JP4154133B2 - 駆動回路を用いたモータを備えた空調機並びに冷蔵庫 - Google Patents

駆動回路を用いたモータを備えた空調機並びに冷蔵庫 Download PDF

Info

Publication number
JP4154133B2
JP4154133B2 JP2001138076A JP2001138076A JP4154133B2 JP 4154133 B2 JP4154133 B2 JP 4154133B2 JP 2001138076 A JP2001138076 A JP 2001138076A JP 2001138076 A JP2001138076 A JP 2001138076A JP 4154133 B2 JP4154133 B2 JP 4154133B2
Authority
JP
Japan
Prior art keywords
motor
signal
pulse width
width modulation
current command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001138076A
Other languages
English (en)
Other versions
JP2002335689A (ja
Inventor
仁 大浦
荘 田中
幸雄 川端
誠 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001138076A priority Critical patent/JP4154133B2/ja
Publication of JP2002335689A publication Critical patent/JP2002335689A/ja
Application granted granted Critical
Publication of JP4154133B2 publication Critical patent/JP4154133B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は駆動回路を用いたモータを備えた空調機並びに冷蔵庫に係り、特に空調機(エアコン)のファンモータや冷蔵庫の圧縮機(コンプレッサ)などのモータを低騒音で駆動するものに好適な駆動回路を用いたモータを備えた空調機並びに冷蔵庫に関する。
【0002】
【従来の技術】
エアコンや冷蔵庫などの家電分野では、低騒音化の要望が大きく、ファンモータや圧縮機モータなどから発する騒音や振動の低減が求められている。
【0003】
近年、商用電源を整流した整流電圧またはそれに相当する直流電圧を直接インバータ駆動しブラシレスモータを駆動する方法が広まっている。ブラシレスモータを駆動するには、安価なインバータ装置の提供が望まれているので、従来技術では、回路構成が簡単で比較的モータ効率が高い、安価な120度通電方式を用いている。
【0004】
120度通電方式によるモータ駆動回路では、モータの回転子磁極位置検出器で磁極位置を検出し、回転子と固定子の磁極が一致するようなタイミングで、インバータ装置の各スイッチング素子をオンオフ制御してモータを駆動する。回転子の磁極位置検出は、一般的にホール効果を応用したホール素子、あるいはホール素子に増幅器を内蔵したホールICを用いる。この検出信号を電気角でいう
180度分のうち120度分を論理的にオンさせて電流を通流し、残りの60度分はインバータ出力をオフにする。
【0005】
【発明が解決しようとする課題】
このため、モータ電流iのオンオフ直後は極めて高い変化量(di/dt)を持つ電流波形となる。このdi/dtで、固定子に発生する電磁力が変化するのでモータ巻線が振動し、電磁音が外部に放出される。また、電磁音の周波数は、モータ回転数とモータ極数に比例し、モータ実使用回転域では数Hzから数100Hzの可聴周波数範囲内であるため、騒音になる。
【0006】
また、モータ電流波形が高調波成分を多く含むので、モータトルクに脈動が発生しやすい。モータトルクは、基本的にモータ固有の誘起電圧とモータ電流の積からなるため、モータ電流波形に依存する割合が大きい。このトルク脈動で、モータ自体が振動し、モータを取り付ける架台を振動させ、騒音になる。
【0007】
低騒音化するための方法として、PWM(Pulse Width Modulation:パルス幅変調)制御によりモータ駆動電流を正弦波状にする方法がある。具体的には、モータの固定子磁極の磁束をホール素子で検出し、正弦波状の信号を得る。この正弦波状の信号と搬送波発生器の出力信号である搬送波信号とを比較器9で比較し、PWM信号を得る。PWM信号でインバータ装置をオンオフ制御し、モータ電流を正弦波状に制御する。しかしこの従来技術では、PWM周期に対応した高速な演算処理ができるマイコンなどが必要なため、120度通電方式より、複雑かつ高価になる。
【0008】
本発明の目的は、比較的簡単な回路で低騒音のモータ駆動回路を実現、このモータ駆動回路を用いた低価格で高効率な空調機並びに冷蔵庫提供することにある。
【0009】
【課題を解決するための手段】
本発明の駆動回路を用いたモータを備えた空調機は、熱交換器と、該熱交換器で発生した熱を外部に排出する環流ファンと、該環流ファンを回転させるモータと、該モータを固定するモータ支持台とを備え、前記モータは、回転子及び固定子と、該回転子及び固定子を収納する筐体と、前記回転子の磁極の位置を検出するための磁極位置検出器と、モータ駆動回路とを有し、前記モータ駆動回路が、パルス幅変調制御した駆動電力を前記モータに供給する電力変換装置と、前記モータの回転速度と速度指令値との偏差に基づいて演算した電流指令信号を出力する速度制御演算手段と、前記電流指令信号と、反転電流指令信号と、該反転電流指令信号と前記電流指令信号との中間のレベルの1つ或いは複数の中間レベル指令信号と、前記モータの磁極位置信号とを入力し、前記モータの磁極位置に基づいて、前記電流指令信号と、反転電流指令信号と、中間レベル指令信号とのうちのいずれかを選択し、選択信号として出力する信号選択手段と、該選択信号と搬送波とからパルス幅変調信号を生成するパルス幅変調信号生成手段と、該パルス幅変調信号に基づいて前記電力変換装置をパルス幅変調制御するパルス幅変調制御手段とを備えていることを特徴とする
【0010】
また、本発明の駆動回路を用いたモータを備えた冷蔵庫は、機械室内に圧縮機を備えていると共に、該圧縮機に内蔵されたモータに配線を介して電力を供給し、かつ前記圧縮機で圧縮した冷媒を配管を介して熱交換器で熱交換し、さらに配管を介して庫内冷却ファンで冷気を庫内に送風する冷蔵庫において、前記モータは、回転子及び固定子と、該回転子及び固定子を収納する筐体と、前記回転子の磁極の位置を検出するための磁極位置検出器と、モータ駆動回路とを有し、前記モータ駆動回路が、パルス幅変調制御した駆動電力を前記モータに供給する電力変換装置と、前記モータの回転速度と速度指令値との偏差に基づいて演算した電流指令信号を出力する速度制御演算手段と、前記電流指令信号と、反転電流指令信号と、該反転電流指令信号と前記電流指令信号との中間のレベルの1つ或いは複数の中間レベル指令信号と、前記モータの磁極位置信号とを入力し、前記モータの磁極位置に基づいて、前記電流指令信号と、反転電流指令信号と、中間レベル指令信号とのうちのいずれかを選択し、選択信号として出力する信号選択手段と、該選択信号と搬送波とからパルス幅変調信号を生成するパルス幅変調信号生成手段と、該パルス幅変調信号に基づいて前記電力変換装置をパルス幅変調制御するパルス幅変調制御手段とを備えていることを特徴とする
【0014】
【発明の実施の形態】
以下本発明の実施例を図面を用いて詳細に説明する。
【0015】
(実施例1)
本実施例のモータ駆動回路と、本回路とモータを含むモータ駆動システムを図1に示す。図1において、モータ4は3相ブラシレスモータである。本モータは、回転子に永久磁石を有するモータであって、永久磁石の発生する磁束を検出して回転子磁極位置を検出する磁極位置検出器5を備える。磁極位置検出器には、ホール素子の出力する検出信号を論理信号(hu,hv,hw)に変換するゼロクロス回路を内蔵したホールICを用いる。磁極位置検出器5は、1相毎に設けられ、各相の電気角の位相差が120度になるように設置している。
【0016】
一方、モータ入力端子、即ちモータの固定子巻線は、インバータ装置3に接続される。インバータ装置3は、例えばパワーMOSFET,絶縁ゲート型バイポーラトランジスタ(IGBT)などのスイッチング素子を6個組み合わせた回路を有する。インバータ装置3の電源となる直流電源は、交流の商用電源1を整流器2で整流して得る。インバータ装置3の各スイッチング素子のオンオフを、インバータ駆動装置8で制御する。
【0017】
なお、本実施例で、破線で囲まれた枠内における駆動回路は、モノリシック半導体集積回路装置(駆動回路IC)6内に形成されている。また、一点鎖線で囲まれた枠内の駆動回路IC6と磁極位置検出器5とは、モータ4に内蔵され、駆動回路内蔵ブラシレスモータとして一体化されている。なお、半導体集積化する部分は、破線で囲んだ枠内に限るものではなく、インバータ装置3を別の部品で構成し、インバータ装置3以外の破線で囲まれた枠内を半導体集積回路装置としてもよい。
【0018】
以下、図1におけるインバータ装置3によるモータの駆動方法を、図2の動作波形図を用いて説明する。図1のモータ4が定常回転中には、磁極の位置検出信号群h(hu,hv,hw)は、図2における位置検出信号hu,hv,hwのように電気角120度の位相差を保った論理信号である。
【0019】
一方、位置検出信号群hはモータの速度に関する情報(例えばパルス信号の周期など)を有するので、位置検出信号hwを周波数−電圧変換器(F/V)15で電圧に変換して、実速度に対応した直流電圧成分を得る。なお、本実施例では、速度検出に位置検出信号hwを用いたが、huまたはhv、あるいはhu,
hv,hwの内の複数の信号を用いても良い。
【0020】
速度制御演算処理手段13(例えばマイクロコンピュータなどの演算処理装置)は、周波数−電圧変換器15の出力である直流電圧成分すなわち速度信号と速度制御演算処理手段13内に設定されている速度指令とを比較し、それらの偏差を出力する。このようにして速度制御演算処理手段13が出力する出力信号が、直流電圧信号であるモータの電流指令信号aである。反転増幅器12は、電流指令信号aを入力し、電流指令信号aの反転信号を生成し、直流電圧信号である電流指令信号bとして出力する。また、中点発生手段20は、電流指令信号aとbの電位の中間の大きさの電位を有する中点信号を出力する。図2と図3とに示すように、本実施例では中点信号の電位はグランドレベル(0レベル)である。電流指令信号a,bと中点信号が信号選択手段11に入力される。
【0021】
信号選択手段11は、アナログ信号である電流指令信号a,bと、グランドレベルの中点信号と論理信号である位置検出信号群hを入力し、位置検出信号群hに応じて電流指令信号a,bと中点信号の内の何れかを選択して、PWM制御の変調波となる選択信号群s(su,sv,sw)を生成し出力する。選択信号群sのパルスのエッジは、位置検出信号群hのパルスのエッジに同期している。例えば、図2において、選択信号suの正方向のパルス(電流指令信号aが選択されている場合)の立上りと立下りの各エッジは、夫々、位置検出信号huの立下りのエッジと位置検出信号hvの立下りのエッジに同期している。さらに選択信号suの負方向のパルス(電流指令信号bが選択されている場合)の立上り(グランドレベルから負になる場合)と立下り(負からグランドレベルに戻る場合)の各エッジは、夫々、位置検出信号huの立上りのエッジと位置検出信号hvの立上りのエッジに同期している。同様に、選択信号suのエッジは位置検出信号hvとhwのエッジに同期し、svのエッジはhwとhuのエッジに同期している。また、選択信号群sのハイレベルの電圧は電流指令信号aの電圧レベルに一致し、ローレベルは電流指令信号bの電圧レベルに一致する。なお、選択信号群sの電圧レベルは電流指令信号a,bの電圧レベルに比例した大きさとしても良い。
【0022】
選択信号群sは、フィルタ回路10に入力され、各選択信号の波形が滑らかになるように波形加工が施される。波形が滑らかにされた信号が、選択信号fu,fv,fwとしてフィルタ回路10から出力される。選択信号fu,fv,fwを、搬送波発生器14の出力である搬送波信号(例えば3角波)と比較器9で、各々比較し、PWM信号を生成する。このPWM信号をインバータ駆動装置8に入力し、インバータ装置3の各スイッチング素子をオンオフ制御する。
【0023】
以上の構成で、速度制御演算処理手段13の速度指令に一致するように、モータの回転速度を制御する。即ち、モータ回転速度が速度指令値より小さいと、電流指令信号aの大きさを上昇させる。これで、選択信号群sの振幅が増大し、PWM信号におけるオンデューティ比が増加し、インバータ装置3の出力電流が増大してモータのトルクが増加し、モータが加速し回転速度が速度指令値に一致する。モータ回転速度が速度指令値よりも大きい場合は、電流指令信号aの大きさを減少させて、上述と逆の動作でモータを減速し回転速度を速度指令値に一致させる。
【0024】
本実施例では、位置検出信号で直流電圧であるモータ電流指令信号を適宜選択して矩形波状の変調波を作成しPWM制御を行うという、比較的簡単なPWM制御によりブラシレスモータを駆動できる。従って、駆動回路が簡単になり、ブラシレスモータの駆動装置を小型化できる。また、回路が簡単になるので、従来は速度制御演算処理手段(マイクロコンピュータなど)で行っていたPWM信号の発生を、インバータ装置3が形成されているモノリシック半導体集積回路に一体形成した制御回路で行える。すなわち、PWM制御回路,インバータ駆動装置(スイッチング素子のドライバ回路),インバータ主回路をモノリシックIC化できる。これにより、モータ駆動システムの各種の制御あるいは状態監視などを行うマイクロコンピュータなどの演算処理装置の負荷が軽減される。従って、小型あるいは安価な演算処理装置を適用できる。また、駆動回路IC6内に速度指令値設定回路と上述した電流指令信号aを作成する機能を有する回路を内蔵すれば、速度制御演算処理手段13が不要になる。
【0025】
本実施例では、選択信号群sの波形をフィルタ回路10を用いて平滑したが、フィルタ回路10を用いずに、選択信号群sを直接変調波に用いても、従来技術の120度通電方式よりモータ電流波形が滑らかになる。これは、本実施例では、120度通電方式における電気角60度分のインバータ出力オフ期間では、インバータ出力がオフでなく、デューティ比50%のPWM制御行っているので、この期間モータに電流が流れ、電流波形が滑らかになるためである。なお、フィルタ回路は、電流波形をさらに滑らかにする効果があるので、モータの騒音がより低減する。
【0026】
図3を用いて、電流指令信号の選択方法を具体的に説明する。図3において、論理信号である位置検出信号hu,hv,hwを、信号分配回路31で分配し、アナログスイッチ32の駆動信号ut,um,ub,vt,vm,vb,wt,wm,wbとして出力する。分配信号を図4に示す。図2における選択信号suのハイレベル,中点(グランド)レベル,ローレベルに対応して、夫々ut,um,ubがハイレベルとなる。ut,um,ubがハイレベルのとき、夫々、電流指令信号a,中点(グランド)電位,電流指令bに接続されたスイッチがオンする。その結果、図2に示した波形の選択信号suが作成される。他の選択信号sv,swも同様である。このように、信号分配回路31の出力信号で、アナログスイッチ32を駆動する。アナログスイッチの動作で、モータ電流指令信号を選択し、増幅器33に入力して選択信号を生成する。増幅器33の出力信号をフィルタ回路10を介して、比較器9に入力する。比較器9は、搬送波信号(本実施例では三角波)と比較し、PWM信号を作成する。
【0027】
(実施例2)
図5を用いて本実施例を説明する。図示は省略するが、本実施例の駆動システムの構成は実施例1と同様であり、選択する電流指令信号のレベルを実施例1の3レベル(a,グランド,b)から4レベル(a,c,d,b)に増やした点が異なる。
【0028】
実施例1では、1相当たりの選択信号が、60度+120度の切り替え信号で、選択信号が形成されるのに対し、本実施例では、60度毎に選択信号を細分化する。まず、モータ電流指令aを4つの直流レベルa,b,c,dに変換して得られる4レベルの電流指令信号と位置検出信号群hにより、選択信号群sを生成する。図6に、具体的に選択信号を生成する回路構成を示す。電流指令信号a,b,c,dは(数1)式から(数3)式のように生成する。
【0029】
b=−a …(数1)
d=a/z …(数2)
c=−d …(数3)
ここで、zは増幅率を示す。増幅率zは、モータの誘起電圧波形レベルに相当するように調整する。例えば図5の選択信号を正弦波を比較する。レベルcは、レベルaを1とすると、sin 波の30度の位置が平均的な位置にある。従って、増幅率zは、sin30°=0.5と求められる。なお、0.5 という値に限らず、選択信号の波形を平滑にするために、0.5から0.3程度に調整することも可能である。
【0030】
図6の信号分配回路31は、図7に示す論理構成を有する。論理構成は、実施例1の図4と大略同様である。図5の選択信号suが最も高いレベルから順次低くなる4レベルに対応して、信号分配出力ut,uh,ul,ubが夫々ハイレベルとなる。ut,uh,ul,ubのハイレベルに応じて、夫々電流指令信号a,c,d,bに接続したスイッチが導通し、図5のsuが作成される。他の選択信号sv,swについても同様である。このようにして、分配回路の出力信号をアナログスイッチ群32に与え、直流信号a,b,c,dを選択する。選択した信号を増幅器33に入力し、増幅器33の出力信号をフィルタ回路10へ入力する。
【0031】
本実施例では、選択信号の分解能が向上するので、低騒音の低下が大きい。なお、本実施例で、フィルタ回路を用いずに選択信号群sを搬送波と直接比較しても、モータ電流は滑らかになるので、フィルタ回路を無くして、フィルタ回路の時定数の影響が無くし、回転数の広い範囲で騒音にすることもできる。
【0032】
図7の論理構成は、位置検出信号から自動的に生成できるが、位置検出信号と選択信号の位相関係を論理的手段で、ずらすこともできる。本実施例では60度刻みであるが、極端に回転数が異なる2点の動作点間において、位置検出の位相差が著しく異なるような場合には、信号分配回路の論理構成を変更することが容易にできる。
【0033】
なお、前記図3に示すフィルタ回路10は、単純に抵抗とコンデンサを基本とした一次遅れ回路を構成しているが、これを複雑なフィルタ回路構成、例えば多段CRフィルタにしてもよい。
【0034】
(実施例3)
図8に、モータ駆動回路を有するモノリシック半導体集積回路を内蔵するモータの実施例を示す。インバータ装置をモノリシック化して駆動回路IC6とする利点は次の通りである。
(1)インバータ装置が小型になるので、モータに内蔵できる。
(2)インバータ装置がモータ内蔵にできるので、位置検出信号をモータの外に引き出す必要がなくなり、引き出し配線が省略できる。
(3)位置検出回路とインバータ装置の距離が短く、また、位置検出信号が論理信号であるため、インバータ装置の出力電圧のdv/dtノイズに対してノイズ耐量を高めることができる。
(4)インバータ装置のモノリシック化で、モータ電流指令を反転する反転器等の増幅率の精度が向上する。
(5)モータ負荷の増大で、モータ電流位相が遅れ位相となりモータの効率が低下し、インバータ出力電流の増加でインバータ装置7が加熱するそこで、フィルタ回路の抵抗器の温度特性を負特性とするか、コンデンサの温度特性を負特性にして、温度上昇に伴いフィルタ時定数が小さくなるように設定するし、インバータ装置の過熱で電流位相が進相するように働き、モータ効率を低下させないように温度補償できる。
(6)モータの電流指令が1つの直流電圧信号で制御できるため、モータの引き出し配線を簡略化できる。
(7)モータの回転数が上がると、モータ効率が最大となる電流位相より位相が進む傾向にあるので、回転数が高くなればフィルタ回路で電流位相が遅れる特性を持たせてモータ効率低下を補償できる。
【0035】
図8で、モータの筐体51にモータ巻線からなる固定子52をはめ込み、固定子52には固定子側入力端子58を設置する。永久磁石回転子53を、固定子52に触れないよう適切なギャップを設けて、固定子内部に設置する。回転子53の上部に、本発明のインバータ装置内蔵のモノリシック半導体集積回路(駆動回路IC6)と回転子の磁極位置検出器5(ホールIC)と、周辺回路とを回路基板54上に設置する。なお、図8では、位置検出器5を便宜上上向きに示したが、実際は基板の裏側に設置し、回転子の磁極を検出しやすい様にする。ここで、固定子側の固定子側入力端子58と回路基板側インバータ出力端子57を絶縁された配線56で接続する。また、回路基板54からインバータ駆動用の配線59が引き出される。モータの駆動に最低限必要な配線数は、モータ駆動用の高圧電源+側,−側(グランド),モノリシック集積回路用制御電源+側,モータ電流制御用入力信号,モータ回転出力信号の計5つである。従って、モータ駆動回路をモータ筐体の外部に設ける場合に配線数が大幅に減る。
【0036】
フィルタ回路10は固定された時定数に応じた周波数で、階段状信号を滑らかにするので、特定のモータ回転数のモータ電流が滑らかになる。さらに、回転数に応じてフィルタ回路10の時定数を変化させれば、使用回転数が広いモータでも、騒音が低下しても、モータ効率が低下しない。
【0037】
図9は、本発明のモータ駆動回路が形成されるモノリシック半導体集積回路の断面を示す。本集積回路は、誘電体分離基板に形成される。誘電体(絶縁体)であるシリコン酸化膜(SiO2)42で覆われた単結晶島44の中に、図1においてインバータ装置3を構成する半導体スイッチング素子(IGBT)や高速ダイオード,インバータ駆動装置8やPWM信号を発生するための他の回路などを構成する電気素子が形成される。素子間はアルミニウム配線43で結線される。各単結晶島44は、シリコン酸化膜42で電気的に絶縁分離されるとともに、単結晶島44とシリコン酸化膜42の外側を覆う多結晶シリコンにより支持される。
【0038】
図10は、図9のモノリシック半導体集積回路の平面パターンを示す。6個の高速ダイオード46が隣接して設けられる領域と、6個のIGBT47が隣接して設けられる領域があり、これらの半導体素子によりインバータ装置が構成される。IGBTが設けられる領域に隣接して、これらのIGBTをオンオフ制御するためのインバータ駆動装置やPWM信号を発生するIGBT駆動回路領域と論理回路領域48に形成される。上記の実施例は、この領域48の回路に適用される。このため、領域48は、インバータ駆動装置とPWM信号を発生する回路を含むにもかかわらず、比較的簡単な回路構成になるために領域48の面積を低減できる。従って、小さなチップサイズで、インバータ装置,インバータ駆動装置とPWM信号を発生するための回路をモノリシック化できる。
【0039】
(実施例4)
図11に、本実施例のエアコン室内機の概略構造を示す。エアコン室内機は、熱交換機72と、熱交換機72で発生した熱(または冷熱)を外部に排出する環流ファン77と、環流ファン77により発生した風向きを制御する風向板78と、環流ファン77を回転させるファンモータ76と、ファンモータ76を固定するモータ支持台75と、ファンモータ76を駆動するための電源回路とモータ駆動回路74を備えた電気品ボックス73とを有し、これらが化粧パネル71で覆われる。なお化粧パネル71は、室内機の全面を覆っているが、図11では内部構造がわかるように、便宜上、一部の化粧パネル71を省略してある。
【0040】
ファンモータ76は、図8に示した駆動回路内蔵モータであって、電気品ボックス73から供給される配線が、モータ駆動電源のプラス側とマイナス側の電源配線と、モータ回転数を制御する信号線、回転数をモニタする回転数信号線、とモータ内蔵の駆動回路を駆動する電源線からなる。
【0041】
これらで、モータ磁極位置信号線が不用であるため、配線コストが低減されると共にノイズに対する信頼性が向上する。
【0042】
本実施例ではファンモータ76を、モータ支持台75に直接固定した。従来技術ではモータからの振動を緩和するために、ゴム製の振動防止装置を取り付けていたが本実施例ではこれを必要としない。本実施例空調機の室内機はモータの駆動回路の工夫でモータ振動が低減したので、振動防止装置が不要となった。このためエアコンの製造コストが削減できる。なお、ファンモータは、駆動回路外付けでもよい。
【0043】
図12に、本実施例のエアコン室外機の概略構造を示す。エアコン室外機は、熱交換機72と、熱交換機72で発生した熱(または冷熱)を排出する室外ファン79と、室外ファン79を回転させるファンモータ76と、ファンモータ76を固定するモータ支持台75と、ファンモータ76を駆動するための電源回路とモータ駆動回路84を備えた電気品ボックス73とを有し、これらが化粧パネル71で覆われる。なお化粧パネル71は、室内機の全面を覆っているが、図12では内部構造がわかるように、便宜上、一部化粧パネル71を省略してある。
【0044】
本実施例ではファンモータ76が、図8に示した駆動回路を内蔵しており、電気品ボックス73に内蔵されたプリント基板83上に搭載した駆動回路84から、モータ配線85で電力供給される。該モータ配線は、モータ駆動電源のプラス側とマイナス側の電源配線と、モータ回転数を制御する信号線、回転数をモニタする回転数信号線、とモータ内蔵の駆動回路を駆動する電源線からなる。このように、電気品ボックスからモータに接続されるモータ磁極位置信号線が不用になるので、配線コストが低減されると共にノイズに対する信頼性が向上する。
【0045】
図13に、エアコン室外機のファン79とファンモータ76と、ファンモータ76とモータ支持台75とを固定する概略構造を示す。ファンモータ76を、モータ支持台75にあけたモータ取付孔82(図12参照)に、ネジ86,ナット87,ワッシャ88、などで固定する。ファン79は、モータのシャフト89にワッシャ88を介してナット87で固定される。ファンモータ76は、モータ支持台75に直接固定してある。従来技術ではモータの振動を緩和するために、ゴム製の振動防止装置を取り付けていたが本実施例ではこれを必要としない。なお、ファンモータは、駆動回路を外付けしたものでもよい。
【0046】
(実施例5)
図14に、本発明の冷蔵庫の構造の概略を示す。本実施例の冷蔵庫は、機械室100内に、圧縮機支持台98で固定された圧縮機99を備え、電気ボックス95内に収めたモータ駆動回路96で、モータ配線97を介して圧縮機99に内蔵されたモータに電力を供給し、圧縮機99で圧縮した冷媒を冷媒配管94を介して熱交換機91で熱交換し、さらに冷媒配管94を介し、庫内冷却ファン93で冷気を庫内に送風する。
【0047】
圧縮機99は、圧縮支持台98に直接固定してある。従来技術ではモータの振動を緩和するために、ゴム製の振動防止装置を取り付けていたが本実施例ではこれを必要としない。本実施例の冷蔵庫ではモータの駆動回路の工夫でモータ振動を低減したので、振動防止装置が不要となった。なお、圧縮機のモータは、駆動回路を内蔵していても外付けであってもよい。
【0048】
【発明の効果】
本発明によれば、比較的簡単な回路で低騒音のモータ駆動回路を用いた低価格で高効率な空調機並びに冷蔵庫を得ることができる。
【図面の簡単な説明】
【図1】実施例1のモータ駆動回路およびモータ駆動システムの説明図である。
【図2】実施例1のモータ駆動回路の動作波形の説明図である。
【図3】実施例1の電流指令信号の選択方法を示す説明図である。
【図4】実施例1の分配信号の説明図である。
【図5】実施例2のモータ駆動回路の動作波形の説明図である。
【図6】実施例2の電流指令信号の選択方法を示す説明図である。
【図7】実施例2の分配信号の説明図である。
【図8】実施例3のモータ駆動回路ICを内蔵したモータの説明図である。
【図9】実施例3のモータ駆動回路ICの誘電体分離基板の断面である。
【図10】実施例3のモータ駆動回路ICの平面パターンの説明図である。
【図11】実施例4のエアコン室内機の内部構造を表わす模式図である。
【図12】実施例4のエアコン室外機の内部構造を表わす模式図である。
【図13】実施例4のエアコン室外機のファンとファンモータの取り付け構造の説明図である。
【図14】実施例5の冷蔵庫の内部構造の説明図である。
【符号の説明】
1…商用電源、2…整流器、3…インバータ装置、4…モータ、5…磁極位置検出器、6…モノリシック半導体集積回路(駆動回路IC)、7…インバータ装置とモータ磁極位置検出器内蔵モータ、8…インバータ駆動装置、9…比較器、10…フィルタ回路、11…信号選択手段、12…反転増幅器、13…速度制御演算処理手段(マイクロコンピュータ)、14…搬送波発生器、15…周波数−電圧変換器(F/V)、16…ゼロクロス回路、17…直流電圧源、20…中点発生手段、25…ホール素子(アナログ出力)、31…信号分配回路、32…アナログスイッチ、33…増幅器(バッファ)、41…多結晶シリコン基板、42…シリコン酸化膜(SiO2)、43…アルミニウム配線、44…単結晶島、45…モノリシック集積回路チップ、46…高速ダイオード、47…インバータ出力IGBT領域、48…IGBT駆動回路と論理回路領域、51…モータ筐体、52…固定子、53…回転子、54…回路基板、55…モータ筐体、56…配線、57…回路基板側インバータ出力端子、58…固定子側入力端子、59…インバータ駆動用配線、71…化粧パネル、72…熱交換機、73…電気品ボックス、74…モータ駆動回路、75…モータ支持台、76…ファンモータ、77…環流ファン、78…風向板、79…室外ファン、80…圧縮機、82…モータ取付孔、83…プリント基板、84…駆動回路、85…モータ用配線、86…ネジ、87…ナット、88…ワッシャ、89…シャフト、90…冷蔵庫筐体、91…熱交換器、92…冷蔵庫内、93…庫内冷却ファン、94…冷媒配管、95…電気品ボックス、96…モータ駆動回路、97…モータ配線、98…圧縮機支持台、99…圧縮機、100…機械室。

Claims (5)

  1. 熱交換器と、該熱交換器で発生した熱を外部に排出する環流ファンと、該環流ファンを回転させるモータと、該モータを固定するモータ支持台とを備え、
    前記モータは、回転子及び固定子と、該回転子及び固定子を収納する筐体と、前記回転子の磁極の位置を検出するための磁極位置検出器と、モータ駆動回路とを有し、前記モータ駆動回路が、パルス幅変調制御した駆動電力を前記モータに供給する電力変換装置と、前記モータの回転速度と速度指令値との偏差に基づいて演算した電流指令信号を出力する速度制御演算手段と、前記電流指令信号と、反転電流指令信号と、該反転電流指令信号と前記電流指令信号との中間のレベルの1つ或いは複数の中間レベル指令信号と、前記モータの磁極位置信号とを入力し、前記モータの磁極位置に基づいて、前記電流指令信号と、反転電流指令信号と、中間レベル指令信号とのうちのいずれかを選択し、選択信号として出力する信号選択手段と、該選択信号と搬送波とからパルス幅変調信号を生成するパルス幅変調信号生成手段と、該パルス幅変調信号に基づいて前記電力変換装置をパルス幅変調制御するパルス幅変調制御手段とを備えていることを特徴とする駆動回路を用いたモータを備えた空調機
  2. 熱交換器と、該熱交換器で発生した熱を排出する室外ファンと、該室外ファンを回転させるモータと、該モータを固定するモータ支持台とを備え、
    前記モータは、回転子及び固定子と、該回転子及び固定子を収納する筐体と、前記回転子の磁極の位置を検出するための磁極位置検出器と、モータ駆動回路とを有し、前記モータ駆動回路が、パルス幅変調制御した駆動電力を前記モータに供給する電力変換装置と、前記モータの回転速度と速度指令値との偏差に基づいて演算した電流指令信号を出力する速度制御演算手段と、前記電流指令信号と、反転電流指令信号と、該反転電流指令信号と前記電流指令信号との中間のレベルの1つ或いは複数の中間レベル指令信号と、前記モータの磁極位置信号とを入力し、前記モータの磁極位置に基づいて、前記電流指令信号と、反転電流指令信号と、中間レベル指令信号とのうちのいずれかを選択し、選択信号として出力する信号選択手段と、該選択信号と搬送波とからパルス幅変調信号を生成するパルス幅変調信号生成手段と、該パルス幅変調信号に基づいて前記電力変換装置をパルス幅変調制御するパルス幅変調制御手段とを備えていることを特徴とする駆動回路を用いたモータを備えた空調機。
  3. 請求項1又は2に記載の駆動回路を用いたモータを備えた空調機において、
    前記モータ駆動回路が半導体集積回路装置を備え、該半導体集積回路装置が、半導体チップに形成されると共に、パルス幅変調制御によりオン、オフされ、かつモータに電力を供給する複数個の半導体スイッチング素子と、前記モータの回転速度と速度指令値との偏差に基づいて演算した電流指令信号を入力し、反転電流指令信号と、該反転電流指令信号と電流指令信号との中間のレベルの1つ或いは複数の中間レベル指令信号を生成する手段と、前記モータの磁極位置検出信号に基づいて、前記電流指令信号と、反転電流指令信号と、中間レベル指令信号とのうちのいずれかを選択し、選択信号として出力する信号選択手段と、該選択信号と搬送波とからパルス幅変調信号を生成するパルス幅変調信号生成手段と、該パルス幅変調信号に基づいて前記半導体スイッチング素子を該選択信号と搬送波とからパルス幅変調信号を生成するパルス幅変調信号生成手段と、該パルス幅変調信号に基づいて前記電力変換装置をパルス幅変調制御するパルス幅変調制御手段とを備えていることを特徴とする駆動回路を用いたモータを備えた空調機。
  4. 機械室内に圧縮機を備えていると共に、該圧縮機に内蔵されたモータに配線を介して電力を供給し、かつ前記圧縮機で圧縮した冷媒を配管を介して熱交換器で熱交換し、さらに配管を介して庫内冷却ファンで冷気を庫内に送風する冷蔵庫において、
    前記モータは、回転子及び固定子と、該回転子及び固定子を収納する筐体と、前記回転 子の磁極の位置を検出するための磁極位置検出器と、モータ駆動回路とを有し、前記モータ駆動回路が、パルス幅変調制御した駆動電力を前記モータに供給する電力変換装置と、前記モータの回転速度と速度指令値との偏差に基づいて演算した電流指令信号を出力する速度制御演算手段と、前記電流指令信号と、反転電流指令信号と、該反転電流指令信号と前記電流指令信号との中間のレベルの1つ或いは複数の中間レベル指令信号と、前記モータの磁極位置信号とを入力し、前記モータの磁極位置に基づいて、前記電流指令信号と、反転電流指令信号と、中間レベル指令信号とのうちのいずれかを選択し、選択信号として出力する信号選択手段と、該選択信号と搬送波とからパルス幅変調信号を生成するパルス幅変調信号生成手段と、該パルス幅変調信号に基づいて前記電力変換装置をパルス幅変調制御するパルス幅変調制御手段とを備えていることを特徴とする駆動回路を用いたモータを備えた冷蔵庫
  5. 請求項4に記載の駆動回路を用いたモータを備えた冷蔵庫において、
    前記モータ駆動回路が半導体集積回路装置を備え、該半導体集積回路装置が、半導体チップに形成されると共に、パルス幅変調制御によりオン、オフされ、かつモータに電力を供給する複数個の半導体スイッチング素子と、前記モータの回転速度と速度指令値との偏差に基づいて演算した電流指令信号を入力し、反転電流指令信号と、該反転電流指令信号と電流指令信号との中間のレベルの1つ或いは複数の中間レベル指令信号を生成する手段と、前記モータの磁極位置検出信号に基づいて、前記電流指令信号と、反転電流指令信号と、中間レベル指令信号とのうちのいずれかを選択し、選択信号として出力する信号選択手段と、該選択信号と搬送波とからパルス幅変調信号を生成するパルス幅変調信号生成手段と、該パルス幅変調信号に基づいて前記半導体スイッチング素子を該選択信号と搬送波とからパルス幅変調信号を生成するパルス幅変調信号生成手段と、該パルス幅変調信号に基づいて前記電力変換装置をパルス幅変調制御するパルス幅変調制御手段とを備えていることを特徴とする駆動回路を用いたモータを備えた空調機。
JP2001138076A 2001-05-09 2001-05-09 駆動回路を用いたモータを備えた空調機並びに冷蔵庫 Expired - Fee Related JP4154133B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001138076A JP4154133B2 (ja) 2001-05-09 2001-05-09 駆動回路を用いたモータを備えた空調機並びに冷蔵庫

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001138076A JP4154133B2 (ja) 2001-05-09 2001-05-09 駆動回路を用いたモータを備えた空調機並びに冷蔵庫

Publications (2)

Publication Number Publication Date
JP2002335689A JP2002335689A (ja) 2002-11-22
JP4154133B2 true JP4154133B2 (ja) 2008-09-24

Family

ID=18985073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001138076A Expired - Fee Related JP4154133B2 (ja) 2001-05-09 2001-05-09 駆動回路を用いたモータを備えた空調機並びに冷蔵庫

Country Status (1)

Country Link
JP (1) JP4154133B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632958B2 (ja) * 2006-01-24 2011-02-16 三菱電機株式会社 空気調和機の放射ノイズ低減装置および空気調和機
JP4835267B2 (ja) * 2006-06-01 2011-12-14 パナソニック株式会社 ブラシレスdcモータを搭載した換気送風装置
JP5425917B2 (ja) * 2009-09-09 2014-02-26 日本遠隔制御株式会社 サーボ装置

Also Published As

Publication number Publication date
JP2002335689A (ja) 2002-11-22

Similar Documents

Publication Publication Date Title
JP3442024B2 (ja) モータ駆動回路及びモータ駆動方法、並びに半導体集積回路装置
JP4557955B2 (ja) モータ駆動回路及びモータ駆動方法並びに半導体集積回路装置
US8498136B2 (en) AC-DC converter and compressor driving apparatus and air conditioning apparatus using the same
US5448141A (en) Adjustable speed drive for residential applications
JP3971979B2 (ja) 空気調和装置
US6642681B2 (en) Starting control method of and control apparatus for synchronous motor, and air conditioner, refrigerator, washing machine and vacuum cleaner each provided with the control apparatus
KR20060063969A (ko) Ac전원에 직결된 브러시리스 dc모터와 그 모터를이용한 전기 장치
WO2017208873A1 (ja) モータ駆動装置および、これを用いた圧縮機を有する電気機器
EP1393430B1 (en) Motor driving device and apparatus including the same device
JP3645793B2 (ja) モータ制御装置
JP4154133B2 (ja) 駆動回路を用いたモータを備えた空調機並びに冷蔵庫
JP3546786B2 (ja) 空気調和機
JP3699081B2 (ja) 交流電源直結型ブラシレスdcモータおよびそれを搭載した電気機器
JP3901157B2 (ja) 交流電源直結型ブラシレスdcモータおよびそれを搭載した電気機器
JP3278491B2 (ja) 冷凍サイクル制御装置
JP4289003B2 (ja) ブラシレスdcモータの駆動方法及びその装置
JP3080120B2 (ja) 空気調和機
JP3549312B2 (ja) インバータ装置
JP2002101685A (ja) インバータ装置
JP2019083594A (ja) モータ駆動装置および、これを用いた冷蔵庫
WO2023238293A1 (ja) 空気調和機
CN110326210B (zh) 空调机
JPH0538184A (ja) ブラシレスモータの駆動装置
JP3814627B2 (ja) 交流電源直結型ブラシレスdcモータおよびそれを搭載した電気機器
JP2003018877A (ja) 冷蔵庫

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees