JP2001102577A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2001102577A
JP2001102577A JP27825599A JP27825599A JP2001102577A JP 2001102577 A JP2001102577 A JP 2001102577A JP 27825599 A JP27825599 A JP 27825599A JP 27825599 A JP27825599 A JP 27825599A JP 2001102577 A JP2001102577 A JP 2001102577A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
region
type
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27825599A
Other languages
Japanese (ja)
Other versions
JP3507732B2 (en
Inventor
Takashi Shinohe
孝 四戸
Yusuke Kawaguchi
雄介 川口
Akihiro Hachiman
彰博 八幡
Kazutoshi Nakamura
和敏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27825599A priority Critical patent/JP3507732B2/en
Publication of JP2001102577A publication Critical patent/JP2001102577A/en
Application granted granted Critical
Publication of JP3507732B2 publication Critical patent/JP3507732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device, whose breakdown voltage and turn-off characteristic can be improved in comparison with conventional semiconductor elements. SOLUTION: A semiconductor device has a first semiconductor region 1 containing an n-type impurity, a second semiconductor region 3 containing a p-type impurity, and a third semiconductor region interposed between the first and second semiconductor regions 1, 3, where a first semiconductor layer 10 containing an n-type impurity and a second semiconductor layer 11 containing a p-type impurity are arranged alternately in a repeated direction. In the third semiconductor region, the amount of the carriers of the second semiconductor layer 11, which is integrated along the repeated direction, is made larger than the amount of the carriers of the first semiconductor la 10 which is also integrated along the repeated direction. Further, a fourth semiconductor region 13 containing an n-type impurity of a low concentration is formed between the first and third semiconductor regions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置、特に
電力用のスーパージャンクション素子に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a power super junction device.

【0002】[0002]

【従来の技術】図7は、従来の縦型スーパージャンクシ
ョンMOSFETの素子構造を示した断面図である。
2. Description of the Related Art FIG. 7 is a sectional view showing a device structure of a conventional vertical super junction MOSFET.

【0003】この素子の基本構造は、n+ 型半導体基板
に形成されたn+ 型ドレイン層1、その上にエピタキシ
ャル成長されたn- 型ベース層(図示せず)、p型ベー
ス層3、n+ 型ソース層4、p+ 型層5、ドレイン電極
6、ソース電極7、ゲート電極8、ゲート絶縁膜9、n
- 型ベース層内でn型低濃度層10及びp型低濃度層1
1が交互に繰り返し配置された補助領域によって構成さ
れている。
The basic structure of this device is as follows: an n + -type drain layer 1 formed on an n + -type semiconductor substrate; an n -type base layer (not shown) epitaxially grown thereon; + Type source layer 4, p + type layer 5, drain electrode 6, source electrode 7, gate electrode 8, gate insulating film 9, n
- n-type by type base layer low-concentration layer 10 and the p-type low concentration layer 1
1 are constituted by auxiliary areas alternately and repeatedly arranged.

【0004】なお、図では、n型低濃度層10の左半分
及びp型低濃度層11の右半分に対応した領域からなる
単位領域のみ示しているが、実際には隣接する単位領域
どおしが単位領域間の境界面で面対称になるようにして
複数配置されている。
FIG. 1 shows only a unit region consisting of a region corresponding to the left half of the n-type low-concentration layer 10 and the right half of the p-type low-concentration layer 11; A plurality of ladders are arranged so as to be plane-symmetric at the boundary between the unit areas.

【0005】n型低濃度層10とp型低濃度層11とが
交互に繰り返し配置された補助領域の効果については、
例えば「T.Fujihira,Jpn.J.App
l.Phys.Vol.36(1997)pp.625
4−6262」に開示されている。これによれば、補助
領域のn型低濃度層10とp型低濃度層11の繰り返し
方向のキャリア積分量が、概略5×1012cm-2以下で
ほぼ同一になるように設計すれば、これらの低濃度層間
に逆方向電圧が印加された場合に、これらの低濃度層は
完全に空乏化するというものである。
The effect of the auxiliary region in which the n-type low-concentration layers 10 and the p-type low-concentration layers 11 are alternately and repeatedly arranged is described below.
For example, see "T. Fujihira, Jpn. J. App.
l. Phys. Vol. 36 (1997) pp. 625
4-6262 ". According to this, if the carrier integration amount in the repetition direction of the n-type low-concentration layer 10 and the p-type low-concentration layer 11 in the auxiliary region is designed to be substantially the same at about 5 × 10 12 cm −2 or less, When a reverse voltage is applied between these low-concentration layers, these low-concentration layers are completely depleted.

【0006】この原理によれば、例えばn型低濃度層1
0の濃度をn- 型ベース層の濃度の100倍に設定して
も、n型低濃度層10の幅を狭くしてキャリア積分量が
5×1012cm-2以下になるように調整すれば、補助領
域ではブレークダウンが起こらないことになる。したが
って、このような補助領域をn+ 型ドレイン層1とp型
ベース層3とに挟まれた領域に形成すれば、この部分の
抵抗を著しく低減することが可能となる。
According to this principle, for example, the n-type low concentration layer 1
Even if the concentration of 0 is set to 100 times the concentration of the n -type base layer, the width of the n-type low-concentration layer 10 is narrowed and the carrier integration amount is adjusted to be 5 × 10 12 cm −2 or less. Thus, no breakdown occurs in the auxiliary area. Therefore, if such an auxiliary region is formed in a region sandwiched between the n + -type drain layer 1 and the p-type base layer 3, the resistance at this portion can be significantly reduced.

【0007】また、この補助領域はその厚さ方向の長さ
に比例して耐圧が増加するという性質を持っているの
で、オン抵抗は耐圧に直線的に比例する。一方、補助領
域のない場合には、n- 型ベース層の濃度を減らしなが
ら厚さを増加させないと耐圧が増加しないので、オン抵
抗は耐圧の2乗に比例して著しく増加する。したがっ
て、高耐圧が要求される素子になるほど、補助領域を設
けたことによるオン抵抗の低減効果が大きくなる。
Further, since the auxiliary region has a property that the breakdown voltage increases in proportion to the length in the thickness direction, the on-resistance is linearly proportional to the breakdown voltage. On the other hand, when there is no auxiliary region, the breakdown voltage does not increase unless the thickness is increased while decreasing the concentration of the n -type base layer, so that the on-resistance increases significantly in proportion to the square of the breakdown voltage. Therefore, the effect of reducing the on-resistance due to the provision of the auxiliary region increases as the element requires a higher breakdown voltage.

【0008】また、補助領域のp型低濃度層11はp型
ベース層3と接続されてソース電極7とほぼ等電位に設
定されており、補助領域のn型低濃度層10はn+ 型ド
レイン層1と接続されてドレイン電極6とほぼ等電位に
設定されている。したがって、縦型MOSFETがター
ンオフし始めると、補助領域内部のキャリアは速やかに
素子外部へ吐き出されて空乏層が広がり、高速にターン
オフすることが可能となる。
The p-type low-concentration layer 11 in the auxiliary region is connected to the p-type base layer 3 and is set at substantially the same potential as the source electrode 7, and the n-type low-concentration layer 10 in the auxiliary region is n + -type. It is connected to the drain layer 1 and is set at substantially the same potential as the drain electrode 6. Therefore, when the vertical MOSFET starts to turn off, the carriers in the auxiliary region are quickly discharged to the outside of the element, the depletion layer expands, and it is possible to turn off at high speed.

【0009】また、このような素子の製造方法は、
「G.Deboy et al.,IEDM98(19
98)pp.683−685」に開示されている。
A method for manufacturing such an element is as follows.
"G. Deboy et al., IEDM 98 (19
98) pp. 683-685 ".

