JP2001267570A - Semiconductor device and method of manufacturing semiconductor device - Google Patents

Semiconductor device and method of manufacturing semiconductor device

Info

Publication number
JP2001267570A
JP2001267570A JP2000072298A JP2000072298A JP2001267570A JP 2001267570 A JP2001267570 A JP 2001267570A JP 2000072298 A JP2000072298 A JP 2000072298A JP 2000072298 A JP2000072298 A JP 2000072298A JP 2001267570 A JP2001267570 A JP 2001267570A
Authority
JP
Japan
Prior art keywords
type
electric field
layer
region
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000072298A
Other languages
Japanese (ja)
Other versions
JP4738562B2 (en
Inventor
Hiroshi Sugimoto
博司 杉本
Masayuki Imaizumi
昌之 今泉
Yoichiro Tarui
陽一郎 樽井
Kenichi Otsuka
健一 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000072298A priority Critical patent/JP4738562B2/en
Publication of JP2001267570A publication Critical patent/JP2001267570A/en
Application granted granted Critical
Publication of JP4738562B2 publication Critical patent/JP4738562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the electric field strength of a gate oxide film at of high- voltage breaking and prevent dielectric breakdown, by using a structure in which the intensive portion of electric field distribution exists at a distant from the gate oxide film. SOLUTION: This semiconductor device is provided with a drift region 2 on an SiC semiconductor substrate 1, base region 3 for forming a MOS channel, N contact region 4, P contact region 5, and trench part 6 formed by etching. By applying a voltage to a gate electrode 8, an inversion layer is formed in a channel part, and a current flows from a source electrode 10 to a drain electrode 11. Penetration of electric field into the gate oxide film 7 can be obstructed by an electric field shielding region 12 located below the trench part 6 and an electric field shielding region 13 below the base region 3, and a portion where electric field strength becomes maximum can be positioned below the electric field shielding region 13 and isolated from the gate oxide film 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置及び半導
体装置の製造方法に関し、特に、トレンチゲート型のS
iC(炭化珪素)半導体を用いたMOS電界効果パワー
トランジスタとして用いる半導体装置及びその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing a semiconductor device, and more particularly to a trench gate type S device.
The present invention relates to a semiconductor device used as a MOS field-effect power transistor using an iC (silicon carbide) semiconductor and a method for manufacturing the same.

【0002】[0002]

【従来の技術】トレンチゲート型のSiC半導体を用い
た従来のMOS電界効果パワートランジスタは、例え
ば、電子情報通信学会論文誌C−II Vol.J81−
C−II、No.1の135ページの図2に示されるよ
うな構造であり、トレンチ側壁に設けたMOS構造のゲ
ート部分で電流を制御し、高電圧のスイッチングを行
う。
2. Description of the Related Art A conventional MOS field effect power transistor using a trench gate type SiC semiconductor is disclosed in, for example, IEICE Transactions C-II Vol. J81-
C-II, no. 1 is a structure as shown in FIG. 2 on page 135, in which the current is controlled by the gate portion of the MOS structure provided on the side wall of the trench, and high-voltage switching is performed.

【0003】図6は、従来のこのようなトレンチゲート
型のSiC半導体を用いたMOS電界効果パワートラン
ジスタ半導体装置の概念図である。図において、101
はn型のSiC基板、102はエピ成長で形成した低不
純物のn型の導電性を持つSiCのドリフト領域、10
3はエピ成長もしくはイオン注入により形成したp型導
電性ベース領域、104はエピ成長もしくはイオン注入
により形成したn型導電性のnコンタクト領域、105
はエピ成長もしくはイオン注入により形成したp型導電
性のpコンタクト領域、106はエッチングにより形成
したトレンチ部、107はゲート酸化膜、108はゲー
ト酸化膜107上に形成されたゲート電極、109はゲ
ート電極108に印加した電圧で形成されるチャネル
部、110はソース電極、111はドレイン電極を示し
ている。
FIG. 6 is a conceptual diagram of a conventional MOS field effect power transistor semiconductor device using such a trench gate type SiC semiconductor. In the figure, 101
Denotes an n-type SiC substrate, 102 denotes a low impurity n-type conductive SiC drift region formed by epitaxial growth, 10
3 is a p-type conductive base region formed by epi growth or ion implantation, 104 is an n-type conductive n contact region formed by epi growth or ion implantation, 105
Is a p-type conductive p-contact region formed by epitaxial growth or ion implantation, 106 is a trench formed by etching, 107 is a gate oxide film, 108 is a gate electrode formed on the gate oxide film 107, and 109 is a gate. A channel portion formed by a voltage applied to the electrode 108, 110 is a source electrode, and 111 is a drain electrode.

【0004】動作について説明する。ソース電極110
とドレイン電極111間に高電圧を印加した状態で、ゲ
ート電極108に電圧を印加することにより、p型導電
性ベース領域103のチャネル部109にn型反転層が
形成され、n型導電性コンタクト領域104とドリフト
領域102間に電流が導通し、ドリフト領域102を経
てドレイン電極111に電流が流れる。ゲート電極10
8に電圧が印加されないオフ状態では、チャネル部10
9にn型反転層が形成されないので、この時、ソース電
極110とドレイン電極111間に印加された高電圧
は、ドリフト領域102並びにpベース領域103に延
びた空乏層で遮断される。
The operation will be described. Source electrode 110
By applying a voltage to the gate electrode 108 with a high voltage applied between the gate electrode 108 and the drain electrode 111, an n-type inversion layer is formed in the channel portion 109 of the p-type conductive base region 103, and the n-type conductive contact A current flows between the region 104 and the drift region 102, and a current flows to the drain electrode 111 via the drift region 102. Gate electrode 10
In the off state where no voltage is applied to the channel section 8,
Since an n-type inversion layer is not formed in 9, a high voltage applied between the source electrode 110 and the drain electrode 111 at this time is cut off by the depletion layer extending to the drift region 102 and the p base region 103.

【0005】次に、製造方法について説明する。従来の
トレンチゲート型のSiC半導体MOS電界効果パワー
トランジスタは、次のようにして作製する。SiC基板
101上に、エピ成長により、ドリフト領域102のた
めの低不純物n型層を成長させ、次に、p型導電性のベ
ース領域103のためのp型層を成長させ、次に、nコ
ンタクト領域104のため高不純物のn型層を順次成長
させる。次に例えばマスキングを行ってエッチングを行
い、トレンチ部6を形成する。次に、別のマスキングを
行い、pコンタクト領域105部に、選択的に、表面に
pコンタクト用にイオン注入を行って、その後、注入さ
れた不純物を電気的に活性化し、アクセプタとして活性
化させるため、例えば、Ar雰囲気中で、1500°C
で1時間程度のアニールを行って、pコンタクト領域1
05を形成する。次に、水蒸気分圧を含んだ、酸素雰囲
気でSiC表面の熱酸化を行い、ゲート酸化膜7を形成
した後、ゲート電極8、ソース電極10、ドレイン電極
11を形成する。
Next, a manufacturing method will be described. A conventional trench gate type SiC semiconductor MOS field effect power transistor is manufactured as follows. A low-impurity n-type layer for the drift region 102 is grown on the SiC substrate 101 by epi growth, then a p-type layer for the p-type conductive base region 103 is grown, and then n A high impurity n-type layer is sequentially grown for the contact region 104. Next, etching is performed by, for example, masking to form a trench portion 6. Next, another masking is performed, ions are selectively implanted into the surface of the p-contact region 105 for p-contact, and thereafter, the implanted impurities are electrically activated and activated as an acceptor. Therefore, for example, in an Ar atmosphere at 1500 ° C.
Anneal for about 1 hour in p contact region 1
05 is formed. Next, thermal oxidation of the SiC surface is performed in an oxygen atmosphere containing a partial pressure of water vapor to form a gate oxide film 7, and then a gate electrode 8, a source electrode 10, and a drain electrode 11 are formed.

【0006】なお、ここでは、pコンタクト領域105
をイオン注入により形成する例について説明したが、そ
の場合に限らず、逆に例えば、pコンタクト領域105
に相当する層をエピ成長で形成し、領域105以外の領
域に窒素のイオン注入を行い、その後に、注入された不
純物を電気的に活性化し、ドナーとして活性化させるた
め、例えば、Ar雰囲気中で、1500°Cで1時間程
度のアニールを行って、nコンタクト領域104を形成
するようにしてもよい。
Here, p contact region 105 is used.
Has been described by ion implantation, but the present invention is not limited to this case.
Is formed by epi-growth, nitrogen ions are implanted into regions other than the region 105, and thereafter, the implanted impurities are electrically activated and activated as donors. The n-contact region 104 may be formed by performing annealing at 1500 ° C. for about one hour.

【0007】図7は、例えば、電子情報通信学会論文誌
C-II,Vol.J81-C-II,No.1の135ページに示さ
れるような構造であり、従来型のウエハー表面にMOS
チャネルを持つ構造のSiC半導体を用いたMOS電界
効果パワートランジスタ半導体装置の概念図である。2
01はn型のSiC基板、202はエピ成長で形成した
低不純物のn型の導電性を持つSiCのドリフト領域、
203はイオン注入により形成したp型導電性ベース領
域、204はイオン注入により形成したn型導電性のn
コンタクト領域、207はゲート酸化膜、208はゲー
ト電極、209はゲート電極に印加した電圧で形成され
るチャネル部、210はソース電極、211はドレイン
電極を示している。図6と同様にゲート電極208に電
圧を印加することにより、p型導電性ベース領域203
の表面のチャネル部209にn型反転層が形成され、n
型導電性コンタクト領域204とドリフト領域202間
に電流が導通し、ドリフト領域202を経てドレイン電
極211に電流が流れる。
FIG. 7 shows a structure as shown on page 135 of the IEICE Transactions C-II, Vol.J81-C-II, No. 1, for example, in which a MOS is formed on the surface of a conventional wafer.
FIG. 3 is a conceptual diagram of a MOS field-effect power transistor semiconductor device using a SiC semiconductor having a channel. 2
01 is an n-type SiC substrate, 202 is a low-impurity n-type SiC drift region formed by epitaxial growth,
203 is a p-type conductive base region formed by ion implantation, 204 is an n-type conductive n formed by ion implantation.
A contact region, 207 is a gate oxide film, 208 is a gate electrode, 209 is a channel portion formed by a voltage applied to the gate electrode, 210 is a source electrode, and 211 is a drain electrode. By applying a voltage to the gate electrode 208 as in FIG. 6, the p-type conductive base region 203 is formed.
An n-type inversion layer is formed in the channel portion 209 on the surface of
A current flows between the mold conductive contact region 204 and the drift region 202, and a current flows to the drain electrode 211 via the drift region 202.

【0008】[0008]

【発明が解決しようとする課題】SiCはSiに比較し
絶縁破壊電界強度が10倍大きい。この特長を利用し
て、素子特性の向上を図る様に素子の構造を最適化する
と、SiC中にはSiの絶縁破壊電界強度の十倍に近い
電界が存在する。このため、上述したような図6の従来
のトレンチゲート型のSiC半導体を用いたMOS電界
効果パワートランジスタでは、絶縁破壊電界強度に近い
電界が発生するSiC部分に接したゲート酸化膜中にお
いても、両者の誘電率比によって定まる電界が発生し、
その強度は酸化膜の絶縁破壊電界強度を越えることか
ら、酸化膜中で絶縁破壊が生じる。またトレンチゲート
構造では、特にトレンチ下部の角部分で電界集中が起こ
り、酸化膜中の電界強度が大きくなり、上記理由と相ま
って、ゲート酸化膜に絶縁破壊が生じ易い。このような
結果、従来のトレンチゲート型のSiC半導体を用いた
MOS電界効果パワートランジスタでは、SiCの材料
特性から期待される素子耐圧が得られないという問題点
があった。
SUMMARY OF THE INVENTION SiC has a dielectric field strength that is 10 times greater than Si. By utilizing this feature and optimizing the structure of the device so as to improve the device characteristics, an electric field in the SiC that is nearly ten times as large as the electric field strength of the dielectric breakdown of Si exists. Therefore, in the MOS field-effect power transistor using the conventional trench gate type SiC semiconductor of FIG. 6 as described above, even in the gate oxide film in contact with the SiC portion where an electric field close to the breakdown electric field strength is generated. An electric field determined by the dielectric constant ratio of both occurs,
Since the strength exceeds the breakdown electric field strength of the oxide film, breakdown occurs in the oxide film. Further, in the trench gate structure, electric field concentration occurs particularly in the corner portion at the lower portion of the trench, and the electric field intensity in the oxide film increases, and in combination with the above-described reason, dielectric breakdown easily occurs in the gate oxide film. As a result, in a conventional MOS field effect power transistor using a trench gate type SiC semiconductor, there is a problem that an element withstand voltage expected from the material characteristics of SiC cannot be obtained.

【0009】一方、図7に示した、従来の基板表面にM
OSチャネルを持つ構造のMOSパワートランジスタで
は、不純物を注入後、不純物を電気的に活性化させる工
程で、例えば、Ar雰囲気中で、1500°Cで1時間
のアニールを行う必要がある。この時、表面のSiが選
択的に離脱したり、表面で部分的に不均一に成長やエッ
チングが生じることにより、SiCの表面に荒れが生じ
たり、階段状のステップ構造が形成される問題があっ
た。基板表面にMOSチャネルを持つ構造のMOSパワ
ートランジスタでは、この荒れもしくはステップの生じ
た面が、MOSチャネルの界面となる構造のため、MO
S界面の劣化により、十分なチャネル特性が得られない
問題があった。
On the other hand, as shown in FIG.
In a MOS power transistor having a structure having an OS channel, it is necessary to perform annealing at 1500 ° C. for 1 hour in an Ar atmosphere, for example, in a step of electrically activating the impurities after the implantation of the impurities. At this time, there is a problem that the Si on the surface is selectively detached, or the surface is unevenly grown or etched on the surface, so that the surface of the SiC is roughened or a step-like step structure is formed. there were. In a MOS power transistor having a structure in which a MOS channel is provided on the surface of the substrate, the surface on which the roughness or the step occurs becomes an interface of the MOS channel.
There is a problem that sufficient channel characteristics cannot be obtained due to deterioration of the S interface.

