WO2017208873A1 - モータ駆動装置および、これを用いた圧縮機を有する電気機器 - Google Patents

モータ駆動装置および、これを用いた圧縮機を有する電気機器 Download PDF

Info

Publication number
WO2017208873A1
WO2017208873A1 PCT/JP2017/018949 JP2017018949W WO2017208873A1 WO 2017208873 A1 WO2017208873 A1 WO 2017208873A1 JP 2017018949 W JP2017018949 W JP 2017018949W WO 2017208873 A1 WO2017208873 A1 WO 2017208873A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
timing
brushless
switching element
switching
Prior art date
Application number
PCT/JP2017/018949
Other languages
English (en)
French (fr)
Inventor
田中 秀尚
義典 竹岡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016111554A external-priority patent/JP6706757B2/ja
Priority claimed from JP2016111553A external-priority patent/JP6706756B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780022085.5A priority Critical patent/CN109155601B/zh
Publication of WO2017208873A1 publication Critical patent/WO2017208873A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/06Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time

Abstract

ブラシレスDCモータ(4)と、ブラシレスDCモータ(4)に電力を供給するインバータ(3)と、ブラシレスDCモータ(4)の回転子位置を検出する位置検出部(5)を備える。インバータ(3)は、位置検出部(5)で得られた位置信号に応じて、オンタイミングまたはオフタイミングがそれぞれ独立して設定される、6個のスイッチング素子(3a~3f)で構成され、スイッチング素子(3a~3f)のオフタイミングを調整して、ブラシレスDCモータ(4)の速度制御を行う。これにより、スイッチング素子(3a~3f)の導通期間およびスイッチング期間と回数を減らして損失を低減し、高効率で低消費電力のモータ駆動装置を実現できる。

