
 本発明において電波吸収層(B)は、単層構造であっても多層構造であってもよいが、電波吸収層(B)が単層構造である場合は、最終生成物である電波吸収シートの製造に要する時間を削減できると共に、準ミリ波・ミリ波帯域での電波吸収性及び可とう性が共に適度にあり、効果的である。 In the present invention, the radio wave absorption layer (B) may have a single layer structure or a multi-layer structure, but when the radio wave absorption layer (B) has a single layer structure, the radio wave absorption sheet which is the final product. It is effective because it can reduce the time required for manufacturing, and has moderate electromagnetic wave absorbability and flexibility in the quasi-millimeter wave/millimeter wave band.
 <保護層(C)>
 図1において、前記保護層(C)は、電波吸収層(B)の上部に平行に配置されるものであり、本発明の電波吸収シートが所望の準ミリ波・ミリ波帯域の電波吸収性及び耐久性を備えるために、必要に応じて設けられる。そして図1のように、電波反射層(A)の上に電波吸収層(B)が、そして電波吸収層(B)の上に保護層(C)が、この順に配置されていることが重要である。
<Protective layer (C)>
In FIG. 1, the protective layer (C) is disposed in parallel with the upper portion of the radio wave absorption layer (B), and the radio wave absorption sheet of the present invention has a radio wave absorption property in desired quasi-millimeter wave/millimeter wave band. And, if necessary, to provide durability. Then, as shown in FIG. 1, it is important that the radio wave absorption layer (B) is disposed on the radio wave reflection layer (A) and the protection layer (C) is disposed on the radio wave absorption layer (B) in this order. Is.
 また、保護層(C)を設けることによって、その下層に位置する各層を保護するとともに、電波吸収シートに耐久性も付与することができる。 Further, by providing the protective layer (C), it is possible to protect each layer located below the protective layer (C) and also to impart durability to the electromagnetic wave absorbing sheet.
 保護層(C)は、成型したフィルムであってもよいし、塗料組成物を塗布し、乾燥させた塗膜であってもよい。また、保護層(C)は、単層構造からなってもよいし、多層構造であってもよい。 The protective layer (C) may be a molded film or a coating film obtained by applying a coating composition and drying. The protective layer (C) may have a single-layer structure or a multi-layer structure.
 本発明において、上記保護層(C)の材質には特に制限はないが、結合剤としてポリマー(合成樹脂)を含むフィルムが適している。かかるポリマーとしては電波吸収層(B)の説明で例示した化合物と同様のものを挙げることができ、中でも塩化ビニル樹脂、ポリウレタン樹脂及びポリオレフィン樹脂から選ばれる樹脂がよい。 In the present invention, the material of the protective layer (C) is not particularly limited, but a film containing a polymer (synthetic resin) as a binder is suitable. Examples of such a polymer include the same compounds as exemplified in the explanation of the radio wave absorption layer (B), and among them, a resin selected from vinyl chloride resin, polyurethane resin and polyolefin resin is preferable.
 本明細書においてポリウレタン樹脂を含むフィルムとしては、結合剤としてポリウレタン樹脂を使用したもののみならず、水酸基含有樹脂とポリイソシアネートを含む成分を混合し、塗布して硬化させて得たフィルムもポリウレタン樹脂フィルムとして包含する。 As the film containing a polyurethane resin in the present specification, not only a film using a polyurethane resin as a binder, but also a film obtained by mixing a component containing a hydroxyl group-containing resin and a polyisocyanate, coating and curing the same is a polyurethane resin. Include as a film.
 また、保護層(C)は、電波吸収シートの耐久性の観点から顔料を含有することが適している。顔料としては、着色顔料及び体質顔料が使用できる。 Also, it is suitable that the protective layer (C) contains a pigment from the viewpoint of the durability of the radio wave absorption sheet. As the pigment, a color pigment and an extender pigment can be used.
 着色顔料は、意匠性や用途、目的に応じて適宜選択できる。また、着色顔料としては、従来公知のものを使用することができる。着色顔料の具体例としては、例えば、カーボンブラック、酸化銅、四三酸化鉄、二酸化マンガン、アニリンブラック、活性炭等の黒色顔料;黄鉛、亜鉛黄、カドミウムイエロー、黄色酸化鉄、ミネラルファストイエロー、ニッケルチタンイエロー、ネーブルスエロー、ナフトールエローS、ハンザエロー、ベンジジンエローG、ベンジジンエローGR、キノリンエローレーキ、パーマネントエローNCG、タートラジンレーキ等の黄色顔料;ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム、パーマネントレッド4R、リソールレッド、ピロゾロンレッド、ウオッチングレッド、カルシウム塩、レーキレッドD、ブリリアントカーミン6B、エオシンレーキ、ローダミンレーキB、アリザリンレーキ、ブリリアントカーミン3B等の赤色顔料;紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩素化物、ファーストスカイブルー、インダスレンブルーBC等の青色顔料;クロムグリーン、酸化クロム、ピグメントグリーンB、マラカイトグリーンレーキ、ファイナルイエローグリーンG等の緑色顔料;亜鉛華、酸化チタン、アンチモン白、硫化亜鉛等の白色顔料、並びにこれらの組み合わせ等;などが挙げられる。一方、体質顔料としては、例えば、シリカ、タルク、マイカ、炭酸カルシウム、クレー、カオリン、硫酸バリウム、並びにこれらの組み合わせ等が挙げられる。 The color pigment can be appropriately selected according to the design, use, and purpose. Further, as the coloring pigment, conventionally known pigments can be used. Specific examples of the coloring pigment include, for example, black pigments such as carbon black, copper oxide, ferrosoferric oxide, manganese dioxide, aniline black and activated carbon; yellow lead, zinc yellow, cadmium yellow, yellow iron oxide, mineral fast yellow, Yellow pigments such as nickel titanium yellow, navel yellow, naphthol yellow S, hansa yellow, benzidine yellow G, benzidine yellow GR, quinoline yellow lake, permanent yellow NCG, tartrazine lake; red iron oxide, cadmium red, red lead, mercury sulfide, cadmium. , Permanent Red 4R, Resole Red, Pyrozolone Red, Watching Red, Calcium Salt, Lake Red D, Brilliant Carmine 6B, Eosin Lake, Rhodamine Lake B, Alizarin Lake, Brilliant Carmine 3B; Red Pigment; Navy Blue, Cobalt Blue, Blue pigments such as Alkali Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-Free Phthalocyanine Blue, Phthalocyanine Blue Partial Chloride, Fast Sky Blue, Induslen Blue BC; Chrome Green, Chromium Oxide, Pigment Green B, Malachite Green Lake, Final And green pigments such as yellow green G; white pigments such as zinc white, titanium oxide, antimony white, zinc sulfide, and combinations thereof; and the like. On the other hand, examples of extender pigments include silica, talc, mica, calcium carbonate, clay, kaolin, barium sulfate, and combinations thereof.
 着色顔料の配合量としては、用いる種類によって異なるが、保護層(C)の隠蔽性、準ミリ波・ミリ波帯域の電波吸収性、可とう性及び耐久性の観点から、一般には、保護層(C)を構成する着色フィルムに含まれるポリマーの質量を基準として、好ましくは0.1~300質量部の範囲内であり、特に好ましくは5~150質量部の範囲内である。
体質顔料の配合量としては、準ミリ波・ミリ波帯域の電波吸収性、可とう性及び耐久性の観点から着色フィルムに含まれるポリマーの質量を基準として、好ましくは1~200質量部の範囲内であり、特に好ましくは2~100質量部の範囲内である。
The blending amount of the coloring pigment varies depending on the type used, but in general, from the viewpoint of the concealing property of the protective layer (C), the radio wave absorbing property in the quasi-millimeter wave/millimeter wave band, flexibility and durability, the protective layer is generally used. It is preferably in the range of 0.1 to 300 parts by mass, particularly preferably in the range of 5 to 150 parts by mass, based on the mass of the polymer contained in the colored film constituting (C).
The amount of the extender pigment to be blended is preferably in the range of 1 to 200 parts by mass, based on the mass of the polymer contained in the colored film from the viewpoint of radio wave absorption in the quasi-millimeter wave/millimeter wave band, flexibility and durability. And particularly preferably in the range of 2 to 100 parts by mass.
 保護層(C)の隠蔽率は好ましくは50%以上であり、70%以上の範囲内にあるものを使用することが特に好ましい。 The hiding ratio of the protective layer (C) is preferably 50% or more, and it is particularly preferable to use one having a hiding ratio of 70% or more.
 本明細書において保護層(C)の隠蔽率は、例えば、JIS K5600 4-1のB法に準拠した隠蔽率試験紙に保護層(C)を載せ、保護層(C)を介して三刺激値Yを白色部(YW)と黒色部(YB)各々において測定し、YB/YWを百分率で算出したものである。 In the present specification, the hiding ratio of the protective layer (C) is, for example, a hiding ratio test paper conforming to the B method of JIS K56004-1, the protective layer (C) is placed, and the tristimulus is applied via the protective layer (C). The value Y is measured in each of the white part (YW) and the black part (YB), and YB/YW is calculated as a percentage.
 本発明において、準ミリ波・ミリ波帯領域の電波吸収性を高レベルで発揮し、可とう性、耐久性を良好なものとするためには、保護層(C)の膜厚は好ましくは30~200μmであり、特に好ましくは50~100μmの範囲内である。 In the present invention, the film thickness of the protective layer (C) is preferably in order to exert a high level of radio wave absorption in the quasi-millimeter wave/millimeter wave band region and to improve flexibility and durability. It is in the range of 30 to 200 μm, particularly preferably in the range of 50 to 100 μm.
 本発明において、保護層(C)単独の周波数24GHzにおける比誘電率としては、実数部ε’が1.5~8.0、好ましくは2.0~5.0であり、そして比誘電率の虚数部ε”の絶対値が1.0未満、特に好ましくは0.1未満の範囲内にあることが適している。そしてタンジェントデルタ値は0.1以下、特に0.01以下の範囲内が適している。 In the present invention, as the relative dielectric constant of the protective layer (C) alone at a frequency of 24 GHz, the real part ε′ is 1.5 to 8.0, preferably 2.0 to 5.0, and the relative dielectric constant is It is suitable that the absolute value of the imaginary part ε″ is less than 1.0, particularly preferably less than 0.1, and the tangent delta value is less than 0.1, particularly less than 0.01. Are suitable.
 <電波吸収シート>
 本発明の電波吸収シートは、電波反射層(A)及び電波吸収層(B)、そして必要に応じて保護層(C)から構成されるものであり、各層を付着させるには公知の手法が用いられる。各層は液状塗料を塗布し乾燥させることによって形成されていてもよいが、フィルム貼り付けによって形成させる場合には、各フィルム間に必要に応じて接着層(P)を設けてもよい。
<Electromagnetic wave absorption sheet>
The radio wave absorption sheet of the present invention comprises a radio wave reflection layer (A), a radio wave absorption layer (B), and, if necessary, a protective layer (C), and a known method can be used to attach each layer. Used. Each layer may be formed by applying a liquid coating material and drying it, but when forming by film sticking, an adhesive layer (P) may be provided between each film as needed.
 <接着層(P)>
 接着層(P)は、各層間の付着性を向上させ、本電波吸収シートの耐久性を向上させる目的で、必要に応じて設けられる層であり、公知の接着剤あるいは粘着剤を使用できる。
<Adhesive layer (P)>
The adhesive layer (P) is a layer provided as necessary for the purpose of improving the adhesiveness between the layers and improving the durability of the present radio wave absorption sheet, and a known adhesive or pressure-sensitive adhesive can be used.
 接着層(P)を構成する接着剤あるいは粘着剤の形態としては、水分散系、溶液系、2液混合系、固体系、テープ系のいずれであってもよい。材質としては特に制限されるものではないが、有機系接着剤あるいは粘着剤であっても、無機系接着剤あるいは粘着剤であってもよい。 The form of the adhesive or pressure-sensitive adhesive forming the adhesive layer (P) may be any of water dispersion system, solution system, two-liquid mixture system, solid system, and tape system. Although the material is not particularly limited, it may be an organic adhesive or an adhesive, or an inorganic adhesive or an adhesive.
 有機系接着剤あるいは粘着剤としては、例えば、酢酸ビニル系、酢酸ビニル樹脂エマルジョン系、ビニル樹脂系、エチレン-酢酸ビニル樹脂系、ポリ酢酸ビニル樹脂系、エポキシ樹脂系、ポリビニルアルコール系、エチレン酢酸ビニル系、塩化ビニル系、α-オレフィン系、アクリル樹脂系、ポリアミド系、ポリイミド系、セルロース系、ポリビニルピロリドン系、ポリスチレン系、ポリスチレン樹脂系、シアノアクリレート系、ポリビニルアセタール系、ウレタン樹脂系、ポリオレフィン樹脂系、ポリビニルブチラール樹脂系、ポリアロマティック系、ユリア樹脂系、メラミン樹脂系、フェノール樹脂系、レゾルシノール系、クロロブレンゴム系、ニトリルゴム系、スチレンブタジエンゴム系、ポリベンズイミダソール系、熱可塑性エラストマー系、ブチルゴム系、シリコーン系、変性シリコン系、シリル化ウレタン系、ウレタンゴム系、ポリサルファイト系、アクリルゴム系などの合成系接着剤;並びにデンプン系、天然ゴム系、アスファルト、膠、アラビアガム、漆、カゼイン、大豆タンパク、松やになどの天然系接着剤あるいは粘着剤;反応性ホットメルト接着剤あるいは粘着剤などが挙げられる。 Examples of organic adhesives or adhesives include vinyl acetate-based, vinyl acetate resin emulsion-based, vinyl resin-based, ethylene-vinyl acetate resin-based, polyvinyl acetate resin-based, epoxy resin-based, polyvinyl alcohol-based, ethylene vinyl acetate System, vinyl chloride system, α-olefin system, acrylic resin system, polyamide system, polyimide system, cellulose system, polyvinylpyrrolidone system, polystyrene system, polystyrene resin system, cyanoacrylate system, polyvinyl acetal system, urethane resin system, polyolefin resin system , Polyvinyl butyral resin system, polyaromatic system, urea resin system, melamine resin system, phenol resin system, resorcinol system, chlorobrene rubber system, nitrile rubber system, styrene butadiene rubber system, polybenzimidazole system, thermoplastic elastomer -Based, butyl rubber-based, silicone-based, modified silicone-based, silylated urethane-based, urethane rubber-based, polysulfite-based, acrylic rubber-based and other synthetic adhesives; and starch-based, natural rubber-based, asphalt, glue, gum arabic , Natural adhesives or pressure sensitive adhesives such as lacquer, casein, soybean protein and pine nuts; reactive hot melt adhesives or pressure sensitive adhesives.