【0010】これによれば、n+ 型半導体基板上に例え
ば厚さ10μmのエピタキシャル層を形成して、補助領
域のn型低濃度層10及びp型低濃度層11が形成され
る領域に、イオン注入によって選択的に不純物を導入す
る。さらに、エピタキシャル層を形成して同様の工程を
行ない、これを素子の耐圧・厚さに応じて数回繰り返
す。
According to this, an epitaxial layer having a thickness of, for example, 10 μm is formed on the n + type semiconductor substrate, and the region where the n-type low concentration layer 10 and the p-type low concentration layer 11 of the auxiliary region are formed is formed. Impurities are selectively introduced by ion implantation. Further, an epitaxial layer is formed and the same steps are performed, and this is repeated several times according to the breakdown voltage and thickness of the device.

【0011】次に、p型ベース層3などのイオン注入を
行った後、熱拡散により、それぞれのエピタキシャル層
内部に形成されたイオン注入層から不純物を拡散させ
て、互いの層のn型低濃度層10及びp型低濃度層11
が接続されるようにする。その後、n+ 型ソース層4、
+ 型層5、ゲート絶縁膜9、ゲート電極8、ソース電
極7、ドレイン電極6などを形成し、素子を完成させ
る。
Next, after ion implantation of the p-type base layer 3 and the like is performed, impurities are diffused from the ion-implanted layers formed inside the respective epitaxial layers by thermal diffusion, and the n-type low Concentration layer 10 and p-type low concentration layer 11
To be connected. After that, the n + type source layer 4,
The p + type layer 5, the gate insulating film 9, the gate electrode 8, the source electrode 7, the drain electrode 6, and the like are formed to complete the device.

【0012】上述したような製造方法を用いることによ
り、比較的簡単に補助領域を形成することができる。
By using the manufacturing method as described above, the auxiliary region can be formed relatively easily.

【0013】しかしながら、上述した従来の素子構造で
は、「P.M.Shenoy etal.,ISPSD
99(1999)pp.99−102」に開示されてい
るように、補助領域のn型低濃度層10とp型低濃度層
11のキャリア積分量がずれると、ターンオフ時間や内
蔵逆導通ダイオードの逆回復時間が大きく変動するとと
もに、耐圧が著しく低下するという問題が生じる。
However, in the above-mentioned conventional element structure, “PM Shenoy et al., ISPSD
99 (1999) pp. 99-102, when the carrier integration amount of the n-type low concentration layer 10 and the p-type low concentration layer 11 in the auxiliary region is shifted, the turn-off time and the reverse recovery time of the built-in reverse conduction diode greatly fluctuate. At the same time, there arises a problem that the withstand voltage is significantly reduced.

【0014】また、エピタキシャル成長は高温で行なう
ので、最初に行なったエピタキシャル成長層中に導入さ
れている不純物がしだいに拡散するため、補助領域下部
のキャリア積分量がずれやすいという問題が生じる。
In addition, since the epitaxial growth is performed at a high temperature, the impurity introduced into the epitaxially grown layer which is firstly diffused gradually, so that there is a problem that the carrier integration amount under the auxiliary region tends to shift.

【0015】また、従来の素子構造では、補助領域のp
型低濃度層11がn+ 型ドレイン層1に接しているの
で、この部分の空乏層はp型低濃度層11内部にしか広
がらない。一方、補助領域のn型低濃度層10は比較的
濃度の低いp型ベース層3に接しているので、この部分
の空乏層はn型低濃度層10内部だけでなく、p型ベー
ス層3内部にも広がる。その結果、p型低濃度層11と
+ 型ドレイン層1が接している部分の電界強度が高く
なり、この部分で素子全体の耐圧が制限されるという問
題が生じる。
In the conventional device structure, the p of the auxiliary region
Since the low-concentration type layer 11 is in contact with the n + -type drain layer 1, the depletion layer in this portion extends only inside the p-type low-concentration layer 11. On the other hand, since the n-type low-concentration layer 10 in the auxiliary region is in contact with the p-type base layer 3 having a relatively low concentration, the depletion layer in this portion is not only in the n-type low-concentration layer 10 but also in the p-type base layer 3. Spreads inside. As a result, the electric field strength at the portion where the p-type low-concentration layer 11 and the n + -type drain layer 1 are in contact with each other is increased, and there is a problem that the breakdown voltage of the entire device is limited at this portion.

【0016】2次元数値計算の結果によれば、補助領域
の長さLが350μm、補助領域のn型低濃度層10及
びp型低濃度層11の幅Wn及びWpがともに3.5μ
m、n型低濃度層10及びp型低濃度層11の濃度Cn
及びCpがともに3×1015cm-3の場合に、素子の耐
圧は4950Vであった。局部的な電界集中のない理想
的な素子の耐圧は、半導体の絶縁破壊電界強度と補助領
域の長さとの積で表される7000Vになるはずなの
で、この素子構造では70%の耐圧しか得られないこと
になる。
According to the result of the two-dimensional numerical calculation, the length L of the auxiliary region is 350 μm, and the widths Wn and Wp of the n-type low concentration layer 10 and the p-type low concentration layer 11 in the auxiliary region are both 3.5 μm.
Concentration Cn of m, n-type low concentration layer 10 and p-type low concentration layer 11
When both Cp and Cp were 3 × 10 15 cm −3 , the breakdown voltage of the device was 4950V. Since the withstand voltage of an ideal device without local electric field concentration should be 7000 V, which is represented by the product of the breakdown field strength of the semiconductor and the length of the auxiliary region, this device structure can provide only a withstand voltage of 70%. Will not be.

【0017】[0017]

【発明が解決しようとする課題】このように、スーパー
ジャンクション素子は、オン抵抗の低減や高速ターンオ
フといった優れた性能を有している。しかしながら、従
来のスーパージャンクション素子は、補助領域のn型低
濃度層とp型低濃度層のキャリア積分量がずれると、タ
ーンオフ時間や内蔵逆導通ダイオードの逆回復時間が大
きく変動するとともに、耐圧が著しく低下するという問
題があった。また、p型低濃度層とn+ 型ドレイン層が
接している部分の電界強度が高くなり、この部分で素子
全体の耐圧が制限されるという問題もあった。
As described above, the super junction element has excellent performance such as reduction of on-resistance and high-speed turn-off. However, in the conventional super junction element, when the carrier integration amount of the n-type low-concentration layer and the p-type low-concentration layer in the auxiliary region deviates, the turn-off time and the reverse recovery time of the built-in reverse conducting diode greatly fluctuate, and the breakdown voltage also increases. There has been a problem that it is significantly reduced. Further, there is also a problem that the electric field strength is increased in a portion where the p-type low concentration layer and the n + -type drain layer are in contact, and the withstand voltage of the entire device is limited in this portion.

【0018】本発明は上記従来の課題に対してなされた
ものであり、従来の素子に比べて耐圧及びターンオフ特
性を向上させることが可能な半導体装置を提供すること
を目的としている。
The present invention has been made to solve the above-mentioned conventional problems, and has as its object to provide a semiconductor device capable of improving the breakdown voltage and the turn-off characteristics as compared with the conventional elements.

【0019】[0019]

【課題を解決するための手段】本発明に係る半導体装置
は、以下の構成を有している。なお、本発明の理解を容
易にするため、後述する実施形態において説明する図面
の参照番号を付して本発明の構成を示す。
A semiconductor device according to the present invention has the following configuration. In order to facilitate understanding of the present invention, the configuration of the present invention is indicated by reference numerals of the drawings described in the embodiments described later.

【0020】本発明は、第1導電型の不純物が含有され
た第1の半導体領域(1)と、前記第1の半導体領域
(1)と離間して形成され第2導電型の不純物が含有さ
れた第2の半導体領域(3)と、前記第1の半導体領域
(1)と前記第2の半導体領域(3)との間に設けら
れ、第1導電型の不純物が含有された第1の半導体層
(10)と第2導電型の不純物が含有された第2の半導
体層(11)とが前記第1の半導体領域(1)と第2の
半導体領域(3)とが対向する方向と交差する方向に交
互に繰り返し配置された第3の半導体領域(10、1
1)と、を有する半導体装置であって、交互に繰り返し
配置された前記第1の半導体層(10)及び第2の半導
体層(11)の繰り返し方向のキャリア積分量が、第2
の半導体層(11)の方が第1の半導体層(10)より
も大きくなるように構成され、前記第1の半導体領域
(1)と前記第3の半導体領域(10、11)の少なく
とも第2の半導体層(11)との間に前記第1の半導体
領域(1)よりも第1導電型の不純物濃度の低い第4の
半導体領域(13)が形成されていることを特徴とす
る。
According to the present invention, a first semiconductor region (1) containing a first conductivity type impurity and a second conductivity type impurity formed separately from the first semiconductor region (1) are contained. The second semiconductor region (3), and the first semiconductor region (1) provided between the first semiconductor region (1) and the second semiconductor region (3) and containing a first conductivity type impurity. Direction in which the first semiconductor region (1) and the second semiconductor region (3) face each other with the semiconductor layer (10) and the second semiconductor layer (11) containing impurities of the second conductivity type. Semiconductor regions (10, 1, 1) alternately and repeatedly arranged in a direction intersecting
1) wherein the first semiconductor layer (10) and the second semiconductor layer (11) alternately and repeatedly arranged have a carrier integration amount in the repetition direction of the second semiconductor layer (10) and the second semiconductor layer (11).
The semiconductor layer (11) is configured to be larger than the first semiconductor layer (10), and at least the first semiconductor region (1) and the third semiconductor region (10, 11) A fourth semiconductor region (13) having a first conductivity type lower in impurity concentration than the first semiconductor region (1) is formed between the second semiconductor layer (11) and the second semiconductor layer (11).

【0021】本発明では、第3の半導体領域(補助領
域)の第2の半導体層の繰り返し方向のキャリア積分量
(Q2)が第1の半導体層の繰り返し方向のキャリア積
分量(Q1)よりも大きくなるようにしている(Q2>
Q1)ので、ターンオフの際に第1の半導体層が空乏化
した後にも第2の半導体層の中央部には非空乏化領域が
残存している。そのため、電流がこの非空乏化領域を通
って排出されることになり、高速にターンオフすること
が可能となる(特に、n型に比べてp型のキャリアの移
動度が小さいことから、第1の半導体層がn型で第2の
半導体層がp型である場合に、効果が大きい)。製造プ
ロセス等に起因するキャリア積分量の変動が多少あって
としても、Q2とQ1との大小関係が逆転しない程度に
Q2及びQ1の値を設定しておけば、ターンオフ時間の
揃った素子を容易に製造することが可能となる。
In the present invention, the carrier integration amount (Q2) of the third semiconductor region (auxiliary region) in the repetition direction of the second semiconductor layer is larger than the carrier integration amount (Q1) of the first semiconductor layer in the repetition direction. (Q2>
Because of Q1), even after the first semiconductor layer is depleted at the time of turn-off, a non-depleted region remains in the center of the second semiconductor layer. Therefore, a current is discharged through the non-depleted region, and it is possible to turn off at a high speed (in particular, since the mobility of the p-type carrier is smaller than that of the n-type, the first The effect is great when the semiconductor layer is n-type and the second semiconductor layer is p-type. Even if there is some variation in the amount of carrier integration due to the manufacturing process or the like, if the values of Q2 and Q1 are set so that the magnitude relationship between Q2 and Q1 does not reverse, elements with uniform turn-off times can be easily manufactured. Can be manufactured.

【0022】また、第2の半導体層の中央部に非空乏化
領域が残存することから、第2の半導体領域の電位が非
空乏化領域を介して第1の半導体領域の近傍まで達する
ことになるが、第1の半導体領域と第3の半導体領域と
の間に第1の半導体領域よりも不純物濃度の低い第4の
半導体領域が形成されているので、空乏層が不純物濃度
の低い第4の半導体領域の内部に広がって電界を緩和
し、高耐圧化をはかることが可能となる。
Further, since the non-depleted region remains in the center of the second semiconductor layer, the potential of the second semiconductor region reaches the vicinity of the first semiconductor region via the non-depleted region. However, since the fourth semiconductor region having a lower impurity concentration than the first semiconductor region is formed between the first semiconductor region and the third semiconductor region, the depletion layer has a fourth impurity region having a lower impurity concentration. It is possible to reduce the electric field by expanding into the inside of the semiconductor region, thereby increasing the breakdown voltage.

【0023】前記発明において、前記第3の半導体領域
(10、11)の第2の半導体層(11)は、前記第1
の半導体領域(1)側の方が前記第2の半導体領域
(3)側よりも不純物濃度が低くなるように構成された
複数の半導体層からなることが好ましい。
In the above invention, the second semiconductor layer (11) of the third semiconductor region (10, 11) is formed by the first semiconductor layer (10).
The semiconductor region (1) side preferably includes a plurality of semiconductor layers configured to have a lower impurity concentration than the second semiconductor region (3) side.

【0024】このような構成により、第3の半導体領域
(補助領域)の第2の半導体層における第1の半導体領
域に近い側の領域が容易に空乏化するため、第2の半導
体領域の電位の影響をより一層抑制することが可能とな
り、高耐圧化をより一層高めることが可能となる。ま
た、第2の半導体領域に近い側の領域では、第2の半導
体層は比較的低抵抗となるので、排出電流が制限されて
ターンオフの高速性が損なわれることはない。
With such a structure, the region of the third semiconductor region (auxiliary region) on the side closer to the first semiconductor region in the second semiconductor layer is easily depleted, so that the potential of the second semiconductor region is reduced. Can be further suppressed, and higher withstand voltage can be further enhanced. Further, in the region near the second semiconductor region, the second semiconductor layer has a relatively low resistance, so that the discharge current is limited and the high-speed turn-off is not impaired.

【0025】また、前記発明において、前記第4の半導
体領域(13)は、前記第1の半導体領域(1)と前記
第3の半導体領域(10、11)との間に形成されたバ
ッファ領域であってもよい。
In the above invention, the fourth semiconductor region (13) may include a buffer region formed between the first semiconductor region (1) and the third semiconductor region (10, 11). It may be.

【0026】このような構成により、第3の半導体領域
(補助領域)の第2の半導体層が比較的高濃度となるこ
とによって内蔵逆導通ダイオードの逆回復電流が大きく
なっても、バッファ領域にキャリアを蓄積することでソ
フトリカバリ特性が得られ、電圧振動を効果的に防止す
ることが可能となる。
With such a configuration, even if the reverse recovery current of the built-in reverse conducting diode becomes large due to the relatively high concentration of the second semiconductor layer in the third semiconductor region (auxiliary region), the buffer region is formed in the buffer region. By accumulating carriers, soft recovery characteristics can be obtained, and voltage oscillation can be effectively prevented.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0028】なお、以下の実施形態では、第1導電型を
n型とし、第2導電型をp型とした場合を示している
が、第1導電型をp型とし、第2導電型をn型とするこ
とも可能である。
In the following embodiment, the case where the first conductivity type is n-type and the second conductivity type is p-type is shown, but the first conductivity type is p-type and the second conductivity type is p-type. It is also possible to use an n-type.

【0029】(第1の実施形態)図1は、本発明の第1
の実施形態に係る縦型スーパージャンクションMOSF
ETの素子構造を示した断面図である。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
Vertical super junction MOSF according to the embodiment of the present invention
It is sectional drawing which showed the element structure of ET.

【0030】なお、基本的な素子構造や基本的な製造方
法については、すでに図7を用いて説明した従来の縦型
スーパージャンクションMOSFETとほぼ同様であ
り、図7に示した構成要素に対応する構成要素について
は同一の参照番号を付し、ここではこれらの詳細な説明
は省略する(図2〜図5に示した第2〜第5の実施形態
についても同様)。
The basic element structure and the basic manufacturing method are almost the same as those of the conventional vertical super junction MOSFET already described with reference to FIG. 7, and correspond to the components shown in FIG. The same reference numerals are given to the components, and the detailed description thereof is omitted here (the same applies to the second to fifth embodiments shown in FIGS. 2 to 5).

【0031】本実施形態の縦型スーパージャンクション
MOSFETでは、補助領域(第3の半導体領域)のp
型低濃度層(第2の半導体層)11のキャリア積分量Q
pは、n型低濃度層(第1の半導体層)10のキャリア
積分量Qnよりも大きくなる(Qp>Qn)ように設定
されている。また、これらのキャリア積分量は、Qp及
びQnともに、5×1012cm-2以下となるように設定
されている。また、p型低濃度層11とn+ 型ドレイン
層(第1の半導体領域)1との間には、n- 型層(第4
の半導体領域)13が形成されている。
In the vertical super junction MOSFET of the present embodiment, the p of the auxiliary region (third semiconductor region)
Integral Q of the low-concentration type layer (second semiconductor layer) 11
p is set to be larger than the carrier integral Qn of the n-type low concentration layer (first semiconductor layer) 10 (Qp> Qn). In addition, these carrier integration amounts are set so that both Qp and Qn are 5 × 10 12 cm −2 or less. Further, between the p-type low concentration layer 11 and the n + -type drain layer (first semiconductor region) 1, an n -type layer (fourth
Semiconductor region 13) is formed.

【0032】本実施形態によれば、ターンオフが開始し
てn型低濃度層10が完全に空乏化しても、p型低濃度
層11の中央部付近(図では左端付近の領域に対応)に
非空乏化領域が残り、n型に比べて移動度の小さいp型
のキャリア(ホール)による電流が、この非空乏化領域
を通って排出されるので、高速ターンオフを実現するこ
とができる。
According to the present embodiment, even when the turn-off starts and the n-type low concentration layer 10 is completely depleted, the vicinity of the center of the p-type low concentration layer 11 (corresponding to the region near the left end in the figure). The non-depleted region remains, and the current due to the p-type carriers (holes) having a lower mobility than the n-type is discharged through the non-depleted region, so that a high-speed turn-off can be realized.

【0033】ターンオフ時間は、QpとQnとの大小関
係が逆転してQn>Qpとなると急に遅くなるが、予め
マージンを見込んでQp>Qnとなるように設定してあ
れば、多少のプロセス変動があってもQp>Qnの関係
が保持されるので、ターンオフ時間が大きくばらつくよ
うなことはない。例えば、プロセス変動によってQpと
Qnとの差が5%程度ばらつく場合があり得るが、Qp
がQnよりも7〜8%程度多くなるように設定しておけ
ば、プロセス変動があっても確実にQp>Qnの関係を
維持することができる。
The turn-off time suddenly becomes slower when Qn> Qp because the magnitude relationship between Qp and Qn is reversed, but if the margin is set in advance so that Qp> Qn, some turn-off time may be required. Even if there is a fluctuation, the relationship of Qp> Qn is maintained, so that the turn-off time does not greatly vary. For example, the difference between Qp and Qn may vary by about 5% due to process variation.
Is set to be about 7 to 8% larger than Qn, it is possible to reliably maintain the relationship of Qp> Qn even if there is a process variation.

【0034】また、p型低濃度層11の中央部付近に非
空乏化領域が残ることから、p型低濃度層11の中央部
の下部領域の電位が非空乏化領域を介してp型ベース層
3の電位と同電位となり、n+ 型ドレイン層1との境界
部付近で電界強度が高くなるという問題が考えられる。
本実施形態では、n- 型層13によって空乏層を広げる
ことができるため、電界が緩和されて高耐圧を維持する
ことができ、このような問題を防止することができる。
Further, since a non-depleted region remains near the center of the p-type low-concentration layer 11, the potential of the lower region at the center of the p-type low-concentration layer 11 is increased via the non-depleted region to the p-type base. There is a problem that the potential becomes the same as the potential of the layer 3 and the electric field intensity increases near the boundary with the n + -type drain layer 1.
In the present embodiment, since the depletion layer can be expanded by the n -type layer 13, the electric field is alleviated, a high breakdown voltage can be maintained, and such a problem can be prevented.

【0035】なお、n型低濃度層10とp型低濃度層1
1との接合終端領域については、補助領域の端部に半分
のキャリア積分量を持つp型低濃度層11を配置し、通
常のn- 型ベース層に対するガードリングやRESUR
Fなどの接合終端構造を適用することが望ましい。
The n-type low concentration layer 10 and the p-type low concentration layer 1
1, a p-type low-concentration layer 11 having a half carrier integration amount is arranged at the end of the auxiliary region, and a guard ring or RESUR for a normal n -type base layer is provided.
It is desirable to apply a junction termination structure such as F.

【0036】(第2の実施形態)図2は、本発明の第2
の実施形態に係る縦型スーパージャンクションMOSF
ETの素子構造を示した断面図である。
(Second Embodiment) FIG. 2 shows a second embodiment of the present invention.
Vertical super junction MOSF according to the embodiment of the present invention
It is sectional drawing which showed the element structure of ET.

【0037】本実施形態では、第1の実施形態の素子構
造に加えてさらに、補助領域のp型低濃度層11の下部
領域にp- 型層14を形成している。
In the present embodiment, in addition to the element structure of the first embodiment, a p -type layer 14 is formed in a lower region of the p-type low-concentration layer 11 in the auxiliary region.

【0038】本実施形態によれば、p- 型層14がそれ
よりも高不純物濃度のp型低濃度層11より早く空乏化
されるので、p型ベース層3と同電位の領域が入り込ま
ない。その結果、電界が緩和されてより高耐圧を維持す
ることが可能となる。
According to the present embodiment, the p -type layer 14 is depleted faster than the p-type low-concentration layer 11 having a higher impurity concentration, so that a region having the same potential as the p-type base layer 3 does not enter. . As a result, the electric field is alleviated and a higher breakdown voltage can be maintained.

【0039】なお、図に示した例では、p型低濃度層は
二つの濃度領域としているが、下層側に行くにしたがっ
て不純物濃度が低くなるような3以上の濃度領域を設け
るようにしてもよい。
Although the p-type low-concentration layer has two concentration regions in the example shown in the figure, three or more concentration regions may be provided so that the impurity concentration becomes lower toward the lower layer. Good.

【0040】また、図に示した例では、n型低濃度層1
0は均一濃度となるように形成されているが、p型低濃
度層11の濃度変化に合わせて、下層側に行くにしたが
って低濃度になるようにしてもよい。
Further, in the example shown in FIG.
Although 0 is formed so as to have a uniform concentration, the concentration may become lower toward the lower layer side in accordance with the change in the concentration of the p-type low concentration layer 11.

【0041】このような構成によれば、数回のエピタキ
シャル成長によって素子を形成する際に、高温に晒され
る時間が長く熱拡散によるQの変動量の大きな補助領域
下部が低濃度に、高温に晒される時間が短くQの変動量
の小さな補助領域上部が高濃度に形成されるので、オン
抵抗を低く保ったまま高耐圧化をはかることが可能とな
る。
According to such a configuration, when the device is formed by epitaxial growth several times, the lower part of the auxiliary region, which is exposed to a high temperature for a long time and has a large variation in Q due to thermal diffusion, is exposed to a low concentration and exposed to a high temperature. Since the upper part of the auxiliary region having a small variation in Q is formed with a high concentration for a short period of time, it is possible to increase the breakdown voltage while keeping the on-resistance low.