Description

モータ駆動装置および、これを用いた圧縮機を有する電気機器
 本発明は、インバータ制御によりブラシレスDCモータを駆動するモータ駆動装置および、これを用いた圧縮機を有する電気機器に関する。
 従来、この種のブラシレスDCモータの駆動装置は、PWM(Pulse-Width-Modulation)制御の矩形波120度通電を基本として、ブラシレスDCモータを駆動する。そして、PWM制御のオンデューティが100%となったとき、通電区間を120度以上に拡張して、高速・高負荷駆動領域を拡張するモータ駆動装置が開示されている(例えば、特許文献1参照)。
 以下、特許文献1に記載の従来のモータ駆動装置について、図8を用いて説明する。
 図8は、従来のモータ駆動装置のブロック図である。
 図8に示すように、従来のモータ駆動装置は、インバータ3を構成する、スイッチング素子3a~3fが、オフからオンに移行する際、オンタイミング制御部103により進角制御を行う。一方、スイッチング素子3a~3fが、オンからオフに移行する際、オフタイミング制御部104による進角制御を行わない。そして、スイッチング素子3a~3fに、オーバーラップ通電を行う。
 これにより、スイッチング素子のターンオンを早くして、ブラシレスDCモータへの電力供給区間を120度以上に広げ、高負荷・高速駆動領域の拡張を可能としている。しかしながら、上記構成の場合、低速駆動領域で、電力供給区間を120度以上に拡張すると、PWM制御によるスイッチング素子のスイッチング回数が増加し、回路およびモータの損失が増加する。そのため、モータ駆動装置の効率が低くなる。
 また、モータ駆動電力が目標電力値となる様に導通角と進み角およびインバータ入力直流電圧を制御するモータ駆動装置が開示されている(例えば、特許文献2参照)。
 以下、特許文献2に記載のモータ駆動装置について、図9を用いて、説明する。
 図9は、特許文献2に記載のモータ駆動装置の制御ブロック図である。
 図9に示すように、モータ駆動装置は、ブラシレスDCモータを制御する駆動制御部201を備える。駆動制御部201は、駆動電力を検出する電力検出部202と、インバータの駆動信号パターンの生成とインバータ入力電圧を設定する通電パルス信号生成制御部203を有する。駆動制御部201は、駆動電力が目標設定の電力値に一致する様に、インバータ入力電圧値と通電角および進角を制御する。これにより、ブラシレスDCモータの高出力、高回転を可能としながら、モータ損失の低減を図っている。
 しかしながら、上記構成の場合、ブラシレスDCモータの負荷や駆動速度などの駆動状態に応じて、入力電圧・通電角・進角の独立した3パラメータの選定が必要となる。そのため、開発工数の増加、駆動状態に応じた3パラメータの演算・選定などが必要となり、制御が複雑化する。また、高速演算が可能な演算素子、あるいは駆動状態に応じて各パラメータの最適値をテーブルにした記憶素子が必要となる。そのため、モータ駆動装置のコストが増加する。
特開2006-50804号公報 特開2008-167525号公報
 本発明は、低負荷・低速での駆動時におけるブラシレスDCモータのモータ損失を低減し、高効率で低消費電力のモータ駆動装置を低コストで提供する。
 つまり、本発明のモータ駆動装置は、ブラシレスDCモータと、ブラシレスDCモータに電力を供給するインバータと、ブラシレスDCモータの回転子位置を検出する位置検出部を備える。インバータは、位置検出部で得られた位置信号に応じて、オンタイミングまたはオフタイミングがそれぞれ独立して設定される、6個のスイッチング素子で構成され、それぞれのスイッチング素子のオフタイミングを調整して、ブラシレスDCモータの速度制御を行う。
 この構成によれば、ブラシレスDCモータを低負荷・低速で駆動する場合、ブラシレスDCモータの固定子巻線に電力を供給する区間を狭くできる。これにより、PWM制御に伴うスイッチング素子のオン・オフ回数を少なくして、インバータのスイッチング損失を抑制できる。その結果、ブラシレスDCモータの低負荷・低速駆動時におけるモータ駆動装置の高効率・低消費電力化が図れる。
図1は、本発明の実施の形態におけるモータ駆動装置および、これを用いた圧縮機を有する電気機器のブロック図である。 図2Aは、同実施の形態における各部の波形とタイミングチャートである。 図2Bは、同実施の形態における各部の波形とタイミングチャートである。 図3は、スイッチング素子のオフタイミング調整制御の開始時における、判定フローチャートである。 図4は、PWM制御からオフタイミング調整制御への移行フローチャートである。 図5は、オフタイミング調整制御の動作を示すフローチャートである。 図6Aは、図2Aの区間C1におけるブラシレスDCモータの端子電圧波形を示す図である。 図6Bは、図2Aの区間F1におけるブラシレスDCモータの端子電圧波形を示す図である。 図6Cは、図2Bの区間C3におけるブラシレスDCモータの端子電圧波形を示す図である。 図6Dは、図2Bの区間F4におけるブラシレスDCモータの端子電圧波形を示す図である。 図7Aは、ブラシレスDCモータの相電流波形を示す図である。 図7Bは、ブラシレスDCモータの相電流波形を示す図である。 図8は、従来のモータ駆動装置のブロック図である。 図9は、従来のモータ駆動装置の制御ブロック図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるわけではない。
 (実施の形態)
 以下、本発明の実施の形態のモータ駆動装置および、これを用いた圧縮機を有する電気機器について、図1を参照しながら、説明する。
 図1は、同実施の形態におけるモータ駆動装置および、これを用いた圧縮機を有する電気機器のブロック図である。
 図1に示すように、本実施の形態のモータ駆動装置は、交流電源1に接続されるコンバータ回路2、インバータ3、位置検出部5、速度検出部6、誤差検出部7、転流制御部8、PWM制御部11、波形合成部12およびドライブ部13などで構成される。モータ駆動装置は、例えばブラシレスDCモータ4などを駆動する。
 交流電源1は、例えば日本国内の場合、実効値100Vで50Hzまたは60Hzの交流で出力される、一般的な商用電源である。
 コンバータ回路2は、整流回路2aと、コンデンサによる平滑回路2bと、スイッチ部2cなどで構成される。コンバータ回路2は、交流電源1から入力される交流電圧を直流電圧に変換する。整流回路2aは、4個のダイオードをブリッジ接続して構成される。スイッチ部2cは、オン/オフの切り替えにより、出力電圧を倍電圧整流と全波整流の2段階で切り替える。なお、コンバータ回路2は、スイッチ部2cを設けずに、倍電圧整流出力または全波整流出力を単一で出力する構成としてもよい。また、コンバータ回路2は、昇圧チョッパまたは降圧チョッパを用いた構成、あるいは任意の電圧に出力を調整できる構成としてもよい。
 インバータ3は、例えばMOSFETからなる6個のスイッチング素子3a~3fの3相ブリッジ接続で構成される。インバータ3は、任意の相のスイッチング素子のオン/オフの切り替えにより、コンバータ回路2から入力される直流電圧を、3相(U相、V相、W相)の交流電圧に変換する。
 ブラシレスDCモータ4は、3相の固定子巻線を有する固定子(ステータ)と、永久磁石を有する回転子(ロータ)により構成される。ブラシレスDCモータ4は、インバータ3から、3相の固定子巻線に供給される3相の交流電力により駆動される。
 位置検出部5は、ブラシレスDCモータ4の磁極位置を検出する。本実施の形態の位置検出部5は、モータ端子電圧から、回転子の回転により固定子の巻線に発生する誘起電圧の位相(ゼロクロスポイント)を検出する。なお、位置検出部5は、ホールICなどの位置センサや、電流センサによる電流検出などの方法で構成してもよい。
 速度検出部6は、位置検出部5の出力信号からブラシレスDCモータ4の駆動速度を検出する。本実施の形態の速度検出部6は、ブラシレスDCモータ4の回転子の回転により、固定子巻線に生じる誘起電圧のゼロクロス周期に基づいて、駆動速度を算出する。
 誤差検出部7は、速度検出部6で算出されたブラシレスDCモータ4の駆動速度と、目標速度との差(誤差)を検出する。
 転流制御部8は、位置検出部5の出力信号に基づいて、ブラシレスDCモータ4の各相の固定子巻線に、電気角90度以上、150度以下の範囲で、供給する電力を設定する。転流制御部8は、オンタイミング制御部9とオフタイミング制御部10を備える。オンタイミング制御部9は、スイッチング素子3a~3fをターンオンするオンタイミングを設定する。オフタイミング制御部10は、スイッチング素子3a~3fをターンオフするオフタイミングを設定する。つまり、転流制御部8は、インバータ3の各スイッチング素子のオン、オフのそれぞれのタイミングを、オンタイミング制御部9とオフタイミング制御部10を介して、個別に設定する。