 無機系接着剤あるいは粘着剤としては、珪酸ソーダ、セメント系(ポルトランドセメント、漆喰、石膏、マグネシウムセメント、リサージセメント、歯科用セメントなど)及びセラミックなどを挙げることができる。 Examples of inorganic adhesives or adhesives include sodium silicate, cement-based (Portland cement, plaster, gypsum, magnesium cement, litharge cement, dental cement, etc.) and ceramics.
 上記した接着剤あるいは粘着剤の中でも、本電波吸収シートの可とう性、準ミリ波・ミリ波帯域の電波吸収性及び耐久性の観点から、合成系接着剤あるいは粘着剤の使用が適している。 Among the above-mentioned adhesives or pressure-sensitive adhesives, the use of synthetic adhesives or pressure-sensitive adhesives is suitable from the viewpoint of the flexibility of the present electromagnetic wave absorption sheet, the electromagnetic wave absorption in the quasi-millimeter wave/millimeter wave band, and the durability. ..
 また、接着層(P)の膜厚としては、特に制限されるものではないが、準ミリ波・ミリ波帯域の電波吸収性の観点からは一般に100μm以下であることができ、特に7~80μmの範囲内にあることができる。 The film thickness of the adhesive layer (P) is not particularly limited, but can be generally 100 μm or less from the viewpoint of radio wave absorption in the quasi-millimeter wave/millimeter wave band, and particularly 7 to 80 μm. Can be in the range of.
 本発明において、準ミリ波・ミリ波帯域の電波吸収性を高いレベルで発揮するには、電波吸収シートの最表面(電波吸収層(B)側、保護層(C)がある場合は保護層(C)側)の表面粗さが、Sa(算術平均表面粗さ)で150~6000nm、好ましくは200~5500nm、Sq(2乗平均平方根高さ表面粗さ)で200~7000nm、好ましくは300~6000nmの範囲内となるように調整することが望ましい。 In the present invention, in order to exert a high level of radio wave absorption in the quasi-millimeter wave/millimeter wave band, the outermost surface of the radio wave absorption sheet (the radio wave absorption layer (B) side, the protective layer if there is a protective layer (C)) The (C) side) has a surface roughness Sa (arithmetic mean surface roughness) of 150 to 6000 nm, preferably 200 to 5500 nm, and a Sq (root mean square height surface roughness) of 200 to 7,000 nm, preferably 300. It is desirable to adjust the thickness within the range of up to 6000 nm.
 本発明において、粗さパラメータSa(算術平均粗さ)及びSq(2乗平均平方根高さ)は、ISO 25178に規定された方法に基づき、以下の条件で撮影した試験体表面の画像を用いて測定したものである。
 ・装置:光干渉顕微鏡(ブルカーAXS社製 Countour GT-1)
 ・対物レンズ:5倍
 ・内部レンズ(接眼レンズ):0.55倍
 ・測定範囲:幅6mm/長さ:1.7mm。
In the present invention, the roughness parameters Sa (arithmetic mean roughness) and Sq (root mean square height) are based on the method specified in ISO 25178, using images of the surface of the test body taken under the following conditions. It was measured.
・Device: Optical interference microscope (Counter GT-1 manufactured by Bruker AXS)
-Objective lens: 5 times-Internal lens (eyepiece): 0.55 times-Measurement range: Width 6 mm/length: 1.7 mm.
 <電波吸収方法>
 本発明は、上記した如き電波吸収シートを用いることによって、準ミリ波・ミリ波帯域の電波を吸収する電波吸収方法を提供するものである。
<Radio wave absorption method>
The present invention provides a radio wave absorbing method for absorbing radio waves in the quasi-millimeter wave/millimeter wave band by using the radio wave absorbing sheet as described above.
 また、本発明は、誤作動の電波障害を生じる原因となる電波反射体に、上記電波吸収シートを設置するか、又は、前記電波反射体と電波受信装置との間に、上記電波吸収シートを設置する、電波障害の防止方法を提供するものである。 Further, the present invention is to install the above-mentioned radio wave absorbing sheet on a radio wave reflecting body which causes a radio wave trouble of malfunction, or to install the above radio wave absorbing sheet between the radio wave reflecting body and a radio wave receiving device. It is intended to provide a method of preventing electromagnetic interference that is installed.
 上記本発明の電波吸収シートは、その全体膜厚が0.5~1.5mm、特に0.6~1mmの範囲内であることができ、可とう性に極めて優れている。なお、塗料の場合は、乾燥後の膜厚がこの範囲であればよい。このため、種々の形状の電波反射体に容易に取り付け可能である。 The radio wave absorption sheet of the present invention described above can have a total film thickness of 0.5 to 1.5 mm, particularly 0.6 to 1 mm, and is extremely flexible. In the case of paint, the film thickness after drying may be within this range. Therefore, it can be easily attached to radio wave reflectors of various shapes.
 本発明の電波吸収シートを直接あるいは近傍に設置するための上記電波反射体としては、準ミリ波及びミリ波、特に準ミリ波帯域の電波が発生する環境にある物品・構造体であれば特に制限はない。 The radio wave reflector for installing the radio wave absorbing sheet of the present invention directly or in the vicinity thereof is particularly a product/structure which is in an environment where radio waves in the quasi-millimeter wave and the millimeter wave, particularly in the quasi-millimeter wave band are generated. There is no limit.
 具体例としていくつかの例を挙げれば、中央分離帯、トンネル内壁、遮音壁、防音壁、道路標識、ガードレール、道路反射ミラー、電柱、信号機、交通標識、街路樹、道路照明灯柱等の自動車走行用道路近辺にある物品・構造体、自動車工場や整備場、部屋の壁面等を挙げることができる。 Some specific examples are car travel such as medians, tunnel inner walls, sound insulation walls, sound insulation walls, road signs, guardrails, road reflection mirrors, telephone poles, traffic lights, traffic signs, street trees, road lighting poles, etc. Examples include goods and structures near roads, automobile factories and maintenance areas, and wall surfaces of rooms.
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、下記例中の「部」及び「%」はそれぞれ「質量部」及び「質量%」を意味する。 Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples. In addition, "part" and "%" in the following examples mean "mass part" and "mass %", respectively.