【0042】(第3の実施形態)図3は、本発明の第3
の実施形態に係る縦型スーパージャンクションMOSF
ETの素子構造を示した断面図である。
(Third Embodiment) FIG. 3 shows a third embodiment of the present invention.
Vertical super junction MOSF according to the embodiment of the present invention
It is sectional drawing which showed the element structure of ET.

【0043】本実施形態では、n+ 型ドレイン層1と補
助領域との間に、n+ 型ドレイン層よりも低濃度のn型
バッファ層15が形成されている。
In this embodiment, an n-type buffer layer 15 having a lower concentration than the n + -type drain layer is formed between the n + -type drain layer 1 and the auxiliary region.

【0044】本実施形態によれば、p型ベース層3及び
p型低濃度層11をアノード層とし、n+ 型ドレイン層
1及びn型低濃度層10をカソード層とする内蔵逆導通
ダイオードの逆回復特性を、ソフトリカバリにすること
ができる。また、p型低濃度層11だけでなくn型バッ
ファ層15内部にも空乏層が広がるので、電界が緩和さ
れ、素子耐圧を向上させることが可能となる。
According to this embodiment, a built-in reverse conducting diode having the p-type base layer 3 and the p-type low concentration layer 11 as an anode layer and the n + -type drain layer 1 and the n-type low concentration layer 10 as a cathode layer. The reverse recovery characteristic can be a soft recovery. Further, since the depletion layer spreads not only in the p-type low-concentration layer 11 but also in the n-type buffer layer 15, the electric field is alleviated, and the withstand voltage of the element can be improved.

【0045】本発明に係るスーパージャンクションMO
SFETでは、Qp>Qnとしたために逆回復電流が大
きくなり、ダイオードの電圧が回復する際に、電流減少
率に比例する電圧の跳ね上がりが発生して、電圧振動を
引き起こすという問題を生じやすい。このような場合で
も、n型バッファ層15を形成することによってキャリ
アが蓄積され、逆回復時のテール領域での電流減少率が
減少して電圧の跳ね上がりが低減されるという効果があ
る。
The super junction MO according to the present invention
In the SFET, since Qp> Qn, the reverse recovery current becomes large, and when the voltage of the diode recovers, a voltage jump proportional to the current decrease rate occurs, which tends to cause a problem of causing voltage oscillation. Even in such a case, by forming the n-type buffer layer 15, carriers are accumulated, and there is an effect that the current decrease rate in the tail region at the time of reverse recovery is reduced and the voltage jump is reduced.

【0046】なお、キャリア蓄積の観点からは、n型バ
ッファ層15の厚さをキャリアの拡散長以上に設定する
ことが望ましい。例えば、n型バッファ層15の厚さ
は、耐圧4500Vの素子では75μm程度となるよう
にする。
From the viewpoint of carrier accumulation, it is desirable to set the thickness of the n-type buffer layer 15 to be equal to or longer than the carrier diffusion length. For example, the thickness of the n-type buffer layer 15 is set to about 75 μm in a device having a withstand voltage of 4500 V.

【0047】(第4の実施形態)図4は、本発明の第4
の実施形態に係る縦型スーパージャンクションMOSF
ETの素子構造を示した断面図である。
(Fourth Embodiment) FIG. 4 shows a fourth embodiment of the present invention.
Vertical super junction MOSF according to the embodiment of the present invention
It is sectional drawing which showed the element structure of ET.

【0048】本実施形態では、第3の実施形態の素子構
造に加えてさらに、p- 型層14が形成されている。す
なわち、本実施形態は、第2の実施形態と第3の実施形
態を併せたような構造を有しており、したがって、第2
の実施形態及び第3の実施形態で得られるそれぞれの効
果を得ることができる。
In the present embodiment, a p type layer 14 is further formed in addition to the element structure of the third embodiment. That is, the present embodiment has a structure as a combination of the second embodiment and the third embodiment, and
The respective effects obtained in the third embodiment and the third embodiment can be obtained.

【0049】(第5の実施形態)図5は、本発明の第5
の実施形態に係る縦型スーパージャンクションMOSF
ETの素子構造を示した断面図である。
(Fifth Embodiment) FIG. 5 shows a fifth embodiment of the present invention.
Vertical super junction MOSF according to the embodiment of the present invention
It is sectional drawing which showed the element structure of ET.

【0050】本実施形態では、第2の実施形態の素子構
造に加えてさらに、n型バッファ層15が形成されてお
り、本実施形態によっても、第2の実施形態及び第3の
実施形態で得られる効果と同様の効果を得ることができ
る。
In the present embodiment, an n-type buffer layer 15 is further formed in addition to the element structure of the second embodiment. According to the present embodiment, the n-type buffer layer 15 is formed in the second embodiment and the third embodiment. The same effect as the obtained effect can be obtained.

【0051】(第6の実施形態)図6は、本発明の第6
の実施形態に係る横型スーパージャンクションMOSF
ETの素子構造を示した斜視図である。
(Sixth Embodiment) FIG. 6 shows a sixth embodiment of the present invention.
Super junction MOSF according to the embodiment of the present invention
It is the perspective view which showed the element structure of ET.

【0052】なお、基本的な原理については図1等に示
した縦型スーパージャンクションMOSFETと同様で
あり、図1等に示した構成要素に対応する構成要素につ
いては同一の参照番号を付している。
The basic principle is the same as that of the vertical super-junction MOSFET shown in FIG. 1 and the like. Components corresponding to the components shown in FIG. 1 and the like are denoted by the same reference numerals. I have.

【0053】第1〜第5の実施形態で説明した縦型スー
パージャンクションMOSFETでは、ドレイン電極6
を半導体基板の一方の主面側に、ソース電極7を半導体
基板の他方の主面側にそれぞれ形成した構造であった
が、本実施形態の横型スーパージャンクションMOSF
ETでは、ドレイン電極6及びソース電極7は半導体基
板の同一主面側に形成されている。
In the vertical type super junction MOSFET described in the first to fifth embodiments, the drain electrode 6
Is formed on one main surface of the semiconductor substrate, and the source electrode 7 is formed on the other main surface of the semiconductor substrate.
In ET, the drain electrode 6 and the source electrode 7 are formed on the same main surface side of the semiconductor substrate.

【0054】このような横型スーパージャンクションM
OSFETにおいても、縦型スーパージャンクションM
OSFETと同様、補助領域におけるp型低濃度層11
のキャリア積分量Qpとn型低濃度層10のキャリア積
分量Qnとの関係をQp>Qnとなるように設定すると
ともに、p型低濃度層11とn+ 型ドレイン層1との間
にn- 型層13を設けることにより、縦型スーパージャ
ンクションMOSFETと同様の効果を得ることが可能
となる。
Such a horizontal super junction M
In OSFET, vertical super junction M
Like the OSFET, the p-type low concentration layer 11 in the auxiliary region
Is set so that Qp> Qn, and n is located between the p-type low-concentration layer 11 and the n + -type drain layer 1. - by providing the mold layer 13, it is possible to obtain the same effect as the vertical superjunction MOSFET.

【0055】なお、図6に示した横型スーパージャンク
ションMOSFETは、図1に示した第1の実施形態の
縦型スーパージャンクションMOSFETに対応する構
造となっているが、その他の実施形態において説明した
縦型スーパージャンクションMOSFETに対応する構
造を横型スーパージャンクションMOSFETに適用す
ることも可能である。
Although the horizontal super junction MOSFET shown in FIG. 6 has a structure corresponding to the vertical super junction MOSFET of the first embodiment shown in FIG. 1, the vertical super junction MOSFET described in the other embodiments is used. It is also possible to apply a structure corresponding to the type super junction MOSFET to a lateral type super junction MOSFET.

【0056】以上、本発明の実施形態を説明したが、本
発明は上記実施形態に限定されるものではない。例え
ば、上記実施形態では、基本となる素子構造をMOSF
ETとしたが、SITなど他の素子構造に対して適用す
ることも可能である。その他、本発明はその趣旨を逸脱
しない範囲内において種々変形して実施することが可能
である。
Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. For example, in the above embodiment, the basic element structure is MOSF
Although ET has been described, the present invention can be applied to other element structures such as SIT. In addition, the present invention can be variously modified and implemented without departing from the spirit thereof.

【0057】[0057]

【発明の効果】本発明によれば、補助領域の一方の半導
体層のキャリア積分量Q1と他方の半導体層のキャリア
積分量Q2との関係がQ2>Q1となるようにしたの
で、ターンオフの際に他方の半導体層に非空乏化領域が
残存し、この非空乏化領域を通って電流が排出されるこ
とになり、ターンオフを高速化することが可能となる。
また、ドレイン側の高不純物濃度領域と補助領域との間
に低不純物濃度領域を設けることにより、空乏層が低不
純物濃度領域に広がって電界を緩和するため、高耐圧化
をはかることが可能となる。
According to the present invention, the relationship between the carrier integral Q1 of one semiconductor layer in the auxiliary region and the carrier integral Q2 of the other semiconductor layer is such that Q2> Q1. Then, a non-depleted region remains in the other semiconductor layer, and current is discharged through this non-depleted region, so that turn-off can be speeded up.
Further, by providing a low impurity concentration region between the high impurity concentration region on the drain side and the auxiliary region, the depletion layer spreads to the low impurity concentration region and relaxes the electric field, so that a high breakdown voltage can be achieved. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る縦型スーパージ
ャンクションMOSFETの素子構造を示した断面図。
FIG. 1 is a sectional view showing an element structure of a vertical super junction MOSFET according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態に係る縦型スーパージ
ャンクションMOSFETの素子構造を示した断面図。
FIG. 2 is a sectional view showing an element structure of a vertical super junction MOSFET according to a second embodiment of the present invention.

【図3】本発明の第3の実施形態に係る縦型スーパージ
ャンクションMOSFETの素子構造を示した断面図。
FIG. 3 is a sectional view showing an element structure of a vertical super junction MOSFET according to a third embodiment of the present invention.

【図4】本発明の第4の実施形態に係る縦型スーパージ
ャンクションMOSFETの素子構造を示した断面図。
FIG. 4 is a sectional view showing an element structure of a vertical super junction MOSFET according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施形態に係る縦型スーパージ
ャンクションMOSFETの素子構造を示した断面図。
FIG. 5 is a sectional view showing an element structure of a vertical super junction MOSFET according to a fifth embodiment of the present invention.

【図6】本発明の第6の実施形態に係る横型スーパージ
ャンクションMOSFETの素子構造を示した斜視図。
FIG. 6 is a perspective view showing an element structure of a lateral super junction MOSFET according to a sixth embodiment of the present invention.

【図7】従来技術に係る縦型スーパージャンクションM
OSFETの素子構造を示した断面図。
FIG. 7 shows a vertical super junction M according to the prior art.
FIG. 4 is a cross-sectional view illustrating an element structure of an OSFET.

【符号の説明】[Explanation of symbols]

1…n+ 型ドレイン層(第1の半導体領域) 3…p型ベース層(第2の半導体領域) 4…n+ 型ソース層 5…p+ 型層 6…ドレイン電極 7…ソース電極 8…ゲート電極 9…ゲート絶縁膜 10…n型低濃度層(第1の半導体層) 11…p型低濃度層(第2の半導体層) 13…n- 型層(第4の半導体領域) 14…p- 型層 15…n型バッファ層(第4の半導体領域)DESCRIPTION OF SYMBOLS 1 ... n + type drain layer (1st semiconductor region) 3 ... p-type base layer (2nd semiconductor region) 4 ... n + type source layer 5 ... p + type layer 6 ... drain electrode 7 ... source electrode 8 ... Gate electrode 9 Gate insulating film 10 n-type low concentration layer (first semiconductor layer) 11 p-type low concentration layer (second semiconductor layer) 13 n - type layer (fourth semiconductor region) 14. p type layer 15... n type buffer layer (fourth semiconductor region)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八幡 彰博 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 中村 和敏 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 5F040 DA00 EB01 EB13 EE01 EE05 EF13 EF18 EM01 EM02 EM03 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akihiro Yawata 1st station, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Inside Toshiba R & D Center (72) Inventor Kazutoshi Nakamura Komukai, Sai-ku, Kawasaki-shi, Kanagawa No. 1 Toshiba Town F-term in Toshiba R & D Center (reference) 5F040 DA00 EB01 EB13 EE01 EE05 EF13 EF18 EM01 EM02 EM03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第1導電型の不純物が含有された第1の半
導体領域と、 前記第1の半導体領域と離間して形成され第2導電型の
不純物が含有された第2の半導体領域と、 前記第1の半導体領域と前記第2の半導体領域との間に
設けられ、第1導電型の不純物が含有された第1の半導
体層と第2導電型の不純物が含有された第2の半導体層
とが前記第1の半導体領域と第2の半導体領域とが対向
する方向と交差する方向に交互に繰り返し配置された第
3の半導体領域と、 を有する半導体装置であって、 交互に繰り返し配置された前記第1の半導体層及び第2
の半導体層の繰り返し方向のキャリア積分量が、第2の
半導体層の方が第1の半導体層よりも大きくなるように
構成され、 前記第1の半導体領域と前記第3の半導体領域の少なく
とも第2の半導体層との間に前記第1の半導体領域より
も第1導電型の不純物濃度の低い第4の半導体領域が形
成されていることを特徴とする半導体装置。
A first semiconductor region containing an impurity of a first conductivity type; and a second semiconductor region formed separately from the first semiconductor region and containing an impurity of a second conductivity type. A first semiconductor layer provided between the first semiconductor region and the second semiconductor region and containing a first conductivity type impurity; and a second semiconductor layer containing a second conductivity type impurity. A third semiconductor region in which a semiconductor layer and a third semiconductor region are alternately and repeatedly arranged in a direction intersecting a direction in which the first semiconductor region and the second semiconductor region face each other. The first semiconductor layer and the second
The second semiconductor layer is configured to have a larger carrier integration amount in the repetition direction of the semiconductor layer than the first semiconductor layer, and at least the first semiconductor region and the third semiconductor region A semiconductor device, wherein a fourth semiconductor region having a first conductivity type impurity concentration lower than that of the first semiconductor region is formed between the second semiconductor layer and the second semiconductor layer.
【請求項2】前記第3の半導体領域の第2の半導体層
は、前記第1の半導体領域側の方が前記第2の半導体領
域側よりも不純物濃度が低くなるように構成された複数
の半導体層からなることを特徴とする請求項1に記載の
半導体装置。
2. The semiconductor device according to claim 1, wherein the second semiconductor layer of the third semiconductor region has a plurality of semiconductor layers configured to have a lower impurity concentration on the first semiconductor region side than on the second semiconductor region side. 2. The semiconductor device according to claim 1, comprising a semiconductor layer.
JP27825599A 1999-09-30 1999-09-30 Semiconductor device Expired - Lifetime JP3507732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27825599A JP3507732B2 (en) 1999-09-30 1999-09-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27825599A JP3507732B2 (en) 1999-09-30 1999-09-30 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2001102577A true JP2001102577A (en) 2001-04-13
JP3507732B2 JP3507732B2 (en) 2004-03-15

Family

ID=17594796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27825599A Expired - Lifetime JP3507732B2 (en) 1999-09-30 1999-09-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3507732B2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111050A (en) * 1999-10-13 2001-04-20 Toyota Central Res & Dev Lab Inc Vertical semiconductor device
JP2002246595A (en) * 2001-02-19 2002-08-30 Shindengen Electric Mfg Co Ltd Transistor
EP1267415A2 (en) * 2001-06-11 2002-12-18 Kabushiki Kaisha Toshiba Power semiconductor device having resurf layer
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US6878989B2 (en) 2001-05-25 2005-04-12 Kabushiki Kaisha Toshiba Power MOSFET semiconductor device and method of manufacturing the same
JP2005175416A (en) * 2003-11-19 2005-06-30 Fuji Electric Device Technology Co Ltd Semiconductor device for use in space
US6949798B2 (en) 2002-01-28 2005-09-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US7294886B2 (en) 2003-01-07 2007-11-13 Kabushiki Kaisha Toshiba Power semiconductor device
US7301202B2 (en) 2004-12-28 2007-11-27 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
WO2008069309A1 (en) * 2006-12-07 2008-06-12 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method for manufacturing the same
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7655981B2 (en) 2003-11-28 2010-02-02 Fairchild Korea Semiconductor Ltd. Superjunction semiconductor device
WO2010024433A1 (en) * 2008-09-01 2010-03-04 ローム株式会社 Semiconductor device and manufacturing method thereof
US7713822B2 (en) 2006-03-24 2010-05-11 Fairchild Semiconductor Corporation Method of forming high density trench FET with integrated Schottky diode
US7732876B2 (en) 2004-08-03 2010-06-08 Fairchild Semiconductor Corporation Power transistor with trench sinker for contacting the backside
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US7799636B2 (en) 2003-05-20 2010-09-21 Fairchild Semiconductor Corporation Power device with trenches having wider upper portion than lower portion
US7859047B2 (en) 2006-06-19 2010-12-28 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes connected together in non-active region
US7936008B2 (en) 2003-12-30 2011-05-03 Fairchild Semiconductor Corporation Structure and method for forming accumulation-mode field effect transistor with improved current capability
US8084327B2 (en) 2005-04-06 2011-12-27 Fairchild Semiconductor Corporation Method for forming trench gate field effect transistor with recessed mesas using spacers
US8198677B2 (en) 2002-10-03 2012-06-12 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8928077B2 (en) 2007-09-21 2015-01-06 Fairchild Semiconductor Corporation Superjunction structures for power devices
CN104779296A (en) * 2015-04-24 2015-07-15 无锡同方微电子有限公司 Asymmetric super junction MOSFET structure and manufacturing method thereof
US9219141B2 (en) 2013-07-10 2015-12-22 Fuji Electric Co., Ltd. Super junction MOSFET, method of manufacturing the same, and complex semiconductor device
US9431481B2 (en) 2008-09-19 2016-08-30 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US9711634B2 (en) 2013-09-18 2017-07-18 Fuji Electric Co., Ltd. Semiconductor device including a super junction MOSFET
WO2020152489A1 (en) * 2019-01-21 2020-07-30 日産自動車株式会社 Semiconductor device and manufacturing method thereof
CN113851542A (en) * 2021-09-24 2021-12-28 电子科技大学重庆微电子产业技术研究院 Super-junction MOSFET with soft reverse recovery characteristic
CN116722033A (en) * 2023-08-11 2023-09-08 深圳天狼芯半导体有限公司 Super junction schottky diode with improved P column and preparation method
CN116741812A (en) * 2023-08-11 2023-09-12 深圳天狼芯半导体有限公司 N-BAL-based super junction Schottky diode for improving current density and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231903B (en) * 2018-01-24 2020-06-02 重庆大学 Super junction power MOSFET with soft recovery body diode

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111050A (en) * 1999-10-13 2001-04-20 Toyota Central Res & Dev Lab Inc Vertical semiconductor device
US8101484B2 (en) 2000-08-16 2012-01-24 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US8710584B2 (en) 2000-08-16 2014-04-29 Fairchild Semiconductor Corporation FET device having ultra-low on-resistance and low gate charge
US9368587B2 (en) 2001-01-30 2016-06-14 Fairchild Semiconductor Corporation Accumulation-mode field effect transistor with improved current capability
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US8829641B2 (en) 2001-01-30 2014-09-09 Fairchild Semiconductor Corporation Method of forming a dual-trench field effect transistor
JP2002246595A (en) * 2001-02-19 2002-08-30 Shindengen Electric Mfg Co Ltd Transistor
US7226841B2 (en) 2001-05-25 2007-06-05 Kabushiki Kaisha Toshiba Power MOSFET semiconductor device and method of manufacturing the same
US6878989B2 (en) 2001-05-25 2005-04-12 Kabushiki Kaisha Toshiba Power MOSFET semiconductor device and method of manufacturing the same
US6693338B2 (en) 2001-06-11 2004-02-17 Kabushiki Kaisha Toshiba Power semiconductor device having RESURF layer
US6919610B2 (en) 2001-06-11 2005-07-19 Kabushiki Kaisha Toshiba Power semiconductor device having RESURF layer
CN1329999C (en) * 2001-06-11 2007-08-01 株式会社东芝 Power semiconducter device with RESURF layer
EP1267415A2 (en) * 2001-06-11 2002-12-18 Kabushiki Kaisha Toshiba Power semiconductor device having resurf layer
EP1267415A3 (en) * 2001-06-11 2009-04-15 Kabushiki Kaisha Toshiba Power semiconductor device having resurf layer
KR100491989B1 (en) * 2001-06-11 2005-05-30 가부시끼가이샤 도시바 Power semiconductor device having resurf layer and method of fabricating thereof
US6949798B2 (en) 2002-01-28 2005-09-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US7977744B2 (en) 2002-07-18 2011-07-12 Fairchild Semiconductor Corporation Field effect transistor with trench filled with insulating material and strips of semi-insulating material along trench sidewalls
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US8198677B2 (en) 2002-10-03 2012-06-12 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
US7294886B2 (en) 2003-01-07 2007-11-13 Kabushiki Kaisha Toshiba Power semiconductor device
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7982265B2 (en) 2003-05-20 2011-07-19 Fairchild Semiconductor Corporation Trenched shield gate power semiconductor devices and methods of manufacture
US8889511B2 (en) 2003-05-20 2014-11-18 Fairchild Semiconductor Corporation Methods of manufacturing power semiconductor devices with trenched shielded split gate transistor
US7799636B2 (en) 2003-05-20 2010-09-21 Fairchild Semiconductor Corporation Power device with trenches having wider upper portion than lower portion
US7855415B2 (en) 2003-05-20 2010-12-21 Fairchild Semiconductor Corporation Power semiconductor devices having termination structures and methods of manufacture
US8936985B2 (en) 2003-05-20 2015-01-20 Fairchild Semiconductor Corporation Methods related to power semiconductor devices with thick bottom oxide layers
US8786045B2 (en) 2003-05-20 2014-07-22 Fairchild Semiconductor Corporation Power semiconductor devices having termination structures
US8143123B2 (en) 2003-05-20 2012-03-27 Fairchild Semiconductor Corporation Methods of forming inter-poly dielectric (IPD) layers in power semiconductor devices
US8143124B2 (en) 2003-05-20 2012-03-27 Fairchild Semiconductor Corporation Methods of making power semiconductor devices with thick bottom oxide layer
US8129245B2 (en) 2003-05-20 2012-03-06 Fairchild Semiconductor Corporation Methods of manufacturing power semiconductor devices with shield and gate contacts
US8013391B2 (en) 2003-05-20 2011-09-06 Fairchild Semiconductor Corporation Power semiconductor devices with trenched shielded split gate transistor and methods of manufacture
US8013387B2 (en) 2003-05-20 2011-09-06 Fairchild Semiconductor Corporation Power semiconductor devices with shield and gate contacts and methods of manufacture
US8350317B2 (en) 2003-05-20 2013-01-08 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US8034682B2 (en) 2003-05-20 2011-10-11 Fairchild Semiconductor Corporation Power device with trenches having wider upper portion than lower portion
US8716783B2 (en) 2003-05-20 2014-05-06 Fairchild Semiconductor Corporation Power device with self-aligned source regions
JP2005175416A (en) * 2003-11-19 2005-06-30 Fuji Electric Device Technology Co Ltd Semiconductor device for use in space
US7655981B2 (en) 2003-11-28 2010-02-02 Fairchild Korea Semiconductor Ltd. Superjunction semiconductor device
US8518777B2 (en) 2003-12-30 2013-08-27 Fairchild Semiconductor Corporation Method for forming accumulation-mode field effect transistor with improved current capability
US7936008B2 (en) 2003-12-30 2011-05-03 Fairchild Semiconductor Corporation Structure and method for forming accumulation-mode field effect transistor with improved current capability
US7732876B2 (en) 2004-08-03 2010-06-08 Fairchild Semiconductor Corporation Power transistor with trench sinker for contacting the backside
US8148233B2 (en) 2004-08-03 2012-04-03 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
US8026558B2 (en) 2004-08-03 2011-09-27 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
US7301202B2 (en) 2004-12-28 2007-11-27 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US8084327B2 (en) 2005-04-06 2011-12-27 Fairchild Semiconductor Corporation Method for forming trench gate field effect transistor with recessed mesas using spacers
US8680611B2 (en) 2005-04-06 2014-03-25 Fairchild Semiconductor Corporation Field effect transistor and schottky diode structures
US7713822B2 (en) 2006-03-24 2010-05-11 Fairchild Semiconductor Corporation Method of forming high density trench FET with integrated Schottky diode
US7859047B2 (en) 2006-06-19 2010-12-28 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes connected together in non-active region
US7923771B2 (en) 2006-12-07 2011-04-12 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method for manufacturing the same
JP2013179346A (en) * 2006-12-07 2013-09-09 Shindengen Electric Mfg Co Ltd Semiconductor device and manufacturing method therefor
JP5315058B2 (en) * 2006-12-07 2013-10-16 新電元工業株式会社 Semiconductor device and manufacturing method thereof
WO2008069309A1 (en) * 2006-12-07 2008-06-12 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method for manufacturing the same
US8343833B2 (en) 2006-12-07 2013-01-01 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method for manufacturing the same
US9595596B2 (en) 2007-09-21 2017-03-14 Fairchild Semiconductor Corporation Superjunction structures for power devices
US8928077B2 (en) 2007-09-21 2015-01-06 Fairchild Semiconductor Corporation Superjunction structures for power devices
US9224853B2 (en) 2007-12-26 2015-12-29 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US8492829B2 (en) 2008-09-01 2013-07-23 Rohm Co., Ltd. Semiconductor device having super junction metal oxide semiconductor structure and fabrication method for the same
US8802548B2 (en) 2008-09-01 2014-08-12 Rohm Co., Ltd. Semiconductor device having super junction metal oxide semiconductor structure and fabrication method for the same
US10217856B2 (en) 2008-09-01 2019-02-26 Rohm Co., Ltd. Semiconductor device having super junction metal oxide semiconductor structure and fabrication method for the same
US9755065B2 (en) 2008-09-01 2017-09-05 Rohm Co., Ltd. Semiconductor device having super junction metal oxide semiconductor structure and fabrication method for the same
US10672900B2 (en) 2008-09-01 2020-06-02 Rohm Co., Ltd. Semiconductor device having super junction metal oxide semiconductor structure and fabrication method for the same
WO2010024433A1 (en) * 2008-09-01 2010-03-04 ローム株式会社 Semiconductor device and manufacturing method thereof
US9385217B2 (en) 2008-09-01 2016-07-05 Rohm Co., Ltd. Semiconductor device having super junction metal oxide semiconductor structure and fabrication method for the same
US9431481B2 (en) 2008-09-19 2016-08-30 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8432000B2 (en) 2010-06-18 2013-04-30 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US9219141B2 (en) 2013-07-10 2015-12-22 Fuji Electric Co., Ltd. Super junction MOSFET, method of manufacturing the same, and complex semiconductor device
US9711634B2 (en) 2013-09-18 2017-07-18 Fuji Electric Co., Ltd. Semiconductor device including a super junction MOSFET
US9954078B2 (en) 2013-09-18 2018-04-24 Fuji Electric Co., Ltd. Method for manufacturing a semiconductor device having a super junction MOSFET
CN104779296A (en) * 2015-04-24 2015-07-15 无锡同方微电子有限公司 Asymmetric super junction MOSFET structure and manufacturing method thereof
WO2020152489A1 (en) * 2019-01-21 2020-07-30 日産自動車株式会社 Semiconductor device and manufacturing method thereof
JPWO2020152489A1 (en) * 2019-01-21 2020-07-30
CN113330578A (en) * 2019-01-21 2021-08-31 日产自动车株式会社 Semiconductor device and method for manufacturing the same
US11476326B2 (en) 2019-01-21 2022-10-18 Nissan Motor Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
JP7257423B2 (en) 2019-01-21 2023-04-13 日産自動車株式会社 Semiconductor device and its manufacturing method
US11756994B2 (en) 2019-01-21 2023-09-12 Nissan Motor Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
CN113851542A (en) * 2021-09-24 2021-12-28 电子科技大学重庆微电子产业技术研究院 Super-junction MOSFET with soft reverse recovery characteristic
CN113851542B (en) * 2021-09-24 2024-04-12 电子科技大学重庆微电子产业技术研究院 Super junction MOSFET with soft reverse recovery characteristic
CN116722033A (en) * 2023-08-11 2023-09-08 深圳天狼芯半导体有限公司 Super junction schottky diode with improved P column and preparation method
CN116741812A (en) * 2023-08-11 2023-09-12 深圳天狼芯半导体有限公司 N-BAL-based super junction Schottky diode for improving current density and preparation method thereof

Also Published As

Publication number Publication date
JP3507732B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
JP3507732B2 (en) Semiconductor device
US6734496B2 (en) Semiconductor device
US6221688B1 (en) Diode and method for manufacturing the same
US6917054B2 (en) Semiconductor device
JP3799888B2 (en) Superjunction semiconductor device and method for manufacturing the same
JP2000040822A (en) Superjunction semiconductor element and its manufacture
DE102014100883B4 (en) Semiconductor devices having a super junction structure that has a vertical impurity distribution
JP2002134748A (en) Superjunction semiconductor device
US6465863B1 (en) Power diode structure
JP2000114520A (en) Semiconductor device for electric power
JPH09501270A (en) Silicon carbide thyristor
JP2001135819A (en) Super-junction semiconductor element
JP5365016B2 (en) Semiconductor device and manufacturing method thereof
JP2004319732A (en) Semiconductor device
JP2003101022A (en) Power semiconductor device
JPH08306937A (en) High-breakdown strength semiconductor device
CN115881797A (en) Silicon carbide device and preparation method thereof
JPH10178174A (en) Semiconductor device and power converting device using the same
JP2000269518A (en) Powering semiconductor device and method for forming semiconductor layer
US7470960B1 (en) High-voltage power semiconductor device with body regions of alternating conductivity and decreasing thickness
JPH0878668A (en) Semiconductor device for power
JP4265201B2 (en) Super junction semiconductor device
JP2001196604A (en) Semiconductor device
JP2002076370A (en) Super junction schottky diode
JPH0620141B2 (en) Conduction modulation type MOSFET

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031219

R151 Written notification of patent or utility model registration

Ref document number: 3507732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

EXPY Cancellation because of completion of term