 PWM制御部11は、インバータ3の3相交流の出力電圧を、PWM制御により調節する。これにより、PWM制御部11は、ブラシレスDCモータ4を目標速度で駆動するように制御する。このとき、『ブラシレスDCモータの固定子巻線への電力供給区間の最低電気角』を『電気角120度』で除した値より大きいPWM制御によるオン時間の時比率で駆動している場合、オフタイミング制御部10は、スイッチング素子のターンオフを早いタイミングで行う。これにより、PWM制御部11の時比率が、100%となるように調節する。
 この場合、スイッチング素子のオフするタイミングを、徐々に早めて行くように変更することが望ましい。これにより、ブラシレスDCモータ4の動作の急激な変化を、防止できる。この場合、上記タイミングの変更を、1度の制御周期で実行してもよいことは、言うまでもない。
 なお、ブラシレスDCモータ4の速度制御は、以下の状態において、PWM制御部11によるオン時間の時比率の調整により実行される。具体的には、ブラシレスDCモータ4の起動時などにおける駆動速度が非常に低い(遅い)場合、あるいは駆動負荷が小さい場合などに、速度制御が実行される。それ以外のブラシレスDCモータ4の状態の場合、PWM制御部11は、オン時間の時比率が100%となるように、転流制御部8により各スイッチング素子のオフタイミングを調整する。これにより、オン時間の時比率が100%で、ブラシレスDCモータ4の速度制御が実行される。
 波形合成部12は、PWM制御部11により生成したPWM信号と、転流制御部8により生成した信号を合成し、ドライブ部13に出力する。
 ドライブ部13は、波形合成部12で合成された信号に基づいて、インバータ3の各スイッチング素子3a~3fをオンまたはオフ状態にする。これにより、インバータ3は、任意の3相の交流電圧を生成し、ブラシレスDCモータ4に供給して、駆動する。
 以上のように、本実施の形態のモータ駆動装置は構成され、ブラシレスDCモータ4が駆動される。
 上記モータ駆動装置およびブラシレスDCモータ4は、図1に示すように、例えば冷蔵庫19などの圧縮機を有する電気機器に組み込まれて利用される。
 以下に、モータ駆動装置およびブラシレスDCモータ4を用いて冷蔵庫19の冷凍空調システムを駆動する構成を例に、説明する。
 冷蔵庫19の冷凍空調システムは、圧縮機15、凝縮器16、減圧器17、蒸発器18などが配管22を介して接続され、冷媒ガスを循環させて冷蔵庫19内を冷却するように構成される。
 圧縮機15は、同一の密閉容器に収納されるブラシレスDCモータ4と圧縮要素14で構成される。圧縮要素14は、ブラシレスDCモータ4の回転子の軸に接続され、配管22内の冷媒ガスを吸入し、圧縮して吐出する。圧縮機15の圧縮要素14で圧縮された冷媒ガスは、凝縮器16、減圧器17、蒸発器18を通って、再び圧縮機15に戻るように配管22内を循環する。
 つまり、冷凍空調システムは、凝縮器16で放熱、蒸発器18で吸熱を行って、加熱および吸熱動作を行う。なお、必要に応じて、送風機などで、凝縮器16や蒸発器18に送風してもよい。これにより、熱交換効率がさらに向上する。
 上述したように、冷凍空調システムは、冷蔵庫19の冷凍サイクルとして用いられる。このとき、蒸発器18は断熱壁20で囲われた食品貯蔵室21内に配設され、貯蔵される食品などを冷却する。
 以上のように、モータ駆動装置が冷蔵庫19などに組み込まれ、冷凍空調システムが構成される。
 以下、上記モータ駆動装置の動作および作用について、図2Aおよび図2Bを用いて、説明する。
 図2Aおよび図2Bは、モータ駆動装置における各部の波形とそのタイミングチャートである。具体的には、図2Aは、一般的なモータ駆動装置において、120度通電における波形とそのタイミングチャートである。図2Bは、同モータ駆動装置において、オフタイミング制御部10でスイッチング素子のオフタイミングを調整して、ブラシレスDCモータ4を駆動したときの波形とそのタイミングチャートである。
 なお、図2Aおよび図2Bは、ブラシレスDCモータ4の回転により発生する誘起電圧をE、端子電圧をVuとし、両波形ともU相のみを図示している。図示しないV相およびW相は、それぞれの位相が互いに120度ずれた同じ形状の波形で示される。また、高圧側に接続したスイッチング素子3a、3b、3cの駆動信号を、U+、V+、W+として、図示している。図示しない低圧側に接続されるスイッチング素子3d、3e、3fの駆動信号は、それぞれの高圧側のスイッチング素子の駆動信号から180度位相がずれた波形となる。
 まず、モータ駆動装置の位置検出部5は、誘起電圧Eのゼロクロスポイントを位置信号として検出する。そして、ブラシレスDCモータ4の回転子の磁極の相対位置を検出する。これにより、ブラシレスDCモータ4の固定子巻線に通電する相を切り換えるタイミング(図示せず)を図る。
 なお、ゼロクロスポイントは、各相(図2Aでは、U相が対応)の固定子巻線へ電圧が印加されていない区間に現れる誘起電圧Eと、インバータ3に入力される入力電圧Vdcの1/2の大小関係が反転するポイントで検出される。具体的には、図2Aおよび図2Bに示すU相の場合、スイッチング素子3a、3dの両方がオフとなる区間C1、C2、C3、C4に現れる誘起電圧Eと、インバータ3の入力電圧Vdcの1/2の大小関係が反転するポイントP1、P2でゼロクロスポイントが検出される。これにより、電気角の1周期あたり各相2回、3相合計で6回、電気角30度毎に位置信号が発生する。
 つまり、図2Aに示す120度通電におけるスイッチング素子3a、3b、3cの通電パターン(U+、V+、W+)に依れば、まず、位置検出部5は、ポイントP1のゼロクロスポイントで、ブラシレスDCモータ4の磁極位置を検出する。ポイントP1を検出後、電気角30度後に、W+(スイッチング素子3cに相当)をオフし、同時にU+(スイッチング素子3aに相当)をオンする。これにより、電気角360度の全範囲において、常に3相のいずれかの相の固定子巻線に通電される。
 一方、図2Bでは、図2Aと同様に、まず、位置検出部5は、ポイントP1のゼロクロスポイントで、ブラシレスDCモータ4の磁極位置を検出する。ポイントP1を検出後、電気角30度を経過する前に、W+(スイッチング素子3c)をオフする。そして、W+をオフし、電気角30度後に、U+(スイッチング素子3a)をオンする。
 このとき、図2Aおよび図2Bに示す区間C1~C4のU相で誘起電圧Eが現れるのは、他の相(V相、W相)のスイッチング素子がオンしている、すなわちPWM制御のオン期間のみである。従って、図2Bの場合、W+のスイッチング素子3cのターンオフは、U+のスイッチング素子3aのターンオンより早く実行される。そのため、ブラシレスDCモータ4への電力供給区間(U相の場合、F2に相当)が短くなる。つまり、ブラシレスDCモータ4の固定子巻線への電力供給区間が短くなる。これにより、PWM制御によるオン・オフ回数が低減され、インバータ3のスイッチング損失が抑制される。さらに、電力供給区間を短くすることにより、PWM制御のオン時間が長くなる。そのため、位置検出部5による位置検出信号の取得可能な期間が長くなる。その結果、位置検出部5の検出精度が向上する。つまり、PWM制御のオフ時間では位置検出ができない。そのため、PWM制御のオフ時間に位置信号が発生した場合、PWM制御がオン時間となるタイミングまで位置検出ができないので、遅れが発生する。しかし、PWM制御のオン時間が長くなることにより、オフ時間が短くなる。そのため、遅れの発生が抑制され、位置検出部5の検出精度が向上する。
 また、スイッチング素子をオフするタイミングを、位置検出直後から、電気角30度経過(位置検出のポイントP1から区間A1の範囲)後までの範囲としている。具体的には、図2Bに示すように、スイッチング素子3cをオフするタイミングを、ポイントP1の位置検出後、区間A1までの範囲としている。つまり、ポイントP1の位置検出で、確実に転流可能な範囲、かつ、誘起電圧Eに対して進み位相になる範囲としている。これにより、遅れ位相によるブラシレスDCモータ4のトルク低下の発生を、防止できる。