 <電波吸収シートの製造>
 実施例1
 タテが30cm、ヨコが30cm、厚さが50μmのアルミニウム箔(Al箔)に、10μm接着層(アクリル系接着剤)を設け、その上に、塩素化ポリエチレンゴム100部に対してMnZnフェライト(マンガン・亜鉛系フェライト、平均粒子径0.7μm)350部、絶縁カーボン350部、及びシリカ3部を混練りし、成型して得られた膜厚570μmの単層構造のシートを積層し、さらにその上に、10μm接着層(アクリル系接着剤)を設け、膜厚80μmの保護シート(注)を貼り付けて電波吸収シート(X-1)を得た。
<Manufacture of electromagnetic wave absorption sheet>
Example 1
An aluminum foil (Al foil) having a length of 30 cm, a width of 30 cm, and a thickness of 50 μm is provided with a 10 μm adhesive layer (acrylic adhesive), and 100 parts of chlorinated polyethylene rubber is coated with MnZn ferrite (manganese). -Zinc-based ferrite, average particle size 0.7 μm) 350 parts, insulating carbon 350 parts, and silica 3 parts are kneaded and molded to obtain a single-layer structure sheet having a thickness of 570 μm, which is further laminated. An adhesive layer (acrylic adhesive) having a thickness of 10 μm was provided thereon, and a protective sheet (note) having a thickness of 80 μm was attached to obtain a radio wave absorption sheet (X-1).
 (注)保護シート:塩化ビニル樹脂と酸化チタンとを含有する着色フィルム。塩化ビニル樹脂100部に対する酸化チタン量は80部である。 (Note) Protective sheet: Colored film containing vinyl chloride resin and titanium oxide. The amount of titanium oxide was 80 parts with respect to 100 parts of the vinyl chloride resin.
 実施例2~15及び比較例1~9
 電波吸収層、保護層の材質、厚さを表1~表4記載の通りとする以外は、実施例1と同様にして、シート状の電波吸収シート(X-2)~(X-24)を得た。尚、表中phrは結合剤100質量部に対する各成分の質量比率を意味する。また、表中、保護層の比誘電率の欄に記載のjは、電波吸収層の比誘電率を表すiと同義である。よって、実施例1の保護層の比誘電率の実数部は3.8であり、虚数部の絶対値は0.08である。
Examples 2-15 and Comparative Examples 1-9
Sheet-shaped electromagnetic wave absorption sheets (X-2) to (X-24) were prepared in the same manner as in Example 1 except that the materials and thicknesses of the electromagnetic wave absorption layer and the protective layer were as shown in Tables 1 to 4. Got In the table, phr means the mass ratio of each component to 100 parts by mass of the binder. Further, in the table, j described in the column of the relative dielectric constant of the protective layer has the same meaning as i representing the relative dielectric constant of the radio wave absorption layer. Therefore, the real part of the relative permittivity of the protective layer of Example 1 is 3.8, and the absolute value of the imaginary part is 0.08.
 比較例10
 タテが30cm、ヨコが30cm、厚さが50μmのアルミニウム箔に、10μm接着層を設け、その上に、EPDMゴム(エチレンプロピレンジエンゴム)100部に対してマンガン-亜鉛系フェライト790部を混練りし、成型して得られた膜厚550μmのシート(1)を積層し、さらにその上に、エチレンプロピレンジエンゴム100部に対してバリウム系フェライト300部を混練りし、成形して得られた膜厚950μmのシート(2)を積層し、さらにその上に、80μmの市販の白色マーキングフィルム(粘着剤付意匠フィルム ファンタックシート:(株)カンペファンタックセンター)を貼り付けて、電波吸収シート(X-25)を得た。電波吸収シート(X-25)において、シート(1)の周波数79GHzのときの比誘電率はε=34-4.5iであり、シート(2)の比誘電率はε=2.5-0.2iである。この電波吸収シート(X-25)の全体膜厚は1.64mmであり、電波吸収層部分は積層構造となっており、その部分の厚さは1.5mmである。
Comparative Example 10
An aluminum foil having a length of 30 cm, a width of 30 cm, and a thickness of 50 μm is provided with a 10 μm adhesive layer, and 790 parts of manganese-zinc ferrite is kneaded with 100 parts of EPDM rubber (ethylene propylene diene rubber). Then, the sheet (1) having a film thickness of 550 μm obtained by molding was laminated, and further, 300 parts of barium ferrite was kneaded with 100 parts of ethylene propylene diene rubber, and molded to obtain A sheet (2) with a film thickness of 950 μm is laminated, and a commercially available white marking film with a thickness of 80 μm (a design film with an adhesive, a fan tack sheet: Kampe Fan Tuck Center Co., Ltd.) is attached on the sheet (2) to form an electromagnetic wave absorption sheet. (X-25) was obtained. In the radio wave absorbing sheet (X-25), the relative permittivity of the sheet (1) at a frequency of 79 GHz is ε=34-4.5i, and the relative permittivity of the sheet (2) is ε=2.5-0. .2i. The radio wave absorption sheet (X-25) has a total film thickness of 1.64 mm, the radio wave absorption layer portion has a laminated structure, and the thickness of the portion is 1.5 mm.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(注)MnZnフェライト:マンガン・亜鉛系フェライト、平均粒子径0.7μm、
(注)絶縁カーボン:絶縁性のカーボンブラック、平均粒子径20nm、
(注)導電カーボン:導電性のカーボンブラック、平均粒子径34nm、
(注)シリカ:平均粒子径6μm、
(注)Baフェライト:バリウム系フェライト、平均粒子径2μm、
(注)チタン酸バリウム:平均粒子径2μm、
(注)Fe-Al-Si合金:鉄、アルミニウム、シリコンの合金。
(Note) MnZn ferrite: Manganese/zinc ferrite, average particle size 0.7 μm,
(Note) Insulating carbon: Insulating carbon black, average particle size 20 nm,
(Note) Conductive carbon: conductive carbon black, average particle size 34 nm,
(Note) Silica: average particle diameter 6 μm,
(Note) Ba ferrite: barium ferrite, average particle diameter 2 μm,
(Note) Barium titanate: average particle size 2 μm,
(Note) Fe-Al-Si alloy: An alloy of iron, aluminum and silicon.
 <評価試験>
 上記実施例及び比較例で作成した電波吸収シート(X-1)~(X-25)を下記基準、方法にて評価し、各電波吸収シートが有する性状値と共に表1~表4に示した。尚、表1~表4中、電波吸収層(B)及び保護層(C)の比誘電率及び比透磁率、並びに電波吸収シートの膜厚、粗さパラメータSa、Sqは明細書記載の方法によって求めたものである。
<Evaluation test>
The electromagnetic wave absorbing sheets (X-1) to (X-25) prepared in the above Examples and Comparative Examples were evaluated according to the following criteria and methods, and the properties of each electromagnetic wave absorbing sheet are shown in Tables 1 to 4. .. In Tables 1 to 4, the relative permittivity and relative permeability of the electromagnetic wave absorbing layer (B) and the protective layer (C), the thickness of the electromagnetic wave absorbing sheet, and the roughness parameters Sa and Sq are the methods described in the specification. It was sought by.
 (*)各電波吸収シートの準ミリ波電波吸収性測定
 各電波吸収シートの電波吸収性を、電波吸収量が-30dB以上の電波吸収体を部屋の壁面及び床面に設置した電波暗室にて、電波吸収測定装置を用いて測定した。具体的には、電波吸収測定装置に備えられた送信用ホーンアンテナと受信用ホーンアンテナの入射及び反射角度が、床面からの垂直面に対し、それぞれ10°となるように、送信用ホーンアンテナと受信用ホーンアンテナを設置し、それぞれのアンテナから45cmの距離となるように金属反射板を置き、反射してくる信号を受信用ホーンアンテナで受信して、その電波反射率を100%とする。次に、金属反射板を取除き、反射してくる信号を受信用ホーンアンテナで受信して、その電波反射率を0%とする。そして金属反射板を置いた位置に測定試料を置き、準ミリ波付近の周波数について測定試料表面から反射してくる電波反射量を測定し、周波数(GHz)を横軸とし、電波吸収量(dB)を縦軸とする準ミリ波付近の電波吸収特性チャートを得た。図2に電波吸収特性チャートの一例を示す。
(*) Measurement of quasi-millimeter wave radio wave absorption of each radio wave absorption sheet The radio wave absorption of each radio wave absorption sheet is measured in an anechoic chamber with a radio wave absorber with a radio wave absorption amount of -30 dB or more installed on the wall and floor of the room. , Was measured using a radio wave absorption measuring device. Specifically, the transmission horn antenna and the reception horn antenna included in the radio wave absorption measuring device are arranged so that the incident and reflection angles thereof are 10° with respect to a vertical plane from the floor. And a receiving horn antenna are installed, a metal reflector is placed at a distance of 45 cm from each antenna, and the reflected signal is received by the receiving horn antenna and the radio wave reflectance is set to 100%. .. Next, the metal reflector is removed, and the reflected signal is received by the receiving horn antenna, and the radio wave reflectance thereof is set to 0%. Then, the measurement sample is placed at the position where the metal reflector is placed, and the radio wave reflection amount reflected from the measurement sample surface is measured for frequencies near the quasi-millimeter wave, and the frequency (GHz) is taken as the horizontal axis, and the radio wave absorption amount (dB ) Is a vertical axis, and a radio wave absorption characteristic chart near the quasi-millimeter wave is obtained. FIG. 2 shows an example of a radio wave absorption characteristic chart.
 (*)ピーク周波数における電波吸収量
 上記電波吸収量測定で得られた電波吸収特性チャートにおいて、最も電波吸収量が多い周波数をピーク周波数(M3)とし、該ピーク周波数における電波吸収量を求め、表中に記載した。尚、表中の電波吸収量は数値が低いほど、電波吸収量が多く、良好であることを意味する。
(*) Radio wave absorption amount at peak frequency In the radio wave absorption characteristic chart obtained by the above radio wave absorption amount measurement, the frequency with the highest radio wave absorption amount is defined as the peak frequency (M3), and the radio wave absorption amount at the peak frequency is calculated, It is described inside. It should be noted that the lower the numerical value of the radio wave absorption amount in the table, the greater the radio wave absorption amount and the better.
 (*)電波吸収量が-20dB以上となる帯域幅
 電波吸収量-20dBにおける、最大吸収周波数M1と最小吸収周波数M2との差であり、次式で表される。bw=M1-M2。
(*) Bandwidth at which the electromagnetic wave absorption amount is -20 dB or more The difference between the maximum absorption frequency M1 and the minimum absorption frequency M2 in the radio wave absorption amount -20 dB, which is expressed by the following formula. bw=M1-M2.
 表中の数値が大きいほど準ミリ波領域での帯域幅が広いことを意味し、良好である。尚、表中「-」の記号は電波吸収量が-20dBに達していないために、幅が測定できないことを意味する。 The larger the number in the table, the wider the bandwidth in the quasi-millimeter wave region, and the better. The symbol "-" in the table means that the width cannot be measured because the amount of radio wave absorption has not reached -20 dB.
 (*)各電波吸収シートのミリ波電波吸収性測定
 上記準ミリ波電波吸収測定試験において、準ミリ波に替えてミリ波付近の周波数について測定試料から反射してくる電波反射量を測定し、周波数(GHz)を横軸とし、電波吸収量(dB)を縦軸とするミリ波電波吸収特性チャートを得た。ピーク周波数における電波吸収量及び電波吸収量が-20dB以上となる帯域幅の求め方は準ミリ波の場合と同様である。表中-は最大吸収量が-20dB未満を意味する。
(*) Millimeter-wave radio wave absorption measurement of each radio wave absorption sheet In the above quasi-millimeter wave radio wave absorption measurement test, the radio wave reflection amount reflected from the measurement sample was measured for frequencies near the millimeter wave instead of quasi-millimeter wave, A millimeter wave electromagnetic wave absorption characteristic chart having a frequency (GHz) as a horizontal axis and a radio wave absorption amount (dB) as a vertical axis was obtained. The method of obtaining the amount of radio wave absorption at the peak frequency and the bandwidth at which the amount of radio wave absorption is -20 dB or more is the same as in the case of quasi-millimeter wave. In the table, − means that the maximum absorption amount is less than −20 dB.
 (*)可とう性
 各電波吸収シート(X-1)~(X-25)を、電波反射層が下となるように180°手で折り曲げ、折り曲げ作業性と折り曲げ部の表面状態を下記基準にて評価した。
○:折り曲げ作業性は良好であり、折り曲げ部に破損が全く認められない、
△:折り曲げ作業性は良好であるが、折り曲げ部に破損が若干認められる、
×:折り曲げ作業が困難であり、折り曲げ部に著しい破損が認められる。
(*) Flexibility Each of the electromagnetic wave absorption sheets (X-1) to (X-25) is manually bent by 180° with the electromagnetic wave reflection layer facing down, and the bending workability and the surface condition of the bending part are based on the following standards. Was evaluated.
◯: Bending workability is good, and no damage is observed in the bent portion,
Δ: Bending workability is good, but some damage is observed in the bent portion,
X: The bending work is difficult, and significant damage is recognized in the bent portion.
 (*耐久性)
 各電波吸収シートを構成する保護層又は電波吸収層側の表面に、5%塩酸水溶液をスポイトで1滴垂らし、50℃雰囲気下で5時間放置した後、水洗し、スポットした箇所を観察し、次の基準で評価した。
◎:変化が全く認められない、
○:スポット部にツヤビケがやや認められる、
△:スポット部にツヤビケが明らかに認められる、
×:塗面に膨潤又は白化が生じている。
(*durability)
Drop a drop of 5% hydrochloric acid aqueous solution on the surface of the protective layer or the electromagnetic wave absorbing layer side that constitutes each electromagnetic wave absorbing sheet with a dropper, leave it in an atmosphere of 50° C. for 5 hours, then wash with water and observe the spotted spot, The following criteria evaluated.
⊚: No change is observed
○: Some lusteriness is observed in the spot part,
Δ: Luster is clearly observed in the spot part,
X: Swelling or whitening occurs on the coated surface.
 (考察)
 表1~表4の結果より、本発明の効果について以下に考察する。
(Discussion)
From the results of Tables 1 to 4, the effects of the present invention will be considered below.
 実施例1~15は本発明で規定した範囲内の電波吸収シートである。 Examples 1 to 15 are electromagnetic wave absorption sheets within the range specified by the present invention.
 比較例1及び2は電波吸収層(B)の膜厚が本発明で規定した範囲を外れる電波吸収 シートである。 Comparative Examples 1 and 2 are radio wave absorption sheets in which the film thickness of the radio wave absorption layer (B) is out of the range specified in the present invention.
