JP2001178173A - 空気調和機 - Google Patents

空気調和機

Info

Publication number
JP2001178173A
JP2001178173A JP35548099A JP35548099A JP2001178173A JP 2001178173 A JP2001178173 A JP 2001178173A JP 35548099 A JP35548099 A JP 35548099A JP 35548099 A JP35548099 A JP 35548099A JP 2001178173 A JP2001178173 A JP 2001178173A
Authority
JP
Japan
Prior art keywords
motor
blower
rotation speed
voltage
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35548099A
Other languages
English (en)
Other versions
JP3546786B2 (ja
Inventor
Takaaki Umeshita
貴明 梅下
Hideki Terauchi
英樹 寺内
Atsushi Okuyama
奥山  敦
Kenji Tamura
建司 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP35548099A priority Critical patent/JP3546786B2/ja
Publication of JP2001178173A publication Critical patent/JP2001178173A/ja
Application granted granted Critical
Publication of JP3546786B2 publication Critical patent/JP3546786B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

(57)【要約】 【課題】本発明は、空気調和機の信頼性を損なわず、上
記要求に応える送風機を備えた空気調和機および制御方
法を提供するものである。 【解決手段】送風機用電動機にブラシレス直流電動機を
採用し、電動機駆動に必要なインバータ及び周辺制御回
路を一体化したワンチップモノシリックICを電動機に
内蔵することにより、インバータのPWM制御の他、電
動機の入力直流電圧値の制御によって高出力化を図る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、空気調和機の送風
機用電動機および制御方法に係り、特に、インバータ及
び駆動回路を内蔵した送風機用電動機を備えた空気調和
機に関するものである。
【0002】
【従来の技術】図1に従来の空気調和機の構成を示す。
1は室内機、5は室外機であり、それぞれ送風用ファン
3,6を備えている。各送風用ファン3,6の回転に
は、2,7の送風機用電動機が使用されている。
【0003】従来の送風機用電動機13は、例えば室外
機の場合、図2に示すように、商用交流電源8を整流・
平滑して得た直流電源を圧縮機用電動機12への供給電
源と共用し、各々インバータ10,11を配置してこれ
を調整することで回転数制御を行っている。
【0004】この場合、圧縮機や送風機用電動機で使用
する電動機は直流電動機であり、一般的に回転数は、電
動機巻線に供給する電圧に比例する。
【0005】従って、供給する直流電圧は一定であるの
で、インバータを構成するスイッチング素子、例えばパ
ワートランジスタやIGBT(Insulated Bipola Transi
stor)のPWMチョッパ(スイッチング素子のオン・オ
フを所定の時間,周波数で繰り返す方法)によって、巻
線に供給する平均電圧を調整して回転数制御を行うのが
一般的である。
【0006】図3はインバータを構成するスイッチング
素子のチョッパデューティ(スイッチング周波数に対す
るオン時間の比率)と入力直流電圧(回転数)との関係
を示す原理図である。
【0007】(a)は、チョッパデューティが小さい場
合のイメージ図であり、オン時間15が小さいほど平均
入力電圧17は低くなるので電動機回転数も低くなる。
逆に(b)は、オン時間15が大きい場合のイメージ図
であり、(a)に比べて平均入力電圧17は高くなるの
で回転数は増加する。
【0008】尚、インバータのPWMチョッパ回数が多
い程、インバータ損失が増加する為、近年の空気調和機
ではチョッパデューティを100%にし、入力電圧を直
接可変して回転数制御する傾向である。
【0009】図4は、特開平6−11171号公報に挙げられ
ている送風機用電動機の回転数を任意に制御する場合の
システム構成例である。IGBT30(Q1〜Q6)と
環流ダイオード31(D1〜D6)で構成するインバー
タ,ホール素子センサ22を使って、回転信号を読みと
って実回転数を検出し、これを指令回転数33と比較し
てPWM信号を形成し、ドライブ回路によりIGBTの
オン/オフを調整して所定の回転数になるよう制御する
方法で、入力直流電圧32は一定である。
【0010】これらの制御構成は、マイコンや電子回路
を駆使して実現可能であり、近年ではインバータを構成
するスイッチング素子の他、インバータ駆動ロジックや
短絡・過電流保護など各種保護機能ロジックを内蔵して
モノシリックICによりワンチップ化,製品シリーズ化
され、夫々の用途に応じ各種機能を揃えたICが市販さ
れている。
【0011】これにより、送風機用電動機のインバータ
など電動機外部で構成していた制御回路部の実装面積が
大幅に縮小され、送風機用電動機内に実装が可能となっ
ている。
【0012】尚、前記特開平6−11171号公報によれば、
前記モノシリックICを内蔵した送風機用電動機を搭載
し、更に圧縮機電動機への供給直流電源と共用して送風
機の回転数制御する例も挙げられている。
【0013】また最近では圧縮機回転数の制御として、
これまでのインバータのチョッパ(PWM制御)に依ら
ず、昇圧回路を設けて入力の直流電圧(巻線電圧)を可
変にして回転数制御するPAM制御(Pulse Amplitude
Modulation)が採用されはじめている。
【0014】前記昇圧回路によって得られる圧縮機回転
数制御用の可変入力直流電源を送風機用電動機用電源を
共用することに関しては、本発明の論ずるところであ
り、PAM制御及び昇圧回路については後述する。
【0015】
【発明が解決しようとする課題】ヒートポンプ方式の空
気調和機において、室内機・室外機に設ける送風機の主
な要求としては、省スペース、広範囲な風量調整可能な
こと、効率アップ,低騒音化などが挙げられる。
【0016】これらの要求の内、広範囲な風量調整,効
率アップに応えるには、送風機を駆動する電動機の回転
数を広範囲に制御する必要があり、インバータの導入に
よりこれを実現しようとしているのは、前述の通りであ
る。
【0017】しかし、インバータ及び駆動回路を備えれ
ば、省スペース化要求に応えるには絶縁距離確保や部品
点数増により実現困難である。
【0018】省スペース,効率アップを図る為、前述の
インバータ及び周辺回路がワンチップ化されたモノシリ
ックICを用いて実現可能であるが、ICの放熱処理困
難な為、ICの熱破壊といった点で問題が残り、発熱を
抑えるため低い回転数で使用せざるを得ない。
【0019】特に、室外機に設ける送風機用電動機にお
いては、室内設定温度に早期に達するように立ち上がり
時間の短縮が要求され、冷房運転では、周囲温度(外気
温度)の高い状態で高回転運転を行う必要があるので、
ICの放熱処理は重要課題である。
【0020】ICを電動機外部に設け、送風機ファンに
よる風を利用してICを冷却する方法があるが、他の制
御部品との絶縁距離を確保する必要があり、省スペース
化に反する。
【0021】逆に先述の特開平6−11171号公報のよう
に、送風機用電動機内部に実装すれば、ファンによる放
熱処理には頼れず、自然放熱する他はない。
【0022】この場合、室外側送風機用電動機は、熱交
換器近傍に設ける為、熱交換器の放熱によりICの周囲
温度は、外気温度よりも高くなって、やはり放熱面で厳
しくなる傾向にある。
【0023】ICの熱破壊対策としては、送風機用電動
機駆動電圧を低電圧化やインバータ構成素子の高効率化
が考えられるが、送風機駆動用として専用に回路(整流
回路やDC/DCコンバータ等)を設けなくてはなら
ず、省スペース化や原価低減という観点から得策ではな
い。
【0024】事実、先述のように室外機では圧縮機駆動
用直流電源を送風機駆動用として共用しているのが現状
である。
【0025】特に、室外機においては逆風や雨,露付き
等、設置環境の変化によって送風機用電動機の負荷が変
化するため、夫々の運転状態,運転条件を想定して巻線
やICの熱破壊対策は解決すべき問題である。
【0026】また、原価低減や基板実装面積を小さくす
ることを目的として、圧縮機用電動機の入力直流電源を
共用して送風機用電動機を駆動する方法がよく採られる
が、同じ様に入力直流電圧を昇圧回路によって直流電圧
を変化させた直流電源を共用すれば、直流電圧が上昇し
た分インバータのスイッチング損失が増加し、効率低下
やICの発熱量が更に増える結果となる。
【0027】この様に送風機用電動機の省スペース化と
高効率化、風量調整幅の拡大を図る上で、構成する制御
部品の放熱処理の面で課題が残り、特に昇圧回路によっ
て供給電圧が高電圧の状態で使用する場合においてもこ
れら課題を克服するような制御システムが必要である
が、現在有効な方法は確立されていない。
【0028】本発明の目的は、上記課題に着目してなさ
れたものであり、送風機用電動機や構成部品の熱破壊に
対する保護機能を有した制御システムを備えた空気調和
機を提供するものである。
【0029】
【課題を解決するための手段】本発明は送風機用電動機
のインバータ入力電圧が昇圧回路によって高電圧な状態
にあっても、上記目的を実現することが可能である。
【0030】省スペース化に対しては、インバータ及び
周辺駆動回路,過電流防止回路機能を備えたワンチップ
モノシリックICを採用することにより、これを送風機
用電動機に内蔵することで省スペース化を実現してい
る。
【0031】更に昇圧回路の入力直流電圧の調整と、モ
ノシリックICへの回転数指令信号調整の両方によって
回転数制御を行うものであるので、従来よりも送風機回
転数をより広範囲かつ高精度に制御を行うことができ
る。即ち、広範囲かつ正確な風量を確保できる。
【0032】更に、調整する入力直流電圧と送風機用電
動機の入力直流電流を検出して、所定の入力電力になる
と直流電圧またはインバータ回転数指令信号に制限を加
える制御をシステムに加えることで前記モノシリックI
Cなどの制御部品や電動機巻線の熱破壊保護を防ぐこと
ができ、回転数制御領域の拡大や送風機用の信頼性確保
が実現できる。
【0033】
【発明の実施の形態】本発明の詳細を図に示す一実施例
で説明する。図5は室外機の圧縮機駆動用直流電源と送
風機用電動機の入力電源を共用した場合のシステム構成
図、図6は本発明の実施例を示す送風機用電動機内のシ
ステム構成図、図7は図6のロジックを備えたモノシリ
ックワンチップICを送風機用電動機内部に実装した実
施例を示す電動機側面図、図8は送風機用電動機に供給
する直流電圧によって電流制限を行うしきい値を示す図
である。
【0034】先ず、図5において、47は圧縮機、35
は送風機用電動機である。空気調和機の高効率化を図る
ため、圧縮機47と送風機用電動機35にはブラシレス
直流電動機を採用しており、これを駆動する為、各々の
電動機にインバータを搭載している。この時、送風機用
電動機35はインバータと駆動回路を一体化したモノシ
リックIC46を内蔵して省スペース化を実現してい
る。
【0035】また、共用する圧縮機および送風機の入力
電圧値Vdを運転状態に応じて可変にする為、マイコン
指令37により昇圧回路34を駆動して圧縮機と送風機
の回転数を制御している。
【0036】本実施例で採用する昇圧回路34は、昇圧
用スイッチング素子39とダイオード41,リアクタ4
0,平滑用キャパシタ14によって構成されており、ス
イッチング素子37のオン/オフの周波数とデューティ
の調整によって平滑キャパシタ14端子間の直流電圧を
変化させている。
【0037】これにより、例えば商用交流電源AC10
0Vの場合、全波整流して平滑した直流電圧以上の範
囲、即ちDC140V以上の領域において電圧を変化さ
せることができるので、その結果、電圧上昇に従って各
電動機の回転数も高速回転になるので昇圧回路が無い場
合に比べて制御可能な回転数領域を拡大できるようにな
っている。
【0038】本実施例においては省スペース化の為、圧
縮機と送風機の入力直流電源を共用としているので、直
流電圧の調整は消費電力が大きい圧縮機の効率を優先さ
せて行うことにしている。
【0039】通常、圧縮機回転数を高回転で制御すると
きは、送風機回転数も高回転になる場合が多く、それ
故、本実施例の場合においても、送風量制御範囲の拡大
は実現できている。
【0040】また、送風機回転数の微調整は入力直流電
圧のみによって行うことが困難であるが、送風機用電動
機インバータのPWMチョッパ、つまりモノシリックI
Cへの回転数指令信号の微調整によって所望の回転数を
得ている。
【0041】本実施例で採用したモノシリックICの構
成は、おおよそ図6で示す構成となっていて、IGBT
で構成するインバータ回路やIGBT駆動回路の他、過
電流保護機能も内蔵している。
【0042】抵抗48の抵抗は、過電流保護機能が作動
する電流のしきい値を決定する要素であり、ノイズ等に
より同相のIGBT(例えばQ1とQ4)が同時にオン
することによる短絡や電動機29の巻線短絡によるIC
破壊を防止している。
【0043】本実施例では前述の通り送風機用電動機の
回転数制御をモノシリックIC51に入力する入力直流
電圧Vdの調整の他、回転数微調整をホール素子センサ
22から得た実回転数パルス信号を読み取ってモノシリ
ックIC51に入力する回転数指令信号に反映するフィ
ードバック制御を行っている。
【0044】回転数指令信号は予め設定したモノシリッ
クIC51の三角波周波数との比較によってインバータ
PWMチョッパのデューティを決定する動作をするの
で、指令信号電圧値の増減によって送風機用電動機の回
転数が変化するようになっている。
【0045】ここで、前記課題に出ていたモノシリック
ICの熱破壊対策が問題となるが、本実施例においては
IC冷却(熱破壊保護)を促す為、図7に示したように
基板52にモノシリックIC51を搭載し、ICの放熱
面とブラッケット50Aを密着させ、ICから発生した
熱をブラケット50Aを伝って放熱するような構造とし
ている。
【0046】しかし、前記放熱対策によっても放熱量に
限界があり、入力直流電圧Vd増加によるICからの発
熱量増大、調和機外部からの逆風などによる送風機負荷
上昇によって、モノシリックICの破壊温度に達してし
まう。
【0047】そこで、図5で示した電流検出回路42に
よって送風機用電動機35に流れる電流を検出して所定
の電流になると、現状の回転数を維持するように回転数
指令信号を出力する制御を行うことにしている。
【0048】例えば、実回転数が設定回転数以下の場
合、回転数指令信号の電圧は徐々に増加させていくので
あるが、設定回転数に達する前に送風機負荷が増加して
所定の電流に達した場合、回転数指令信号の電圧は達し
た時の電圧を維持するようにする。
【0049】また、回転数を維持した状態でも更に電流
値が増加する場合には、回転数指令信号の電圧値を徐々
に小さくして、所定の電流値以下になるよう制御を行
う。
【0050】本実施例では、設定する電流は電動機特
性,送風機負荷特性の検討により予め設定しており、ま
た電流検出42は抵抗を挿入することで、抵抗の端子間
電圧を取り込むことで端子間電圧と比例関係にある電流
を検出している。
【0051】また、電流検出42は送風機用電動機内部
に配置した過電流防止用として設定した過電流防止用抵
抗(図6,48)と共用してもよい。
【0052】尚、モノシリックIC及び電動機巻線の温
度上昇値は電動機が消費する電力によって決まる為、前
記設定する電動機の電流値は入力直流電圧Vdとの関係
によって変化させるものとする。
【0053】従って設定電力以下になるよう回転数指令
信号による制限の他、入力直流電圧Vdを徐々に下げて
温度上昇値を抑制することもできる。
【0054】図8は本実施例における制限を行う入力直
流電圧Vdと送風機用電動機電流の関係を示した図であ
る。
【0055】(a)は制限する電動機消費電力を一定と
した場合の図であり、それぞれの回転数における負荷曲
線56に対し、送風機負荷が上昇しても電動機温度上昇
破壊(IC熱破壊)しない直線55を設定した例であ
る。
【0056】(b)は比較的、温度上昇幅の少ない低電
圧領域では制限電流を大きくし、温度上昇幅が大きい高
電圧領域では制限電流値を小さくした例であり、電動
機,ICの持つ温度上昇特性によって柔軟に制限電力を
設定している。
【0057】これにより、本発明における目的を損なわ
ず、前記モノシリックICや電動機巻線の温度上昇によ
る電動機破壊は予防できるので高い信頼性と性能を確保
できている。
【0058】尚、運転中、常に電動機電流・入力直流電
圧を管理しているので、製品外部からの逆風によるファ
ンの逆転現象など電動機負荷の変動する推移を監視する
ことで、ICからの逆転信号を受け取らずともファンの
逆転検出が可能である。
【0059】
【発明の効果】以上説明した通り本発明においては、イ
ンバータと駆動周辺回路をモノシリックICに一体化
し、これを送風機用電動機に内蔵したものであり、省ス
ペース化に柔軟に対応できる。
【0060】更にインバータPWMチョッパ制御の他、
入力直流電圧によっても送風機の回転数制御を行うもの
であるので、制御可能な回転数範囲をより広範囲にかつ
高精度に回転数制御ができる。
【0061】更に電流検出回路を送風機外部に別途設け
て所定の電力以下になるよう直流電圧と回転数指令信号
を調整するものであるので、空気調和機外部からの逆風
や送風機の結露等によって、送風機用電動機負荷が上昇
した場合においても、モノシリックICや電動機巻線の
温度上昇による電動機破壊を防いで信頼性を確保でき
る。
【0062】また、前記電流検出による電流監視を回転
数制御に加えて、送風機に加わる負荷状態を把握できる
ので、空気調和機外部からの逆風等によって送風機が逆
転した場合でも、内蔵したモノシリックICからの逆転
信号等、送風機用電動機から別途逆転信号を取り込まな
くとも逆転検出ができる。
【図面の簡単な説明】
【図1】本発明で説明する一般的な空気調和機の室内機
・室外機構成を示す斜視図。
【図2】室外機の圧縮機および送風機の制御システム構
成を示す回路図。
【図3】(a)及び(b)はチョッパ周波数が高い場合
及び低い場合の入力直流電圧のイメージ図。
【図4】送風機用電動機の制御システム構成を示すロジ
ック図。
【図5】本発明の実施例を示すシステム構成を示す回路
図。
【図6】本発明の実施例を示す電動機内部のシステム構
成を示すロジック図。
【図7】本発明に係るワンチップICを送風機用電動機
内部に実装した様子を示す電動機側面を示す側断面図。
【図8】送風機用電動機に供給する直流電圧によって電
流制限を行う為のしきい値を示す特性図。
【符号の説明】
1…室内機、2…室内側送風機用電動機、3…室内側送
風機ファン、4…配管銅パイプ、5…室外機、6…室外
側送風機ファン、7…室外側送風機用電動機、8…商用
交流電源、9…整流器、10…圧縮機用インバータ、1
1…送風機用インバータ、12…圧縮機電動機、13…
送風機用電動機、14…平滑用キャパシタ、15…チョ
ッパオン時間、16…チョッパ周期、17…平均入力直
流電圧値、18…入力直流電圧、22…磁極位置検出ホ
ール素子、32…入力直流電圧、34…昇圧回路部、3
5…モノシリックIC内蔵送風機用電動機、36…マイ
コン制御部、37…直流電圧制御信号、38…インバー
タ転流指令信号、39…昇圧回路部スイッチング素子、
40…リアクタ、41…ダイオード、42…電流検出回
路、43…検出電流値入力信号、44…実回転数信号、
45…回転数指令信号、46…ワンチップIC、47…
圧縮機電動機、48…過電流検出用抵抗、49…シャフ
ト、50A…IC側ブラケット、50B…ファン側ブラ
ケット、51…モノシリックIC、52…内蔵基板、5
3…ケーブル、54…電動機巻線、55…入力電力制限
しきい値線、56…定格回転時の負荷曲線。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥山 敦 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 田村 建司 栃木県下都賀郡大平町大字富田709番地の 2 株式会社日立栃木エレクトロニクス内 Fターム(参考) 3L061 BE02 BF08 5H560 AA01 AA02 BB04 BB12 DA02 DA19 DB20 DC12 EB01 GG04 JJ02 SS07 UA06 XA04 XA12