 上述したように、本実施の形態においては、スイッチング素子3a~3fのオフタイミングの範囲を、位置検出直後から電気角30度以内の範囲としている。これにより、ブラシレスDCモータ4の3相の固定子巻線への電力供給区間(図2Bでは、F2に相当)が、電気角90度以上120度以下に調節される。このとき、電力供給が休止される電力無供給区間A1、A2、A3が短いほど、大きな進角B(電力無供給区間の電気角の1/2)が自動的に付加される。これにより、ブラシレスDCモータ4のトルクが増加する。そのため、電力無供給区間の設定にもかかわらず、ブラシレスDCモータ4の脱調などの発生を防止できる。その結果、ブラシレスDCモータ4を安定して駆動できる。
 以上のように、モータ駆動装置の動作が実行され、上述の作用が得られる。
 以下に、スイッチング素子のオフタイミング調整制御について、説明する。
 はじめに、オフタイミング調整制御の開始時における判定動作について、図3を用いて、説明する。
 図3は、スイッチング素子のオフタイミング調整制御の開始時における判定フローチャートである。
 図3に示すように、まず、PWM制御部11で生成したスイッチング素子のオン時間の時比率が所定値より大きいか否かを確認する(ステップS11)。オン時間の時比率が所定値より大きい場合(ステップS11のY)、オフタイミング調整制御を開始する(ステップS12)。
 一方、オン時間の時比率が所定値より小さい場合(ステップS11のN)、PWM制御を実行する。
 なお、本実施の形態では、固定子巻線への最小電力供給区間を電気角90度としている。つまり、オン時間の時比率の所定値を、120度通電との割合から、例えば75%に設定している。しかしながら、所定値は、用途などに応じて、適正な任意の値を設定してもよいことは言うまでもない。
 本実施の形態のモータ駆動装置は、スイッチング素子のオフタイミング調整制御の開始を、所定のPWM制御のオン時間の時比率以下の場合、PWM制御と併用して制御する。これにより、起動時の極端に駆動速度が低い場合や、低速駆動時で非常に負荷が低い場合などにおける、ブラシレスDCモータ4の固定子巻線への電力供給区間が極端に短くなることを防止する。その結果、ブラシレスDCモータ4の起動の失敗や不安定な運転状態、あるいは極端なトルク低下などを防止できる。つまり、上記制御により、ブラシレスDCモータ4を、あらゆる負荷条件でも安定して駆動することができる。
 以上のように、オフタイミング調整制御の開始時における判定動作が実行される。
 つぎに、PWM制御からオフタイミング調整制御への移行動作について、図4を用いて、説明する。
 図4は、PWM制御からオフタイミング調整への移行動作を示すフローチャートである。
 まず、図3で説明したオフタイミング調整制御の開始が決定されると、図4に示すように、スイッチング素子のオフタイミングを任意の時間、早く行う(ステップS21)。そして、PWM制御により、ブラシレスDCモータ4の速度制御を行う(ステップS22)。このとき、スイッチング素子のオフタイミングを早く行うことにより、ブラシレスDCモータ4への電力供給区間(図2BのF2参照)が短くなる。そのため、PWM制御によるオン時間の時比率が増加する。
 つぎに、PWM制御によるオン時間の時比率が100未満か否かを判定する(ステップS23)。オン時間の時比率が100%未満の場合(ステップS23のY)、ステップS21に戻り、以降のステップ動作を続ける。
 一方、オン時間の時比率が100%に到達した時(ステップS23のN)、PWM制御によるオン時間の時比率を100%に設定する(ステップS24)。
 そして、オン時間の時比率を100%の状態に保持して、スイッチング素子のオフタイミング調整制御を開始する(ステップS25)。
 以上のように、PWM制御からオフタイミング調整制御への移行動作が実行される。
 つぎに、スイッチング素子のオフタイミング調整制御への移行後のオフタイミング調整制御の動作について、図1を参照しながら、図5を用いて、説明する。
 図5は、スイッチング素子のオフタイミング調整制御の動作を示すフローチャートである。
 図5に示すように、まず、速度検出部6で検出したブラシレスDCモータ4の駆動速度と目標速度との偏差(誤差)を誤差検出部7で検出する。そして、駆動速度が目標速度より早いか否かを判定する(ステップS31)。駆動速度が目標速度より早い場合(ステップS31のY)、PWM制御部11はオン時間の時比率を100%に保持する。
 そして、PWM制御部11は、オフタイミング制御部10によりスイッチング素子のオフタイミングを早くすることが可能か否かを判断する(ステップS32)。オフタイミングを早くすることが可能な場合(ステップS32のY)、スイッチング素子のオフタイミングを早める(ステップS33)。これにより、ブラシレスDCモータ4の固定子巻線への電力供給区間を減じて、ブラシレスDCモータ4の速度が低下するように速度制御を行う。
 一方、オフタイミングを早くできない場合(ステップS32のN)、PWM制御部11におけるPWM制御を行う(ステップS34)。このとき、オフタイミングを早くすることが可能か否かの判断は、位置検出後のスイッチング素子のオフタイミング時の状態で判断する。具体的には、位置検出後、すぐにスイッチング素子をオフしている場合、PWM制御部11は、オフタイミングをこれ以上早めることができないと判断する。この場合、本実施の形態では、進角を0度としているので、ブラシレスDCモータ4の固定子巻線への最低電力供給区間は電気角90度となる。
 また、駆動速度が目標速度以下の場合(ステップS31のN)、ブラシレスDCモータ4の駆動速度が目標速度より遅いか否かを判断する(ステップS35)。駆動速度が目標速度より遅い場合(ステップS35のY)、スイッチング素子のオフタイミングが位置検出から電気角30度より前か否かを判断する(ステップS36)。オフタイミングが位置検出から電気角30度より前の場合(ステップS36のY)、スイッチング素子のオフタイミングを遅らせる(ステップS37)。これにより、ブラシレスDCモータ4の固定子巻線への電力供給期間を増やす。そして、ブラシレスDCモータ4の駆動速度を上昇させるように速度制御を行う。
 一方、オフタイミングが位置検出から電気角30度より後の場合(ステップS36のN)、スイッチング素子のオンタイミングを早める(ステップS38)。つまり、これ以上スイッチング素子のオフタイミングを遅らせた場合、誘起電圧Eに対して、印加電圧の位相が遅れ位相となる。この場合、モータトルクの低下および、これに伴う脱調などが発生する可能性がある。そこで、ステップS38において、スイッチング素子のオンタイミングを早める。これにより、ブラシレスDCモータ4の固定子巻線への電力供給区間を増やして、ブラシレスDCモータ4の駆動速度を上昇させるように速度制御を行う。この場合、オンタイミングを早める上限は、位置検出後の直後までとする。このとき、ブラシレスDCモータ4の固定子巻線への最大電力供給区間は、電気角150度となる。
 また、本実施の形態のモータ駆動装置は、進角を0度としている。そのため、電気角120度における通電では、スイッチング素子のオフタイミングとオンタイミングが一致して行われる。しかしながら、固定子の内部に永久磁石が埋め込まれたIPM(Interior Permanent Magnet)モータの場合、最適な駆動のために、任意の進角を設ける必要がある。
 そこで、本実施の形態のモータ駆動装置は、IPMモータなど、あらゆるモータを最適に駆動できるように、スイッチング素子のオフタイミングの調整範囲およびオンタイミングは、以下のように設定している。
 つまり、スイッチング素子のオフタイミングの調整範囲として、位置検出直後のタイミングから、「(電気角30度)-(進角)」まで経過した位置に設定する。一方、スイッチング素子のオンタイミングは、まず、位置検出タイミングから「(電気角30度)-(進角)」だけ経過したタイミングに設定する。
 具体的には、例えば進角が10度の場合、スイッチング素子をターンオフするオフタイミングは、位置検出から電気角が20度経過までの範囲で調整する。一方、スイッチング素子をターンオンするオンタイミングは、位置検出後、電気角が20度後に行う。さらに、位置検出からターンオフまでの電気角と、位置検出からターンオンまでの電気角の和を60度以下として、ターンオフをターンオンより電気角0度から30度までの任意の範囲で調整できるように設定する。これにより、位置検出から電気角30度までの間で、進角と、スイッチング素子のオン・オフのタイミングを任意に設定することができる。
 なお、進角を付加した場合、ブラシレスDCモータ4の固定子巻線への電力供給区間は、電気角で「90度+進角」から120度の範囲で調整される。