 比較例3及び9は電波吸収層(B)の比誘電率実数部及び虚数部が本発明で規定する範囲を下回る電波吸収シートである。 Comparative Examples 3 and 9 are radio wave absorption sheets in which the relative permittivity real part and the imaginary part of the radio wave absorption layer (B) are below the range specified in the present invention.
 比較例4、5は、電波吸収層(B)の比透磁率の実数部が本発明で規定した範囲を上回る電波吸収シートである。 Comparative Examples 4 and 5 are radio wave absorption sheets in which the real part of the relative magnetic permeability of the radio wave absorption layer (B) exceeds the range specified in the present invention.
 比較例6は、電波吸収層(B)の比透磁率の虚数部が本発明で規定した範囲を上回る電波吸収シートである。 Comparative Example 6 is a radio wave absorption sheet in which the imaginary part of the relative magnetic permeability of the radio wave absorption layer (B) exceeds the range specified in the present invention.
 比較例7は、電波反射層(A)が備えられていない電波吸収シートである。 Comparative Example 7 is a radio wave absorption sheet that does not have the radio wave reflection layer (A).
 比較例8は電波吸収層(B)の比誘電率実数部及び虚数部が本発明で規定する範囲を上回る電波吸収シートである。 Comparative Example 8 is a radio wave absorption sheet in which the real and imaginary parts of the relative permittivity of the radio wave absorption layer (B) exceed the range specified by the present invention.
 比較例10は、電波吸収層部分の膜厚が本発明範囲を上回る電波吸収シートである。 Comparative Example 10 is a radio wave absorption sheet in which the film thickness of the radio wave absorption layer portion exceeds the range of the present invention.
 以上により調製された電波吸収シートによる準ミリ波及びミリ波帯域の電波吸収特性及び可とう性試験、耐久性試験結果より、以下のことが言える。 The following can be said from the electromagnetic wave absorption characteristics in the quasi-millimeter wave and millimeter wave bands, the flexibility test, and the durability test results using the electromagnetic wave absorption sheet prepared above.
 電波反射層(A)及び電波吸収層(B)を備えるとともに配置関係が規定どおりであり、電波吸収層(B)の膜厚が所定範囲内であり、電波吸収層の比誘電率及び比透磁率が本発明所定の範囲内にある限り、準ミリ波吸収性に極めて優れ、帯域幅が広く、ミリ波吸収性も有し、可とう性、耐久性に優れた電波吸収シートが得られる。 The radio wave reflection layer (A) and the radio wave absorption layer (B) are provided and the positional relationship is as specified, the thickness of the radio wave absorption layer (B) is within a predetermined range, and the relative permittivity and relative permeability of the radio wave absorption layer are As long as the magnetic susceptibility is within the predetermined range of the present invention, it is possible to obtain a radio wave absorption sheet which is extremely excellent in quasi-millimeter wave absorption, has a wide bandwidth, has millimeter wave absorption, and is excellent in flexibility and durability.
 電波吸収層(B)が膜厚の条件を満たさない場合は、電波吸収シートの準ミリ波吸収性が充分発揮できないが、電波吸収層(B)膜厚が本発明規定の範囲にあるときに限り、準ミリ波電波吸収性と帯域幅が飛躍的に増大する。(実施例1と、比較例1、2との対比)。 When the thickness of the electromagnetic wave absorbing layer (B) does not satisfy the condition of the thickness, the quasi-millimeter wave absorbing property of the electromagnetic wave absorbing sheet cannot be sufficiently exerted, but when the thickness of the electromagnetic wave absorbing layer (B) is within the range specified by the present invention. As far as possible, the quasi-millimeter wave absorption and the bandwidth are dramatically increased. (Comparison between Example 1 and Comparative Examples 1 and 2).
 電波吸収層(B)が比誘電率の条件を満たさない場合は、電波吸収シートの準ミリ波吸収性が充分発揮できないが、電波吸収層(B)の比誘電率が本発明規定の範囲にあるときに限り、ミリ波電波吸収性と帯域幅が飛躍的に増大する。(実施例1と、比較例3、8、9との対比)。 If the electromagnetic wave absorbing layer (B) does not satisfy the condition of the relative permittivity, the quasi-millimeter wave absorbing property of the electromagnetic wave absorbing sheet cannot be sufficiently exhibited, but the relative permittivity of the electromagnetic wave absorbing layer (B) falls within the range of the present invention. Only at certain times, millimeter wave absorption and bandwidth will increase dramatically. (Comparison between Example 1 and Comparative Examples 3, 8 and 9).
 電波反射層(A)がない電波吸収シートでは、電波吸収シートの準ミリ波吸収性が充分発揮できない。しかしながら、すべての層を組み合わせることによって、ミリ波電波吸収性と帯域幅が飛躍的に増大する。(実施例1と比較例7との対比)。 ㆍThe electromagnetic wave absorbing sheet without the electromagnetic wave reflection layer (A) cannot fully exhibit the quasi-millimeter wave absorbing property of the electromagnetic wave absorbing sheet. However, the combination of all layers dramatically increases the millimeter wave absorption and bandwidth. (Comparison between Example 1 and Comparative Example 7).
 電波吸収層(B)の比透磁率の条件を満たさない場合は、電波吸収シートの準ミリ波吸収性が充分発揮できないが、電波吸収層(B)の比透磁率が本発明規定の範囲にあるときに限り、ミリ波電波吸収性と帯域幅が飛躍的に増大し、耐久性も向上する。(実施例1と比較例4、5、6との対比)。 When the condition of the relative magnetic permeability of the radio wave absorbing layer (B) is not satisfied, the quasi-millimeter wave absorbing property of the radio wave absorbing sheet cannot be sufficiently exhibited, but the relative magnetic permeability of the radio wave absorbing layer (B) falls within the range specified by the present invention. Only at certain times, millimeter wave absorption and bandwidth are dramatically increased, and durability is also improved. (Comparison between Example 1 and Comparative Examples 4, 5 and 6).
 電波吸収層部分に誘電性を有する粉末を含んでいても、トータルの膜厚が厚く、また、積層構造である場合は、ミリ波吸収性を有するが準ミリ波特性が十分ではない。(実施例1と比較例10との対比)。 ㆍEven if the electromagnetic wave absorbing layer contains a powder having dielectric properties, the total film thickness is large, and if it has a laminated structure, it has millimeter wave absorption but the quasi-millimeter wave characteristics are not sufficient. (Comparison between Example 1 and Comparative Example 10).

Claims (17)

  1.  電波反射層(A)と、前記電波反射層(A)の上部に平行に配置された電波吸収層(B)と、を備えてなり、
     前記電波吸収層(B)の膜厚が400~1000μmの範囲内であり、
     周波数24GHzにおける前記電波吸収層(B)の比透磁率(μr=μ’+μ”i)の実数部μ’が1.0~1.50の範囲内であり、虚数部μ”の絶対値が0以上且つ1.0未満であって、
     周波数24GHzにおける前記電波吸収層(B)の比誘電率(εr=ε’+ε”i)の実数部ε’が14~25の範囲内であり、虚数部ε”の絶対値が4~10の範囲内にある、
    準ミリ波・ミリ波帯域用電波吸収シート。
    A radio wave reflection layer (A) and a radio wave absorption layer (B) arranged in parallel on the radio wave reflection layer (A),
    The film thickness of the radio wave absorption layer (B) is in the range of 400 to 1000 μm,
    The real part μ′ of the relative magnetic permeability (μr=μ′+μ″i) of the radio wave absorbing layer (B) at a frequency of 24 GHz is in the range of 1.0 to 1.50, and the absolute value of the imaginary part μ″ is 0 or more and less than 1.0,
    The relative part of the relative permittivity (εr=ε′+ε″i) of the radio wave absorbing layer (B) at a frequency of 24 GHz is in the range of 14 to 25, and the absolute value of the imaginary part ε″ is 4 to 10 Within range,
    Electromagnetic wave absorption sheet for quasi-millimeter wave/millimeter wave band.
  2.  前記電波吸収層(B)が、誘電性を有する粉末及び結合剤を含むフィルムであり、
     前記誘電性を有する粉末は、以下の材料:
     フェライト、センダスト、Fe-Cr-Al合金、Fe-Si-Cr合金、Fe-Al-Si合金、パーマロイ、カルボニル鉄、α-アルミナ、β-アルミナ、コランダム、酸化クロム、酸化セリウム、酸化チタン、ITO、含酸化珪素化合物、窒化珪素、窒化ホウ素、炭化ケイ素、炭化珪素、チタンカーバイト、炭酸カルシウム、硫酸バリウム、ベンゾグアナミン、架橋ポリスチレン、ポリエチレン、シリコン樹脂、ポリテトラフルオロエチレン、カーボン類、チタン酸バリウム、並びにこれらの組み合わせ
    からなる群から選択される材料の粉末である、請求項1に記載の電波吸収シート。
    The radio wave absorption layer (B) is a film containing a powder having a dielectric property and a binder,
    The dielectric powder has the following materials:
    Ferrite, sendust, Fe-Cr-Al alloy, Fe-Si-Cr alloy, Fe-Al-Si alloy, permalloy, carbonyl iron, α-alumina, β-alumina, corundum, chromium oxide, cerium oxide, titanium oxide, ITO , Silicon oxide compounds, silicon nitride, boron nitride, silicon carbide, silicon carbide, titanium carbide, calcium carbonate, barium sulfate, benzoguanamine, crosslinked polystyrene, polyethylene, silicone resin, polytetrafluoroethylene, carbons, barium titanate, The radio wave absorption sheet according to claim 1, which is a powder of a material selected from the group consisting of a combination thereof.
  3.  前記誘電性を有する粉末が、その成分の一部としてフェライトを含む、請求項2に記載の電波吸収シート。 The radio wave absorption sheet according to claim 2, wherein the powder having dielectric properties contains ferrite as a part of its component.
  4.  前記誘電性を有する粉末が、その成分の一部として含酸化珪素化合物を含む、請求項2又は3に記載の電波吸収シート。 The radio wave absorption sheet according to claim 2 or 3, wherein the dielectric powder contains a silicon oxide-containing compound as a part of its components.
  5.  前記誘電性を有する粉末が、その成分の一部としてカーボン類を含む、請求項2~4のいずれか1項に記載の電波吸収シート。 The radio wave absorbing sheet according to any one of claims 2 to 4, wherein the powder having dielectric properties contains carbon as a part of its components.
  6.  前記電波吸収層(B)が、前記電波吸収層(B)に含まれる前記結合剤100質量部を基準として、前記誘電性を有する粉末を100~700質量部含む、請求項2~5のいずれか1項に記載の電波吸収シート。 6. The electromagnetic wave absorbing layer (B) according to any one of claims 2 to 5, wherein 100 to 700 parts by mass of the dielectric powder is included based on 100 parts by mass of the binder contained in the electromagnetic wave absorbing layer (B). The electromagnetic wave absorption sheet according to item 1.
  7.  前記電波吸収層(B)が、前記誘電性を有する粉末を前記結合剤中に分散させた分散物を、膜状に成型したフィルムである、請求項2~6のいずれか1項に記載の電波吸収シート。 7. The radio wave absorption layer (B) according to any one of claims 2 to 6, wherein a film obtained by molding a dispersion obtained by dispersing the powder having the dielectric property in the binder into a film shape. Radio wave absorption sheet.
  8.  前記電波吸収層(B)が、前記結合剤、前記誘電性を有する粉末、及び溶媒を含む電波吸収塗料組成物を塗布し、乾燥させて形成されたフィルムである、2~6のいずれか1項に記載の電波吸収シート。 Any one of 2 to 6 wherein the radio wave absorbing layer (B) is a film formed by applying a radio wave absorbing coating composition containing the binder, the powder having the dielectric property, and a solvent and drying the composition. Electromagnetic wave absorption sheet according to the item.
  9.  前記電波吸収層(B)が単層構造である、請求項1~8のいずれか1項に記載の電波吸収シート。 The radio wave absorption sheet according to any one of claims 1 to 8, wherein the radio wave absorption layer (B) has a single layer structure.
  10.  さらに最表面の位置に保護層(C)を備え、前記電波反射層(A)、前記電波吸収層(B)、及び前記保護層(C)の順に平行に配置されてなる、請求項1~9のいずれか1項に記載の電波吸収シート。 A protective layer (C) is further provided at a position on the outermost surface, and the radio wave reflection layer (A), the radio wave absorption layer (B), and the protection layer (C) are arranged in parallel in this order. 9. The radio wave absorption sheet according to any one of 9 above.
  11.  前記保護層(C)が、結合剤として塩化ビニル樹脂、ポリウレタン樹脂及びポリオレフィン樹脂から選ばれる樹脂を含むフィルムである、請求項10に記載の電波吸収シート。 The radio wave absorption sheet according to claim 10, wherein the protective layer (C) is a film containing a resin selected from vinyl chloride resin, polyurethane resin and polyolefin resin as a binder.
  12.  前記保護層(C)が、着色剤を含む着色フィルムである、請求項10又は11に記載の電波吸収シート。 The radio wave absorption sheet according to claim 10 or 11, wherein the protective layer (C) is a colored film containing a coloring agent.
  13.  周波数24GHzにおける前記保護層(C)の比誘電率(εr=ε’+ε”i)の実数部ε’が1.5~8の範囲内であり、虚数部ε”の絶対値が0以上で1.0未満にある、請求項10~12のいずれか1項に記載の電波吸収シート。 When the real part ε′ of the relative dielectric constant (εr=ε′+ε″i) of the protective layer (C) at a frequency of 24 GHz is in the range of 1.5 to 8 and the absolute value of the imaginary part ε″ is 0 or more. The radio wave absorption sheet according to any one of claims 10 to 12, which is less than 1.0.
  14.  最表面の表面粗さが、算術平均粗さで150~6000nm、2乗平均平方根高さで200~7000nmの範囲内にある、請求項1~13のいずれか1項に記載の電波吸収シート。 The radio wave absorption sheet according to any one of claims 1 to 13, wherein the surface roughness of the outermost surface is in the range of arithmetic mean roughness of 150 to 6000 nm and root mean square height of 200 to 7,000 nm.
