JP2001329991A5 - - Google Patents

Download PDF

Info

Publication number
JP2001329991A5
JP2001329991A5 JP2000147035A JP2000147035A JP2001329991A5 JP 2001329991 A5 JP2001329991 A5 JP 2001329991A5 JP 2000147035 A JP2000147035 A JP 2000147035A JP 2000147035 A JP2000147035 A JP 2000147035A JP 2001329991 A5 JP2001329991 A5 JP 2001329991A5
Authority
JP
Japan
Prior art keywords
fixed
heating
gap
temperature
turbo molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000147035A
Other languages
English (en)
Other versions
JP2001329991A (ja
JP3874993B2 (ja
Filing date
Publication date
Application filed filed Critical
Priority to JP2000147035A priority Critical patent/JP3874993B2/ja
Priority claimed from JP2000147035A external-priority patent/JP3874993B2/ja
Publication of JP2001329991A publication Critical patent/JP2001329991A/ja
Publication of JP2001329991A5 publication Critical patent/JP2001329991A5/ja
Application granted granted Critical
Publication of JP3874993B2 publication Critical patent/JP3874993B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0008】
装置上の安全対策としては、ローターシャフト6の上下部分に上部保護軸受け13と下部保護軸受け14を設け、ローターシャフト6の横揺れを規制すると共に、ローターシャフト6下端のスラスト磁気ディスク9とスラスト磁気軸受け10によって、ローターシャフト6の上下の揺れを規制している。
そのうえで、前記使用制限を越えた場合には、運転を停止するよう排気する気体流量負荷に対する保護機能回路(インターロック回路)を設けていた。従来この保護機能は、気体負荷により発生する回転翼4の風損がローター3を高速で回転させるモーター15への入力電流値に反映され、気体負荷が大きくなると電流値が増加することを利用して、この電流値を監視して規定電流値(トリップ値)と比較することで、運転状態が使用制限内にあることを確認し、使用制限を外れる電流値となった場合にはモーター15への入力電流を削減し、運転を停止する方法が採られている。
この規定電流は、最大許容ガス負荷試験により窒素ガスやアルゴンガスのような数種類の気体につき、予めローター3の温度がクリープ寿命を許容できる気体流量条件を測定しておき、その最大気体負荷流量でのモーターへの入力電流を設定しておき、規定電流としている。
【0010】
【発明が解決しようとする課題】
ターボ分子ポンプはポンプとしての性能を確保するために、材料の剛性、熱膨張、各部の機械加工精度や組立精度等を見込んで回転と固定との間隙寸法が設計されている。
従来のターボ分子ポンプは高速で回転する精密機械にも係わらず、稼働負荷の変動や温度上昇に対する設計基準が確立しておらず、回転翼と固定翼の接触事故を起こす可能性を含んでいた。
従来のターボ分子ポンプでは、回転翼と固定翼の接触事故を防ぐための安全対策としては、使用条件に制限範囲を設けることが主であり、装置上は適正使用条件範囲を外れると運転を停止させる手段がとられているのみであった。
このためターボ分子ポンプを使用するに当たっては、適正使用条件範囲を外れないように監視を強化する必要があった。また、適正使用条件範囲を外れた場合には運転を停止することを余儀なくされていた。このためターボ分子ポンプに接続された、例えば成膜装置等の本来の中心設備の運転も制限され、生産能力が上がらないといった問題があった。 本発明の目的は、ターボ分子ポンプの運転中の環境変化を見込んだ設計基準を明らかにするとともに、回転と固定との接触事故の主要な原因となる温度上昇を的確に把握し、接触事故を未然に防止する手段を備えた装置を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するため、本発明では以下の設計基準を採用した。
すなわち、回転中心であるローターシャフトと協動して回転する回転翼及び回転翼下部に釣鐘状に取り付けられた円筒部からなる回転部と、前記回転翼と間隙を設けて近接配置され、前記回転翼と協働して前記間隙に残留する気体を排気するための固定翼及び固定翼の下に固定されたネジ付きスペーサーからなる固定部と、異常時に前記ローターシャフトを保持する保護軸受けとを有するターボ分子ポンプであって、
aをベーキング時における回転の遠心力による変形量、
bをベーキングに伴う加熱・冷却処理時における回転の熱変形量と固定の熱変形量との差の最大値、
cをベーキング時におけるローターシャフト外周と保護軸受け内周との間隙値、
dを回転と固定との間隙の製造公差値、
gを静止時の回転と固定との間隙値
としたときに、
c<g−(a+b+c)・・・・・(1)
なる関係式を満たすターボ分子ポンプとした。
本発明においては、前記回転部が回転翼であり、前記固定部が固定翼である場合に適用できる。また、前記回転部が回転翼下部に取り付けられた円筒部であり、前記固定部が固定翼の下に固定されたネジ付きスペーサーである場合にも適用できる。
このような設計基準を満たすターボ分子ポンプとすることにより、運転中の負荷上昇や温度上昇が起こっても、回転翼と固定翼との接触事故を防ぐことが可能となる。
【0012】
また、本発明のターボ分子ポンプは、回転中心であるローターシャフトと協動して回転する回転翼及び回転翼下部に釣鐘状に取り付けられた円筒部からなる回転部と、前記回転翼と間隙を設けて近接配置され、前記回転翼と協働して前記間隙に残留する気体を排気するための固定翼及び固定翼の下に固定されたネジ付きスペーサーからなる固定部と、前記円筒部の温度を測定する第1の測温部材と、前記ネジ付きスペーサーの温度を測定する第2の測温部材と、前記ネジ付きスペーサーを加熱する加熱部材及び前記第1の測温部材により得られた第1の測定値と前記第2の測温部材により得られた第2の測定値との差を検出し、該差が所定の値の範囲内になるように、前記加熱部材の加熱条件を制御する加熱制御手段とを有するターボ分子ポンプとした。
このようなターボ分子ポンプとすることにより、運転中に円筒部とネジ付きスペーサーの温度が上昇してもそれを検知して、回転と固定との温度差が拡大しないように自動的に制御するので、適正運転条件の幅が大幅に拡大し、運転停止に至る事態を回避することが可能となる。
【0013】
さらに本発明のターボ分子ポンプは、前記加熱制御手段、ベーキングに伴う加熱・冷却処理によって前記円筒部と前記ネジ付きスペーサーとの間隙を保持し、両者が接触しないように前記ネジ付きスペーサーの温度を調節するように前記加熱部材を制御する方式とした。
このようなターボ分子ポンプとすることにより、回転と固定との接触を未然に防止し、安定した運転が可能となる利点を有する。
【0024】
ここで、Gはターボ分子ポンプの性能に係わるものである、可能な限り小さくする必要がある。2000/sクラスのターボ分子ポンプでは、Gの値は700μm以下が望ましい。従って、(2)式において左辺の(A+B+C+D)をG(=700μm)以下とする。左辺の(A+B+C+D)のうち、Aはローター3の構成材料、寸法、回転数等によって決まる。通常ローター3の構成材料は、軽量で剛性の高いジュラルミン系の高力アルミニウム合金が使用される。ローター3寸法は例えば2000/sクラスでは半径95mm程度であり、回転数は27000rpm程度である。従って円筒部5の遠心力による変形量は、計算によって推計することができる。
また、C及びDは製造加工上の問題でありできる限り小さい方が好ましいのはいうまでもないが、現状程度の公差は許容せねばならない。そうすると(2)式の左辺で調整の余地があるのは、Bの加熱ベーキングに伴う加熱・冷却処理時におけるネジ付きスペーサー8の熱変形量と円筒部5の熱変形量との差の最大値ということになる。(2)式からこのBの値をできるだけ小さくすればよいことになる。
【0025】
上記の解析は回転部の円筒部と固定部のネジ付きスペーサーについて行ったが、回転部の回転翼部と固定部の固定翼についても、Aをベーキング時における回転翼の遠心力による変形量、Bをベーキングに伴う加熱・冷却処理時における回転翼の熱変形量と固定翼の熱変形量との差の最大値、Cをベーキング時におけるローターシャフト外周と保護軸受け内周との間隙値、Dを回転翼と固定翼との間隙の製造公差値、Gを静止時の回転翼と固定翼との間隙値に置き換えることにより、同様にして(2)式の関係が得られる。
すなわち、
(2)式を一般的なターボ分子ポンプの適用できるように書き直すと、下記の(3)式が得られる。
(a+b+c+d)<g・・・・・(3)
これを変形して
c<g−(a+b+d)・・・・・(1)
ただし、
a;ベーキング時における回転の遠心力による変形量、
b;ベーキングに伴う加熱・冷却処理時における回転の熱変形量と固定 の熱変形量との差の最大値、
c;ベーキング時におけるローターシャフト外周と保護軸受け内周との間 隙値、
d;回転と固定との間隙の製造公差値、
g;静止時の回転と固定との間隙値、
である。
【0026】
特に重要なネジ付きスペーサーと円筒部について、前記(2)式のBの値をできるだけ小さくするには、ネジ付きスペーサー8と円筒部5との温度差を小さくして、両者がなるべく同じ程度の熱膨張をするようにすれば良い。
すなわち、ベーキングに伴う加熱・冷却処理時における円筒部5の熱変形量とネジ付きスペーサー8の熱変形量との差を小さくするには、円筒部5とネジ付きスペーサー8との温度差を小さくする手段が考えられる。本発明者らはターボ分子ポンプの中心部にある円筒部5の温度は運転に伴って上昇するのであるから、ネジ付きスペーサー8の温度も上昇させれば良いと考えた。図2に本発明のターボ分子ポンプの内部構造を説明する断面図の一例を示した。ネジ付きスペーサー8の温度を上昇させる手段として、図2に示すようにケーシング1の外側にベルトヒーター25を巻き付ける方法、または、ネジ付きスペーサー8の外側のケーシング1の下部にのみベルトヒーター26を巻き付ける方法、あるいはまたネジ付きスペーサー8の裏側にベルトヒーター27を巻き付ける方法が採用できる。もちろんこれら25,26,27のベルトヒーターの二つ以上を併用しても構わない。
円筒部5はベーキングに伴う加熱・冷却を受けるから、その際円筒部5及びネジ付きスペーサー8の温度を測定し、両者の温度差が拡大しないようにネジ付きスペーサー8も加熱・冷却すればよい。ネジ付きスペーサー8の冷却はケーシング1の表面からの放熱でも充分であるが、必要によりケーシング1を風冷したりあるいは水冷すれば良い。そして両者の温度差を89℃以下に保つようにすれば良い。
【0028】
本発明では上記の如く第1の測温部材及び第2の測温部材に依って得られた温度データーを演算装置に取り込んで両者の温度差を算出し、両者の温度差を89℃以下に保つように、演算装置に組み込んだ出力回路から信号を発して、ネジ付きスペーサー8部に取り付けたベルトヒーターの負荷を調節するような加熱制御手段を採用した。この温度制御系の加熱制御手段のブロックダイヤグラムを図4に示す。図4に示すように第1の測温部材で得られたネジ付きスペーサー8の温度(第1測定値:T1)に基づく信号S1と、第2の測温部材で得られた円筒部5の温度(第2測定値:T2)に基づく信号S2とをコンレーターに取り込み、コンレーターでネジ付きスペーサー8と円筒部5の温度差(△T)を算出し、この温度差(△T)に基づく信号S3をコンレーターから制御装置に取り込む。制御装置で温度差(△T)の許容値を記録したテーブルから、温度差(△T)の許容値に基づく信号S4と温度差(△T)に基づく信号S3とを比較して、S3>S4となった場合にはネジ付きスペーサー8を加熱するためのベルトヒーターの加熱用電源をオンにする信号を発して加熱用電力を印加して、温度差(△T)を許容値である89℃以下に保つように制御する。
さらに、温度差(△T)が許容値を越えて制御不能となった場合には、装置の破壊を未然に防ぐために、念のため運転を停止する保護回路(インターロック回路)を組み込めばよい。
【0029】
【実施例】
以下に実施例を示す。
図1に示すスパッタ成膜装置において、成膜操作に先立って成膜室50にゲートバルブ40を介して接続されたターボ分子ポンプ30を使用して、成膜室50内を排気し、成膜室50内を120℃に8時間保持してベーキング処理を行った。図2にターボ分子ポンプ30の内部構造を断面図を用いて示した。ターボ分子ポンプ30は2000/sの公称排気能力を持ち、高力アルミニウム合金製でローター3下部の釣鐘状の円筒部5の半径は95mmである。ターボ分子ポンプ30内の円筒部5の温度を測定するための第1の測温部材として、円筒部5の内側に円筒部5に対向させて放射温度計2を設置した。また、ネジ付きスペーサー8のケーシング1側から熱電対2を挿入し、ネジ付きスペーサー8の温度を測定するための第2の測温部材とした。このようにして設置した第1の測温部材と第2の測温部材からの出力信号を取り出すため、各信号線をコンレーター(図示省略)に接続した。コンレーターには第1の測温部材と第2の測温部材からの出力信号から両者の温度差を算出するプログラムを組み込み、その演算結果の信号を加熱制御装置(図示省略)に送り込むように接続した。加熱制御装置には温度差の許容値として70℃〜80℃を設定した。
一方、ネジ付きスペーサー8を加熱するために、ネジ付きスペーサー8のケーシング1側にベルトヒーター27を取り付けた。ベルトヒーター27の電源は、加熱制御装置によってオン・オフ制御するようにした。
上記の装置において、ベーキング処理をしながらターボ分子ポンプ30を運転し、成膜室50内のガスを排気した。
【符号の説明】
1・・・・・ケーシング、2・・・・・ローター室、3・・・・・ローター、4・・・・・回転翼、 5・・・・・円筒部、6・・・・・ローターシャフト、7・・・・・固定翼、8・・・・・ネジ付きスペーサー、9・・・・・スラスト磁気ディスク、10・・・・・スラスト磁気軸受け、11・・・・・上部磁気軸受け、12・・・・・下部磁気軸受け、13・・・・・上部保護軸受け、14・・・・・下部保護軸受け、15・・・・・モーター、16・・・・・吸気口、17・・・・・排気口、23・・・・・熱電対、24・・・・・放射温度計、25,26,27・・・・・ベルトヒーター、30・・・・・ターボ分子ポンプ、40・・・・・ゲートバルブ、50・・・・・成膜室

Claims (5)

  1. 回転中心であるローターシャフトと協動して回転する回転翼及び回転翼下部に釣鐘状に取り付けられた円筒部からなる回転部と、前記回転翼と間隙を設けて近接配置され、前記回転翼と協働して前記間隙に残留する気体を排気するための固定翼及び固定翼の下に固定されたネジ付きスペーサーからなる固定部と、異常時に前記ローターシャフトを保持する保護軸受けとを有するターボ分子ポンプであって、下記(1)式の関係を満たすことを特徴とするターボ分子ポンプ。
    c<g−(a+b+d)・・・・・(1)
    ただし、
    a;ベーキング時における回転の遠心力による変形量
    b;ベーキングに伴う加熱・冷却処理時における回転の熱変形量と固定 の熱変形量との差の最大値
    c;ベーキング時におけるローターシャフト外周と保護軸受け内周との間 隙値
    d;回転と固定との間隙の製造公差値
    g;静止時の回転と固定との間隙値
    とする。
  2. 前記回転部が回転翼であり、前記固定部が固定翼であることを特徴とする請求項1に記載のターボ分子ポンプ。
  3. 前記回転部が回転翼下部に取り付けられた円筒部であり、前記固定部が固定翼の下に固定されたネジ付きスペーサーであることを特徴とする請求項1に記載のターボ分子ポンプ。
  4. 回転中心であるローターシャフトと協動して回転する回転翼及び回転翼下部に釣鐘状に取り付けられた円筒部からなる回転部と、前記回転翼と間隙を設けて近接配置され、前記回転翼と協働して前記間隙に残留する気体を排気するための固定翼及び固定翼の下に固定されたネジ付きスペーサーからなる固定部と、前記円筒部の温度を測定する第1の測温部材と、前記ネジ付きスペーサーの温度を測定する第2の測温部材と、前記ネジ付きスペーサーを加熱する加熱部材及び前記第1の測温部材により得られた第1の測定値と、前記第2の測温部材により得られた第2の測定値との差を検出し、該差を所定の値の範囲内になるように、前記加熱部材の加熱条件を制御する加熱制御手段とを有することを特徴とするターボ分子ポンプ。
  5. 前記加熱制御手段が、ベーキングに伴う加熱・冷却処理によって前記円筒部と前記ネジ付きスペーサーとの間隙を保持し、両者が接触しないように前記ネジ付きスペーサーの温度を調節するように前記加熱部材を制御するものであることを特徴とする請求項に記載のターボ分子ポンプ。
JP2000147035A 2000-05-18 2000-05-18 ターボ分子ポンプ Expired - Lifetime JP3874993B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000147035A JP3874993B2 (ja) 2000-05-18 2000-05-18 ターボ分子ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000147035A JP3874993B2 (ja) 2000-05-18 2000-05-18 ターボ分子ポンプ

Publications (3)

Publication Number Publication Date
JP2001329991A JP2001329991A (ja) 2001-11-30
JP2001329991A5 true JP2001329991A5 (ja) 2004-09-02
JP3874993B2 JP3874993B2 (ja) 2007-01-31

Family

ID=18653278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000147035A Expired - Lifetime JP3874993B2 (ja) 2000-05-18 2000-05-18 ターボ分子ポンプ

Country Status (1)

Country Link
JP (1) JP3874993B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528019B2 (ja) * 2004-04-27 2010-08-18 株式会社大阪真空機器製作所 分子ポンプの温度制御装置
JP4710322B2 (ja) * 2005-01-11 2011-06-29 株式会社島津製作所 真空ポンプ
US7965054B2 (en) 2007-07-26 2011-06-21 Shimadzu Corporation Vacuum pump
US10001126B2 (en) 2009-08-21 2018-06-19 Edwards Japan Limited Vacuum pump
JP7242321B2 (ja) * 2019-02-01 2023-03-20 エドワーズ株式会社 真空ポンプ及び真空ポンプの制御装置
CN116123143B (zh) * 2023-04-19 2023-06-16 鸿陆智能科技(山东)有限公司 一种磁悬浮透平真空泵的自冷却机构

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127894U (ja) * 1991-05-14 1992-11-20 セイコー精機株式会社 真空ポンプ
JPH0612794U (ja) * 1992-07-13 1994-02-18 株式会社大阪真空機器製作所 複合型真空ポンプの加熱装置
JP3524174B2 (ja) * 1994-10-13 2004-05-10 株式会社大阪真空機器製作所 ねじ溝式真空ポンプ
JP3510007B2 (ja) * 1995-06-13 2004-03-22 日本原子力研究所 分子ポンプ
JPH0914184A (ja) * 1995-06-28 1997-01-14 Daikin Ind Ltd ターボ分子ポンプ
JP3672630B2 (ja) * 1995-07-21 2005-07-20 株式会社大阪真空機器製作所 分子ポンプ
JP3057486B2 (ja) * 1997-01-22 2000-06-26 セイコー精機株式会社 ターボ分子ポンプ
JP3716068B2 (ja) * 1997-04-22 2005-11-16 三菱重工業株式会社 ターボ分子ポンプ及び同ターボ分子ポンプを有する真空容器
JPH116774A (ja) * 1997-04-25 1999-01-12 Daikin Ind Ltd ロータ温度検出装置及び温度検出方法
JPH10306790A (ja) * 1997-05-01 1998-11-17 Daikin Ind Ltd 分子ポンプ
JPH118774A (ja) * 1997-06-17 1999-01-12 Konica Corp 画像処理システム及び画像処理方法
JPH11148487A (ja) * 1997-11-18 1999-06-02 Shimadzu Corp ターボ分子ポンプ
JPH11280690A (ja) * 1998-03-27 1999-10-15 Ebara Corp ターボ分子ポンプ
JP3576818B2 (ja) * 1998-06-30 2004-10-13 株式会社荏原製作所 ターボ分子ポンプ

Similar Documents

Publication Publication Date Title
JP3057486B2 (ja) ターボ分子ポンプ
JP2527398B2 (ja) タ―ボ分子ポンプ
JP5924414B2 (ja) ターボ分子ポンプ
WO2010021307A1 (ja) 真空ポンプ
KR102620442B1 (ko) 진공 펌프
JP6375631B2 (ja) ターボ分子ポンプ
US10344770B2 (en) Temperature control device and turbo-molecular pump
US7245097B2 (en) Motor control system and vacuum pump equipped with the motor control system
JP2004522040A (ja) ターボ分子ポンプ
JP2001329991A5 (ja)
US11359634B2 (en) Vacuum pump and temperature control device
JP2009074512A (ja) ターボ分子ポンプ
JP4673011B2 (ja) ターボ分子ポンプの温度制御装置
JP3874993B2 (ja) ターボ分子ポンプ
JP3716068B2 (ja) ターボ分子ポンプ及び同ターボ分子ポンプを有する真空容器
JP2007278192A (ja) ターボ分子ポンプ
JP2003278692A (ja) 真空ポンプ
JPH116774A (ja) ロータ温度検出装置及び温度検出方法
CN113348305A (zh) 真空泵以及真空泵的控制装置
JP2004116328A (ja) 真空ポンプ
WO2023090231A1 (ja) 真空ポンプ、真空ポンプの軸受保護構造、及び真空ポンプの回転体
TWI780906B (zh) 渦輪分子泵
WO2023112998A1 (ja) 真空ポンプ及び制御装置
WO2021166777A1 (ja) 真空ポンプ及びコントローラ
JPS62282194A (ja) タ−ボ分子ポンプ装置