 さらに、本実施の形態のモータ駆動装置は、ブラシレスDCモータ4を高速・高負荷で駆動する場合、以下のように、ターンオフのオフタイミング、および、ターンオンのオンタイミングの範囲を設定する。
 具体的には、ターンオフのオフタイミングは、位置検出から「(電気角30度)-(進角)」経過したタイミングの範囲で調整する。一方、ターンオンのオンタイミングは、位置検出直後の検出位置から、「電気角30度-進角」だけ経過したタイミングの範囲で調整する。これにより、ブラシレスDCモータ4の固定子巻線への電力供給区間を、電気角120度から「電気角150度-進角」の範囲で調整できる。
 つまり、スイッチング素子のターンオン、ターンオフのタイミングを調整することにより、例えば進角0度の場合、電気角90度から150度までの範囲で、ブラシレスDCモータ4への電力供給区間を調整できる。これにより、低速・低負荷の駆動から、高速・高負荷の駆動までの、幅広い範囲における負荷・速度の状態の変化に応じて、ブラシレスDCモータ4の駆動が可能となる。
 以上のように、オフタイミング調整制御の動作が実行される。
 つぎに、ブラシレスDCモータ4の端子電圧Vuの挙動について、図6A~図6Dを用いて、説明する。
 図6Aおよび図6Bは、図2Aにおける区間C1、F1の端子電圧Vuの挙動を示している。図6Cおよび図6Dは、図2Bにおける区間C3、F2の端子電圧Vuの挙動を示している。
 まず、図6Aおよび図6Bに示すように、図2Aに示す120度通電のPWM制御の場合、端子電圧Vuに、高周波のPWM制御のキャリア周波数成分(周期f)が重畳された波形となる。さらに、図6Aに示す区間C1では、PWM制御がオンした瞬間に、モータ巻線や浮遊容量などの影響によるリンギングノイズ成分も、端子電圧Vuに重畳される。なお、上述したように、区間C1は、ブラシレスDCモータ4の端子電圧Vuとインバータ入力電圧の1/2を比較して、その大小関係が反転するポイントをブラシレスDCモータ4の誘起電圧EのゼロクロスポイントPとして検出する。しかし、図6Aの場合、重畳されたリンギングノイズ成分などにより、Px点をP点と誤って検出する。このゼロクロスポイントPの位置検出ズレは、ブラシレスDCモータ4の駆動速度の脈動や振動、騒音の増大、駆動効率の低下などの原因となる。
 一方、図6Cに示すように、PWM制御のオン時間の時比率を100%とした場合、端子電圧Vuには誘起電圧Eの波形が現れる。そのため、ポイントPで、正確にゼロクロスポイントの位置検出が可能となる。これにより、低騒音、低振動、低損失で、安定した駆動が可能なブラシレスDCモータ4を実現できる。
 また、図6Bに示す区間F1では、PWM制御による高周波でのスイッチング素子のオン・オフ動作に伴うスイッチング損失が発生する。しかし、図6Dに示すように、オン時間の時比率100%の駆動においては、スイッチング素子はスイッチング動作を実行しないため、スイッチング損失が発生しない。そのため、スイッチング損失などの回路損失が低減され、高効率なモータ駆動装置を実現できる。
 以上のように、PWM制御の条件に基づいて、ブラシレスDCモータ4の端子電圧Vuは変化する。
 つぎに、図6Aから図6Dで説明したブラシレスDCモータ4の端子電圧Vuの変化に対応して、ブラシレスDCモータ4に流れる電流の挙動について、図7Aおよび図7Bを用いて、説明する。
 図7Aは、図2Aに示す120度通電によるPWM制御時におけるブラシレスDCモータ4に流れる電流波形を示している。図7Aに示すように、ブラシレスDCモータ4に流れる電流には、PWM制御でのスイッチング素子のオン・オフ動作に伴う高周波電流成分が重畳していることが分かる。この高周波電流成分は、モータ鉄損の原因となる。
 一方、図7Bに示すように、PWM制御のオン時間の時比率100%で、モータ駆動装置を運転した場合、高周波電流成分が発生しない。そのため、モータ鉄損などの損失が低減され、高効率のモータ駆動装置が実現できる。
 以下に、上記構成のモータ駆動装置を用いて、圧縮機15を駆動する冷凍空調システムを有する冷蔵庫19の動作について、図1を参照しながら、説明する。
 近年の冷蔵庫19は、真空断熱材の採用などによる断熱技術の向上により、外部からの熱の侵入が非常に少ない。さらに、例えば扉の開閉が頻繁に行われる朝夕の家事の時間帯を除けば、冷蔵庫19の庫内は、1日の大半において安定した冷却状態にある。そのため、圧縮機15は、冷凍能力を下げた低速・低負荷の状態で駆動が行われる。
 上記状況において、冷蔵庫19の消費電力を、さらに削減するには、圧縮機15、すなわちブラシレスDCモータ4の低速・低出力時の駆動効率の向上が非常に有効となる。
 そこで、本実施の形態のモータ駆動装置では、ブラシレスDCモータ4を低速・低負荷で駆動する場合、以下のように制御しながら駆動する。
 具体的には、PWM制御による高周波のオン・オフ制御を実行しないで、PWM制御によるオン時間の時比率を100%として、ブラシレスDCモータ4の固定子巻線への電力供給区間を調整しながら駆動速度の制御を行う。これにより、インバータ3には、PWM制御によるスイッチング損失が発生しない。そのため、インバータ3の回路効率を大幅に向上できる。
 また、本実施の形態のインバータ3は、スイッチング素子にMOSFETを用いる。MOSFETは、オン時の出力電流の経路にPN接合を持たない構造的特徴を有する。そのため、MOSFETは、特に、低電流出力時におけるオン時のスイッチング損失が、例えばIGBT(Insulated Gate Bipolar Transistor)などの他のパワーデバイスと比較して非常に低い。
 上述したように、冷蔵庫19は、1日の大半、低速・低負荷で駆動される。そのため、ブラシレスDCモータ4に流れる電流は低い(小さい)。従って、本実施の形態のモータ駆動装置を冷蔵庫19の圧縮機15の駆動に用い、モータ駆動装置のインバータ3のスイッチング素子にMOSFETを用いると、冷蔵庫19の消費電力を大幅に低減できる。
 また、本実施の形態のモータ駆動装置は、PWM制御によるオン・オフ制御を行わない。そのため、ブラシレスDCモータ4の固定子巻線に流れる電流に、高周波電流成分が重畳しない。これにより、モータ鉄損が大幅に抑制され、モータ効率が向上する。
 さらに、PWM制御は、一般的に、1kHから20kHz程度のPWM周波数でのスイッチング動作で実行される。そのため、PWM制御の周波数成分が、騒音として発生する。冷蔵庫19は、昼夜にかかわらず1日中運転されるため、静音設計は非常に重要な要素となる。
 そこで、本実施の形態のモータ駆動装置は、オン時間の時比率を100%で駆動するため、PWM制御に起因する騒音が発生しない。そのため、モータ駆動装置は、冷蔵庫19の静音設計に対して、非常に有効となる。
 以上のように、本実施の形態のモータ駆動装置は、ブラシレスDCモータ4と、ブラシレスDCモータ4に電力を供給するインバータ3と、ブラシレスDCモータ4の回転子位置を検出する位置検出部5を備える。インバータ3は、位置検出部5で得られた位置信号に応じて、オンタイミングまたはオフタイミングがそれぞれ独立して設定される、6個のスイッチング素子で構成される。そして、位置検出部5の位置信号に対して、インバータ3は、スイッチング素子のオフタイミングを、オンタイミングより進ませるように調整される。これにより、ブラシレスDCモータ4の固定子巻線への電力供給区間を短くできる。そのため、PWM制御によるオン時間の時比率が大きくなり、ブラシレスDCモータ4の高周波電流成分が抑制される。その結果、ブラシレスDCモータ4のモータ鉄損の低減が図れる。さらに、PWM制御に伴うスイッチング素子のオン・オフ回数が少なくなる。そのため、インバータ損失が低減され、モータ駆動装置の高効率化が図れる。
 また、本実施の形態のモータ駆動装置は、インバータ3のスイッチング素子のスイッチングによるオン時間の時比率でブラシレスDCモータ4に供給する電圧を調節するPWM制御部11と、スイッチング素子のオンタイミングおよびオフタイミングを制御する転流制御部8を有する。そして、転流制御部8は、PWM制御部11によるオン時間の時比率が100%となるように、スイッチング素子のオフタイミングを調整する。これにより、スイッチング素子のオン・オフに伴うスイッチング損失を大幅に抑制して、インバータ3の効率を向上できる。また、ブラシレスDCモータに流れる電流に、スイッチング素子のオン・オフ駆動に伴う高周波成分が発生しない。そのため、モータ鉄損を大幅に抑制できる。これにより、ブラシレスDCモータおよび回路の損失を低減して、高効率なモータ駆動装置を提供できる。また、転流制御部8は、PWM制御のオン時間の時比率を100%とするように調整する。これにより、スイッチング素子の高周波によるスイッチング動作に伴う高周波数帯域の騒音の発生を抑制して、モータ駆動装置の静音化が図れる。さらに、オン時間の時比率100%の駆動により、リンギングノイズの影響によるブラシレスDCモータ4の磁極位置の検出ズレを排除して、正確に磁極位置を検出できる。これにより、ブラシレスDCモータ4の駆動安定性が、さらに向上する。その結果、さらなるモータ駆動装置の高効率化、低騒音化、低振動が図れる。
 また、本実施の形態のモータ駆動装置は、スイッチング素子のオン状態からオフ状態への切換えを、オフ状態からオン状態の切換えに対して、電気角0度から30度の範囲で、早いタイミングで行う。これにより、ターンオフをターンオンより早めた電気角の1/2の進角が自動的に付加される。そのため、ブラシレスDCモータ4を、電力供給の休止期間を有する駆動波形で駆動する場合でも、脱調などの発生が抑制できる。その結果、安定した駆動が可能なモータ駆動装置が得られる。
 また、本実施の形態のモータ駆動装置は、ブラシレスDCモータの固定子巻線への通電相の切換えタイミングを、つぎのように設定する。
 具体的には、切換えタイミングを、位置検出部の位置信号に対して、スイッチング素子のオフタイミングを進ませる電気角と、オンタイミングを進ませる電気角との和を電気角60度以下とし、かつ、オフタイミングを進ませる電気角を、オンタイミングを進ませる電気角以上に設定する。これにより、進角と、ブラシレスDCモータへの電力供給休止区間を、電気角0度~30度の範囲で設定できる。その結果、ブラシレスDCモータの負荷および駆動速度など状態に応じて、より最適な電力供給期間を設定できる。そのため、例えば負荷状態や速度により、最適な進角の設定が必要なIPMモータを、最適に駆動できる。つまり、IPMモータなど様々なタイプの永久磁石モータを、高効率に駆動できる。
 また、本実施の形態のモータ駆動装置は、ブラシレスDCモータの3相の固定子巻線への電力供給区間を電気角90度以上150度以下とする。そして、電力供給区間が電気角90度以上120度未満の時、スイッチング素子のオフタイミングを、オンタイミングより進ませるように設定する。これにより、幅広い、負荷および駆動速度範囲において、ブラシレスDCモータを最適に駆動できる。
 また、本実施の形態のモータ駆動装置は、PWM制御部11によるスイッチング素子のオン時間の時比率が所定値以上になると、転流制御部8はスイッチング素子のオフタイミングをオンタイミングより進ませるように設定する。通常、PWM制御のオン時間の時比率が所定値より低くなる起動時や、低速駆動時で負荷が低い場合、固定子巻線への電力供給区間が極端に短くなる。この場合でも、上記設定により、ブラシレスDCモータの起動の失敗や駆動時の不安定動作、あるいは極端なトルク低下などを防止できる。そのため、あらゆる負荷条件に対して、ブラシレスDCモータを安定して駆動できるモータ駆動装置が得られる。
 また、本実施の形態のモータ駆動装置は、ブラシレスDCモータで、冷凍サイクルの圧縮機を駆動する。これにより、ブラシレスDCモータのモータ鉄損を低減して、モータ効率を向上できる。その結果、COP(Coefficient Of Performance)の高い圧縮機を用いた高効率な冷凍サイクルを実現できる。
 さらに、本実施の形態の電気機器は、上記モータ駆動装置と、モータ駆動装置により駆動される圧縮機を備える。具体的には、例えば圧縮機を駆動する冷凍サイクルを有する冷蔵庫などの電気機器にモータ駆動装置を採用する。これにより、モータ駆動装置の高い回路効率と、高COP圧縮機による高効率の冷凍サイクルが得られる。その結果、消費電力量の低い冷蔵庫などの電気機器を実現できる。さらに、PWM制御のスイッチング動作に伴う高周波数帯域の騒音の発生を抑制して、冷蔵庫の静音化が可能となる。
 以上で説明したように、本発明のモータ駆動装置は、ブラシレスDCモータと、ブラシレスDCモータに電力を供給するインバータと、ブラシレスDCモータの回転子位置を検出する位置検出部を備える。インバータは、位置検出部で得られた位置信号に応じて、オンタイミングまたはオフタイミングがそれぞれ独立して設定される、6個のスイッチング素子で構成され、それぞれのスイッチング素子のオフタイミングを調整して、ブラシレスDCモータの速度制御を行う。
 また、本発明のモータ駆動装置は、調整が、位置検出部の位置信号に対して、スイッチング素子のオフタイミングを、オンタイミングより進ませるよう実行してもよい。
 これらの構成によれば、ブラシレスDCモータを低速・低負荷で駆動する際、スイッチング素子のオン期間を短くできる。そのため、スイッチング素子のスイッチング回数を減すことができる。これにより、インバータの回路損失を抑制して、モータ駆動装置の高効率化が図れる。
 また、本発明のモータ駆動装置は、インバータのスイッチング素子をオン・オフするオン時間の時比率でブラシレスDCモータに供給する電圧を調節するPWM制御部と、スイッチング素子のオンタイミングおよびオフタイミングを制御する転流制御部を有する。そして、転流制御部8は、PWM制御部によるオン時間の時比率が100%となるように、スイッチング素子のオフタイミングを調整する構成としてもよい。この構成によれば、スイッチング素子のオン・オフが高い周波数で行われないため、スイッチング損失が大幅に抑制され、インバータの回路効率が向上する。また、モータ電流には、PWM制御のオン・オフに伴う高周波電流の発生が無い。そのため、モータ鉄損の低減によるモータ効率の向上により、モータ駆動装置の効率を大幅に向上できる。さらに、PWM制御による高周波スイッチングに伴う高周波音の発生がなくなる。そのため、モータ駆動装置の静音化が図れる。
 また、本発明のモータ駆動装置は、スイッチング素子をオン状態からオフ状態への切換えを、オフからオンへの切換えに対して、電気角0度から30度の範囲で早いタイミングで行うように構成してもよい。この構成によれば、スイッチング素子のターンオフを早めた電気角1/2の進角が自動的に付加される。そのため、ブラシレスDCモータへの電力供給を休止する区間がある駆動波形で駆動しても、脱調などの発生を抑制して、安定した駆動性能を確保できる。
 また、本発明のモータ駆動装置は、PWM制御部によるスイッチング素子のオン時間の時比率が所定値以上になると、転流制御部はスイッチング素子のオフタイミングをオンタイミングより進ませるように設定してもよい。これにより、ブラシレスDCモータの起動直後の低速時や、低負荷・低速駆動時において、PWM制御を併用することができる。その結果、ブラシレスDCモータを、安定して起動できるとともに、超低負荷、超低速時における駆動安定性を向上できる。
 また、本発明のモータ駆動装置は、上記モータ駆動装置により駆動されるブラシレスDCモータで、冷凍サイクルの圧縮機を駆動する構成としてもよい。この構成によれば、モータ駆動装置により、圧縮機のCOPを向上させることができる。その結果、高効率な冷凍サイクルを実現できる。
 また、本発明の電気機器は、上記モータ駆動装置と、モータ駆動装置により駆動される圧縮機を備える構成としてもよい。この構成によれば、高効率な冷凍サイクルにより、低消費電力の電気機器を実現できる。さらに、PWM制御によるスイッチング素子のスイッチング動作に伴う高周波数帯域の騒音を抑制して、静音性に優れた電気機器を実現できる。
 本発明は、モータ駆動装置の回路損失の低減、モータ効率の向上および駆動騒音と振動の低減が可能となる。そのため、冷蔵庫、エアコン、洗濯機、ポンプ、扇風機、ファン、電気掃除機など、ブラシレスDCモータを用いた機器などに適用できる。
 1  交流電源
 2  コンバータ回路
 2a  整流回路
 2b  平滑回路
 2c  スイッチ部
 3  インバータ
 3a,3b,3c,3d,3e,3f  スイッチング素子
 4  ブラシレスDCモータ
 5  位置検出部
 6  速度検出部
 7  誤差検出部
 8  転流制御部
 9,103  オンタイミング制御部
 10,104  オフタイミング制御部
 11  PWM制御部
 12  波形合成部
 13  ドライブ部
 14  圧縮要素
 15  圧縮機
 16  凝縮器
 17  減圧器
 18  蒸発器
 19  冷蔵庫
 20  断熱壁
 21  食品貯蔵室
 22  配管
 201  駆動制御部
 202  電力検出部
 203  通電パルス信号生成制御部

Claims (7)

  1. ブラシレスDCモータと、
    前記ブラシレスDCモータに電力を供給するインバータと、
    前記ブラシレスDCモータの回転子位置を検出する位置検出部と、を備え、
    前記インバータは、前記位置検出部で得られた位置信号に応じて、オンタイミングまたはオフタイミングがそれぞれ独立して設定される、6個のスイッチング素子で構成され、それぞれの前記スイッチング素子の前記オフタイミングを調整して、前記ブラシレスDCモータの速度制御を行うモータ駆動装置。
  2. 前記調整は、前記位置検出部の位置信号に対して、前記スイッチング素子の前記オフタイミングを、前記オンタイミングより進ませるように行う請求項1に記載のモータ駆動装置。
  3. 前記インバータの前記スイッチング素子のスイッチングによるオン時間の時比率で前記ブラシレスDCモータに供給する電圧を調節するPWM制御部と、
    前記スイッチング素子の前記オンタイミングおよび前記オフタイミングを制御する転流制御部を有し、
    前記PWM制御部による前記オン時間の時比率が100%となるように、前記スイッチング素子の前記オフタイミングを調整する請求項1に記載のモータ駆動装置。
  4. 前記スイッチング素子のオン状態からオフ状態への切換えは、オフ状態からオン状態に切換えに対して、電気角0度から30度の範囲で早いタイミングで行う請求項1に記載のモータ駆動装置。
  5. 前記PWM制御部による前記スイッチング素子の前記オン時間の時比率が所定値以上となると、
    前記転流制御部は、前記スイッチング素子の前記オフタイミングを前記オンタイミングより進ませる請求項3に記載のモータ駆動装置。
  6. 前記ブラシレスDCモータは、冷凍サイクルの圧縮機を駆動する請求項1に記載のモータ駆動装置。
  7. 請求項1に記載のモータ駆動装置と、
    前記モータ駆動装置により駆動される圧縮機を有する電気機器。
PCT/JP2017/018949 2016-06-03 2017-05-22 モータ駆動装置および、これを用いた圧縮機を有する電気機器 WO2017208873A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780022085.5A CN109155601B (zh) 2016-06-03 2017-05-22 电机驱动装置和具有使用该电机驱动装置的压缩机的电设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-111553 2016-06-03
JP2016111554A JP6706757B2 (ja) 2016-06-03 2016-06-03 モータ駆動装置および、これを用いた圧縮機を有する電気機器
JP2016-111554 2016-06-03
JP2016111553A JP6706756B2 (ja) 2016-06-03 2016-06-03 モータ駆動装置および、これを用いた圧縮機を有する電気機器

Publications (1)

Publication Number Publication Date
WO2017208873A1 true WO2017208873A1 (ja) 2017-12-07

Family

ID=60477486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018949 WO2017208873A1 (ja) 2016-06-03 2017-05-22 モータ駆動装置および、これを用いた圧縮機を有する電気機器

Country Status (2)

Country Link
CN (1) CN109155601B (ja)
WO (1) WO2017208873A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225486A1 (ja) * 2018-05-22 2019-11-28 パナソニックIpマネジメント株式会社 モータ駆動装置およびにこれを用いた冷蔵庫

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021019416A (ja) * 2019-07-19 2021-02-15 パナソニックIpマネジメント株式会社 モータ駆動装置およびこれを用いた冷蔵庫、冷凍サイクル装置
JP2021019417A (ja) * 2019-07-19 2021-02-15 パナソニックIpマネジメント株式会社 モータ駆動装置およびこれを用いた冷蔵庫、冷凍サイクル装置
CN113541533A (zh) * 2021-07-15 2021-10-22 深圳华秋电子有限公司 一种利用倍压原理的无刷电机控制方法
WO2023124865A1 (zh) * 2021-12-27 2023-07-06 南京泉峰科技有限公司 电动工具及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658600A (ja) * 1992-08-11 1994-03-01 Fujitsu General Ltd 空気調和機の制御方法
JPH0658605A (ja) * 1992-08-11 1994-03-04 Fujitsu General Ltd 空気調和機の制御方法
JP2014054058A (ja) * 2012-09-06 2014-03-20 Sanyo Denki Co Ltd モータ制御装置及びモータ制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967173A (en) * 1975-03-14 1976-06-29 Allis-Chalmers Corporation Transistor bridge inverter motor drive having reduced harmonics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658600A (ja) * 1992-08-11 1994-03-01 Fujitsu General Ltd 空気調和機の制御方法
JPH0658605A (ja) * 1992-08-11 1994-03-04 Fujitsu General Ltd 空気調和機の制御方法
JP2014054058A (ja) * 2012-09-06 2014-03-20 Sanyo Denki Co Ltd モータ制御装置及びモータ制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225486A1 (ja) * 2018-05-22 2019-11-28 パナソニックIpマネジメント株式会社 モータ駆動装置およびにこれを用いた冷蔵庫
CN111886791A (zh) * 2018-05-22 2020-11-03 松下知识产权经营株式会社 电动机驱动装置和使用它的冷藏库
JPWO2019225486A1 (ja) * 2018-05-22 2021-05-27 パナソニックIpマネジメント株式会社 モータ駆動装置およびにこれを用いた冷蔵庫

Also Published As

Publication number Publication date
CN109155601B (zh) 2022-06-10
CN109155601A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2017208873A1 (ja) モータ駆動装置および、これを用いた圧縮機を有する電気機器
US7321210B2 (en) Sensorless brushless direct current motor drive using pulse width modulation speed control at motor frequency
WO2017038024A1 (ja) モータ駆動装置、および、これを用いた圧縮機の駆動装置並びに冷蔵庫
WO2010082472A1 (ja) モータ駆動装置およびこれを用いた電気機器
US11018615B2 (en) Motor drive device and air conditioner
WO2004084401A1 (ja) 電動圧縮機
WO2015056341A1 (ja) 直流電源装置、電動機駆動装置、空気調和機および冷蔵庫
JP6533950B2 (ja) モータ駆動装置、およびこれを用いた圧縮機の駆動装置、冷凍装置および冷蔵庫
JP4887033B2 (ja) インバータ装置とその制御方法及び冷凍サイクル装置
JP2008289310A (ja) モータ駆動装置およびこれを用いた冷蔵庫
JP2010233415A (ja) モータ駆動装置およびこれを用いた冷蔵庫
JP3672637B2 (ja) 圧縮機電動機制御装置
JP6979568B2 (ja) モータ駆動装置および、これを用いた冷蔵庫
JP4277762B2 (ja) 冷蔵庫の制御装置
JP2004364492A (ja) モータ駆動装置及び空気調和装置
JP6706757B2 (ja) モータ駆動装置および、これを用いた圧縮機を有する電気機器
JP2008172880A (ja) ブラシレスdcモータの駆動方法及び駆動装置
JP2002112588A (ja) 冷凍システムの制御装置
JP2004104997A (ja) ブラシレスモータ制御装置
JP6706756B2 (ja) モータ駆動装置および、これを用いた圧縮機を有する電気機器
JP6970871B2 (ja) モータ駆動装置および、これを用いた冷蔵庫
JP2011193585A (ja) モータ駆動装置およびにこれを用いた電気機器
JP5747145B2 (ja) モータ駆動装置およびこれを用いた電気機器
JP6450939B2 (ja) モータ駆動装置、およびこれを用いた圧縮機の駆動装置、冷凍装置および冷蔵庫
JP2001309692A (ja) 冷凍システムの制御装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806430

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806430

Country of ref document: EP

Kind code of ref document: A1