  15.  各層間のうち、少なくとも1つの層間に接着層(P)を設けてなる、請求項1~14のいずれか1項に記載の電波吸収シート。 The radio wave absorption sheet according to any one of claims 1 to 14, wherein an adhesive layer (P) is provided between at least one of the layers.
  16.  請求項1~15のいずれか1項に記載の電波吸収シートを用いる、準ミリ・ミリ波帯域の電波吸収方法。 A method of absorbing radio waves in the quasi-millimeter/millimeter wave band using the radio wave absorbing sheet according to any one of claims 1 to 15.
  17.  誤作動の電波障害を生じる原因となる電波反射体に、請求項1~15のいずれか1項に記載の電波吸収シートを設置するか、又は、前記電波反射体と電波受信装置との間に、請求項1~15のいずれか1項に記載の電波吸収シートを設置することを含む、電波障害の防止方法。 The radio wave absorbing sheet according to any one of claims 1 to 15 is installed on a radio wave reflector that causes electromagnetic interference due to malfunction, or between the radio wave reflector and the radio wave receiving device. A method for preventing radio interference, which comprises installing the radio wave absorption sheet according to any one of claims 1 to 15.
PCT/JP2019/046459 2018-11-27 2019-11-27 Quasi-millimeter wave/millimeter wave band electric wave absorption sheet and quasi-millimeter wave/millimeter wave band electric wave absorption method WO2020111159A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020557805A JPWO2020111159A1 (en) 2018-11-27 2019-11-27 Radio wave absorption sheet for quasi-millimeter wave / millimeter wave band and quasi-millimeter wave / millimeter wave radio wave absorption method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018221612 2018-11-27
JP2018-221612 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020111159A1 true WO2020111159A1 (en) 2020-06-04

Family

ID=70852422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046459 WO2020111159A1 (en) 2018-11-27 2019-11-27 Quasi-millimeter wave/millimeter wave band electric wave absorption sheet and quasi-millimeter wave/millimeter wave band electric wave absorption method

Country Status (2)

Country Link
JP (1) JPWO2020111159A1 (en)
WO (1) WO2020111159A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113645821A (en) * 2021-07-20 2021-11-12 西安理工大学 Preparation method of FA/MXene/CNF composite material with sandwich structure
KR102459013B1 (en) * 2021-08-11 2022-10-26 (주)이녹스첨단소재 Electromagnetic wave absorber and preparing method thereof
WO2023190157A1 (en) * 2022-03-31 2023-10-05 太陽誘電株式会社 High-frequency system
WO2023228258A1 (en) * 2022-05-23 2023-11-30 Tpr株式会社 Electromagnetic wave absorber and electromagnetic wave shielding composite

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951190A (en) * 1995-08-07 1997-02-18 Nippon Paint Co Ltd Wideband electromagnetic wave absorbing material
JP2000031686A (en) * 1998-07-09 2000-01-28 Daido Steel Co Ltd Laminated electromagnetic wave absorber and production thereof
JP2000091783A (en) * 1998-09-16 2000-03-31 Hitachi Metals Ltd Laminated wide-band wave absorber
JP2017186406A (en) * 2016-04-01 2017-10-12 株式会社巴川製紙所 Composition for dielectric layer, sheet for absorbing electromagnetic wave and resonance type electromagnetic wave absorption sheet
JP2018063970A (en) * 2016-10-11 2018-04-19 大同特殊鋼株式会社 Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber
WO2018124131A1 (en) * 2016-12-27 2018-07-05 関西ペイント株式会社 Millimeter-wave-band electromagnetic wave absorption sheet and millimeter-wave-band electromagnetic wave absorption method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951190A (en) * 1995-08-07 1997-02-18 Nippon Paint Co Ltd Wideband electromagnetic wave absorbing material
JP2000031686A (en) * 1998-07-09 2000-01-28 Daido Steel Co Ltd Laminated electromagnetic wave absorber and production thereof
JP2000091783A (en) * 1998-09-16 2000-03-31 Hitachi Metals Ltd Laminated wide-band wave absorber
JP2017186406A (en) * 2016-04-01 2017-10-12 株式会社巴川製紙所 Composition for dielectric layer, sheet for absorbing electromagnetic wave and resonance type electromagnetic wave absorption sheet
JP2018063970A (en) * 2016-10-11 2018-04-19 大同特殊鋼株式会社 Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber
WO2018124131A1 (en) * 2016-12-27 2018-07-05 関西ペイント株式会社 Millimeter-wave-band electromagnetic wave absorption sheet and millimeter-wave-band electromagnetic wave absorption method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113645821A (en) * 2021-07-20 2021-11-12 西安理工大学 Preparation method of FA/MXene/CNF composite material with sandwich structure
CN113645821B (en) * 2021-07-20 2024-01-16 西安理工大学 Preparation method of sandwich-structure FA/MXene/CNF composite material
KR102459013B1 (en) * 2021-08-11 2022-10-26 (주)이녹스첨단소재 Electromagnetic wave absorber and preparing method thereof
WO2023190157A1 (en) * 2022-03-31 2023-10-05 太陽誘電株式会社 High-frequency system
WO2023228258A1 (en) * 2022-05-23 2023-11-30 Tpr株式会社 Electromagnetic wave absorber and electromagnetic wave shielding composite

Also Published As

Publication number Publication date
JPWO2020111159A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2020111159A1 (en) Quasi-millimeter wave/millimeter wave band electric wave absorption sheet and quasi-millimeter wave/millimeter wave band electric wave absorption method
JP6524356B1 (en) Radio wave absorption sheet for millimeter wave band and millimeter wave radio wave absorption method
JP6437168B2 (en) Radio wave absorption sheet for millimeter wave band and millimeter wave radio wave absorption method
EP2088170B1 (en) Resin composition
JP6454445B2 (en) Electromagnetic wave absorbing sheet
CN101032198B (en) Electromagnetic wave absorber
JP4073933B2 (en) Electromagnetic wave absorber
JP4108677B2 (en) Electromagnetic wave absorber
JP4528334B2 (en) Electromagnetic wave absorber
JP3647447B2 (en) Electromagnetic wave absorber
JP2021145033A (en) Sheet member and millimeter wave absorber including the same
JP2002158483A (en) Radio wave absorber
JP4195400B2 (en) Manufacturing method of electromagnetic wave absorber
WO2022092137A1 (en) Electromagnetic wave absorbing sheet
JP2007123868A (en) Electromagnetic interference suppressor, method of suppressing electromagnetic interference using same, and radio frequency identification device
JP2003209387A (en) Electromagnetic wave absorber
JP2004128171A (en) Electric wave absorber
JP3849870B2 (en) Radio wave absorber
JP4320696B2 (en) Radio wave absorber and radio communication system using the same
JP2002280208A (en) Wave absorber
JP2003234593A (en) Radio wave absorber
WO2024029575A1 (en) Radio wave reflecting body, manufacturing method for radio wave reflecting body, construction method for radio wave reflecting body
JP2002245499A (en) Etc system
JP2023129145A (en) Radio wave absorption sheet for millimeter wave band
JP2002353014A (en) Radio wave absorbing material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890701

Country of ref document: EP

Kind code of ref document: A1