【0010】また、基板表面にMOSチャネルを持つ構
造では、チャネル移動度が大きい112バー0面を、M
OSチャネルの界面として用いるためには、入手が困難
な112バー0面ウエハーを作製し、さらにそれに伴い
従来基板面のプロセスとは異なった、エピ成長、注入、
電極等の作製条件が必要であるという問題点があった。
In the structure having a MOS channel on the surface of the substrate, the plane 112 bar 0 having a large channel mobility is
In order to use it as an interface of the OS channel, a hard-to-obtain 112-bar zero-plane wafer is manufactured, and the epitaxial growth, implantation,
There has been a problem that manufacturing conditions for electrodes and the like are required.

【0011】本発明は、かかる問題点を解決するために
成されたもので、SiC中の電界分布の強い箇所がゲー
ト酸化膜から離れた所になるような構造を備え、ゲート
酸化膜が破壊されない特長をもち、SiCの材料特性に
対応した素子耐圧を持つ半導体装置及びその製造方法を
提供することを目的とする。
The present invention has been made in order to solve such a problem, and has a structure in which a place where the electric field distribution in SiC is strong is located away from the gate oxide film. It is an object of the present invention to provide a semiconductor device having characteristics not to be exhibited and having an element breakdown voltage corresponding to the material characteristics of SiC, and a method for manufacturing the same.

【0012】[0012]

【課題を解決するための手段】この発明は、SiC半導
体からなる基板と、基板上に設けられ、低不純物のn型
の導電性を有するn型層と、n型層上に設けられ、p型
の導電性を有するp型ベース層と、p型ベース層上に設
けられ、高不純物のn型の導電性を有するn型コンタク
ト層と、p型ベース層上の上記n型コンタクト層が設け
られていない領域に設けられたp型コンタクト領域と、
n型コンタクト層及び上記p型ベース層を貫通してn型
層にまで達する深さを有する溝と、溝の底面及び側壁上
に設けられたゲート酸化膜と、ゲート酸化膜を介在させ
て上記溝の側壁上に設けられたゲート電極と、n型コン
タクト層及び上記p型コンタクト領域に接触して設けら
れたソース電極と、基板の下面に設けられたドレイン電
極と、ゲート電極に電圧が印加されたときに反転してn
型コンタクト層とn型層とを導通させるチャネル手段
と、溝の下側の上記n型層内に設けられ、高電圧遮断時
のn型層からのゲート酸化膜への電界の侵入を遮蔽する
溝下部電界シールド手段とを備えた半導体装置である。
According to the present invention, there is provided a substrate made of a SiC semiconductor, an n-type layer provided on the substrate and having n-type conductivity of low impurity, and a p-type layer provided on the n-type layer. A p-type base layer having n-type conductivity, an n-type contact layer provided on the p-type base layer and having high impurity n-type conductivity, and the n-type contact layer on the p-type base layer A p-type contact region provided in a region that is not
a groove having a depth penetrating the n-type contact layer and the p-type base layer to reach the n-type layer; a gate oxide film provided on the bottom and side walls of the groove; and a gate oxide film interposed therebetween. A voltage is applied to the gate electrode provided on the sidewall of the groove, the source electrode provided in contact with the n-type contact layer and the p-type contact region, the drain electrode provided on the lower surface of the substrate, and the gate electrode. N when it is inverted
A channel means for conducting the type contact layer and the n-type layer, and a channel means provided in the n-type layer below the groove to block an electric field from entering the gate oxide film from the n-type layer when the high voltage is cut off. And a semiconductor device provided with an electric field shield means below the groove.

【0013】また、溝下部電界シールド手段が、p型の
導電性を有するp型領域から構成されている。
Further, the electric field shielding means under the groove is constituted by a p-type region having p-type conductivity.

【0014】また、p型コンタクト領域の範囲におい
て、p型ベース層の下面から略々垂直方向に向かって溝
の底面の深さより深い位置に至るまで延びて設けられ、
p型ベース層の下方からのゲート酸化膜への電界の侵入
を遮蔽するベース層下部電界シールド手段をさらに備え
ている。
In the range of the p-type contact region, the lower surface of the p-type base layer extends substantially vertically to a position deeper than the depth of the bottom surface of the groove,
The semiconductor device further includes a base layer lower electric field shield means for shielding an electric field from entering the gate oxide film from below the p-type base layer.

【0015】また、ベース層下部電界シールド手段が、
p型の導電性を有するp型領域から構成されている。
[0015] Further, the electric field shielding means under the base layer includes:
It is composed of a p-type region having p-type conductivity.

【0016】また、溝下部電界シールド手段とベース層
下部電界シールド手段とを電気的に結合する電界シール
ド結合手段をさらに備えている。
Further, there is further provided an electric field shield coupling means for electrically coupling the groove lower electric field shield means and the base layer lower electric field shield means.

【0017】また、p型ベース層とn型層との間に設け
られ、n型層より高いn型の導電性を有する電流拡散層
をさらに備えている。
Further, the semiconductor device further includes a current diffusion layer provided between the p-type base layer and the n-type layer and having n-type conductivity higher than that of the n-type layer.

【0018】また、溝下部電界シールド手段が、溝の幅
より広い幅を有している。
Further, the electric field shield means below the groove has a width wider than the width of the groove.

【0019】また、チャネル手段が溝の側壁から構成さ
れている。
Further, the channel means is constituted by the side wall of the groove.

【0020】また、チャネル手段が、溝の上記側壁にお
けるSiC結晶の1、1、2バー、0面に設けられてい
る。
Further, channel means are provided on the 1, 1, 2 bar and 0 planes of the SiC crystal on the side walls of the groove.

【0021】また、この発明は、SiC半導体からなる
基板上に、低不純物のn型の導電性を有するn型層を形
成する工程と、n型層上に、p型の導電性を有するp型
ベース層を形成する工程と、p型ベース層上に、高不純
物のn型の導電性を有するn型コンタクト層を形成する
工程と、p型ベース層上にp型コンタクト領域を形成す
る工程と、溝を形成する予定領域のn型層内に、高電圧
遮断時の上記n型層からのゲート酸化膜への電界の侵入
をシールドさせるための溝下部電界シールド手段を形成
する工程と、n型コンタクト層及びp型ベース層を貫通
してn型層内の溝下部電界シールド手段に達する深さを
有する溝を形成する工程と、溝の底面及び側壁上にゲー
ト酸化膜を形成する工程と、ゲート酸化膜を介在させて
溝の側壁上にゲート電極を形成する工程と、n型コンタ
クト層及びp型コンタクト領域に接触させてソース電極
を形成する工程と、基板の下面にドレイン電極を形成す
る工程とを備えた半導体装置の製造方法である。
According to the present invention, there is further provided a step of forming an n-type layer having low impurity n-type conductivity on a substrate made of a SiC semiconductor, and forming a p-type conductive layer having p-type conductivity on the n-type layer. Forming a p-type base layer, forming an n-type contact layer having high impurity n-type conductivity on the p-type base layer, and forming a p-type contact region on the p-type base layer Forming a groove lower electric field shield means for shielding an electric field from entering the gate oxide film from the n-type layer at the time of high voltage interruption in the n-type layer in a region where a groove is to be formed; forming a groove having a depth penetrating the n-type contact layer and the p-type base layer and reaching the groove lower electric field shielding means in the n-type layer; and forming a gate oxide film on the bottom and side walls of the groove And the gate oxide film Forming an electrode, forming a source electrode in contact with the n-type contact layer and p-type contact region, a manufacturing method of a semiconductor device and forming a drain electrode on the lower surface of the substrate.

【0022】また、p型コンタクト領域の範囲におい
て、p型ベース層の下面から、略々垂直方向に向かっ
て、溝の底面の深さより深い位置にかけて、p型ベース
層の下部からのゲート酸化膜への電界の侵入をシールド
させるためのベース層下部電界シールド手段を形成する
工程をさらに備えている。
Further, in the range of the p-type contact region, the gate oxide film from the lower portion of the p-type base layer extends from the lower surface of the p-type base layer to a position substantially deeper than the depth of the bottom surface of the groove. Forming a base layer lower electric field shield means for shielding the intrusion of an electric field into the base layer.

【0023】また、溝下部電界シールド手段とベース層
下部電界シールド手段とを電気的に結合する電界シール
ド結合手段を形成する工程をさらに備えている。
Further, the method further comprises the step of forming electric field shield coupling means for electrically coupling the electric field shield means under the groove and the electric field shield means under the base layer.

【0024】また、p型ベース層とn型層との間に、n
型層より高いn型の導電性を有する電流拡散層を形成す
る工程をさらに備えている。
Further, between the p-type base layer and the n-type layer, n
Forming a current diffusion layer having n-type conductivity higher than that of the mold layer;

【0025】また、溝下部電界シールド手段を形成する
際に、溝の幅より広い幅を有するように形成する。
Further, when the electric field shielding means under the groove is formed, it is formed so as to have a width wider than the width of the groove.

【0026】[0026]

【発明の実施の形態】実施の形態1.図1は本発明の一
実施の形態を示すもので、トレンチゲート型のSiC半
導体MOS電界効果パワートランジスタ半導体装置の断
面図である。1はn型のSiC基板、2は低不純物のn
型の導電性を有するドリフト領域、3はドレイン電流制
御用のMOSチャネルを形成するためのp型導電性のベ
ース領域、4はn型導電性のnコンタクト領域、5はp
型導電性のpコンタクト領域、6はエッチングにより形
成したトレンチ部、7はトレンチ部6の底面および側壁
に設けられたゲート酸化膜、8はゲート電極、9はゲー
ト電極に印加した電圧で形成されるチャネル部、10は
ソース電極、11はドレイン電極、12はゲート酸化膜
7部の電界強度を緩和するために、トレンチ部6の下部
にエピ成長もしくはイオン注入により形成した、p型導
電性のトレンチ下部電界シールド領域、13はp型のベ
ース領域3下部にエピ成長もしくはイオン注入により形
成した、p型導電性のベース領域下部電界シールド領域
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 shows an embodiment of the present invention and is a cross-sectional view of a trench gate type SiC semiconductor MOS field effect power transistor semiconductor device. 1 is an n-type SiC substrate, 2 is a low impurity n
Drift region 3 having a p-type conductivity; 3 a p-type conductive base region for forming a MOS channel for controlling drain current; 4 a n-type conductive n-contact region;
Mold conductive p-contact region, 6 is a trench formed by etching, 7 is a gate oxide film provided on the bottom and side walls of the trench 6, 6 is a gate electrode, 9 is a voltage applied to the gate electrode. A channel portion, 10 is a source electrode, 11 is a drain electrode, and 12 is a p-type conductive layer formed under the trench portion 6 by epi-growth or ion implantation in order to reduce the electric field intensity of the gate oxide film 7 portion. The trench lower electric field shield region 13 is a p-type conductive base region lower electric field shield region formed under the p-type base region 3 by epitaxial growth or ion implantation.

【0027】動作について説明する。ゲート電極8に電
圧を印加することにより、チャネル部9にn型反転層が
形成され、n型導電性のnコンタクト領域4とドリフト
領域2間に電流が導通し、ドリフト領域2を経てドレイ
ン電極11に電流が流れる。ゲート電極8に電圧が印加
されないオフ状態では、チャネル部9にn型反転層が形
成されない。この時ソース電極10とドレイン電極11
間に印加された高電圧は、ドリフト領域2、トレンチ下
部電界シールド領域12、ベース領域下部電界シールド
領域13に延びた空乏層で遮断される。ここで、本実施
の形態においては、トレンチ部6の下部にトレンチ下部
電界シールド12を備えているので、それによって電界
侵入が阻まれ、ゲート酸化膜7部分、特に、電界集中が
起こるトレンチ部6下部の角部分の電界強度が緩和さ
れ、ゲート酸化膜7の絶縁破壊が生じない。また、pベ
ース領域3下にもベース領域下部電界シールド領域13
が備えられているため、pベース領域下からの電界の浸
入がシールドされるため、ゲート酸化膜7の電界強度が
緩和される。このような構造により、逆高電圧遮断時の
電界強度の最強な箇所は、シールド領域13の下端にな
り、電界強度の強い部分とゲート酸化膜7に接する部分
が接触せずに分離されることにより、酸化膜の絶縁破壊
が生じない。
The operation will be described. By applying a voltage to the gate electrode 8, an n-type inversion layer is formed in the channel portion 9, current flows between the n-type conductive n-contact region 4 and the drift region 2, and the drain electrode passes through the drift region 2. Current flows through 11. When no voltage is applied to the gate electrode 8, no n-type inversion layer is formed in the channel portion 9. At this time, the source electrode 10 and the drain electrode 11
The high voltage applied therebetween is cut off by the depletion layer extending to the drift region 2, the lower electric field shield region 12 of the trench, and the lower electric field shield region 13 of the base region. Here, in the present embodiment, since trench lower electric field shield 12 is provided below trench portion 6, electric field penetration is prevented by this, and gate oxide film portion 7, particularly trench portion 6 where electric field concentration occurs, is prevented. The electric field intensity in the lower corner portion is reduced, and the dielectric breakdown of the gate oxide film 7 does not occur. Also, under the p base region 3, the base region lower electric field shield region 13 is provided.
Is provided, the infiltration of the electric field from below the p base region is shielded, and the electric field strength of the gate oxide film 7 is reduced. With such a structure, the portion where the electric field strength is strongest at the time of reverse high voltage cutoff is located at the lower end of the shield region 13, and the portion where the electric field strength is strong and the portion in contact with the gate oxide film 7 are separated without contact. Thereby, dielectric breakdown of the oxide film does not occur.

【0028】次に、製造方法について説明する。本実施
の形態に示したトレンチゲート型のSiC半導体MOS
電界効果パワートランジスタは例えば、次のように作製
できる。SiC基板1上に、CVDエピ成長により、ド
リフト領域2のための低不純物n型層を成長させ、次
に、p型導電性のベース領域3のためのp型層を成長さ
せ、次に、nコンタクト領域4のため高不純物のn型層
を順次成長させる。次に、マスキングを行い、pコンタ
クト領域5部に、選択的に、表面にpコンタクト用に高
濃度のAlのイオン注入を行って、pコンタクト領域5
を形成し、次に、例えば、同じマスクを用い、トレンチ
部6の下部(底面)の深さより深い領域まで垂直方向に
(すなわち、深さ方向に)Alのイオン注入を行い、ベ
ース領域下部電界シールド領域13を形成する。また、
次に例えば別のマスキングを行いトレンチ部6に選択的
に、トレンチ部6下部(底面)の深さより深い領域にA
l(アクセプタ)のイオン注入を行い、トレンチ下部電
界シールド領域12を形成する。このとき、トレンチ下
部電界シールド領域12の厚さが、ドリフト領域2から
の酸化ゲート膜7への電界の侵入を妨げるに十分な所定
の厚さになるようにする。次に例えば同じマスクを用
い、エッチングを行いトレンチ部6を形成する。次に例
えば、水蒸気分圧を含んだ、酸素雰囲気でSiC表面の
熱酸化を行い、ゲート酸化膜7を形成した後、ゲート電
極8、ソース電極10、ドレイン電極11を形成する。
Next, the manufacturing method will be described. Trench gate type SiC semiconductor MOS shown in this embodiment
The field effect power transistor can be manufactured, for example, as follows. A low-impurity n-type layer for the drift region 2 is grown on the SiC substrate 1 by CVD epi growth, and then a p-type layer for the p-type conductive base region 3 is grown. A high impurity n-type layer is sequentially grown for the n-contact region 4. Next, masking is performed, and high-concentration Al ion implantation for p-contact is selectively performed on the surface of the p-contact region 5 in the p-contact region 5.
Then, using the same mask, for example, ion implantation of Al is performed in a vertical direction (that is, in the depth direction) to a region deeper than the depth (bottom) of the trench portion 6, thereby forming a base region lower electric field. The shield region 13 is formed. Also,
Next, for example, another masking is performed to selectively form the trench portion 6 in a region deeper than the depth of the lower portion (bottom surface) of the trench portion 6.
I (acceptor) ions are implanted to form a trench lower electric field shield region 12. At this time, the thickness of the trench lower electric field shield region 12 is set to a predetermined thickness sufficient to prevent the electric field from entering the oxide gate film 7 from the drift region 2. Next, for example, using the same mask, etching is performed to form a trench portion 6. Next, for example, thermal oxidation of the SiC surface is performed in an oxygen atmosphere containing a partial pressure of water vapor to form a gate oxide film 7, and then a gate electrode 8, a source electrode 10, and a drain electrode 11 are formed.

【0029】この例では、nコンタクト領域4のための
高不純物のエピ成長したn型層にイオン注入により、p
コンタクト領域5を形成する例を示したが、逆に、pコ
ンタクト領域5のためのp層を成長により形成し、そこ
に窒素のイオン注入により、nコンタクト領域4を形成
しても作製可能である。また、ここでは、pベース領域
3のためのp型層を、エピ成長で形成する例を示した
が、イオン注入によっても可能である。
In this example, p-type ions are implanted into the n-type layer of high impurity for epitaxial growth for the n-contact region 4 by ion implantation.
Although the example in which the contact region 5 is formed has been described, it is possible to form the n-contact region 4 by forming a p-layer for the p-contact region 5 by growth and implanting nitrogen ions therein. is there. Further, here, an example is shown in which the p-type layer for the p base region 3 is formed by epi growth, but it is also possible by ion implantation.

【0030】以上のように、本実施の形態が示す半導体
装置では、トレンチ部6の下部にトレンチ下部電界シー
ルド領域12があるため、ゲート酸化膜7の電界強度が
緩和される。また、pベース領域3下にもベース領域下
部電界シールド領域13が備えられているため、pベー
ス領域下からの電界の浸入がシールドされるため、ゲー
ト酸化膜7の電界強度が緩和される。このような構造に
より、逆高電圧遮断時の電界強度の最強な箇所は、pシ
ールド領域の下端になり、電界強度の強い部分と、ゲー
ト酸化膜7に接する部分が接触せずに分離されることに
より、酸化膜の絶縁破壊が生じない。この結果、高電圧
遮断時の、ゲート酸化膜7の電界強度を低減し、ゲート
酸化膜7の絶縁破壊が防がれ、SiC材料の絶縁特性に
対応した、素子耐圧を得ることができる。
As described above, in the semiconductor device according to the present embodiment, the electric field strength of the gate oxide film 7 is reduced since the trench lower electric field shield region 12 is provided below the trench portion 6. Further, since the base region lower electric field shield region 13 is also provided below the p base region 3, the infiltration of the electric field from below the p base region is shielded, so that the electric field intensity of the gate oxide film 7 is reduced. With such a structure, the portion where the electric field strength is strongest at the time of reverse high voltage cutoff is the lower end of the p shield region, and the portion where the electric field strength is strong and the portion in contact with the gate oxide film 7 are separated without contact. Thus, dielectric breakdown of the oxide film does not occur. As a result, the electric field strength of the gate oxide film 7 at the time of high-voltage interruption is reduced, dielectric breakdown of the gate oxide film 7 is prevented, and an element withstand voltage corresponding to the insulating characteristics of the SiC material can be obtained.

【0031】また、本実施の形態が示す製造方法に於い
ては、トレンチ部6を形成する前の工程で、イオン注入
と活性化アニールを行い、その後に、トレンチ部6を形
成し、その側壁をチャネルとして用いるので、チャネル
が形成されるトレンチ部6の側壁に生じる注入の損傷、
及び、アニールによる表面の荒れを低減することがで
き、高移動度で信頼性の高いチャネルを形成することが
できる効果があり、素子特性を向上できる。
Further, in the manufacturing method shown in the present embodiment, ion implantation and activation annealing are performed in a step before the trench 6 is formed, and thereafter, the trench 6 is formed and the side wall thereof is formed. Is used as a channel, so that implantation damage occurs on the side wall of the trench 6 where the channel is formed,
In addition, surface roughness due to annealing can be reduced, a channel having high mobility and high reliability can be formed, and device characteristics can be improved.

【0032】実施の形態2.図2は本発明の別の一実施
の形態を示すもので、トレンチゲート型のSiC半導体
MOS電界効果パワートランジスタ半導体装置の断面図
である。1はn型のSiC基板、2はドリフト領域、3
はベース領域、4はnコンタクト領域、5はpコンタク
ト領域、6はトレンチ部、7はゲート酸化膜、8はゲー
ト電極、9はチャネル部、10はソース電極、11はド
レイン電極、12はトレンチ下部電界シールド領域、1
3はp型導電性のベース領域下部電界シールド領域、1
4はトレンチ下部電界シールド領域12とベース領域下
部電界シールド領域13を電気的に結合する、電界シー
ルド結合領域をしめしている。ゲート電極8への電圧の
印加による、高電圧の遮断、導通の切り替えの原理及び
電界シールド領域による、酸化膜における電界緩和の原
理は実施の形態1と同様である。
Embodiment 2 FIG. FIG. 2 shows another embodiment of the present invention and is a sectional view of a trench gate type SiC semiconductor MOS field effect power transistor semiconductor device. 1 is an n-type SiC substrate, 2 is a drift region, 3
Is a base region, 4 is an n-contact region, 5 is a p-contact region, 6 is a trench portion, 7 is a gate oxide film, 8 is a gate electrode, 9 is a channel portion, 10 is a source electrode, 11 is a drain electrode, and 12 is a trench. Lower electric field shield area, 1
Reference numeral 3 denotes a p-type conductive base region lower electric field shield region;
Reference numeral 4 denotes an electric field shield coupling region for electrically coupling the trench lower electric field shield region 12 and the base region lower electric field shield region 13. The principle of switching off and conducting high voltage by applying a voltage to the gate electrode 8 and the principle of electric field relaxation in the oxide film by the electric field shield region are the same as in the first embodiment.

【0033】次に製造方法について説明する。本実施の
形態に示したトレンチゲート型のSiC半導体MOS電
界効果パワートランジスタは、例えば、次のように作製
できる。SiC基板1上に、ドリフト領域2のための低
不純物n型層を、pベース領域3のためのp型層を、n
コンタクト領域4のため高不純物のn型層を順次成長す
る。次にマスキングを行いpコンタクト領域5部に選択
的に、表面にコンタクト用に高濃度のAlのイオン注入
を行い、次に例えば同じマスクを用い、トレンチ下部の
深さより深い領域までAlのイオン注入を行い、ベース
領域下部電界シールド領域13を形成する。また次に例
えば別のマスキングを行いトレンチ部6と電界シールド
結合領域14に選択的に、トレンチ下部の深さより深い
領域にAlのイオン注入を行い、トレンチ下部電界シー
ルド領域12と電界シールド結合領域14を形成する。
次に例えば別のマスクを用い、エッチングを行いトレン
チ部6を形成する。次ゲート酸化膜7を形成した後、ゲ
ート電極8、ソース電極10、ドレイン電極11を形成
する。
Next, the manufacturing method will be described. The trench gate type SiC semiconductor MOS field effect power transistor shown in the present embodiment can be manufactured, for example, as follows. On the SiC substrate 1, a low impurity n-type layer for the drift region 2, a p-type layer for the p base region 3,
A high impurity n-type layer is sequentially grown for the contact region 4. Next, masking is performed, and high-concentration Al ions are implanted into the surface of the p-contact region 5 selectively for contact, and then, for example, using the same mask, Al ions are implanted to a region deeper than the trench lower portion. To form the base region lower electric field shield region 13. Then, for example, another masking is performed to selectively implant Al ions into the trench portion 6 and the electric field shield coupling region 14 in a region deeper than the depth below the trench, and thereby the trench lower electric field shield region 12 and the electric field shield coupling region 14 are formed. To form
Next, for example, using another mask, etching is performed to form a trench portion 6. After forming the next gate oxide film 7, a gate electrode 8, a source electrode 10, and a drain electrode 11 are formed.

【0034】この例では、ドリフト領域にイオン注入に
より、トレンチ下部電界シールド領域12、ベース領域
下部電界シールド領域13並びに電界シールド結合領域
14を形成する作製方法を示したが、逆に例えば上記3
領域に相当する層をエピ成長で形成し、3領域以外の領
域に窒素のイオン注入を行いn型導電領域を作製するこ
とも可能である。
In this example, the manufacturing method of forming the trench lower electric field shield region 12, the base region lower electric field shield region 13, and the electric field shield coupling region 14 by ion implantation into the drift region has been described.
It is also possible to form an n-type conductive region by forming a layer corresponding to the region by epi growth and implanting nitrogen ions into a region other than the three regions.

【0035】以上のように、本実施の形態における半導
体装置において、トレンチ下部電界シールド領域12と
ベース領域下部電界シールド領域13によりゲート酸化
膜7部の電界強度が緩和され酸化膜の絶縁破壊が軽減さ
れる原理は実施の形態1と同様である。さらに本実施の
形態では、pベース領域とpシールド領域を電気的に結
合する構造を備えているので、電位的に浮遊した領域が
生じず、電荷の蓄積の片寄も生じないため、より安定な
スイッチング動作と酸化膜の高い信頼性が得られる。
As described above, in the semiconductor device according to the present embodiment, the electric field strength of gate oxide film 7 is reduced by trench lower electric field shield region 12 and base region lower electric field shield region 13 and dielectric breakdown of the oxide film is reduced. The principle performed is the same as in the first embodiment. Further, in the present embodiment, a structure is provided in which the p base region and the p shield region are electrically coupled, so that a region floating in potential does not occur, and a bias in charge accumulation does not occur. The switching operation and high reliability of the oxide film can be obtained.

【0036】また、本実施の形態における製造方法にお
いても、上述の実施の形態1と同様に、トレンチ部6を
形成する前の工程で、イオン注入と、活性化アニールを
行うことができるので、チャネルが形成されるトレンチ
部6の側壁に生じる注入の損傷、アニールによる表面の
荒れを低減することができ、高移動度で信頼性の高いチ
ャネルを形成することができる効果があり、素子特性を
向上できる。
In the manufacturing method according to the present embodiment, as in the first embodiment, ion implantation and activation annealing can be performed in a step before forming trench 6. Damage due to implantation on the side wall of the trench portion 6 where the channel is formed and roughness of the surface due to annealing can be reduced, so that a channel having high mobility and high reliability can be formed. Can be improved.

【0037】実施の形態3.図3は本発明の別の一実施
の形態を示すもので、トレンチゲート型のSiC半導体
MOS電界効果パワートランジスタ半導体装置の断面図
である。1はn型のSiC基板、2はドリフト領域、3
はベース領域、4はnコンタクト領域、5はpコンタク
ト領域、6はトレンチ部、7はゲート酸化膜、8はゲー
ト電極、9はチャネル部、10はソース電極、11はド
レイン電極、12はトレンチ下部電界シールド領域、1
3はベース領域下部電界シールド領域、14は電界シー
ルド結合領域、15は導通時の抵抗を低減するためにp
ベース領域の下部に設けた、ドリフト領域2より導電性
の高い(すなわち、キャリア濃度の高い)n型の電流拡
散層である。ゲート電極8への電圧を印加による、高電
圧の遮断、導通の切り替え、及び電界シールド領域の効
果による、酸化膜における電界緩和の原理は実施の形態
1及び2と同様である。
Embodiment 3 FIG. 3 shows another embodiment of the present invention and is a cross-sectional view of a trench gate type SiC semiconductor MOS field effect power transistor semiconductor device. 1 is an n-type SiC substrate, 2 is a drift region, 3
Is a base region, 4 is an n-contact region, 5 is a p-contact region, 6 is a trench portion, 7 is a gate oxide film, 8 is a gate electrode, 9 is a channel portion, 10 is a source electrode, 11 is a drain electrode, and 12 is a trench. Lower electric field shield area, 1
Reference numeral 3 denotes a base region lower electric field shield region, 14 denotes an electric field shield coupling region, and 15 denotes p for reducing resistance during conduction.
An n-type current diffusion layer provided below the base region and having higher conductivity than the drift region 2 (that is, having a higher carrier concentration). The principle of electric field relaxation in an oxide film by applying a voltage to the gate electrode 8 to cut off a high voltage, switch conduction, and effect the electric field shield region is the same as in the first and second embodiments.

【0038】次に製造方法について説明する。本実施の
形態に示したトレンチゲート型のSiC半導体MOS電
界効果パワートランジスタは例えば、次のように作製で
きる。SiC基板1上に、ドリフト領域2のための低不
純物n型層を、次に電流拡散層15のための、ドリフト
領域2より導電率の高いn型層を、次にpベース領域3
のためのp型層を、次にnコンタクト領域4のための高
不純物のn型層を順次成長する。実施の形態2と同様に
選択的に、pコンタクト領域5、ベース領域下部電界シ
ールド領域13、トレンチ下部電界シールド領域12並
びに電界シールド結合領域14をAlのイオン注入によ
り形成する。また次に例えば別のマスキングによるドナ
ーのイオン注入によりnコンタクト領域4を形成する。
次に例えば別のマスクを用い、エッチングを行いトレン
チ部6を形成する。次にゲート酸化膜7を形成した後、
ゲート電極8、ソース電極10、ドレイン電極11を形
成する。この例では、エピ成長により電流拡散層を形成
する作製例を示したが、ドナーのイオン注入により電流
拡散層を形成する作製例も可能である。
Next, the manufacturing method will be described. The trench gate type SiC semiconductor MOS field effect power transistor shown in the present embodiment can be manufactured, for example, as follows. A low-impurity n-type layer for the drift region 2, an n-type layer having a higher conductivity than the drift region 2 for the current diffusion layer 15, and a p-base region 3
And then a highly doped n-type layer for n-contact region 4 is grown. As in the second embodiment, the p contact region 5, the base region lower electric field shield region 13, the trench lower electric field shield region 12, and the electric field shield coupling region 14 are selectively formed by ion implantation of Al. Next, the n-contact region 4 is formed by ion implantation of a donor by another masking, for example.
Next, for example, using another mask, etching is performed to form a trench portion 6. Next, after forming the gate oxide film 7,
A gate electrode 8, a source electrode 10, and a drain electrode 11 are formed. In this example, a production example in which the current diffusion layer is formed by epi growth is described, but a production example in which the current diffusion layer is formed by ion implantation of a donor is also possible.

【0039】以上のように、本実施の形態に示した半導
体装置は、上述の実施の形態1及び2と同様の効果が得
られるとともに、さらに、pベース領域3の下部に、ド
リフト領域2より導電性の高いn型の電流拡散層15そ
なえているので、導通時には、電流経路は、ゲート電圧
印加により反転して形成されたチャネル9近傍からのみ
ではなく、n型の電流拡散層15全体から、n型ドリフ
ト領域2を経て流れるので、その抵抗は、電流拡散層1
5がないときに比べ低減される効果がある。
As described above, the semiconductor device shown in the present embodiment can obtain the same effects as those of the above-described first and second embodiments, and further, below the p base region 3, Since the n-type current diffusion layer 15 having high conductivity is provided, when conducting, the current path is not only from the vicinity of the channel 9 formed by inversion by applying a gate voltage, but also from the entire n-type current diffusion layer 15. , N-type drift region 2, so that its resistance is
There is an effect of being reduced as compared with the case where there is no 5.

【0040】また、本実施の形態における製造方法にお
いても、上述の実施の形態1と同様に、トレンチ部6を
形成する前の工程で、イオン注入と、活性化アニールを
行うことができるので、チャネルが形成されるトレンチ
部6の側壁に生じる注入の損傷、アニールによる表面の
荒れを低減することができ、高移動度で信頼性の高いチ
ャネルを形成することができる効果があり、素子特性を
向上できる。
In the manufacturing method according to the present embodiment, as in the first embodiment, ion implantation and activation annealing can be performed in a step before forming trench 6. Damage due to implantation on the side wall of the trench portion 6 where the channel is formed and roughness of the surface due to annealing can be reduced, so that a channel having high mobility and high reliability can be formed. Can be improved.

【0041】実施の形態4.図4は本発明の別の一実施
の形態を示すもので、トレンチゲート型のSiC半導体
MOS電界効果パワートランジスタ半導体装置の断面図
である。1はn型のSiC基板、2はドリフト領域、3
はベース領域、4はnコンタクト領域、5はpコンタク
ト領域、6はトレンチ部、7はゲート酸化膜、8はゲー
ト電極、9はチャネル部、10はソース電極、11はド
レイン電極、12Aはトレンチ部6の幅より広い幅を持
ち、トレンチ部6のない領域まで横に延びた構造を有し
たトレンチ下部電界シールド領域、13はベース領域下
部電界シールド領域、15は電流拡散層である。ゲート
電極8への電圧を印加による、高電圧の遮断と導通の切
り替え、及び、電界シールド領域12、13の効果によ
る、ゲート酸化膜7における電界緩和、電流拡散層15
による抵抗の低減の原理は実施の形態1から3と同様で
ある。
Embodiment 4 FIG. FIG. 4 shows another embodiment of the present invention and is a sectional view of a trench gate type SiC semiconductor MOS field effect power transistor semiconductor device. 1 is an n-type SiC substrate, 2 is a drift region, 3
Is a base region, 4 is an n-contact region, 5 is a p-contact region, 6 is a trench portion, 7 is a gate oxide film, 8 is a gate electrode, 9 is a channel portion, 10 is a source electrode, 11 is a drain electrode, and 12A is a trench. A trench lower electric field shield region having a structure wider than the width of the portion 6 and extending laterally to a region without the trench portion 6, 13 is a base region lower electric field shield region, and 15 is a current diffusion layer. Switching of high-voltage interruption and conduction by applying a voltage to the gate electrode 8, and electric field relaxation in the gate oxide film 7 by the effect of the electric field shield regions 12 and 13, and a current diffusion layer 15
The principle of the reduction of the resistance is the same as in the first to third embodiments.

【0042】次に製造方法について説明する。本実施の
形態に示したトレンチゲート型のSiC半導体MOS電
界効果パワートランジスタは例えば、次のように作製で
きる。SiC基板1上に、ドリフト領域2のための低不
純物n型層を、次に電流拡散層15のためのn型層を、
次にpベース領域3のためのp型層を、次にnコンタク
ト領域4のための高不純物のn型層を順次成長する。実
施の形態3と同様に選択的に、pコンタクト領域5、ベ
ース領域下部電界シールド領域13、トレンチ下部電界
シールド領域12並びに電界シールド結合領域14をA
lのイオン注入により形成する。この時、トレンチ下部
電界シールド領域12注入のためのマスクパターンを、
トレンチ部6の幅より広くすることにより上部にトレン
チ部6のない横の領域まで延びた注入領域を形成でき
る。また次にドナーのイオン注入によりnコンタクト領
域4を形成する。次トレンチ部6を形成し、ゲート酸化
膜7を形成した後、ゲート電極8、ソース電極10、ド
レイン電極11を形成する。この例では、エピ成長によ
り電流拡散層を形成する作製例を示したが、ドナーのイ
オン注入により電流拡散層を形成する作製例も可能であ
る。
Next, the manufacturing method will be described. The trench gate type SiC semiconductor MOS field effect power transistor shown in the present embodiment can be manufactured, for example, as follows. A low impurity n-type layer for the drift region 2 and then an n-type layer for the current diffusion layer 15 are formed on the SiC substrate 1.
Next, a p-type layer for the p-base region 3 and a highly doped n-type layer for the n-contact region 4 are sequentially grown. As in the third embodiment, the p contact region 5, the base region lower electric field shield region 13, the trench lower electric field shield region 12, and the electric field shield coupling region 14 are selectively changed to A.
1 by ion implantation. At this time, a mask pattern for implanting the trench lower electric field shield region 12 is
By making the width wider than the width of the trench 6, an implantation region extending to a lateral region without the trench 6 can be formed at the upper portion. Next, an n-contact region 4 is formed by ion implantation of a donor. After forming the next trench portion 6 and forming the gate oxide film 7, the gate electrode 8, the source electrode 10, and the drain electrode 11 are formed. In this example, a production example in which the current diffusion layer is formed by epi growth is described, but a production example in which the current diffusion layer is formed by ion implantation of a donor is also possible.

【0043】以上のように、本実施の形態に示した半導
体装置は、上述の実施の形態1〜3と同様の効果が得ら
れるとともに、さらに、トレンチ下部シールド領域12
の幅が、溝の幅より広く、上部のトレンチ部6のない領
域まで延びた構造であり、特にトレンチ下部の角の部分
と電界強度の大きい箇所とが、平面位置的にも分離され
るので、特にトレンチ下部の角の酸化膜に印加される電
界強度の緩和効果が大きく、酸化膜の絶縁破壊が生じな
い特長がある。
As described above, the semiconductor device shown in the present embodiment can obtain the same effects as those of the above-described first to third embodiments, and further, can further improve the lower shield region 12 of the trench.
Is wider than the width of the groove and extends to a region where the upper trench 6 is not provided. In particular, the corner at the lower portion of the trench and the portion where the electric field intensity is high are separated also in a planar position. In particular, the effect of reducing the intensity of the electric field applied to the oxide film at the corner at the lower portion of the trench is large, and there is a feature that dielectric breakdown of the oxide film does not occur.

【0044】また、本実施の形態における製造方法にお
いても、上述の実施の形態1と同様に、トレンチ部6を
形成する前の工程で、イオン注入と、活性化アニールを
行うことができるので、チャネルが形成されるトレンチ
部6の側壁に生じる注入の損傷、アニールによる表面の
荒れを低減することができ、高移動度で信頼性の高いチ
ャネルを形成することができる効果があり、素子特性を
向上できる。
In the manufacturing method according to the present embodiment, as in the first embodiment, ion implantation and activation annealing can be performed in a step before forming trench 6. Damage due to implantation on the side wall of the trench portion 6 where the channel is formed and roughness of the surface due to annealing can be reduced, so that a channel having high mobility and high reliability can be formed. Can be improved.

【0045】なお、図5は同じく実施の形態4の他の構
成を示すもので、トレンチ下部電界シールド領域12の
幅が広く、ベース領域下部電界シールド領域13がない
例をしめす。図4と同様に作製でき、また、同様な酸化
膜の絶縁破壊を抑制する効果がある。
FIG. 5 shows another structure of the fourth embodiment, in which the width of the trench lower electric field shield region 12 is large and the base region lower electric field shield region 13 is not provided. It can be manufactured in the same manner as in FIG. 4 and has an effect of suppressing dielectric breakdown of a similar oxide film.

【0046】実施の形態5.つぎに、本発明の別の一実
施の形態を示す。本実施の形態に示す半導体装置は、素
子構造、作製方法は、上記実施の形態1から4と同様で
あり、電界シールド効果により、ゲート酸化膜7の絶縁
破壊を抑制する効果をもっている。本実施の形態では、
チャネル9は、エッチングにより形成したSiC結晶の
1、1、2バー、0面のトレンチ部6の側壁に形成され
ている。チャネル移動度の結晶方位依存性より、基板表
面に形成されたチャネルより大きな移動度が得られ、チ
ャネル抵抗を低減できる。また同時に、電界シールドの
ためのp領域を備えているので、酸化膜の絶縁破壊が起
こりにくい。
Embodiment 5 FIG. Next, another embodiment of the present invention will be described. The semiconductor device described in this embodiment has the same element structure and manufacturing method as those in the first to fourth embodiments, and has an effect of suppressing dielectric breakdown of the gate oxide film 7 by an electric field shielding effect. In the present embodiment,
The channel 9 is formed on the side wall of the trench 6 on the 1, 1, 2 bar and 0 planes of the SiC crystal formed by etching. Due to the crystal orientation dependence of the channel mobility, a mobility higher than that of the channel formed on the substrate surface can be obtained, and the channel resistance can be reduced. At the same time, since a p region for shielding the electric field is provided, dielectric breakdown of the oxide film hardly occurs.

【0047】[0047]

【発明の効果】この発明は、SiC半導体からなる基板
と、基板上に設けられ、低不純物のn型の導電性を有す
るn型層と、n型層上に設けられ、p型の導電性を有す
るp型ベース層と、p型ベース層上に設けられ、高不純
物のn型の導電性を有するn型コンタクト層と、p型ベ
ース層上の上記n型コンタクト層が設けられていない領
域に設けられたp型コンタクト領域と、n型コンタクト
層及び上記p型ベース層を貫通してn型層にまで達する
深さを有する溝と、溝の底面及び側壁上に設けられたゲ
ート酸化膜と、ゲート酸化膜を介在させて上記溝の側壁
上に設けられたゲート電極と、n型コンタクト層及び上
記p型コンタクト領域に接触して設けられたソース電極
と、基板の下面に設けられたドレイン電極と、ゲート電
極に電圧が印加されたときに反転してn型コンタクト層
とn型層とを導通させるチャネル手段と、溝の下側のn
型層内に設けられ、高電圧遮断時のn型層からのゲート
酸化膜への電界の侵入を遮蔽する溝下部電界シールド手
段とを備えた半導体装置であり、溝の下部に電界シール
ドのためのp型領域を備えているので、ゲート酸化膜
部、特に、電界集中の起こりやすい溝下部の角のゲート
酸化膜の電界強度が緩和されるため、ゲート酸化膜の絶
縁破壊が生じないので、SiC材料の絶縁特性に対応し
た、素子耐圧を得ることができる。
According to the present invention, there is provided a substrate made of a SiC semiconductor, an n-type layer provided on the substrate and having low impurity n-type conductivity, and a p-type conductive film provided on the n-type layer. A n-type contact layer provided on the p-type base layer and having high impurity n-type conductivity; and a region on the p-type base layer where the n-type contact layer is not provided A groove having a depth reaching the n-type layer through the n-type contact layer and the p-type base layer, and a gate oxide film provided on the bottom and side walls of the groove A gate electrode provided on the side wall of the trench with a gate oxide film interposed therebetween, a source electrode provided in contact with the n-type contact layer and the p-type contact region, and provided on a lower surface of the substrate. Voltage is applied to the drain electrode and the gate electrode. And channel means for conducting the n-type contact layer and the n-type layer is inverted when the, the lower groove n
A lower part of the trench for shielding the electric field from entering the gate oxide film from the n-type layer when the high voltage is cut off. Since the p-type region is provided, the electric field strength of the gate oxide film portion, particularly, the gate oxide film at the corner under the groove where the electric field concentration is likely to occur is reduced, so that the dielectric breakdown of the gate oxide film does not occur. An element withstand voltage corresponding to the insulating characteristics of the SiC material can be obtained.

【0048】また、溝下部電界シールド手段が、p型の
導電性を有するp型領域から構成されているので、電界
の侵入を遮蔽する能力が高く、かつ、エッチングにより
溝を形成する前の工程で、イオン注入と活性化アニール
を行うことにより容易に形成できる。
Further, since the electric field shielding means under the groove is composed of a p-type region having p-type conductivity, the ability to shield the invasion of the electric field is high, and the step before forming the groove by etching is performed. Then, it can be easily formed by performing ion implantation and activation annealing.

【0049】また、p型コンタクト領域の範囲におい
て、p型ベース層の下面から略々垂直方向に向かって溝
の底面の深さより深い位置に至るまで延びて設けられ、
p型ベース層の下方からのゲート酸化膜への電界の侵入
を遮蔽するベース層下部電界シールド手段をさらに備え
ているので、p型ベース層の下方からの電界の侵入を遮
蔽できる。さらに、このシールド手段を設けたことによ
り、電界強度の最強の箇所がこのシールド手段の下部と
なるため、電界集中が起こりやすい溝の角のゲート酸化
膜の部分が電界強度の最強の箇所に接しないで分離され
るので、ゲート酸化膜の絶縁破壊をさらに防止すること
ができる。
In the range of the p-type contact region, the lower surface of the p-type base layer extends substantially vertically to a position deeper than the depth of the bottom surface of the groove.
Since the semiconductor device further includes a base layer lower electric field shield means for shielding an electric field from entering the gate oxide film from below the p-type base layer, the electric field can be shielded from entering from below the p-type base layer. Further, by providing this shielding means, the portion having the strongest electric field strength is located below the shielding means, so that the portion of the gate oxide film at the corner of the groove where the electric field concentration tends to occur is in contact with the portion having the strongest electric field strength. Therefore, the gate oxide film can be further prevented from dielectric breakdown.

【0050】また、ベース層下部電界シールド手段が、
p型の導電性を有するp型領域から構成されているの
で、電界の侵入を遮蔽する能力が高く、かつ、イオン注
入を行うことにより容易に形成できる。
Further, the electric field shielding means under the base layer includes:
Since it is composed of a p-type region having p-type conductivity, it has a high ability to block the invasion of an electric field and can be easily formed by ion implantation.

【0051】また、溝下部電界シールド手段とベース層
下部電界シールド手段とを電気的に結合する電界シール
ド結合手段をさらに備えているので、電位的な浮遊した
領域が生じず、電荷の蓄積の片寄も生じないため、安定
なスイッチング動作とゲート酸化膜の高い信頼性が得ら
れる。
Further, since the electric field shield coupling means for electrically coupling the electric field shield means under the groove and the electric field shield means under the base layer is further provided, no potential floating region is generated, and the electric charge is not accumulated. Therefore, stable switching operation and high reliability of the gate oxide film can be obtained.

【0052】また、p型ベース層とn型層との間に設け
られ、n型層より高いn型の導電性を有する電流拡散層
をさらに備えているので、導通時には、電流経路は、ゲ
ート電圧印加により反転して形成されたチャネル近傍か
らのみではなく、n型の電流拡散層全体から、n型層を
経て流れるので、その抵抗は、電流拡散層がないときに
比べ低減される。
Further, a current diffusion layer provided between the p-type base layer and the n-type layer and having an n-type conductivity higher than that of the n-type layer is further provided. Since the current flows not only from the vicinity of the channel formed by application of the voltage but also from the entire n-type current diffusion layer through the n-type layer, the resistance is reduced as compared with the case where there is no current diffusion layer.

【0053】また、溝下部電界シールド手段が溝の幅よ
り広い幅を有しているので、溝下部の角の部分と電界強
度の大きい箇所とが接触せずに平面位置的にも分離され
るので、特に溝下部の角のゲート酸化膜に印加される電
界強度の緩和効果が大きく、酸化膜の絶縁破壊が生じな
い。
Further, since the electric field shielding means at the bottom of the groove has a width wider than the width of the groove, the corner at the lower part of the groove and a portion having a large electric field strength are separated from each other even in a plane position without contact. Therefore, the effect of reducing the electric field intensity applied to the gate oxide film at the corner under the groove is particularly large, and the dielectric breakdown of the oxide film does not occur.

【0054】また、チャネル手段が、溝の側壁から構成
されているので、チャネル手段はアニールによる表面の
損傷の影響を受けないので、高移動度で信頼性の高いチ
ャネルを形成することができ、チャネル抵抗を低減でき
る。
Further, since the channel means is constituted by the side wall of the groove, the channel means is not affected by surface damage due to annealing, so that a channel having high mobility and high reliability can be formed. Channel resistance can be reduced.

【0055】また、チャネル手段が、溝の上記側壁にお
けるSiC結晶の1、1、2バー、0面に設けられてい
るので、チャネル移動度の結晶方位依存性より、基板表
面に形成されたチャネルより大きな移動度が得られ、チ
ャネル抵抗を低減できる。
Further, since the channel means is provided on the 1, 1, 2 bar and 0 planes of the SiC crystal on the side wall of the trench, the channel mobility formed on the substrate surface may be reduced due to the crystal orientation dependence of the channel mobility. Greater mobility can be obtained, and channel resistance can be reduced.

【0056】また、この発明は、SiC半導体からなる
基板上に、低不純物のn型の導電性を有するn型層を形
成する工程と、n型層上に、p型の導電性を有するp型
ベース層を形成する工程と、p型ベース層上に、高不純
物のn型の導電性を有するn型コンタクト層を形成する
工程と、p型ベース層上にp型コンタクト領域を形成す
る工程と、溝を形成する予定領域のn型層内に、高電圧
遮断時の上記n型層からのゲート酸化膜への電界の侵入
をシールドさせるための溝下部電界シールド手段を形成
する工程と、n型コンタクト層及びp型ベース層を貫通
してn型層内の溝下部電界シールド手段に達する深さを
有する溝を形成する工程と、溝の底面及び側壁上にゲー
ト酸化膜を形成する工程と、ゲート酸化膜を介在させて
溝の側壁上にゲート電極を形成する工程と、n型コンタ
クト層及びp型コンタクト領域に接触させてソース電極
を形成する工程と、基板の下面にドレイン電極を形成す
る工程とを備えた半導体装置の製造方法であるので、溝
を形成する前の工程で、イオン注入と、活性化アニール
を行うことができるので、チャネルが形成される溝の側
壁に生じる注入の損傷、アニールによる表面の荒れを低
減することができ、高移動度で信頼性の高いチャネルを
形成することができ、素子特性を向上できる。
Further, according to the present invention, a step of forming an n-type layer having low impurity n-type conductivity on a substrate made of a SiC semiconductor and a step of forming a p-type conductive layer having p-type conductivity on the n-type layer are provided. Forming a p-type base layer, forming an n-type contact layer having high impurity n-type conductivity on the p-type base layer, and forming a p-type contact region on the p-type base layer Forming a groove lower electric field shield means for shielding an electric field from entering the gate oxide film from the n-type layer at the time of high voltage interruption in the n-type layer in a region where a groove is to be formed; forming a groove having a depth penetrating the n-type contact layer and the p-type base layer and reaching the groove lower electric field shielding means in the n-type layer; and forming a gate oxide film on the bottom and side walls of the groove And the gate oxide film The method for manufacturing a semiconductor device includes a step of forming an electrode, a step of forming a source electrode in contact with an n-type contact layer and a p-type contact region, and a step of forming a drain electrode on a lower surface of a substrate. In the step before forming the groove, ion implantation and activation annealing can be performed, so that damage to the implantation caused on the side wall of the groove where the channel is formed and surface roughness due to annealing can be reduced. A highly reliable channel with high mobility can be formed, and element characteristics can be improved.

【0057】また、p型コンタクト領域の範囲におい
て、p型ベース層の下面から、略々垂直方向に向かっ
て、溝の底面の深さより深い位置にかけて、p型ベース
層の下部からのゲート酸化膜への電界の侵入をシールド
させるためのベース層下部電界シールド手段を形成する
工程をさらに備えているので、ベース層下部電界シール
ド手段により、p型ベース層の下方からの電界の侵入を
遮蔽でき、さらに、このシールド手段を設けたことによ
り、電界強度の最強の箇所がこのシールド手段の下部と
なるため、電界集中が起こりやすい溝の角のゲート酸化
膜の部分が電界強度の最強の箇所に接しないで分離され
るので、ゲート酸化膜の絶縁破壊をさらに防止すること
ができる。
In the range of the p-type contact region, the gate oxide film from the lower portion of the p-type base layer extends from the lower surface of the p-type base layer to a position substantially deeper than the depth of the bottom surface of the groove in a substantially vertical direction. The method further comprises a step of forming a base layer lower electric field shield means for shielding the intrusion of an electric field into the base layer, so that the electric field intrusion from below the p-type base layer can be shielded by the base layer lower electric field shield means, Further, by providing this shielding means, the portion having the strongest electric field strength is located below the shielding means, so that the portion of the gate oxide film at the corner of the groove where the electric field concentration tends to occur is in contact with the portion having the strongest electric field strength. Therefore, the gate oxide film can be further prevented from dielectric breakdown.

【0058】また、溝下部電界シールド手段とベース層
下部電界シールド手段とを電気的に結合する電界シール
ド結合手段を形成する工程をさらに備えているので、電
位的な浮遊した領域が生じず、電荷の蓄積の片寄も生じ
ないため、安定なスイッチング動作とゲート酸化膜の高
い信頼性が得られる。
Further, since the method further comprises the step of forming an electric field shield coupling means for electrically coupling the electric field shield means under the groove and the electric field shield means under the base layer, a potential floating region is not generated, and , And stable switching operation and high reliability of the gate oxide film can be obtained.

【0059】また、p型ベース層とn型層との間に、n
型層より高いn型の導電性を有する電流拡散層を形成す
る工程をさらに備えているので、導通時には、電流経路
は、ゲート電圧印加により反転して形成されたチャネル
近傍からのみではなく、n型の電流拡散層全体から、n
型層を経て流れるので、その抵抗は、電流拡散層がない
ときに比べ低減される。
Further, between the p-type base layer and the n-type layer, n
Since the method further includes a step of forming a current diffusion layer having n-type conductivity higher than that of the mold layer, during conduction, the current path is formed not only from the vicinity of the channel formed by inversion by applying a gate voltage, but also from the vicinity of n. From the entire current spreading layer of the type
Since it flows through the mold layer, its resistance is reduced compared to when there is no current spreading layer.

【0060】また、溝下部電界シールド手段を形成する
際に、溝の幅より広い幅を有するように形成するので、
溝下部の角の部分と電界強度の大きい箇所とが接触せず
に平面位置的にも分離されるので、特に溝下部の角のゲ
ート酸化膜に印加される電界強度の緩和効果が大きく、
酸化膜の絶縁破壊が生じない。
Further, when the electric field shielding means under the groove is formed, it is formed so as to have a width wider than the width of the groove.
Since the corner portion at the bottom of the groove and the portion having a large electric field strength are separated from each other even in a planar position without contact, the effect of relaxing the electric field intensity applied to the gate oxide film at the corner at the bottom of the groove is particularly large,
No dielectric breakdown of the oxide film occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1によるトレンチゲート
型のSiC半導体MOS電界効果パワートランジスタ半
導体装置の断面図である。
FIG. 1 is a sectional view of a trench gate type SiC semiconductor MOS field effect power transistor semiconductor device according to a first embodiment of the present invention.

【図2】 本発明の実施の形態2によるトレンチゲート
型のSiC半導体MOS電界効果パワートランジスタ半
導体装置の断面図である。
FIG. 2 is a sectional view of a trench gate type SiC semiconductor MOS field effect power transistor semiconductor device according to a second embodiment of the present invention.

【図3】 本発明の実施の形態3によるトレンチゲート
型のSiC半導体MOS電界効果パワートランジスタ半
導体装置の断面図である。
FIG. 3 is a sectional view of a trench gate type SiC semiconductor MOS field effect power transistor semiconductor device according to a third embodiment of the present invention.

【図4】 本発明の実施の形態4によるトレンチゲート
型のSiC半導体MOS電界効果パワートランジスタ半
導体装置の断面図である。
FIG. 4 is a sectional view of a trench gate type SiC semiconductor MOS field effect power transistor semiconductor device according to a fourth embodiment of the present invention.

【図5】 本発明の実施の形態4による他のトレンチゲ
ート型のSiC半導体MOS電界効果パワートランジス
タ半導体装置の断面図である。
FIG. 5 is a sectional view of another trench gate type SiC semiconductor MOS field effect power transistor semiconductor device according to a fourth embodiment of the present invention.

【図6】 従来のトレンチゲート型のSiC半導体MO
S電界効果パワートランジスタ半導体装置の断面図であ
る。
FIG. 6 shows a conventional trench gate type SiC semiconductor MO.
It is sectional drawing of an S field effect power transistor semiconductor device.

【図7】 従来のウエハー表面にMOSチャネルを持つ
構造のSiC半導体MOS電界効果パワートランジスタ
半導体装置の断面図である。
FIG. 7 is a cross-sectional view of a conventional SiC semiconductor MOS field effect power transistor semiconductor device having a MOS channel on a wafer surface.

【符号の説明】[Explanation of symbols]

1 n型のSiC基板、2 ドリフト領域、3 ベース
領域、4 nコンタクト領域、5 pコンタクト領域、
6 トレンチ部、7 ゲート酸化膜、8 ゲート電極、
9 チャネル部、10 ソース電極、11 ドレイン電
極、12 トレンチ下部電界シールド領域、13 ベー
ス領域下部電界シールド領域、14 電界シールド結合
領域、15 電流拡散層。
1 n-type SiC substrate, 2 drift region, 3 base region, 4 n contact region, 5 p contact region,
6 trench part, 7 gate oxide film, 8 gate electrode,
9 channel part, 10 source electrode, 11 drain electrode, 12 trench lower electric field shield area, 13 base area lower electric field shield area, 14 electric field shield coupling area, 15 current diffusion layer.

フロントページの続き (72)発明者 樽井 陽一郎 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 大塚 健一 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内Continued on the front page (72) Inventor Yoichiro Tarui 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Kenichi Otsuka 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Co., Ltd. In company

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素半導体からなる基板と、 上記基板上に設けられ、低不純物のn型の導電性を有す
るn型層と、 上記n型層上に設けられ、p型の導電性を有するp型ベ
ース層と、 上記p型ベース層上に設けられ、高不純物のn型の導電
性を有するn型コンタクト層と、 上記p型ベース層上の上記n型コンタクト層が設けられ
ていない領域に設けられたp型コンタクト領域と、 上記n型コンタクト層及び上記p型ベース層を貫通して
上記n型層にまで達する深さを有する溝と、 上記溝の底面及び側壁上に設けられたゲート酸化膜と、 上記ゲート酸化膜を介在させて上記溝の側壁上に設けら
れたゲート電極と、 上記n型コンタクト層及び上記p型コンタクト領域に接
触して設けられたソース電極と、 上記基板の下面に設けられたドレイン電極と、 上記ゲート電極に電圧が印加されたときに反転して上記
n型コンタクト層と上記n型層とを導通させるチャネル
手段と、 上記溝の下側の上記n型層内に設けられ、高電圧遮断時
の上記n型層からの上記ゲート酸化膜への電界の侵入を
遮蔽する溝下部電界シールド手段とを備えたことを特徴
とする半導体装置。
1. A substrate made of a silicon carbide semiconductor, an n-type layer provided on the substrate and having low impurity n-type conductivity, and a p-type conductivity provided on the n-type layer. A p-type base layer, an n-type contact layer provided on the p-type base layer and having high impurity n-type conductivity, and the n-type contact layer on the p-type base layer is not provided. A p-type contact region provided in a region; a groove having a depth reaching the n-type layer through the n-type contact layer and the p-type base layer; and a groove provided on a bottom surface and a side wall of the groove. A gate oxide film, a gate electrode provided on a side wall of the trench with the gate oxide film interposed, a source electrode provided in contact with the n-type contact layer and the p-type contact region, Dray provided on the lower surface of the substrate Channel means for inverting when a voltage is applied to the gate electrode to conduct the n-type contact layer and the n-type layer, and provided in the n-type layer below the groove. And a lower-field electric field shielding means for shielding an electric field from entering the gate oxide film from the n-type layer when a high voltage is cut off.
【請求項2】 上記溝下部電界シールド手段が、p型の
導電性を有するp型領域から構成されていることを特徴
とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the electric field shielding means under the groove is formed of a p-type region having p-type conductivity.
【請求項3】 上記p型コンタクト領域の範囲におい
て、上記p型ベース層の下面から略々垂直方向に向かっ
て上記溝の底面の深さより深い位置に至るまで延びて設
けられ、上記p型ベース層の下方からの上記ゲート酸化
膜への電界の侵入を遮蔽するベース層下部電界シールド
手段をさらに備えたことを特徴とする請求項1または2
に記載の半導体装置。
3. The p-type base region is provided so as to extend from a lower surface of the p-type base layer to a position substantially deeper than a depth of a bottom surface of the groove in a range of the p-type contact region. 3. The device according to claim 1, further comprising a base layer lower electric field shielding means for shielding an electric field from entering the gate oxide film from under the layer.
3. The semiconductor device according to claim 1.
【請求項4】 上記ベース層下部電界シールド手段が、
p型の導電性を有するp型領域から構成されていること
を特徴とする請求項3に記載の半導体装置。
4. The electric field shielding means under the base layer,
4. The semiconductor device according to claim 3, comprising a p-type region having p-type conductivity.
【請求項5】 上記溝下部電界シールド手段と上記ベー
ス層下部電界シールド手段とを電気的に結合する電界シ
ールド結合手段をさらに備えたことを特徴とうする請求
項3または4に記載の半導体装置。
5. The semiconductor device according to claim 3, further comprising electric field shield coupling means for electrically coupling said electric field shield means under said groove and said electric field shield means under said base layer.
【請求項6】 上記p型ベース層と上記n型層との間に
設けられ、上記n型層より高いn型の導電性を有する電
流拡散層をさらに備えたことを特徴とする請求項1ない
し5のいずれかに記載の半導体装置。
6. The semiconductor device according to claim 1, further comprising a current diffusion layer provided between the p-type base layer and the n-type layer and having a higher n-type conductivity than the n-type layer. 6. The semiconductor device according to any one of items 5 to 5.
【請求項7】 上記溝下部電界シールド手段が、上記溝
の幅より広い幅を有していることを特徴とする請求項1
ないし6のいずれかに記載の半導体装置。
7. The device according to claim 1, wherein the electric field shield means below the groove has a width larger than the width of the groove.
7. The semiconductor device according to any one of items 6 to 6.
【請求項8】 上記チャネル手段が、上記溝の上記側壁
から構成されていることを特徴とする請求項1ないし7
のいずれかに記載の半導体装置。
8. The apparatus according to claim 1, wherein said channel means comprises said side wall of said groove.
The semiconductor device according to any one of the above.
【請求項9】 上記チャネル手段が、上記溝の上記側壁
におけるSiC結晶の1、1、2バー、0面に設けられ
ていることを特徴とする請求項1ないし7のいずれかに
記載の半導体装置。
9. The semiconductor according to claim 1, wherein the channel means is provided on the 1, 1, 2 bar, and 0 planes of the SiC crystal on the side wall of the groove. apparatus.
【請求項10】 炭化珪素半導体からなる基板上に、低
不純物のn型の導電性を有するn型層を形成する工程
と、 上記n型層上に、p型の導電性を有するp型ベース層を
形成する工程と、 上記p型ベース層上に、高不純物のn型の導電性を有す
るn型コンタクト層を形成する工程と、 上記p型ベース層上にp型コンタクト領域を形成する工
程と、 溝を形成する予定領域の上記n型層内に、高電圧遮断時
の上記n型層からのゲート酸化膜への電界の侵入をシー
ルドさせるための溝下部電界シールド手段を形成する工
程と、 上記n型コンタクト層及び上記p型ベース層を貫通して
上記n型層内の上記溝下部電界シールド手段に達する深
さを有する溝を形成する工程と、 上記溝の底面及び側壁上にゲート酸化膜を形成する工程
と、 上記ゲート酸化膜を介在させて上記溝の側壁上にゲート
電極を形成する工程と、上記n型コンタクト層及び上記
p型コンタクト領域に接触させてソース電極を形成する
工程と、 上記基板の下面にドレイン電極を形成する工程と、 を備えたことを特徴とする半導体装置の製造方法。
10. A step of forming an n-type layer having low impurity n-type conductivity on a substrate made of a silicon carbide semiconductor; and forming a p-type base having p-type conductivity on the n-type layer. Forming a layer; forming an n-type contact layer having high impurity n-type conductivity on the p-type base layer; and forming a p-type contact region on the p-type base layer. Forming, in the n-type layer in a region where a groove is to be formed, a groove lower electric field shield means for shielding an electric field from entering the gate oxide film from the n-type layer at the time of high voltage cutoff; Forming a groove having a depth penetrating the n-type contact layer and the p-type base layer and reaching the groove lower electric field shielding means in the n-type layer; and a gate on a bottom surface and a side wall of the groove. A step of forming an oxide film; Forming a gate electrode on the side wall of the trench with a film interposed therebetween, forming a source electrode in contact with the n-type contact layer and the p-type contact region, and forming a drain electrode on the lower surface of the substrate. Forming a semiconductor device.
【請求項11】 上記p型コンタクト領域の範囲におい
て、上記p型ベース層の下面から、略々垂直方向に向か
って、上記溝の底面の深さより深い位置にかけて、上記
p型ベース層の下部からの上記ゲート酸化膜への電界の
侵入をシールドさせるためのベース層下部電界シールド
手段を形成する工程をさらに備えたことを特徴とする請
求項10に記載の半導体装置の製造方法。
11. In a range of the p-type contact region, from a lower surface of the p-type base layer to a position substantially deeper than a depth of a bottom surface of the groove in a direction substantially perpendicular to the lower portion of the p-type base layer. 11. The method of manufacturing a semiconductor device according to claim 10, further comprising the step of: forming a base layer lower electric field shield means for shielding the intrusion of an electric field into the gate oxide film.
【請求項12】 上記溝下部電界シールド手段と上記ベ
ース層下部電界シールド手段とを電気的に結合する電界
シールド結合手段を形成する工程をさらに備えたことを
特徴とする請求項11に記載の半導体装置の製造方法。
12. The semiconductor according to claim 11, further comprising a step of forming an electric field shield coupling means for electrically coupling the electric field shield means under the groove and the electric field shield means under the base layer. Device manufacturing method.
【請求項13】 上記p型ベース層と上記n型層との間
に、上記n型層より高いn型の導電性を有する電流拡散
層を形成する工程をさらに備えたことを特徴とする請求
項10ないし12のいずれかに記載の半導体装置の製造
方法。
13. The method according to claim 1, further comprising the step of forming a current diffusion layer having a higher n-type conductivity than the n-type layer between the p-type base layer and the n-type layer. Item 13. A method for manufacturing a semiconductor device according to any one of Items 10 to 12.
【請求項14】 上記溝下部電界シールド手段を形成す
る際に、上記溝の幅より広い幅を有するように形成する
ことを特徴とする請求項10ないし13のいずれかに記
載の半導体装置の製造方法。
14. The method of manufacturing a semiconductor device according to claim 10, wherein when forming the electric field shielding means under the groove, the electric field shielding means is formed to have a width wider than the width of the groove. Method.
JP2000072298A 2000-03-15 2000-03-15 Manufacturing method of semiconductor device Expired - Lifetime JP4738562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000072298A JP4738562B2 (en) 2000-03-15 2000-03-15 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000072298A JP4738562B2 (en) 2000-03-15 2000-03-15 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2001267570A true JP2001267570A (en) 2001-09-28
JP4738562B2 JP4738562B2 (en) 2011-08-03

Family

ID=18590734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000072298A Expired - Lifetime JP4738562B2 (en) 2000-03-15 2000-03-15 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4738562B2 (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352065A (en) * 2000-04-06 2001-12-21 Matsushita Electric Ind Co Ltd Field effect transistor, and its manufacturing method
WO2002099909A1 (en) * 2001-06-05 2002-12-12 National University Of Singapore Power mosfet having enhanced breakdown voltage
WO2004032244A1 (en) * 2002-10-04 2004-04-15 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and process for fabricating the same
KR100479426B1 (en) * 2002-08-27 2005-03-30 학교법인 한양학원 High-Voltage Device Structure and It's Fabrication Process
JP2005116822A (en) * 2003-10-08 2005-04-28 Toyota Motor Corp Insulated-gate semiconductor device and its manufacturing method
EP1748492A1 (en) * 2004-03-29 2007-01-31 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and semiconductor device manufacturing method
JP2008071896A (en) * 2006-09-13 2008-03-27 Nippon Steel Corp Metal-insulating film-silicon carbide semiconductor structure
JP2008078174A (en) * 2006-09-19 2008-04-03 Fuji Electric Holdings Co Ltd Trench gate type silicon carbide semiconductor device
JP2008147232A (en) * 2006-12-06 2008-06-26 Mitsubishi Electric Corp Silicon carbide semiconductor device and manufacturing method therefor
JP2008235546A (en) * 2007-03-20 2008-10-02 Denso Corp Silicon carbide semiconductor device and manufacturing method therefor
US7470953B2 (en) 2003-10-08 2008-12-30 Toyota Jidosha Kabushiki Kaisha Insulated gate type semiconductor device and manufacturing method thereof
JP2009117593A (en) * 2007-11-06 2009-05-28 Denso Corp Silicon carbide semiconductor apparatus and method of manufacturing the same
JP2009117649A (en) * 2007-11-07 2009-05-28 Fuji Electric Device Technology Co Ltd Semiconductor device
EP2068363A2 (en) * 2007-12-07 2009-06-10 Cree, Inc. Trench-gate MISFET
DE102008063128A1 (en) 2007-12-26 2009-07-02 Denso Corporation, Kariya SiC semiconductor device with a bottom layer and method for its production
JP2009194065A (en) * 2008-02-13 2009-08-27 Denso Corp Silicon carbide semiconductor device and method of manufacturing the same
WO2009119735A1 (en) * 2008-03-26 2009-10-01 ローム株式会社 Semiconductor device, and method for manufacturing the same
EP2091083A3 (en) * 2008-02-13 2009-10-14 Denso Corporation Silicon carbide semiconductor device including a deep layer
JP2009259896A (en) * 2008-04-14 2009-11-05 Denso Corp Method for manufacturing silicon carbide semiconductor device
JP2010114152A (en) * 2008-11-04 2010-05-20 Toyota Motor Corp Semiconductor device, and method of manufacturing the same
JP2010258386A (en) * 2009-04-28 2010-11-11 Fuji Electric Systems Co Ltd Silicon carbide semiconductor device, and method of manufacturing the same
JP2011253837A (en) * 2010-05-31 2011-12-15 Denso Corp Silicon carbide semiconductor device and method for manufacturing the same
WO2012063578A1 (en) * 2010-11-08 2012-05-18 住友電気工業株式会社 Semiconductor device and method for producing same
JP2013098315A (en) * 2011-10-31 2013-05-20 Toyota Motor Corp Switching element and method of manufacturing the same
CN103151376A (en) * 2011-12-07 2013-06-12 Nxp股份有限公司 Trench-gate RESURF semiconductor device and manufacturing method
WO2014199748A1 (en) * 2013-06-12 2014-12-18 住友電気工業株式会社 Silicon carbide semiconductor device
WO2015012009A1 (en) * 2013-07-26 2015-01-29 住友電気工業株式会社 Silicon carbide semiconductor device and method for manufacturing same
CN104380442A (en) * 2012-06-14 2015-02-25 株式会社电装 Silicon carbide semiconductor device and method for producing same
WO2015049838A1 (en) * 2013-10-02 2015-04-09 株式会社デンソー Silicon carbide semiconductor device
JP2015082544A (en) * 2013-10-22 2015-04-27 ルネサスエレクトロニクス株式会社 Semiconductor device and method of manufacturing the same
JP2015141919A (en) * 2014-01-27 2015-08-03 トヨタ自動車株式会社 semiconductor device
WO2015177914A1 (en) * 2014-05-23 2015-11-26 株式会社日立製作所 Semiconductor device, semiconductor device manufacturing method, power conversion device, three-phase motor system, automobile, and train car
US9209294B1 (en) 2012-02-10 2015-12-08 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device and method for manufacturing same
JP5834179B2 (en) * 2013-04-16 2015-12-16 パナソニックIpマネジメント株式会社 Method for manufacturing silicon carbide semiconductor device
US9349856B2 (en) 2013-03-26 2016-05-24 Toyoda Gosei Co., Ltd. Semiconductor device including first interface and second interface as an upper surface of a convex protruded from first interface and manufacturing device thereof
WO2016116998A1 (en) * 2015-01-19 2016-07-28 株式会社日立製作所 Semiconductor device, method for manufacturing same, power conversion device, three-phase motor system, automobile, and railway carriage
JP2016163049A (en) * 2015-03-03 2016-09-05 インフィネオン テクノロジーズ アクチエンゲゼルシャフトInfineon Technologies AG Semiconductor device including trench structure including a gate electrode for diode region and contact structure
EP2973723A4 (en) * 2013-03-13 2016-11-09 Cree Inc Field effect transistor devices with protective regions
US9570585B2 (en) 2013-03-13 2017-02-14 Cree, Inc. Field effect transistor devices with buried well protection regions
JPWO2016002766A1 (en) * 2014-06-30 2017-04-27 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof
US9673288B2 (en) 2012-04-19 2017-06-06 Denso Corporation Silicon carbide semiconductor device including conductivity layer in trench
US9741797B2 (en) 2013-02-05 2017-08-22 Mitsubishi Electric Corporation Insulated gate silicon carbide semiconductor device and method for manufacturing same
WO2017145594A1 (en) * 2016-02-23 2017-08-31 株式会社デンソー Compound semiconductor device production method and compound semiconductor device
JPWO2016157606A1 (en) * 2015-03-30 2017-09-14 三菱電機株式会社 Silicon carbide semiconductor device and manufacturing method thereof
US9825164B2 (en) 2013-08-01 2017-11-21 Mitsubishi Electric Corporation Silicon carbide semiconductor device and manufacturing method for same
JPWO2017064949A1 (en) * 2015-10-16 2018-06-14 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
US10153356B2 (en) 2016-03-24 2018-12-11 Toyoda Gosei Co., Ltd. Method of manufacturing semiconductor device, and semiconductor device
DE102018206965A1 (en) 2017-07-05 2019-01-10 Mitsubishi Electric Corporation Silicon carbide semiconductor device, manufacturing method thereof, and power conversion device
JP2019054043A (en) * 2017-09-13 2019-04-04 株式会社日立製作所 Semiconductor device and manufacturing method for the same
US10256323B2 (en) 2016-03-24 2019-04-09 Toyoda Gosei Co., Ltd. Method of manufacturing semiconductor device including an n type semiconductor region formed in a p type semiconductor layer
US10490408B2 (en) 2017-03-28 2019-11-26 Toyoda Gosei Co., Ltd. Method for manufacturing semiconductor device
US10580889B2 (en) 2018-02-21 2020-03-03 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing thereof, and power conversion apparatus
US10600864B2 (en) 2018-01-09 2020-03-24 Fuji Electric Co., Ltd. Semiconductor device
JP2020064950A (en) * 2018-10-16 2020-04-23 富士電機株式会社 Silicon carbide semiconductor device and silicon carbide semiconductor device manufacturing method
CN111199969A (en) * 2018-11-16 2020-05-26 英飞凌科技股份有限公司 SiC power semiconductor device with integrated body diode
US10879349B2 (en) 2017-03-28 2020-12-29 Toyoda Goset Co., Ltd. Method for manufacturing semiconductor device and edge termination structure of semiconductor device
US11201210B2 (en) 2019-08-02 2021-12-14 Kabushiki Kaisha Toshiba Semiconductor device, inverter circuit, drive device, vehicle, and elevator
CN116469923A (en) * 2023-04-25 2023-07-21 南京第三代半导体技术创新中心有限公司 High-reliability trench silicon carbide MOSFET device and manufacturing method thereof
JP7337469B1 (en) * 2022-03-03 2023-09-04 三菱電機株式会社 Semiconductor equipment and power conversion equipment
US12034073B2 (en) 2008-03-26 2024-07-09 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10164021B2 (en) 2017-05-26 2018-12-25 Fuji Electric Co., Ltd. Silicon carbide semiconductor device
US10468509B2 (en) 2017-06-07 2019-11-05 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
JP2020155739A (en) 2019-03-22 2020-09-24 富士電機株式会社 Insulation gate type semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658267A (en) * 1979-10-17 1981-05-21 Nippon Telegr & Teleph Corp <Ntt> Insulated gate type field-effect transistor
JPH06224437A (en) * 1992-07-24 1994-08-12 Siliconix Inc Field-effect transistor and manufacture thereof
JPH07131016A (en) * 1993-09-10 1995-05-19 Hitachi Ltd Fet transistor and fabrication thereof
JPH08316479A (en) * 1995-03-14 1996-11-29 Mitsubishi Electric Corp Insulated-gate type semiconductor device and manufacture thereof
JPH1098188A (en) * 1996-08-01 1998-04-14 Kansai Electric Power Co Inc:The Insulated gate semiconductor device
JPH10209432A (en) * 1997-01-21 1998-08-07 Mitel Semiconductor Ltd Improvement in semiconductor device
WO1998035390A1 (en) * 1997-02-07 1998-08-13 Cooper James Albert Jr Structure for increasing the maximum voltage of silicon carbide power transistors
JPH10308512A (en) * 1997-03-05 1998-11-17 Denso Corp Silicon carbide semiconductor device
JPH11251573A (en) * 1998-02-26 1999-09-17 Toyota Central Res & Dev Lab Inc Semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168331A (en) * 1991-01-31 1992-12-01 Siliconix Incorporated Power metal-oxide-semiconductor field effect transistor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658267A (en) * 1979-10-17 1981-05-21 Nippon Telegr & Teleph Corp <Ntt> Insulated gate type field-effect transistor
JPH06224437A (en) * 1992-07-24 1994-08-12 Siliconix Inc Field-effect transistor and manufacture thereof
JPH07131016A (en) * 1993-09-10 1995-05-19 Hitachi Ltd Fet transistor and fabrication thereof
JPH08316479A (en) * 1995-03-14 1996-11-29 Mitsubishi Electric Corp Insulated-gate type semiconductor device and manufacture thereof
JPH1098188A (en) * 1996-08-01 1998-04-14 Kansai Electric Power Co Inc:The Insulated gate semiconductor device
JPH10209432A (en) * 1997-01-21 1998-08-07 Mitel Semiconductor Ltd Improvement in semiconductor device
WO1998035390A1 (en) * 1997-02-07 1998-08-13 Cooper James Albert Jr Structure for increasing the maximum voltage of silicon carbide power transistors
JPH10308512A (en) * 1997-03-05 1998-11-17 Denso Corp Silicon carbide semiconductor device
JPH11251573A (en) * 1998-02-26 1999-09-17 Toyota Central Res & Dev Lab Inc Semiconductor device

Cited By (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352065A (en) * 2000-04-06 2001-12-21 Matsushita Electric Ind Co Ltd Field effect transistor, and its manufacturing method
WO2002099909A1 (en) * 2001-06-05 2002-12-12 National University Of Singapore Power mosfet having enhanced breakdown voltage
KR100479426B1 (en) * 2002-08-27 2005-03-30 학교법인 한양학원 High-Voltage Device Structure and It's Fabrication Process
US7196376B2 (en) 2002-10-04 2007-03-27 Shindengen Electric Manufacturing Co., Ltd., Trench-type power MOSFET with embedded region at the bottom of the gate and increased breakdown voltage
WO2004032244A1 (en) * 2002-10-04 2004-04-15 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and process for fabricating the same
KR100958561B1 (en) 2002-10-04 2010-05-17 신덴겐코교 가부시키가이샤 Semiconductor device and process for fabricating the same
JP2005116822A (en) * 2003-10-08 2005-04-28 Toyota Motor Corp Insulated-gate semiconductor device and its manufacturing method
US7470953B2 (en) 2003-10-08 2008-12-30 Toyota Jidosha Kabushiki Kaisha Insulated gate type semiconductor device and manufacturing method thereof
JP4538211B2 (en) * 2003-10-08 2010-09-08 トヨタ自動車株式会社 Insulated gate semiconductor device and manufacturing method thereof
EP1748492A1 (en) * 2004-03-29 2007-01-31 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and semiconductor device manufacturing method
EP1748492A4 (en) * 2004-03-29 2009-11-04 Shindengen Electric Mfg Semiconductor device and semiconductor device manufacturing method
JP2008071896A (en) * 2006-09-13 2008-03-27 Nippon Steel Corp Metal-insulating film-silicon carbide semiconductor structure
JP2008078174A (en) * 2006-09-19 2008-04-03 Fuji Electric Holdings Co Ltd Trench gate type silicon carbide semiconductor device
JP2008147232A (en) * 2006-12-06 2008-06-26 Mitsubishi Electric Corp Silicon carbide semiconductor device and manufacturing method therefor
JP2008235546A (en) * 2007-03-20 2008-10-02 Denso Corp Silicon carbide semiconductor device and manufacturing method therefor
US8022414B2 (en) 2007-03-20 2011-09-20 Denso Corporation Silicon carbide semiconductor device, and method of manufacturing the same
DE102008000660B4 (en) * 2007-03-20 2014-06-05 Denso Corporation The silicon carbide semiconductor device
US7825449B2 (en) 2007-11-06 2010-11-02 Denso Corporation Silicon carbide semiconductor device and related manufacturing method
DE102008055689B4 (en) * 2007-11-06 2016-07-21 Denso Corporation Silicon carbide semiconductor device and manufacturing method thereof
JP2009117593A (en) * 2007-11-06 2009-05-28 Denso Corp Silicon carbide semiconductor apparatus and method of manufacturing the same
JP2009117649A (en) * 2007-11-07 2009-05-28 Fuji Electric Device Technology Co Ltd Semiconductor device
EP2068363A2 (en) * 2007-12-07 2009-06-10 Cree, Inc. Trench-gate MISFET
JP2013065907A (en) * 2007-12-07 2013-04-11 Cree Inc Transistor with a-face conductive channel and trench protecting well region
EP2615642A1 (en) * 2007-12-07 2013-07-17 Cree, Inc. Trench-gate MISFET
US8211770B2 (en) 2007-12-07 2012-07-03 Cree, Inc. Transistor with A-face conductive channel and trench protecting well region
US9064710B2 (en) 2007-12-07 2015-06-23 Cree, Inc. Transistor with A-face conductive channel and trench protecting well region
JP2009141363A (en) * 2007-12-07 2009-06-25 Cree Inc Transistor with a-face conductive channel and trench protecting well region
DE102008063128A1 (en) 2007-12-26 2009-07-02 Denso Corporation, Kariya SiC semiconductor device with a bottom layer and method for its production
US7851854B2 (en) 2007-12-26 2010-12-14 Denso Corporation SiC semiconductor device having bottom layer and method for manufacturing the same
KR101015445B1 (en) * 2008-02-13 2011-02-18 가부시키가이샤 덴소 Silicon carbide semiconductor device including deep layer
US8193564B2 (en) 2008-02-13 2012-06-05 Denso Corporation Silicon carbide semiconductor device including deep layer
JP2009194065A (en) * 2008-02-13 2009-08-27 Denso Corp Silicon carbide semiconductor device and method of manufacturing the same
EP2091083A3 (en) * 2008-02-13 2009-10-14 Denso Corporation Silicon carbide semiconductor device including a deep layer
US8283721B2 (en) 2008-03-26 2012-10-09 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same
US11127851B2 (en) 2008-03-26 2021-09-21 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same
US10290733B2 (en) 2008-03-26 2019-05-14 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same
EP4297097A3 (en) * 2008-03-26 2024-04-03 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same
EP4095928A1 (en) * 2008-03-26 2022-11-30 Rohm Co., Ltd. Semiconductor device and method for manufacturing the same
JP2009260253A (en) * 2008-03-26 2009-11-05 Rohm Co Ltd Semiconductor device and method for manufacturing the same
US9166038B2 (en) 2008-03-26 2015-10-20 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same
US10686067B2 (en) 2008-03-26 2020-06-16 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same
US12009420B2 (en) 2008-03-26 2024-06-11 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same
US9496387B2 (en) 2008-03-26 2016-11-15 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same
US12034073B2 (en) 2008-03-26 2024-07-09 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same
WO2009119735A1 (en) * 2008-03-26 2009-10-01 ローム株式会社 Semiconductor device, and method for manufacturing the same
JP4640436B2 (en) * 2008-04-14 2011-03-02 株式会社デンソー Method for manufacturing silicon carbide semiconductor device
JP2009259896A (en) * 2008-04-14 2009-11-05 Denso Corp Method for manufacturing silicon carbide semiconductor device
JP2010114152A (en) * 2008-11-04 2010-05-20 Toyota Motor Corp Semiconductor device, and method of manufacturing the same
JP2010258386A (en) * 2009-04-28 2010-11-11 Fuji Electric Systems Co Ltd Silicon carbide semiconductor device, and method of manufacturing the same
JP2011253837A (en) * 2010-05-31 2011-12-15 Denso Corp Silicon carbide semiconductor device and method for manufacturing the same
US8896058B2 (en) 2010-11-08 2014-11-25 Sumitomo Electric Industries, Ltd. Semiconductor device and method for producing same
JP2012104567A (en) * 2010-11-08 2012-05-31 Sumitomo Electric Ind Ltd Semiconductor device and method of manufacturing the same
WO2012063578A1 (en) * 2010-11-08 2012-05-18 住友電気工業株式会社 Semiconductor device and method for producing same
JP2013098315A (en) * 2011-10-31 2013-05-20 Toyota Motor Corp Switching element and method of manufacturing the same
CN103151376A (en) * 2011-12-07 2013-06-12 Nxp股份有限公司 Trench-gate RESURF semiconductor device and manufacturing method
US9735254B2 (en) 2011-12-07 2017-08-15 Nexperia B.V. Trench-gate RESURF semiconductor device and manufacturing method
US9006822B2 (en) 2011-12-07 2015-04-14 Nxp B.V. Trench-gate RESURF semiconductor device and manufacturing method
US20130146967A1 (en) * 2011-12-07 2013-06-13 Nxp B. V. Trench-Gate Resurf Semiconductor Device and Manufacturing Method
EP2602829A1 (en) * 2011-12-07 2013-06-12 Nxp B.V. Trench-gate resurf semiconductor device and manufacturing method
US9209294B1 (en) 2012-02-10 2015-12-08 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device and method for manufacturing same
US9673288B2 (en) 2012-04-19 2017-06-06 Denso Corporation Silicon carbide semiconductor device including conductivity layer in trench
US9337298B2 (en) 2012-06-14 2016-05-10 Denso Corporation Silicon carbide semiconductor device and method for producing the same
EP2863417A4 (en) * 2012-06-14 2016-03-09 Denso Corp Silicon carbide semiconductor device and method for producing same
CN104380442A (en) * 2012-06-14 2015-02-25 株式会社电装 Silicon carbide semiconductor device and method for producing same
US9515160B2 (en) 2012-06-14 2016-12-06 Denso Corporation Silicon carbide semiconductor device and method for producing the same
JP7241848B2 (en) 2013-02-05 2023-03-17 三菱電機株式会社 Insulated gate type silicon carbide semiconductor device
CN109755321A (en) * 2013-02-05 2019-05-14 三菱电机株式会社 Insulated-gate type manufacturing silicon carbide semiconductor device and its manufacturing method
US10510843B2 (en) 2013-02-05 2019-12-17 Mitsubishi Electric Corporation Insulated gate silicon carbide semiconductor device and method for manufacturing same
JP2020038995A (en) * 2013-02-05 2020-03-12 三菱電機株式会社 Insulation gate type silicon carbide semiconductor device and manufacturing method therefor
JP2022010335A (en) * 2013-02-05 2022-01-14 三菱電機株式会社 Insulated gate type silicon carbide semiconductor device
US9741797B2 (en) 2013-02-05 2017-08-22 Mitsubishi Electric Corporation Insulated gate silicon carbide semiconductor device and method for manufacturing same
JP7105752B2 (en) 2013-02-05 2022-07-25 三菱電機株式会社 Insulated gate type silicon carbide semiconductor device
EP2973723A4 (en) * 2013-03-13 2016-11-09 Cree Inc Field effect transistor devices with protective regions
US10784338B2 (en) 2013-03-13 2020-09-22 Cree, Inc. Field effect transistor devices with buried well protection regions
US10134834B2 (en) 2013-03-13 2018-11-20 Cree, Inc. Field effect transistor devices with buried well protection regions
US9570585B2 (en) 2013-03-13 2017-02-14 Cree, Inc. Field effect transistor devices with buried well protection regions
US9349856B2 (en) 2013-03-26 2016-05-24 Toyoda Gosei Co., Ltd. Semiconductor device including first interface and second interface as an upper surface of a convex protruded from first interface and manufacturing device thereof
US9318600B2 (en) 2013-04-16 2016-04-19 Panasonic Intellectual Property Management Co., Ltd. Silicon carbide semiconductor device and method for manufacturing same
JPWO2014171048A1 (en) * 2013-04-16 2017-02-16 パナソニックIpマネジメント株式会社 Method for manufacturing silicon carbide semiconductor device
JP5834179B2 (en) * 2013-04-16 2015-12-16 パナソニックIpマネジメント株式会社 Method for manufacturing silicon carbide semiconductor device
JP2014241368A (en) * 2013-06-12 2014-12-25 住友電気工業株式会社 Silicon carbide semiconductor device
WO2014199748A1 (en) * 2013-06-12 2014-12-18 住友電気工業株式会社 Silicon carbide semiconductor device
WO2015012009A1 (en) * 2013-07-26 2015-01-29 住友電気工業株式会社 Silicon carbide semiconductor device and method for manufacturing same
US10192960B2 (en) 2013-07-26 2019-01-29 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
JP2015026727A (en) * 2013-07-26 2015-02-05 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method for the same
US9825164B2 (en) 2013-08-01 2017-11-21 Mitsubishi Electric Corporation Silicon carbide semiconductor device and manufacturing method for same
WO2015049838A1 (en) * 2013-10-02 2015-04-09 株式会社デンソー Silicon carbide semiconductor device
US9647108B2 (en) 2013-10-02 2017-05-09 Denso Corporation Silicon carbide semiconductor device
JP2015072999A (en) * 2013-10-02 2015-04-16 株式会社デンソー Silicon carbide semiconductor device
JP2015082544A (en) * 2013-10-22 2015-04-27 ルネサスエレクトロニクス株式会社 Semiconductor device and method of manufacturing the same
JP2015141919A (en) * 2014-01-27 2015-08-03 トヨタ自動車株式会社 semiconductor device
WO2015177914A1 (en) * 2014-05-23 2015-11-26 株式会社日立製作所 Semiconductor device, semiconductor device manufacturing method, power conversion device, three-phase motor system, automobile, and train car
JPWO2015177914A1 (en) * 2014-05-23 2017-04-20 株式会社日立製作所 Semiconductor device, semiconductor device manufacturing method, power conversion device, three-phase motor system, automobile, and railway vehicle
JPWO2016002766A1 (en) * 2014-06-30 2017-04-27 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof
WO2016116998A1 (en) * 2015-01-19 2016-07-28 株式会社日立製作所 Semiconductor device, method for manufacturing same, power conversion device, three-phase motor system, automobile, and railway carriage
US10074741B2 (en) 2015-03-03 2018-09-11 Infineon Technologies Ag Semiconductor device with trench gate structure including a gate electrode and a contact structure for a diode region
JP2016163049A (en) * 2015-03-03 2016-09-05 インフィネオン テクノロジーズ アクチエンゲゼルシャフトInfineon Technologies AG Semiconductor device including trench structure including a gate electrode for diode region and contact structure
US10734514B2 (en) 2015-03-03 2020-08-04 Infineon Technologies Ag Semiconductor device with trench gate structure including a gate electrode and a contact structure for a diode region
JPWO2016157606A1 (en) * 2015-03-30 2017-09-14 三菱電機株式会社 Silicon carbide semiconductor device and manufacturing method thereof
US10157986B2 (en) 2015-03-30 2018-12-18 Mitsubishi Electric Corporation Silicon carbide semiconductor device and method for manufacturing same
JPWO2017064949A1 (en) * 2015-10-16 2018-06-14 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
US10199493B2 (en) 2015-10-16 2019-02-05 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
CN108352402A (en) * 2015-10-16 2018-07-31 富士电机株式会社 The manufacturing method of semiconductor device and semiconductor device
US10403749B2 (en) 2015-10-16 2019-09-03 Fuji Electric Co., Ltd. Method of manufacturing semiconductor device
JP2019208074A (en) * 2015-10-16 2019-12-05 富士電機株式会社 Semiconductor device
CN108352402B (en) * 2015-10-16 2020-12-18 富士电机株式会社 Semiconductor device and method for manufacturing semiconductor device
WO2017145594A1 (en) * 2016-02-23 2017-08-31 株式会社デンソー Compound semiconductor device production method and compound semiconductor device
JP2017152488A (en) * 2016-02-23 2017-08-31 株式会社デンソー Method of manufacturing compound semiconductor device, and compound semiconductor device
US10153356B2 (en) 2016-03-24 2018-12-11 Toyoda Gosei Co., Ltd. Method of manufacturing semiconductor device, and semiconductor device
US10256323B2 (en) 2016-03-24 2019-04-09 Toyoda Gosei Co., Ltd. Method of manufacturing semiconductor device including an n type semiconductor region formed in a p type semiconductor layer
US10879349B2 (en) 2017-03-28 2020-12-29 Toyoda Goset Co., Ltd. Method for manufacturing semiconductor device and edge termination structure of semiconductor device
US10490408B2 (en) 2017-03-28 2019-11-26 Toyoda Gosei Co., Ltd. Method for manufacturing semiconductor device
DE102018206965A1 (en) 2017-07-05 2019-01-10 Mitsubishi Electric Corporation Silicon carbide semiconductor device, manufacturing method thereof, and power conversion device
US10431658B2 (en) 2017-07-05 2019-10-01 Mitsubishi Electric Corporation Silicon carbide semiconductor device, manufacturing method therefor and power conversion apparatus
DE102018118875B4 (en) 2017-09-13 2023-03-30 Hitachi, Ltd. Semiconductor device and method for its manufacture
JP2019054043A (en) * 2017-09-13 2019-04-04 株式会社日立製作所 Semiconductor device and manufacturing method for the same
US10600864B2 (en) 2018-01-09 2020-03-24 Fuji Electric Co., Ltd. Semiconductor device
US10580889B2 (en) 2018-02-21 2020-03-03 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing thereof, and power conversion apparatus
DE102019201716B4 (en) 2018-02-21 2023-12-07 Mitsubishi Electric Corporation Semiconductor device and method for producing same, and power conversion device
JP7151363B2 (en) 2018-10-16 2022-10-12 富士電機株式会社 Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JP2020064950A (en) * 2018-10-16 2020-04-23 富士電機株式会社 Silicon carbide semiconductor device and silicon carbide semiconductor device manufacturing method
CN111199969B (en) * 2018-11-16 2022-06-03 英飞凌科技股份有限公司 SiC power semiconductor device with integrated body diode
CN111199969A (en) * 2018-11-16 2020-05-26 英飞凌科技股份有限公司 SiC power semiconductor device with integrated body diode
US11201210B2 (en) 2019-08-02 2021-12-14 Kabushiki Kaisha Toshiba Semiconductor device, inverter circuit, drive device, vehicle, and elevator
JP7337469B1 (en) * 2022-03-03 2023-09-04 三菱電機株式会社 Semiconductor equipment and power conversion equipment
CN116469923B (en) * 2023-04-25 2023-10-20 南京第三代半导体技术创新中心有限公司 High-reliability trench silicon carbide MOSFET device and manufacturing method thereof
CN116469923A (en) * 2023-04-25 2023-07-21 南京第三代半导体技术创新中心有限公司 High-reliability trench silicon carbide MOSFET device and manufacturing method thereof

Also Published As

Publication number Publication date
JP4738562B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4738562B2 (en) Manufacturing method of semiconductor device
KR100859701B1 (en) High voltage LDMOS transistor and method for fabricating the same
US7915617B2 (en) Semiconductor device
US9490338B2 (en) Silicon carbide semiconductor apparatus and method of manufacturing same
JP4744958B2 (en) Semiconductor device and manufacturing method thereof
US9673288B2 (en) Silicon carbide semiconductor device including conductivity layer in trench
JP4210110B2 (en) Semiconductor device
US8748977B2 (en) Semiconductor device and method for producing same
TWI534902B (en) Method of forming a power semiconductor device and power semiconductor device
US20120126311A1 (en) Power transistor with metal source and method of manufacture
TWI358835B (en) Schottky device and method of forming
JP2001077363A (en) Silicon carbide semiconductor device and its manufacturing method
JP2005510059A (en) Field effect transistor semiconductor device
JP2000082812A (en) Silicon carbide semiconductor device and manufacture thereof
US7074681B2 (en) Semiconductor component and method of manufacturing
KR101530582B1 (en) A semiconductor device and method for manufacturing the same
US20160155821A1 (en) Methods for Producing a Vertical Semiconductor and a Trench Gate Field Effect Semiconductor Device
JP2000332239A (en) Field effect transistor
JPH08274335A (en) Silicon carbide mosfet
JPH0613621A (en) Semiconductor device and its manufacture
JP2001094098A (en) Silicon carbide semiconductor device and fabrication method thereof
CN114497201A (en) Field effect transistor of integrated body relay diode, preparation method thereof and power device
US20220157959A1 (en) Semiconductor power devices having multiple gate trenches and methods of forming such devices
KR940004269B1 (en) Mos fet and manufacturing method thereof
JP5037103B2 (en) Silicon carbide semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Ref document number: 4738562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term