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】熱交換器による放熱・吸熱作用を送風用フ
    ァンを回転させることによって行う空気調和機におい
    て、前記ファンの回転を行う電動機内にインバータ及び
    駆動回路を備え、前記インバータと電動機に供給する直
    流電圧の振幅値調整によって回転数制御を行う際、電動
    機内部又は外部に電動機負荷状態を監視する為の電流検
    出回路と、送風機用電動機の回転数信号と入力電流か
    ら、電動機回転方向、負荷状態を把握し、回転数指令信
    号を調整して前記電動機の回転数制御を行う制御機能を
    備えたことを特徴とする空気調和機。
JP35548099A 1999-12-15 1999-12-15 空気調和機 Expired - Fee Related JP3546786B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35548099A JP3546786B2 (ja) 1999-12-15 1999-12-15 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35548099A JP3546786B2 (ja) 1999-12-15 1999-12-15 空気調和機

Publications (2)

Publication Number Publication Date
JP2001178173A true JP2001178173A (ja) 2001-06-29
JP3546786B2 JP3546786B2 (ja) 2004-07-28

Family

ID=18444198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35548099A Expired - Fee Related JP3546786B2 (ja) 1999-12-15 1999-12-15 空気調和機

Country Status (1)

Country Link
JP (1) JP3546786B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079116A (ja) * 2001-09-03 2003-03-14 Nidec Shibaura Corp モータ
JP2005160242A (ja) * 2003-11-27 2005-06-16 Matsushita Electric Ind Co Ltd モータ駆動装置およびモータ駆動方法
JP2007319742A (ja) * 2006-05-31 2007-12-13 Sharp Corp 空気清浄機
JP2009236373A (ja) * 2008-03-26 2009-10-15 Sharp Corp 一体型空気調和機
JP2011120471A (ja) * 2011-03-11 2011-06-16 Daikin Industries Ltd モータ制御方法およびその装置
WO2011109435A2 (en) * 2010-03-02 2011-09-09 Agave Semiconductor, Llc Position corrected pulse width modulation for brushless direct current motors
WO2014044452A1 (de) * 2012-09-20 2014-03-27 Ebm-Papst Mulfingen Gmbh & Co. Kg Thermodynamische kreisprozessanlage
WO2014083833A1 (ja) * 2012-11-29 2014-06-05 株式会社Tbk 暖房送風機及び車両
CN111674224A (zh) * 2020-01-20 2020-09-18 广州华凌制冷设备有限公司 空调器的控制方法、装置、空调器和存储介质

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079116A (ja) * 2001-09-03 2003-03-14 Nidec Shibaura Corp モータ
JP2005160242A (ja) * 2003-11-27 2005-06-16 Matsushita Electric Ind Co Ltd モータ駆動装置およびモータ駆動方法
JP2007319742A (ja) * 2006-05-31 2007-12-13 Sharp Corp 空気清浄機
US8159170B2 (en) 2008-03-26 2012-04-17 Sharp Kabushiki Kaisha Integral type air conditioner
JP2009236373A (ja) * 2008-03-26 2009-10-15 Sharp Corp 一体型空気調和機
US9083273B2 (en) 2010-03-02 2015-07-14 Agave Semiconductor, Llc Position corrected pulse width modulation for brushless direct current motors
TWI594567B (zh) * 2010-03-02 2017-08-01 龍舌蘭半導體公司 利用位置校正脈寬調變之無刷式直流馬達控制方法及其所用之積體電路
WO2011109435A2 (en) * 2010-03-02 2011-09-09 Agave Semiconductor, Llc Position corrected pulse width modulation for brushless direct current motors
GB2491088A (en) * 2010-03-02 2012-11-21 Agave Semiconductor Llc Position corrected pulse width modulation for brushless direct current motors
US9729089B2 (en) 2010-03-02 2017-08-08 Agave Semiconductor, Llc Position corrected pulse width modulation for brushless direct current motors
WO2011109435A3 (en) * 2010-03-02 2011-12-22 Agave Semiconductor, Llc Position corrected pulse width modulation for brushless direct current motors
TWI488423B (zh) * 2010-03-02 2015-06-11 Agave Semiconductor Llc 利用位置校正脈寬調變之無刷式直流馬達控制方法及其所用之積體電路
GB2491088B (en) * 2010-03-02 2014-12-10 Agave Semiconductor Llc Position corrected pulse width modulation for brushless direct current motors
JP2011120471A (ja) * 2011-03-11 2011-06-16 Daikin Industries Ltd モータ制御方法およびその装置
CN104685779A (zh) * 2012-09-20 2015-06-03 依必安派特穆尔芬根有限两合公司 热力循环过程系统
US9291380B2 (en) 2012-09-20 2016-03-22 Ebm-Papst Mulfingen Gmbh & Co. Kg Thermodynamic cycle process system
CN104685779B (zh) * 2012-09-20 2017-05-03 依必安派特穆尔芬根有限两合公司 热力循环过程系统
WO2014044452A1 (de) * 2012-09-20 2014-03-27 Ebm-Papst Mulfingen Gmbh & Co. Kg Thermodynamische kreisprozessanlage
JP2014107995A (ja) * 2012-11-29 2014-06-09 Tbk:Kk 暖房送風機及び車両
WO2014083833A1 (ja) * 2012-11-29 2014-06-05 株式会社Tbk 暖房送風機及び車両
CN111674224A (zh) * 2020-01-20 2020-09-18 广州华凌制冷设备有限公司 空调器的控制方法、装置、空调器和存储介质
CN111674224B (zh) * 2020-01-20 2023-01-13 广州华凌制冷设备有限公司 空调器的控制方法、装置、空调器和存储介质

Also Published As

Publication number Publication date
JP3546786B2 (ja) 2004-07-28

Similar Documents

Publication Publication Date Title
KR940010066B1 (ko) 원칩화한 주변회로를 갖는 집적회로를 내장한 무브러시 모터
JP5633442B2 (ja) インバータ制御装置及び冷凍空調装置
JP3400432B2 (ja) インバータ冷蔵庫の電流制限回路及びその制御方法
JP4557955B2 (ja) モータ駆動回路及びモータ駆動方法並びに半導体集積回路装置
JP2008141902A (ja) ブラシレスdcモータの制御装置及び換気送風装置
KR20060063969A (ko) Ac전원에 직결된 브러시리스 dc모터와 그 모터를이용한 전기 장치
JP3546786B2 (ja) 空気調和機
JP2001289549A (ja) 冷蔵庫制御装置
JP5486434B2 (ja) 電力変換装置
JP3215302B2 (ja) 空気調和機
JP2009124776A (ja) ブラシレスdcモータの駆動装置およびそれを搭載した換気送風装置
JP6937471B2 (ja) ブラシレスdcモータ
JP2006129568A (ja) 電動機の駆動装置及びモールド電動機及び空気調和機及び冷蔵庫及び換気扇
JP4879237B2 (ja) 駆動回路内蔵モータ、並びにそれを備えた空気調和機、換気扇及びヒートポンプタイプの給湯機
JP3314852B2 (ja) 空気調和機の運転制御装置
JP2007247919A (ja) 換気送風装置
JPH10174276A (ja) モータの保護装置
JP6040066B2 (ja) ファンモータの駆動制御装置
WO2018142738A1 (ja) 空気調和機
WO2023238293A1 (ja) 空気調和機
JP4154133B2 (ja) 駆動回路を用いたモータを備えた空調機並びに冷蔵庫
KR100395945B1 (ko) 인버터 공기조화기의 캐리어주파수제어방법
JP6487093B2 (ja) 空気調和機
JP6396679B2 (ja) 過電流検出回路、空気調和機、サーミスタの取り付け構造、及び電気機器
WO2024089759A1 (ja) モータ駆動装置及び冷凍サイクル機器

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees