JP4265201B2 - Super junction semiconductor device - Google Patents

Super junction semiconductor device Download PDF

Info

Publication number
JP4265201B2
JP4265201B2 JP2002311509A JP2002311509A JP4265201B2 JP 4265201 B2 JP4265201 B2 JP 4265201B2 JP 2002311509 A JP2002311509 A JP 2002311509A JP 2002311509 A JP2002311509 A JP 2002311509A JP 4265201 B2 JP4265201 B2 JP 4265201B2
Authority
JP
Japan
Prior art keywords
conductivity type
electrode
type semiconductor
region
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002311509A
Other languages
Japanese (ja)
Other versions
JP2004146689A (en
Inventor
達司 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2002311509A priority Critical patent/JP4265201B2/en
Publication of JP2004146689A publication Critical patent/JP2004146689A/en
Application granted granted Critical
Publication of JP4265201B2 publication Critical patent/JP4265201B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子の第1の電極側から第2の電極側へ向かって伸びる第1導電型半導体よりなるドリフト領域と、それと同様に伸びる第2導電型半導体よりなる仕切り領域とを、それらの伸びる方向に交差する方向に交互に繰り返し接合した構成(この構成を並列pn接合層または並列pn構造と称する)を有し、該並列pn接合層が、オン状態のときに電流を流し、かつオフ状態のときには空乏化するドリフト層となる半導体素子(これを超接合半導体素子と称する)に関し、特に、MOSFET(絶縁ゲート型電界効果トランジスタ)やIGBT(絶縁ゲート型バイポーラトランジスタ)やバイポーラトランジスタ等に適用可能な高耐圧化と大電流容量化を両立させることのできる超接合半導体素子に関する。
【0002】
【従来の技術】
一般に、半導体素子は、電極が片面に形成された横型の素子と、両面に電極を有する縦型の素子に分類される。縦型半導体素子は、オン状態のときにドリフト電流が流れる方向と、オフ状態のときに逆バイアス電圧による空乏層が伸びる方向とが同じである。通常のプレーナ型のnチャネル縦型MOSFETでは、高抵抗のn-ドリフト層の部分は、オン状態のときに、縦方向(深さ方向)にドリフト電流を流す領域として働く。したがって、このn-ドリフト層の電流経路を短くすれば、ドリフト抵抗が低くなるので MOSFETの実質的なオン抵抗が下がるという効果が得られる。
【0003】
その一方で、高抵抗のn-ドリフト層の部分は、オフ状態のときには空乏化して耐圧を高める。したがって、n-ドリフト層が薄くなると、pベース領域とドリフト領域との間のpn接合から進行するドレイン−ベース間空乏層が広がる幅が狭くなり、シリコンの臨界電界強度に早く達するため、耐圧が低下してしまう。逆に、耐圧の高い半導体素子では、n-ドリフト層が厚いため、順電圧やオン抵抗が大きくなり、損失が増えてしまう。このように、順電圧やオン抵抗(あるいは電流容量)と耐圧との間には、トレードオフ関係がある。
【0004】
このトレードオフ関係は、IGBTやバイポーラトランジスタやダイオード等の半導体素子においても同様に成立することが知られている。また、このトレードオフ関係は、オン状態のときにドリフト電流が流れる方向と、オフ状態のときの空乏層の伸びる方向とが異なる横型半導体素子にも共通である。
【0005】
上述したトレードオフ関係による問題の解決法として、不純物濃度を高めた第1導電型半導体領域よりなるドリフト領域と、第2導電型半導体領域よりなる仕切り領域とを、交互に繰り返し接合した並列pn構造のドリフト層を有する超接合半導体素子が公知である(下記特許文献1〜4、非特許文献1などを参照。)。超接合半導体素子では、並列pn構造の不純物濃度が高くても、オフ状態のときに、空乏層が、並列pn構造の縦方向に伸びる各pn接合から横方向に広がり、ドリフト層全体を空乏化するため、高耐圧化を図ることができる。そして、並列pn構造のピッチ幅を狭くして不純物濃度を高くすることによって、上述したトレードオフが大幅に改善されることが知られている。
【0006】
【特許文献1】
欧州特許出願第0053854号明細書
【特許文献2】
米国特許第5216275号明細書
【特許文献3】
米国特許第5438215号明細書
【特許文献4】
特開平9−266311号公報
【非特許文献1】
Tatsuhiko Fujihara,「Theory of semiconductor Superjunction Devices」 Jpn.J.Appl.Phys.Vol.36(1997)pp.6254−6262 Part 1,No.10,October 1997
【0007】
【発明が解決しようとする課題】
しかしながら、並列pn構造のピッチ幅を狭くして不純物濃度を高くした場合、ドリフト領域の不純物濃度の増加にともなってキャリアの移動度が低下し、特にドリフト領域の不純物濃度がおおよそ1015[cm-3]を超えるとキャリア移動度の低下傾向が強まるため、実際にはオン抵抗が十分に低くならず、上述したトレードオフの改善効果が小さいという問題点があった。
【0008】
本発明は、上記問題点に鑑みてなされたものであって、不純物濃度が高い並列pn構造を有する超接合半導体素子において、オン抵抗を十分に低減し、それによって順電圧やオン抵抗と耐圧との間のトレードオフ関係を十分に改善することができる超接合半導体素子を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明は、微細ピッチで、不純物濃度の高い並列pn構造を有する超接合半導体素子において、並列pn構造のp型半導体領域およびn型半導体領域のそれぞれの実効的な総不純物量を保持したまま、ドリフト領域の体積を大きくし、一方、仕切り領域の体積を小さくした構成であることを特徴とする。
【0010】
この発明によれば、ドリフト領域の不純物濃度が下がるので、キャリア移動度が低下するのを防ぐことができる。ところで、超接合半導体素子では、並列pn構造を構成するp型半導体領域の実効的な総不純物量とn型半導体領域の実効的な総不純物量とが同じであれば、それらp型半導体領域とn型半導体領域の体積が異なっていても、それらの体積が同じ場合とほぼ同じ耐圧が得られることが知られている。したがって、耐圧の低下を招くことなく、オン抵抗を小さくすることができる。
【0011】
具体的には、単純に直方体のp型半導体領域とn型半導体領域とを交互に接合してできる縦型のストライプ状の並列pn構造の場合、ドリフト領域の幅をd1[μm]とし、仕切り領域の幅をd2[μm]とすると、d1+d2の値が36μm以下であり、かつd1>d2である。その理由は、ドリフト領域の不純物濃度をn[cm-3]とし、仕切り領域の不純物濃度をn[cm-3]とすると、高い耐圧と低いオン抵抗の両方が得られる概ね最適な不純物濃度は、それぞれつぎの(1)式および(2)式で与えられる。
【0012】
【数5】

Figure 0004265201
【0013】
【数6】
Figure 0004265201
【0014】
ここで、簡単な場合として、d1およびd2をともに18μmとすると、上記(1)式より、ドリフト領域の不純物濃度nは1.00×1015cm-3となる。したがって、d1+d2の値が36μm以下であるような超接合半導体素子において、キャリア移動度の低下を防ぐことができる。
【0015】
本発明は、並列pn構造が上述したストライプ状である場合に限らず、並列pn構造がセル状である場合にも同様に成り立つが、セル状の場合、最適な不純物濃度はセルの横断面形状やセルの配列の仕方などに依存するので、最適な不純物濃度の算出は複雑である。しかし、ドリフト領域の不純物濃度が1015cm-3程度になる並列pn構造の寸法は、つぎのようなおおよその見積もりによって知ることができる。
【0016】
簡単な場合として、直径d1[μm]の円柱形状をしたドリフト領域を、互いの間をd2[μm]だけ開けて、三角格子状または四角格子状に配置したセル状の並列pn構造を想定し、d1=d2=d[μm]とする。このときの円柱形ドリフト領域の中心間距離D1は、d1+d2[μm]である。この円柱形状のドリフト領域を有する並列pn構造を、ドリフト領域および仕切り領域のそれぞれの幅をd1およびd2とし、d1=d2=d[μm]となるストライプ状の並列pn構造であって、並列pn構造の接合長さが同じであるものと比較すると、ドリフト領域の体積は0.4倍程度になり、仕切り領域の体積は1.5倍程度になる。ここで、並列pn構造の接合長さとは、ドリフト電流が流れる方向の、ドリフト領域と仕切り領域との接触部分の寸法である。
【0017】
つまり、並列pn構造がストライプ状である場合とセル状である場合のドリフト領域における総不純物量が同じであれば、セル状の場合のドリフト領域の不純物濃度は、ストライプ状の場合の1/0.4倍になる。そこで、セル状の並列pn構造のドリフト領域の濃度nが1015cm-3となるときのdの値を求めるにあたって、便宜的にnを0.4×1015cm-3として前記(1)式を用いれば、dの値は40μmとなる。したがって、セル状のドリフト領域を有する並列pn構造の場合には、d1+d2の値が80μm以下であるような超接合半導体素子において、キャリア移動度の低下を防ぐことができると考えられる。
【0018】
なお、ドリフト領域のセル形状が円柱形ではなく、三角柱や四角柱状など、横断面形状が円形でない場合には、その断面積をs1[μm2]としたときの2√(s1/3.14)の値を直径d1[μm]とする断面円形状で、かつ実際のドリフト領域と同じ体積の円柱形ドリフト領域に置き換えて考えればよい。そうすれば、上述した円柱形ドリフト領域の場合と同様にして、ドリフト領域の不純物濃度が1015cm-3程度になる並列pn構造のおおよその寸法が求められる。
【0019】
また、セル状の並列pn構造において、直径d2[μm]の円柱形状をした仕切り領域が、互いの間をd1[μm]だけ開けて、三角格子状または四角格子状に配置されている場合も、上述した円柱形状のドリフト領域が配置されている場合と同様にして、ドリフト領域の不純物濃度が1015cm-3程度になる並列pn構造のおおよその寸法を見積もることができる。このときの円柱形仕切り領域の中心間距離D2は、d1+d2[μm]である。
【0020】
簡単な場合として、d1=d2=d[μm]とし、この円柱形仕切り領域を有する並列pn構造を、ドリフト領域および仕切り領域の幅がそれぞれd1およびd2で、d1=d2=d[μm]となるストライプ状の並列pn構造であって、並列pn構造の接合長さが同じであるものと比較すると、ドリフト領域の体積は1.5倍程度になり、仕切り領域の体積は0.4倍程度になる。
【0021】
つまり、セル状の場合のドリフト領域の不純物濃度は、ストライプ状の場合の1/1.5倍に相当する。そこで、前記(1)式において、便宜的にnを1.5×1015cm-3とすると、dの値は12.5μmとなる。したがって、セル状の仕切り領域を有する並列pn構造の場合には、d1+d2の値が25μm以下であるような超接合半導体素子において、キャリア移動度の低下を防ぐことができると考えられる。
【0022】
なお、仕切り領域のセル形状が円柱形ではなく、三角柱や四角柱状など、横断面形状が円形でない場合には、その断面積をs2[μm2]としたときの2√(s2/3.14)の値を直径d2[μm]とする断面円形状で、かつ実際の仕切り領域と同じ体積の円柱形仕切り領域に置き換えて考えればよい。そうすれば、上述した円柱形仕切り領域の場合と同様にして、ドリフト領域の不純物濃度が1015cm-3程度になる並列pn構造のおおよその寸法が求められる。
【0023】
また、横型のストライプ状の並列pn構造の場合には、ドリフト領域および仕切り領域の幅をそれぞれd1[μm]およびd2[μm]とし、ドリフト領域および仕切り領域の不純物濃度をそれぞれn[cm-3]およびn[cm-3]とすると、高い耐圧と低いオン抵抗の両方が得られる概ね最適な不純物濃度nおよびnは、それぞれつぎの(3)式および(4)式で与えられる。
【0024】
【数7】
Figure 0004265201
【0025】
【数8】
Figure 0004265201
【0026】
簡単な場合として、d1およびd2をともに12μmとすると、上記(3)式より、ドリフト領域の不純物濃度nは1.00×1015cm-3となる。つまり、d1+d2の値が24μm以下であるような超接合半導体素子において、キャリア移動度の低下を防ぐことができる。
【0027】
なお、上記(1)式〜(4)式は、上記非特許文献1からの引用している。上記非特許文献1によれば、シリコンデバイスにおける最適濃度がND=1.41×1012・α7/6・d-7/5(cm-3) (4.1)において与えられ、上記αは、単位面積当たりのオン抵抗と耐圧とのトレードオフが最も良くなる値として、横型デバイスの場合にはα=1/3、縦型デバイスの場合にはα=1/2であることが示されている。ただし、上記非特許文献1では、d1=d2=dとしているため、本発明では、それを一般化するために、dを(d1+d2)に置き換えている。そして、ND*d=n1*d1=n2*d2となるようにn1もしくはn2を求めている。さらに、d1、d2[μm]に対して、n1、n2[cm-3]が求まるような式に改めているので、上記(1)式〜(4)式には、単位を変換するための係数が存在する。
【0028】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照しつつ詳細に説明する。なお、本明細書において、nまたはpを冠記した層や領域は、それぞれ電子または正孔を多数キャリアとする層や領域を意味している。また、nやpに付した添字の+は比較的高不純物濃度であり、−は比較的低不純物濃度であることを意味している。また、半導体素子の表面側から裏面側へ向かう方向を縦方向とし、これに交差する方向を横方向とする。また、以下の説明では、第1導電型をn型とし、第2導電型をp型とするが、その逆でも同様である。
【0029】
実施の形態1.
図1は、本発明の実施の形態1にかかる縦型プレーナMOSFETの構成を示す縦断面図であり、図2は、その並列pn構造の上端面の構成を示す平面図である。図1に示すように、並列pn接合層20は、縦方向に伸びるnドリフト領域1と、縦方向に伸びるp+仕切り領域2とが、横方向に、交互に繰り返し接合された縦型ストライプ状の構成となっている。
【0030】
図1または図2に示すように、nドリフト領域1の幅をd1[μm]とし、p+仕切り領域2の幅をd2[μm]とすると、d1とd2との和、すなわち並列pn構造の一対のpn接合の繰り返しのピッチ幅は、36μm以下であり、かつd1の方がd2よりも大きい。また、nドリフト領域1の実効的な総不純物量と、p+仕切り領域2の実効的な総不純物量は、概ね同じである。そして、nドリフト領域1の実効的な不純物濃度n[cm-3]は、概ね前記(1)式で求められる濃度である。また、p+仕切り領域2の実効的な不純物濃度n[cm-3]は、概ね前記(2)式で求められる濃度である。
【0031】
図1に示すように、並列pn接合層20と基板裏面の第2の電極であるドレイン電極3との間は、n+半導体基板よりなる低抵抗層4となっている。また、基板表面側には、表面nドリフト領域5、pベース領域6、p+コンタクト領域7、n+ソース領域8、ゲート絶縁膜9、ゲート電極10、層間絶縁膜11および第1の電極であるソース電極12よりなる表面素子構造が形成されている。
【0032】
ここで、本発明者らがおこなったシミュレーションの結果を図3に示す。このシミュレーションでは、図2に示すように、並列pn接合層20は、基板表面側から見てストライプ状であり、nドリフト領域1の幅d1とp+仕切り領域2の幅d2との和を6μmとし、並列pn接合層20の接合長さl(図1参照)を11.5μmとした。また、nドリフト領域1の不純物濃度およびp+仕切り領域2の不純物濃度を、それぞれ前記(1)式および前記(2)式より求まる濃度とした。また、素子表面のMOS構造を省いたダイオードまたは抵抗体で、耐圧と単位面積当たりのオン抵抗をシミュレーションにより調べた。
【0033】
図3より、nドリフト領域1の幅d1を広げてnドリフト領域1の不純物濃度を低下させるのにともなって、単位面積当たりのオン抵抗が減少するという傾向が確認された。また、nドリフト領域1およびp+仕切り領域2の総不純物量がそれぞれ一定に保たれているため、nドリフト領域1の幅d1が変化しても耐圧はほぼ一定であることが確認された。
【0034】
上述した実施の形態1によれば、並列pn接合層20のピッチ幅が、並列pn接合層20のnドリフト領域1の実効的な不純物濃度が1015cm-3以上である従来の超接合半導体素子における並列pn接合層のピッチ幅と同じで、かつ並列pn接合層20のnドリフト領域1およびp+仕切り領域2のそれぞれの実効的な総不純物量が、従来の超接合半導体素子における並列pn接合層のnドリフト領域およびp+仕切り領域のそれぞれの実効的な総不純物量と同じであっても、nドリフト領域1の幅を広げ、p+仕切り領域2の幅を狭めることによって、nドリフト領域1の体積が大きくなり、nドリフト領域1ではより広範に不純物が分布することになるので、nドリフト領域1の不純物濃度が低くなり、キャリア移動度が低下するのを防ぐことができる。したがって、耐圧の低下を招くことなく、オン抵抗を小さくすることができるので、順電圧やオン抵抗(あるいは電流容量)と耐圧との間のトレードオフ関係を十分に改善することができる。
【0035】
実施の形態2.
図4は、本発明の実施の形態2にかかる縦型プレーナMOSFETの構成を示す縦断面図である。図4に示すように、実施の形態2は、実施の形態1において、並列pn接合層20のnドリフト領域1が絶縁体領域13により分断された構成となっている。その他の構成は、実施の形態1と同じである。実施の形態1と同じ構成については、実施の形態1と同一の符号を付して説明を省略する。
【0036】
実施の形態2では、nドリフト領域1が絶縁体領域13により分断されているため、nドリフト領域1の幅d1[μm]の定め方に注意が必要である。具体的には、絶縁体領域13の両脇に、nドリフト領域1が半分ずつに分かれて構成されているので、その一つの幅はd1/2となる。
【0037】
絶縁体領域13は、たとえば半導体基板に形成されたトレンチ内を、酸化膜等の絶縁体で埋め込むことにより形成される。したがって、実施の形態2は、半導体基板にトレンチを設け、その側壁へドーピングをおこなった後、酸化膜等の絶縁体でトレンチを埋め込むことにより、並列pn接合層20を形成する場合に有効である。
【0038】
上述した実施の形態2によれば、実施の形態1と同様に、nドリフト領域1の不純物濃度が低くなり、キャリア移動度が低下するのを防ぐことができるので、耐圧の低下を招くことなく、オン抵抗を小さくすることができる。したがって、順電圧やオン抵抗(あるいは電流容量)と耐圧との間のトレードオフ関係を十分に改善することができる。
【0039】
実施の形態3.
図5は、本発明の実施の形態3にかかる縦型プレーナMOSFETの構成を示す縦断面図である。図5に示すように、実施の形態3は、実施の形態1において、並列pn接合層20のp+仕切り領域2が、半導体基板に形成されたトレンチの側壁に沿って設けられている。このトレンチの内側領域は、酸化膜等の絶縁体よりなる絶縁体領域13となっている。その他の構成は、実施の形態1と同じである。実施の形態1と同じ構成については、実施の形態1と同一の符号を付して説明を省略する。
【0040】
実施の形態3は、実施の形態2と同様に、トレンチを利用して並列pn接合層20を形成する場合に有効であるが、特に、トレンチ側壁から横方向への拡散距離が短くて済むので、並列pn接合層20の形成工程が簡単になるという利点がある。なお、並列pn接合層20は、ストライプ状に限らず、図6に示すように、市松模様状としてもよい。
【0041】
上述した実施の形態3によれば、実施の形態1と同様に、nドリフト領域1の不純物濃度が低くなり、キャリア移動度が低下するのを防ぐことができるので、耐圧の低下を招くことなく、オン抵抗を小さくすることができる。したがって、順電圧やオン抵抗(あるいは電流容量)と耐圧との間のトレードオフ関係を十分に改善することができる。
【0042】
実施の形態4.
図7は、本発明の実施の形態4にかかる縦型トレンチMOSFETの構成を示す縦断面図である。図7に示すように、実施の形態4は、実施の形態1において、MOSFETの表面素子構造がトレンチ構造となっている。トレンチは、基板表面から、pベース領域36を貫通して、並列pn接合層20のnドリフト領域1内にまで達している。トレンチの内側には、ゲート絶縁膜39を介してゲート電極40が埋め込まれている。
【0043】
pベース領域36内の表面層の、トレンチ側壁の外側には、n+ソース領域38が設けられている。また、pベース領域36内の表面層には、p+コンタクト領域37が設けられている。第1の電極であるソース電極42は、n+ソース領域38およびp+コンタクト領域37に接しており、層間絶縁膜41によりゲート電極40から絶縁されている。その他の構成は、実施の形態1と同じである。実施の形態1と同じ構成については、実施の形態1と同一の符号を付して説明を省略する。
【0044】
上述した実施の形態4によれば、実施の形態1と同様に、nドリフト領域1の不純物濃度が低くなり、キャリア移動度が低下するのを防ぐことができるので、耐圧の低下を招くことなく、オン抵抗を小さくすることができる。したがって、順電圧やオン抵抗(あるいは電流容量)と耐圧との間のトレードオフ関係を十分に改善することができる。
【0045】
また、実施の形態4によれば、nドリフト領域1とpベース領域36との間の空乏化が促進されるので、オフ状態でのトレンチ底周辺における電界緩和が期待される。また、実施の形態4によれば、従来の超接合半導体素子における並列pn接合層のピッチ幅と同じピッチ幅で、nドリフト領域1の幅d1を広げることができるので、MOSFETがオンしたときに、チャネルからnドリフト領域1に流れ込んだオン電流が、nドリフト領域1内を放射状に広がりながら流れる際に有利であることが期待される。
【0046】
実施の形態5.
図8は、本発明の実施の形態5にかかるダイオードの構成を示す斜視図である。図8に示すように、並列pn接合層20は、縦方向に伸びる円柱形のnドリフト領域1が三角格子状に配置され、その周りをp+仕切り領域2が囲む構成となっている。図8に示すように、nドリフト領域1の直径をd1[μm]とし、隣り合うnドリフト領域1間の距離をd2[μm]とすると、隣り合うnドリフト領域1の互いの中心間距離をD1[μm]は、d1とd2との和になる。このとき、D1の値、すなわちd1+d2は80μm以下であり、かつd1の方がd2よりも大きい。
【0047】
図8に示すように、並列pn接合層20と基板裏面の第2の電極であるカソード電極との間は、n+半導体基板よりなる低抵抗層4となっている。また、基板表面には、pアノード層56が設けられている。なお、図が煩雑になるのを避けるため、図8では、カソード電極および第1の電極であるアノード電極の図示を省略している。
【0048】
上述した実施の形態5によれば、実施の形態1と同様に、nドリフト領域1の不純物濃度が低くなり、キャリア移動度が低下するのを防ぐことができるので、耐圧の低下を招くことなく、オン抵抗を小さくすることができる。したがって、順電圧やオン抵抗(あるいは電流容量)と耐圧との間のトレードオフ関係を十分に改善することができる。なお、nドリフト領域1の配置を四角格子状にしても、nドリフト領域1を平面的に無駄なく均一に配置することができる。また、表面素子構造をMOSFETの構造としても、同様の効果が得られる。
【0049】
また、nドリフト領域1が円柱形ではなく、三角柱や四角柱状など、横断面形状が円形でない場合には、nドリフト領域1の断面積をs1[μm2]としたときに、2√(s1/3.14)で求まる値を直径d1[μm]として考えればよい。
【0050】
実施の形態6.
図9は、本発明の実施の形態6にかかるダイオードの構成を示す斜視図である。図9に示すように、並列pn接合層20は、縦方向に伸びる円柱形のp+仕切り領域2が三角格子状に配置され、その周りをnドリフト領域1が囲む構成となっている。図9に示すように、p+仕切り領域2の直径をd2[μm]とし、隣り合うp+仕切り領域2間の距離をd1[μm]とすると、隣り合うp+仕切り領域2の互いの中心間距離をD2[μm]は、d1とd2との和になる。このとき、D2の値、すなわちd1+d2は25μm以下であり、かつd1の方がd2よりも大きい。
【0051】
図9に示すように、並列pn接合層20と基板裏面の第2の電極であるカソード電極(図示省略)との間は、n+半導体基板よりなる低抵抗層4となっている。また、基板表面には、pアノード層56および図示省略した第1の電極であるアノード電極が設けられている。
【0052】
上述した実施の形態6によれば、実施の形態1と同様に、nドリフト領域1の不純物濃度が低くなり、キャリア移動度が低下するのを防ぐことができるので、耐圧の低下を招くことなく、オン抵抗を小さくすることができる。したがって、順電圧やオン抵抗(あるいは電流容量)と耐圧との間のトレードオフ関係を十分に改善することができる。なお、p+仕切り領域2の配置を四角格子状にしても、nドリフト領域1を平面的に無駄なく均一に配置することができる。また、表面素子構造をMOSFETの構造としても、同様の効果が得られる。
【0053】
また、p+仕切り領域2が円柱形ではなく、三角柱や四角柱状など、横断面形状が円形でない場合には、p+仕切り領域2の断面積をs2[μm2]としたときに、2√(s2/3.14)で求まる値を直径d2[μm]として考えればよい。
【0054】
実施の形態7.
図10は、本発明の実施の形態7にかかる横型プレーナMOSFETの構成を示す縦断面図であり、図11は、その並列pn構造のドリフト電流が流れる方向に直交する断面(図10のA−A’における断面)の構成を示す縦断面図である。図10に示すように、第1の電極であるソース電極72と、第2の電極であるドレイン電極63は、素子の同じ主面上に形成されている。そして、並列pn接合層80は、ソース電極72側からドレイン電極63側へ伸びるnドリフト領域61およびp+仕切り領域62が、nドリフト領域61の伸びる方向に直交する方向に、交互に繰り返し接合された横型ストライプ状の構成となっている。
【0055】
図11に示すように、nドリフト領域61の幅をd1[μm]とし、p+仕切り領域62の幅をd2[μm]とすると、d1とd2との和は、24μm以下であり、かつd1の方がd2よりも大きい。また、nドリフト領域61の実効的な総不純物量と、p+仕切り領域62の実効的な総不純物量は、概ね同じである。そして、nドリフト領域61の実効的な不純物濃度n[cm-3]は、概ね前記(3)式で求められる濃度である。また、p+仕切り領域62の実効的な不純物濃度n[cm-3]は、概ね前記(4)式で求められる濃度である。
【0056】
図10に示すように、p-半導体基板81上にn-層82が設けられている。n-層82の表面層には、並列pn接合層80を構成するnドリフト領域61およびp+仕切り領域62と、pベース領域66が形成されている。nドリフト領域61の表面層には、ドレイン電極63に接触し、ドレイン領域であるn+低抵抗領域64が形成されている。また、pベース領域66の表面層には、ソース電極72に接触するp+コンタクト領域67およびn+ソース領域68が形成されている。pベース領域66の、n+ソース領域68と並列pn接合層80との間の表面上には、ゲート絶縁膜69を介してゲート電極70が形成されている。
【0057】
上述した実施の形態7によれば、横型半導体素子においても、実施の形態1と同様に、nドリフト領域61の不純物濃度が低くなり、キャリア移動度が低下するのを防ぐことができるので、耐圧の低下を招くことなく、オン抵抗を小さくすることができる。したがって、順電圧やオン抵抗(あるいは電流容量)と耐圧との間のトレードオフ関係を十分に改善することができる。なお、図12に示す部分断面図のように、p-半導体基板81上にn-層82が設けられ、さらにその上にp-層83が設けられたダブルリサーフ構造や、図13に示す部分断面図のように、p-半導体基板81上に絶縁層84が設けられたSOI(シリコン・オン・インシュレータ)構造とすれば、より特性のよい半導体素子が得られる。
【0058】
以上において本発明は、耐圧領域を構成する超接合構造にかかわるものであるため、ソースやドレインの構造およびそれらの製造プロセス等については任意である。したがって、本発明は、MOSFETおよびダイオードに限らず、IGBT、バイポーラトランジスタまたはGTOサイリスタ等にも適用され、それら半導体素子は縦型であってもよいし、横型であってもよい。また、本発明は、特開平11−221861号公報に開示されているように、並列pn接合層20,80のnドリフト領域1,61とp+仕切り領域2,62の不純物量が異なっている場合にも適用可能である。また、上述した各半導体領域の寸法や不純物濃度の値は一例であり、本発明はこれに限定されるものではない。
【0059】
【発明の効果】
本発明によれば、微細ピッチで、不純物濃度の高い並列pn構造を有する超接合半導体素子において、並列pn構造のp型半導体領域およびn型半導体領域のそれぞれの実効的な総不純物量を保持したまま、ドリフト領域の体積を大きくし、一方、仕切り領域の体積を小さくすることにより、ドリフト領域の不純物濃度を下げることができるので、キャリア移動度が低下するのを防ぐことができる。したがって、耐圧の低下を招くことなく、オン抵抗を小さくすることができるので、順電圧やオン抵抗(あるいは電流容量)と耐圧との間のトレードオフ関係を十分に改善することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1にかかる縦型プレーナMOSFETの構成を示す縦断面図である。
【図2】図1に示す素子の並列pn構造の上端面の構成を示す平面図である。
【図3】単位面積当たりのオン抵抗と並列pn構造のドリフト領域幅との関係を示すシミュレーション結果である。
【図4】本発明の実施の形態2にかかる縦型プレーナMOSFETの構成を示す縦断面図である。
【図5】本発明の実施の形態3にかかる縦型プレーナMOSFETの構成を示す縦断面図である。
【図6】図5に示す素子の並列pn構造の上端面の構成の他の例を示す平面図である。
【図7】本発明の実施の形態4にかかる縦型トレンチMOSFETの構成を示す縦断面図である。
【図8】本発明の実施の形態5にかかるダイオードの構成を示す斜視図である。
【図9】本発明の実施の形態6にかかるダイオードの構成を示す斜視図である。
【図10】本発明の実施の形態7にかかる横型プレーナMOSFETの構成を示す縦断面図である。
【図11】図10に示す素子の並列pn構造のドリフト電流が流れる方向に直交する断面の構成を示す縦断面図である。
【図12】図10に示す素子の並列pn構造のドリフト電流が流れる方向に直交する断面の構成の他の例を示す縦断面図である。
【図13】図10に示す素子の並列pn構造のドリフト電流が流れる方向に直交する断面の構成のさらに他の例を示す縦断面図である。
【符号の説明】
1,61 第1導電型半導体領域(nドリフト領域)
2,62 第2導電型半導体領域(p+仕切り領域)
3,63 第2の電極(ドレイン電極)
4 第1導電型低抵抗層
12,42,72 第1の電極(ソース電極)
20,80 並列pn接合層
64 第1導電型低抵抗領域[0001]
BACKGROUND OF THE INVENTION
The present invention provides a drift region made of a first conductivity type semiconductor extending from the first electrode side to the second electrode side of a semiconductor element, and a partition region made of a second conductivity type semiconductor extending in the same manner, Having a configuration in which the layers are alternately and repeatedly joined in a direction crossing the direction in which the parallel pn junction extends (this configuration is referred to as a parallel pn junction layer or a parallel pn structure), and when the parallel pn junction layer is in an on state, a current flows. Regarding a semiconductor element (this is referred to as a superjunction semiconductor element) which becomes a depletion drift layer in an off state, particularly in a MOSFET (insulated gate field effect transistor), an IGBT (insulated gate bipolar transistor), a bipolar transistor, etc. The present invention relates to a superjunction semiconductor element that can achieve both high breakdown voltage and large current capacity.
[0002]
[Prior art]
In general, semiconductor elements are classified into a horizontal element having electrodes formed on one side and a vertical element having electrodes on both sides. In the vertical semiconductor element, the direction in which the drift current flows in the on state is the same as the direction in which the depletion layer due to the reverse bias voltage extends in the off state. In a normal planar type n-channel vertical MOSFET, high resistance n - The portion of the drift layer functions as a region in which a drift current flows in the vertical direction (depth direction) when in the on state. Therefore, this n - If the current path of the drift layer is shortened, the drift resistance is lowered, so that the substantial on-resistance of the MOSFET is reduced.
[0003]
On the other hand, high resistance n - The drift layer portion is depleted in the off state to increase the breakdown voltage. Therefore, n - When the drift layer is thinned, the width of the drain-base depletion layer proceeding from the pn junction between the p base region and the drift region is narrowed, and the critical electric field strength of silicon is reached quickly, so that the breakdown voltage decreases. . Conversely, in a semiconductor device with a high breakdown voltage, n - Since the drift layer is thick, the forward voltage and the on-resistance increase, and the loss increases. Thus, there is a trade-off relationship between the forward voltage, on-resistance (or current capacity), and breakdown voltage.
[0004]
This trade-off relationship is also known to hold in semiconductor devices such as IGBTs, bipolar transistors, and diodes. This trade-off relationship is also common to lateral semiconductor elements in which the direction in which the drift current flows in the on state and the direction in which the depletion layer extends in the off state are different.
[0005]
As a solution to the above-described problem due to the trade-off relationship, a parallel pn structure in which a drift region composed of a first conductivity type semiconductor region with an increased impurity concentration and a partition region composed of a second conductivity type semiconductor region are alternately and repeatedly joined. There are known super junction semiconductor elements having a drift layer (see Patent Documents 1 to 4 and Non-Patent Document 1 below). In a superjunction semiconductor device, even when the impurity concentration of the parallel pn structure is high, the depletion layer extends laterally from each pn junction extending in the vertical direction of the parallel pn structure in the off state, and the entire drift layer is depleted. Therefore, a high breakdown voltage can be achieved. It is known that the trade-off described above is greatly improved by narrowing the pitch width of the parallel pn structure and increasing the impurity concentration.
[0006]
[Patent Document 1]
European Patent Application No. 0053854
[Patent Document 2]
US Pat. No. 5,216,275
[Patent Document 3]
US Pat. No. 5,438,215
[Patent Document 4]
JP-A-9-266611
[Non-Patent Document 1]
Tatsuhiko Fujihara, “Theory of semiconductor Superjunction Devices” Jpn. J. et al. Appl. Phys. Vol. 36 (1997) p. 6254-6262 Part 1, no. 10, October 1997
[0007]
[Problems to be solved by the invention]
However, when the impurity concentration is increased by narrowing the pitch width of the parallel pn structure, the carrier mobility decreases as the impurity concentration in the drift region increases, and in particular, the impurity concentration in the drift region is approximately 10%. 15 [Cm -3 ], The tendency of the carrier mobility to decrease increases, so that the on-resistance is not sufficiently low in practice, and the above-described trade-off improvement effect is small.
[0008]
The present invention has been made in view of the above problems, and in a superjunction semiconductor device having a parallel pn structure with a high impurity concentration, the on-resistance is sufficiently reduced, whereby forward voltage, on-resistance and breakdown voltage are reduced. An object of the present invention is to provide a superjunction semiconductor device that can sufficiently improve the trade-off relationship between the two.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a superjunction semiconductor device having a parallel pn structure with a fine pitch and a high impurity concentration. The structure is characterized in that the volume of the drift region is increased while the volume of the partition region is decreased while the amount of impurities is maintained.
[0010]
According to the present invention, since the impurity concentration in the drift region is lowered, it is possible to prevent the carrier mobility from being lowered. By the way, in the super junction semiconductor element, if the effective total impurity amount of the p-type semiconductor region constituting the parallel pn structure is the same as the effective total impurity amount of the n-type semiconductor region, the p-type semiconductor region It is known that even if the n-type semiconductor regions have different volumes, substantially the same breakdown voltage can be obtained as when the volumes are the same. Therefore, the on-resistance can be reduced without causing a decrease in breakdown voltage.
[0011]
Specifically, in the case of a vertical stripe-shaped parallel pn structure that is simply formed by alternately joining a rectangular parallelepiped p-type semiconductor region and an n-type semiconductor region, the width of the drift region is defined as d. 1 [Μm] and the width of the partition region is d 2 If [μm], d 1 + D 2 Is 36 μm or less, and d 1 > D 2 It is. The reason is that the impurity concentration in the drift region is n 1 [Cm -3 ], And the impurity concentration of the partition region is n 2 [Cm -3 ], The substantially optimum impurity concentration that provides both high breakdown voltage and low on-resistance is given by the following equations (1) and (2), respectively.
[0012]
[Equation 5]
Figure 0004265201
[0013]
[Formula 6]
Figure 0004265201
[0014]
Here, as a simple case, d 1 And d 2 Is 18 μm, the impurity concentration n in the drift region is calculated from the above equation (1). 1 Is 1.00 × 10 15 cm -3 It becomes. Therefore, d 1 + D 2 In a superjunction semiconductor device having a value of 36 μm or less, a decrease in carrier mobility can be prevented.
[0015]
The present invention is not limited to the case where the parallel pn structure is the above-described stripe shape, but similarly holds when the parallel pn structure is a cell shape. In the case of the cell shape, the optimum impurity concentration is the cross-sectional shape of the cell. Calculation of the optimum impurity concentration is complicated. However, the impurity concentration in the drift region is 10 15 cm -3 The approximate size of the parallel pn structure can be found by the following approximate estimate.
[0016]
As a simple case, the diameter d 1 [Μm] cylindrical drift regions are d between each other. 2 Assuming a cell-like parallel pn structure that is opened in [μm] and arranged in a triangular lattice shape or a square lattice shape, d 1 = D 2 = D [μm]. The center distance D of the cylindrical drift region at this time 1 D 1 + D 2 [Μm]. The parallel pn structure having this cylindrical drift region is defined as the width of each of the drift region and the partition region being d. 1 And d 2 And d 1 = D 2 Compared to a stripe-shaped parallel pn structure in which = d [μm] and the junction length of the parallel pn structure is the same, the volume of the drift region is about 0.4 times, and the volume of the partition region Becomes about 1.5 times. Here, the junction length of the parallel pn structure is the dimension of the contact portion between the drift region and the partition region in the direction in which the drift current flows.
[0017]
That is, if the total impurity amount in the drift region is the same when the parallel pn structure is striped and in the cell shape, the impurity concentration in the drift region in the cell shape is 1/0 that in the stripe shape. .4 times. Therefore, the concentration n of the drift region of the cell-like parallel pn structure 1 10 15 cm -3 In calculating the value of d when 1 0.4 × 10 15 cm -3 If the above equation (1) is used, the value of d is 40 μm. Therefore, in the case of a parallel pn structure having a cellular drift region, d 1 + D 2 In a superjunction semiconductor element having a value of 80 μm or less, it is considered that a decrease in carrier mobility can be prevented.
[0018]
If the cell shape of the drift region is not cylindrical, but the cross-sectional shape is not circular, such as a triangular prism or a quadrangular prism, the cross-sectional area is s 1 [Μm 2 ] 2√ (s 1 /3.14) is the diameter d 1 What is necessary is just to consider replacing it with a cylindrical drift region having a circular cross section of [μm] and the same volume as the actual drift region. Then, the impurity concentration in the drift region is 10 as in the case of the cylindrical drift region described above. 15 cm -3 An approximate dimension of the parallel pn structure is required.
[0019]
In the cell-like parallel pn structure, the diameter d 2 [Μm] cylindrical partition regions are d between each other 1 Even in the case of being arranged in a triangular lattice shape or a quadrangular lattice shape by opening [μm], the impurity concentration of the drift region is 10 as in the case where the cylindrical drift region described above is disposed. 15 cm -3 The approximate size of the parallel pn structure can be estimated. The center distance D of the cylindrical partition region at this time 2 D 1 + D 2 [Μm].
[0020]
As a simple case, d 1 = D 2 = D [μm], and the parallel pn structure having the cylindrical partition region has a width of the drift region and the partition region of d 1 And d 2 And d 1 = D 2 Compared with a stripe-shaped parallel pn structure in which = d [μm] and the junction length of the parallel pn structure is the same, the volume of the drift region is about 1.5 times, and the volume of the partition region Becomes about 0.4 times.
[0021]
That is, the impurity concentration of the drift region in the case of the cell shape corresponds to 1 / 1.5 times that in the case of the stripe shape. Therefore, in the above formula (1), for convenience, n 1 1.5 × 10 15 cm -3 Then, the value of d is 12.5 μm. Therefore, in the case of a parallel pn structure having a cellular partition region, d 1 + D 2 In a superjunction semiconductor device having a value of 25 μm or less, it is considered that a decrease in carrier mobility can be prevented.
[0022]
If the cell shape of the partition region is not cylindrical, but the cross-sectional shape is not circular, such as a triangular prism or a quadrangular prism, the sectional area is s 2 [Μm 2 ] 2√ (s 2 /3.14) is the diameter d 2 What is necessary is just to consider replacing with a cylindrical partition region having a circular cross section of [μm] and the same volume as the actual partition region. Then, the impurity concentration of the drift region is 10 as in the case of the cylindrical partition region described above. 15 cm -3 An approximate dimension of the parallel pn structure is required.
[0023]
In the case of a horizontal stripe parallel pn structure, the widths of the drift region and the partition region are set to d, respectively. 1 [Μm] and d 2 [Μm], and the impurity concentration of the drift region and the partition region is n 1 [Cm -3 ] And n 2 [Cm -3 ], An approximately optimum impurity concentration n that provides both a high breakdown voltage and a low on-resistance. 1 And n 2 Are given by the following equations (3) and (4), respectively.
[0024]
[Expression 7]
Figure 0004265201
[0025]
[Equation 8]
Figure 0004265201
[0026]
As a simple case, d 1 And d 2 Is 12 μm, the impurity concentration n in the drift region is calculated from the above equation (3). 1 Is 1.00 × 10 15 cm -3 It becomes. That is, d 1 + D 2 In a superjunction semiconductor device having a value of 24 μm or less, a decrease in carrier mobility can be prevented.
[0027]
The above formulas (1) to (4) are cited from Non-Patent Document 1. According to Non-Patent Document 1, the optimum concentration in a silicon device is N. D = 1.41 × 10 12 ・ Α 7/6 ・ D -7/5 (Cm -3 ) Is given in (4.1), and α is the value at which the trade-off between on-resistance per unit area and breakdown voltage is the best, α = 1/3 for horizontal devices, and for vertical devices Indicates that α = ½. However, in the above non-patent document 1, d 1 = D 2 = D, in the present invention, in order to generalize it, d is replaced by (d 1 + D 2 ). And N D * D = n 1 * D 1 = N 2 * D 2 N to be 1 Or n 2 Seeking. And d 1 , D 2 For [μm], n 1 , N 2 [Cm -3 ] Has been changed to an equation such that a coefficient for converting a unit exists in the equations (1) to (4).
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that in this specification, a layer or region with n or p is a layer or region having electrons or holes as majority carriers. Further, the subscript + attached to n or p means a relatively high impurity concentration, and-means a relatively low impurity concentration. In addition, a direction from the front surface side to the back surface side of the semiconductor element is defined as a vertical direction, and a direction intersecting this is defined as a horizontal direction. In the following description, the first conductivity type is n-type and the second conductivity type is p-type, and vice versa.
[0029]
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view showing a configuration of a vertical planar MOSFET according to a first embodiment of the present invention, and FIG. 2 is a plan view showing a configuration of an upper end surface of the parallel pn structure. As shown in FIG. 1, the parallel pn junction layer 20 includes an n drift region 1 extending in the vertical direction and a p extending in the vertical direction. + The partition region 2 has a configuration of a vertical stripe shape that is alternately and repeatedly joined in the horizontal direction.
[0030]
As shown in FIG. 1 or 2, the width of the n drift region 1 is d 1 [Μm], p + The width of the partition area 2 is d 2 If [μm], d 1 And d 2 , That is, the repeated pitch width of a pair of pn junctions in a parallel pn structure is 36 μm or less, and d 1 Is d 2 Bigger than. Further, the effective total impurity amount of the n drift region 1 and p + The effective total amount of impurities in the partition region 2 is substantially the same. The effective impurity concentration n of the n drift region 1 1 [Cm -3 ] Is a concentration generally determined by the equation (1). P + Effective impurity concentration n of the partition region 2 2 [Cm -3 ] Is a concentration generally determined by the equation (2).
[0031]
As shown in FIG. 1, the space between the parallel pn junction layer 20 and the drain electrode 3 as the second electrode on the back surface of the substrate is n + The low resistance layer 4 is made of a semiconductor substrate. Further, on the substrate surface side, a surface n drift region 5, a p base region 6, p + Contact region 7, n + A surface element structure including a source region 8, a gate insulating film 9, a gate electrode 10, an interlayer insulating film 11, and a source electrode 12 as a first electrode is formed.
[0032]
Here, the result of the simulation performed by the present inventors is shown in FIG. In this simulation, as shown in FIG. 2, the parallel pn junction layer 20 has a stripe shape as viewed from the substrate surface side, and the width d of the n drift region 1 1 And p + Width d of partition area 2 2 And the junction length l (see FIG. 1) of the parallel pn junction layer 20 was 11.5 μm. Further, the impurity concentration of the n drift region 1 and p + The impurity concentration of the partition region 2 was set to the concentration obtained from the equation (1) and the equation (2), respectively. In addition, the breakdown voltage and the on-resistance per unit area were examined by simulation with a diode or resistor without the MOS structure on the element surface.
[0033]
From FIG. 3, the width d of the n drift region 1 1 It was confirmed that the on-resistance per unit area decreased as the impurity concentration in the n drift region 1 was decreased by expanding the n drift region 1. Also, n drift region 1 and p + Since the total impurity amount of the partition region 2 is kept constant, the width d of the n drift region 1 1 It was confirmed that the withstand voltage was almost constant even when the value changed.
[0034]
According to the first embodiment described above, the pitch width of the parallel pn junction layer 20 is 10 and the effective impurity concentration of the n drift region 1 of the parallel pn junction layer 20 is 10. 15 cm -3 The same as the pitch width of the parallel pn junction layer in the conventional superjunction semiconductor device as described above, and the n drift region 1 and p of the parallel pn junction layer 20 + The effective total impurity amount of each partition region 2 is determined so that the n drift region and p of the parallel pn junction layer in the conventional super junction semiconductor device + Even if the effective total impurity amount of each partition region is the same, the width of the n drift region 1 is increased, and p + By narrowing the width of the partition region 2, the volume of the n drift region 1 is increased, and impurities are distributed more widely in the n drift region 1. The degree can be prevented from decreasing. Accordingly, since the on-resistance can be reduced without causing a decrease in the withstand voltage, the trade-off relationship between the forward voltage or the on-resistance (or current capacity) and the withstand voltage can be sufficiently improved.
[0035]
Embodiment 2. FIG.
FIG. 4 is a longitudinal sectional view showing the configuration of the vertical planar MOSFET according to the second embodiment of the present invention. As shown in FIG. 4, the second embodiment has a configuration in which the n drift region 1 of the parallel pn junction layer 20 is divided by the insulator region 13 in the first embodiment. Other configurations are the same as those of the first embodiment. About the same structure as Embodiment 1, the code | symbol same as Embodiment 1 is attached | subjected and description is abbreviate | omitted.
[0036]
In the second embodiment, since the n drift region 1 is divided by the insulator region 13, the width d of the n drift region 1 1 Care must be taken in determining [μm]. Specifically, since the n drift region 1 is divided in half on both sides of the insulator region 13, the width of one of the regions is d 1 / 2.
[0037]
Insulator region 13 is formed, for example, by burying a trench formed in a semiconductor substrate with an insulator such as an oxide film. Therefore, the second embodiment is effective when the parallel pn junction layer 20 is formed by providing a trench in a semiconductor substrate, doping the sidewall thereof, and then burying the trench with an insulator such as an oxide film. .
[0038]
According to the second embodiment described above, as in the first embodiment, it is possible to prevent the impurity concentration of the n drift region 1 from being lowered and the carrier mobility from being lowered, so that the breakdown voltage is not lowered. , The on-resistance can be reduced. Therefore, the trade-off relationship between the forward voltage, on-resistance (or current capacity) and breakdown voltage can be sufficiently improved.
[0039]
Embodiment 3 FIG.
FIG. 5 is a longitudinal sectional view showing the configuration of the vertical planar MOSFET according to the third embodiment of the present invention. As shown in FIG. 5, the third embodiment is different from the first embodiment in that the p of the parallel pn junction layer 20. + A partition region 2 is provided along the side wall of a trench formed in the semiconductor substrate. An inner region of the trench is an insulator region 13 made of an insulator such as an oxide film. Other configurations are the same as those of the first embodiment. About the same structure as Embodiment 1, the code | symbol same as Embodiment 1 is attached | subjected and description is abbreviate | omitted.
[0040]
The third embodiment is effective in the case where the parallel pn junction layer 20 is formed using a trench, similarly to the second embodiment, but in particular, the diffusion distance in the lateral direction from the trench sidewall can be shortened. There is an advantage that the process of forming the parallel pn junction layer 20 is simplified. The parallel pn junction layer 20 is not limited to a stripe shape, and may be a checkered pattern as shown in FIG.
[0041]
According to the third embodiment described above, as in the first embodiment, the impurity concentration of the n drift region 1 is reduced and the carrier mobility can be prevented from being lowered, so that the breakdown voltage is not lowered. , The on-resistance can be reduced. Therefore, the trade-off relationship between the forward voltage, on-resistance (or current capacity) and breakdown voltage can be sufficiently improved.
[0042]
Embodiment 4 FIG.
FIG. 7 is a longitudinal sectional view showing the configuration of the vertical trench MOSFET according to the fourth embodiment of the present invention. As shown in FIG. 7, in the fourth embodiment, the surface element structure of the MOSFET is a trench structure in the first embodiment. The trench extends from the substrate surface through the p base region 36 and into the n drift region 1 of the parallel pn junction layer 20. A gate electrode 40 is buried inside the trench through a gate insulating film 39.
[0043]
On the outside of the trench sidewall of the surface layer in the p base region 36, n + A source region 38 is provided. The surface layer in the p base region 36 has p + A contact region 37 is provided. The source electrode 42 which is the first electrode is n + Source region 38 and p + It is in contact with the contact region 37 and is insulated from the gate electrode 40 by the interlayer insulating film 41. Other configurations are the same as those of the first embodiment. About the same structure as Embodiment 1, the code | symbol same as Embodiment 1 is attached | subjected and description is abbreviate | omitted.
[0044]
According to the above-described fourth embodiment, as in the first embodiment, the impurity concentration of the n drift region 1 is reduced and the carrier mobility can be prevented from being lowered, so that the breakdown voltage is not lowered. , The on-resistance can be reduced. Therefore, the trade-off relationship between the forward voltage, on-resistance (or current capacity) and breakdown voltage can be sufficiently improved.
[0045]
Further, according to the fourth embodiment, depletion between n drift region 1 and p base region 36 is promoted, so that electric field relaxation around the trench bottom in the off state is expected. Further, according to the fourth embodiment, the width d of the n drift region 1 is equal to the pitch width of the parallel pn junction layer in the conventional super junction semiconductor element. 1 Therefore, when the MOSFET is turned on, it is expected that the on-current that flows from the channel into the n drift region 1 is advantageous when flowing in the n drift region 1 while spreading radially.
[0046]
Embodiment 5 FIG.
FIG. 8 is a perspective view showing a configuration of a diode according to the fifth exemplary embodiment of the present invention. As shown in FIG. 8, in the parallel pn junction layer 20, cylindrical n drift regions 1 extending in the vertical direction are arranged in a triangular lattice shape, and the periphery thereof is p. + The partition area 2 surrounds the structure. As shown in FIG. 8, the diameter of the n drift region 1 is d 1 [Μm], and the distance between adjacent n drift regions 1 is d 2 If [μm], the distance between the centers of the adjacent n drift regions 1 is D 1 [Μm] is d 1 And d 2 And the sum. At this time, D 1 The value of d 1 + D 2 Is 80 μm or less and d 1 Is d 2 Bigger than.
[0047]
As shown in FIG. 8, there is n between the parallel pn junction layer 20 and the cathode electrode as the second electrode on the back surface of the substrate. + The low resistance layer 4 is made of a semiconductor substrate. A p anode layer 56 is provided on the substrate surface. In addition, in order to avoid that a figure becomes complicated, illustration of the anode electrode which is a cathode electrode and a 1st electrode is abbreviate | omitted in FIG.
[0048]
According to the fifth embodiment described above, as in the first embodiment, the impurity concentration of the n drift region 1 is reduced and the carrier mobility can be prevented from being lowered, so that the breakdown voltage is not lowered. , The on-resistance can be reduced. Therefore, the trade-off relationship between the forward voltage, on-resistance (or current capacity) and breakdown voltage can be sufficiently improved. It should be noted that even if the n drift region 1 is arranged in a square lattice shape, the n drift region 1 can be uniformly disposed in a planar manner without waste. The same effect can be obtained even if the surface element structure is a MOSFET structure.
[0049]
In addition, when the n drift region 1 is not a cylinder and the cross sectional shape is not circular, such as a triangular prism or a quadrangular prism, the cross sectional area of the n drift region 1 is s 1 [Μm 2 ] 2√ (s 1 /3.14) is the diameter d 1 Think of it as [μm].
[0050]
Embodiment 6 FIG.
FIG. 9 is a perspective view showing a configuration of a diode according to the sixth exemplary embodiment of the present invention. As shown in FIG. 9, the parallel pn junction layer 20 has a cylindrical p extending in the vertical direction. + The partition region 2 is arranged in a triangular lattice shape, and the n drift region 1 surrounds the partition region 2. As shown in FIG. + The diameter of the partition area 2 is d 2 [Μm] and adjacent p + The distance between the partition areas 2 is d 1 When [μm], adjacent p + The distance between the centers of the partition areas 2 is D 2 [Μm] is d 1 And d 2 And the sum. At this time, D 2 The value of d 1 + D 2 Is 25 μm or less and d 1 Is d 2 Bigger than.
[0051]
As shown in FIG. 9, there is n between the parallel pn junction layer 20 and the cathode electrode (not shown) as the second electrode on the back surface of the substrate. + The low resistance layer 4 is made of a semiconductor substrate. A p anode layer 56 and an anode electrode, which is a first electrode (not shown), are provided on the substrate surface.
[0052]
According to the above-described sixth embodiment, as in the first embodiment, the impurity concentration of the n drift region 1 is reduced and the carrier mobility can be prevented from being lowered, so that the breakdown voltage is not lowered. , The on-resistance can be reduced. Therefore, the trade-off relationship between the forward voltage, on-resistance (or current capacity) and breakdown voltage can be sufficiently improved. P + Even if the partition regions 2 are arranged in a square lattice shape, the n drift regions 1 can be uniformly disposed in a plan view without waste. The same effect can be obtained even if the surface element structure is a MOSFET structure.
[0053]
P + If the partition area 2 is not cylindrical and the cross-sectional shape is not circular, such as a triangular prism or a quadrangular prism, p + The sectional area of the partition region 2 is s 2 [Μm 2 ] 2√ (s 2 /3.14) is the diameter d 2 Think of it as [μm].
[0054]
Embodiment 7 FIG.
FIG. 10 is a longitudinal sectional view showing a configuration of a lateral planar MOSFET according to a seventh embodiment of the present invention. FIG. 11 is a sectional view of the parallel pn structure perpendicular to the direction in which the drift current flows (A- in FIG. 10). It is a longitudinal cross-sectional view which shows the structure of the cross section in A '. As shown in FIG. 10, the source electrode 72 as the first electrode and the drain electrode 63 as the second electrode are formed on the same main surface of the element. The parallel pn junction layer 80 includes an n drift region 61 extending from the source electrode 72 side to the drain electrode 63 side and p + The partition region 62 has a horizontal stripe configuration in which the partition region 62 is alternately and repeatedly joined in a direction orthogonal to the direction in which the n drift region 61 extends.
[0055]
As shown in FIG. 11, the width of the n drift region 61 is d 1 [Μm], p + The width of the partition area 62 is d 2 If [μm], d 1 And d 2 And the sum is 24 μm or less and d 1 Is d 2 Bigger than. Further, the effective total impurity amount of the n drift region 61 and p + The effective total impurity amount of the partition region 62 is substantially the same. The effective impurity concentration n of the n drift region 61 is 1 [Cm -3 ] Is a concentration generally determined by the equation (3). P + Effective impurity concentration n of the partition region 62 2 [Cm -3 ] Is a concentration generally determined by the equation (4).
[0056]
As shown in FIG. - N on the semiconductor substrate 81 - A layer 82 is provided. n - The surface layer of the layer 82 includes n drift regions 61 and p constituting the parallel pn junction layer 80. + A partition region 62 and a p base region 66 are formed. The surface layer of the n drift region 61 is in contact with the drain electrode 63 and is the drain region n + A low resistance region 64 is formed. Further, the surface layer of the p base region 66 has a p in contact with the source electrode 72. + Contact region 67 and n + A source region 68 is formed. n of the p base region 66 + A gate electrode 70 is formed on the surface between the source region 68 and the parallel pn junction layer 80 via a gate insulating film 69.
[0057]
According to the above-described seventh embodiment, also in the horizontal semiconductor element, the impurity concentration in the n drift region 61 is reduced and the carrier mobility can be prevented from being lowered as in the first embodiment. On-resistance can be reduced without incurring a decrease. Therefore, the trade-off relationship between the forward voltage, on-resistance (or current capacity) and breakdown voltage can be sufficiently improved. As shown in the partial sectional view of FIG. - N on the semiconductor substrate 81 - A layer 82 is provided and further p - As shown in the double RESURF structure provided with the layer 83 and the partial cross-sectional view shown in FIG. - If an SOI (silicon-on-insulator) structure in which an insulating layer 84 is provided on a semiconductor substrate 81, a semiconductor element with better characteristics can be obtained.
[0058]
In the above, the present invention relates to the superjunction structure that constitutes the breakdown voltage region, and therefore the source and drain structures, the manufacturing process thereof, and the like are arbitrary. Therefore, the present invention is not limited to MOSFETs and diodes, but is also applied to IGBTs, bipolar transistors, GTO thyristors, and the like, and these semiconductor elements may be vertical or horizontal. Further, as disclosed in Japanese Patent Application Laid-Open No. 11-221861, the present invention provides n drift regions 1, 61 and p of parallel pn junction layers 20, 80. + The present invention is also applicable when the impurity amounts of the partition regions 2 and 62 are different. Further, the dimensions and impurity concentration values of the semiconductor regions described above are examples, and the present invention is not limited to these.
[0059]
【The invention's effect】
According to the present invention, the effective total impurity amount of each of the p-type semiconductor region and the n-type semiconductor region of the parallel pn structure is maintained in the superjunction semiconductor element having the parallel pn structure having a high impurity concentration at a fine pitch. The impurity concentration in the drift region can be lowered by increasing the volume of the drift region while decreasing the volume of the partition region, and thus the carrier mobility can be prevented from decreasing. Accordingly, since the on-resistance can be reduced without causing a decrease in the withstand voltage, the trade-off relationship between the forward voltage or the on-resistance (or current capacity) and the withstand voltage can be sufficiently improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a configuration of a vertical planar MOSFET according to a first embodiment of the present invention;
2 is a plan view showing a configuration of an upper end surface of the parallel pn structure of the element shown in FIG. 1. FIG.
FIG. 3 is a simulation result showing a relationship between an on-resistance per unit area and a drift region width of a parallel pn structure.
FIG. 4 is a longitudinal sectional view showing a configuration of a vertical planar MOSFET according to a second embodiment of the present invention.
FIG. 5 is a longitudinal sectional view showing a configuration of a vertical planar MOSFET according to a third embodiment of the present invention.
6 is a plan view showing another example of the configuration of the upper end surface of the parallel pn structure of the element shown in FIG. 5. FIG.
FIG. 7 is a longitudinal sectional view showing a configuration of a vertical trench MOSFET according to a fourth embodiment of the present invention.
FIG. 8 is a perspective view showing a configuration of a diode according to a fifth exemplary embodiment of the present invention.
FIG. 9 is a perspective view showing a configuration of a diode according to a sixth embodiment of the present invention.
FIG. 10 is a longitudinal sectional view showing a configuration of a lateral planar MOSFET according to a seventh embodiment of the present invention.
11 is a longitudinal sectional view showing a configuration of a cross section perpendicular to a direction in which a drift current of the parallel pn structure of the element shown in FIG. 10 flows.
12 is a longitudinal sectional view showing another example of the configuration of a cross section orthogonal to the direction in which the drift current of the parallel pn structure of the element shown in FIG. 10 flows.
13 is a longitudinal sectional view showing still another example of a cross-sectional configuration orthogonal to the direction in which the drift current of the parallel pn structure of the element shown in FIG. 10 flows.
[Explanation of symbols]
1,61 First conductivity type semiconductor region (n drift region)
2,62 Second conductivity type semiconductor region (p + Partition area)
3,63 Second electrode (drain electrode)
4 First conductivity type low resistance layer
12, 42, 72 First electrode (source electrode)
20,80 Parallel pn junction layer
64 First conductivity type low resistance region

Claims (8)

半導体素子の第1の主面側に形成された第1の電極と、半導体素子の第2の主面側に形成された第2の電極と、前記第1の電極と前記第2の電極との間に設けられた第1導電型低抵抗層と、前記第1の電極側から前記第2の電極側へ向かってそれぞれ伸びる複数の第1導電型半導体領域および複数の第2導電型半導体領域が、それらの伸びる方向に交差する方向に交互に繰り返し接合され、かつオン状態のときに電流を流し、オフ状態のときに空乏化する並列pn接合層と、を具備する超接合半導体素子において、
前記第1導電型半導体領域の不純物濃度が10 15 cm -3 以下であり、前記第1導電型半導体領域の実効的な総不純物量と、前記第2導電型半導体領域の実効的な総不純物量とを同じとして、前記各第1導電型半導体領域の幅をd1[μm]とし、前記各第2導電型半導体領域の幅をd2[μm]とすると、d1+d2の値は36μm以下であり、かつd1>d2であることを特徴とする超接合半導体素子。
A first electrode formed on the first main surface side of the semiconductor element; a second electrode formed on the second main surface side of the semiconductor element; the first electrode and the second electrode; A first conductive type low resistance layer provided between the first conductive type semiconductor region, a plurality of first conductive type semiconductor regions and a plurality of second conductive type semiconductor regions respectively extending from the first electrode side toward the second electrode side In a superjunction semiconductor device comprising: a parallel pn junction layer that is alternately and repeatedly joined in a direction intersecting with the extending direction, and that conducts current when in an on state and is depleted when in an off state,
The impurity concentration of the first conductivity type semiconductor region is 10 15 cm −3 or less, and the effective total impurity amount of the first conductivity type semiconductor region and the effective total impurity amount of the second conductivity type semiconductor region. And the width of each of the first conductive semiconductor regions is d 1 [μm], and the width of each of the second conductive semiconductor regions is d 2 [μm], the value of d 1 + d 2 is 36 μm. A superjunction semiconductor device having the following configuration and d 1 > d 2 .
前記第1導電型半導体領域の実効的な不純物濃度n 1 [cm -3 ]は、つぎの式で求められる濃度であることを特徴とする請求項1に記載の超接合半導体素子。
Figure 0004265201
2. The superjunction semiconductor device according to claim 1, wherein the effective impurity concentration n 1 [cm −3 ] of the first conductivity type semiconductor region is a concentration obtained by the following equation .
Figure 0004265201
前記第導電型半導体領域の実効的な不純物濃度 2 [cm-3]は、つぎの式で求められる濃度であることを特徴とする請求項1または2に記載の超接合半導体素子。
Figure 0004265201
The second conductivity type semiconductor region effective impurity concentration n 2 of [cm -3] is one super junction semiconductor device according to claim 1 or 2, characterized in that the concentration obtained by the expression technique.
Figure 0004265201
半導体素子の第1の主面側に形成された第1の電極と、半導体素子の第2の主面側に形成された第2の電極と、前記第1の電極と前記第2の電極との間に設けられた第1導電型低抵抗層と、前記第1の電極側から前記第2の電極側へ向かって伸びるとともに、その伸びる方向に交差する方向に規則正しく配置された複数の第1導電型半導体領域の周りを、第2導電型半導体領域が囲み、かつオン状態のときに電流を流し、オフ状態のときに空乏化する並列pn接合層と、を具備する超接合半導体素子において、
前記第1導電型半導体領域の不純物濃度が10 15 cm -3 以下であり、前記第1導電型半導体領域の実効的な総不純物量と、前記第2導電型半導体領域の実効的な総不純物量とを同じとして、前記各第1導電型半導体領域の横断面の面積をs 1 [μm 2 ]としたときに2√(s 1 /3.14)の値をd 1 [μm]とし、また隣り合う前記第1導電型半導体領域の互いの中心間距離をD 1 [μm]としたときにD 1 −d 1 の値をd 2 [μm]とすると、d 1 +d 2 は80μm以下であり、かつd 1 >d 2 であることを特徴とする超接合半導体素子。
A first electrode formed on the first main surface side of the semiconductor element; a second electrode formed on the second main surface side of the semiconductor element; the first electrode and the second electrode; A first conductive type low resistance layer provided between the first conductive type low resistance layer and a plurality of first conductive layers that extend from the first electrode side toward the second electrode side and are regularly arranged in a direction intersecting the extending direction. A superjunction semiconductor device comprising: a parallel pn junction layer that surrounds a conductive semiconductor region, and that includes a parallel pn junction layer that surrounds the second conductive semiconductor region, allows a current to flow in an on state, and depletes in an off state.
The impurity concentration of the first conductivity type semiconductor region is 10 15 cm −3 or less, and the effective total impurity amount of the first conductivity type semiconductor region and the effective total impurity amount of the second conductivity type semiconductor region. And the value of 2√ (s 1 /3.14) is d 1 [μm] when the cross-sectional area of each of the first conductivity type semiconductor regions is s 1 [μm 2 ] , When the distance between the centers of the adjacent first conductive type semiconductor regions is D 1 [μm] and D 1 −d 1 is d 2 [μm], d 1 + d 2 is 80 μm or less. And a superjunction semiconductor element characterized by satisfying d 1 > d 2 .
半導体素子の第1の主面側に形成された第1の電極と、半導体素子の第2の主面側に形成された第2の電極と、前記第1の電極と前記第2の電極との間に設けられた第1導電型低抵抗層と、前記第1の電極側から前記第2の電極側へ向かって伸びるとともに、その伸びる方向に交差する方向に規則正しく配置された複数の第2導電型半導体領域の周りを、第1導電型半導体領域が囲み、かつオン状態のときに電流を流し、オフ状態のときに空乏化する並列pn接合層と、を具備する超接合半導体素子において、
前記第1導電型半導体領域の不純物濃度が10 15 cm -3 以下であり、前記第1導電型半導体領域の実効的な総不純物量と、前記第2導電型半導体領域の実効的な総不純物量とを同じとして、前記各第2導電型半導体領域の横断面の面積をs 2 [μm 2 ]としたときに2 √(s 2 /3.14)の値をd 2 [μm]とし、また隣り合う前記第2導電型半導体領域の互いの中心間距離をD 2 [μm]としたときにD 2 −d 2 の値をd 1 [μm]とすると、d 1 +d 2 は25μm以下であり、かつd 1 >d 2 であることを特徴とする超接合半導体素子。
A first electrode formed on the first main surface side of the semiconductor element; a second electrode formed on the second main surface side of the semiconductor element; the first electrode and the second electrode; A first conductive type low resistance layer provided between the first conductive type low resistance layer and a plurality of second resistance layers regularly extending in a direction intersecting the extending direction while extending from the first electrode side toward the second electrode side. A superjunction semiconductor device comprising: a parallel pn junction layer that surrounds a conductive semiconductor region, and includes a parallel pn junction layer that energizes a current in an on state and depletes in an off state.
The impurity concentration of the first conductivity type semiconductor region is 10 15 cm −3 or less, and the effective total impurity amount of the first conductivity type semiconductor region and the effective total impurity amount of the second conductivity type semiconductor region. And the value of 2 √ (s 2 /3.14) is d 2 [μm] when the cross-sectional area of each of the second conductivity type semiconductor regions is s 2 [μm 2 ] , If the distance between the centers of the adjacent second conductivity type semiconductor regions is D 2 [μm], and D 2 −d 2 is d 1 [μm], d 1 + d 2 is 25 μm or less. And a superjunction semiconductor element characterized by satisfying d 1 > d 2 .
半導体素子の一主面側に形成された第1の電極および第2の電極と、前記第1の電極と前記第2の電極との間に設けられた第1導電型低抵抗領域と、前記第1の電極側から前記第2の電極側へ向かってそれぞれ伸びる複数の第1導電型半導体領域および複数の第2導電型半導体領域が、それらの伸びる方向に交差する方向に交互に繰り返し接合され、かつオン状態のときに電流を流し、オフ状態のときに空乏化する並列pn接合層と、を具備する超接合半導体素子において、
前記第1導電型半導体領域の不純物濃度が10 15 cm -3 以下であり、前記第1導電型半導体領域の実効的な総不純物量と、前記第2導電型半導体領域の実効的な総不純物量とを同じとして、前記各第1導電型半導体領域の幅をd 1 [μm]とし、前記各第2導電型半導体領域の幅をd 2 [μm]とすると、d 1 +d 2 の値は24μm以下であり、かつd 1 >d 2 であることを特徴とする超接合半導体素子。
A first conductive type low resistance region provided between the first electrode and the second electrode, the first electrode and the second electrode formed on one main surface side of the semiconductor element; A plurality of first conductivity type semiconductor regions and a plurality of second conductivity type semiconductor regions respectively extending from the first electrode side toward the second electrode side are alternately and repeatedly joined in a direction intersecting with the extending direction. And a parallel pn junction layer that allows a current to flow in the on state and is depleted in the off state,
The impurity concentration of the first conductivity type semiconductor region is 10 15 cm −3 or less, and the effective total impurity amount of the first conductivity type semiconductor region and the effective total impurity amount of the second conductivity type semiconductor region. And the width of each first conductive semiconductor region is d 1 [μm] and the width of each second conductive semiconductor region is d 2 [μm], the value of d 1 + d 2 is 24 μm. A superjunction semiconductor device having the following configuration and d 1 > d 2 .
前記第1導電型半導体領域の実効的な不純物濃度n 1 [cm -3 ]は、つぎの式で求められる濃度であることを特徴とする請求項6に記載の超接合半導体素子。
Figure 0004265201
The superjunction semiconductor device according to claim 6 , wherein an effective impurity concentration n 1 [cm −3 ] of the first conductivity type semiconductor region is a concentration obtained by the following equation .
Figure 0004265201
前記第2導電型半導体領域の実効的な不純物濃度n 2 [cm -3 ]は、つぎの式で求められる濃度であることを特徴とする請求項6または7に記載の超接合半導体素子。
Figure 0004265201
The superjunction semiconductor element according to claim 6 or 7, wherein the effective impurity concentration n 2 [cm -3 ] of the second conductivity type semiconductor region is a concentration obtained by the following equation .
Figure 0004265201
JP2002311509A 2002-10-25 2002-10-25 Super junction semiconductor device Expired - Lifetime JP4265201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311509A JP4265201B2 (en) 2002-10-25 2002-10-25 Super junction semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311509A JP4265201B2 (en) 2002-10-25 2002-10-25 Super junction semiconductor device

Publications (2)

Publication Number Publication Date
JP2004146689A JP2004146689A (en) 2004-05-20
JP4265201B2 true JP4265201B2 (en) 2009-05-20

Family

ID=32456709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311509A Expired - Lifetime JP4265201B2 (en) 2002-10-25 2002-10-25 Super junction semiconductor device

Country Status (1)

Country Link
JP (1) JP4265201B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027193A (en) * 2005-07-12 2007-02-01 Renesas Technology Corp Semiconductor device, its manufacturing method and non-insulated dc/dc converter
US8106453B2 (en) 2006-01-31 2012-01-31 Denso Corporation Semiconductor device having super junction structure
JP5217158B2 (en) * 2006-01-31 2013-06-19 株式会社デンソー Semiconductor device
EP1863096B1 (en) * 2006-05-30 2017-07-19 Nissan Motor Company Limited Semiconductor device and method of manufacturing the same
JP5479915B2 (en) 2007-01-09 2014-04-23 マックスパワー・セミコンダクター・インコーポレイテッド Semiconductor device
JP2008177328A (en) 2007-01-18 2008-07-31 Denso Corp Semiconductor device and manufacturing method thereof
JP4670915B2 (en) 2008-08-08 2011-04-13 ソニー株式会社 Semiconductor device
JP5566987B2 (en) * 2011-10-28 2014-08-06 株式会社デンソー Manufacturing method of semiconductor substrate
CN107464837B (en) * 2017-08-07 2020-07-31 电子科技大学 Super junction power device

Also Published As

Publication number Publication date
JP2004146689A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP6622343B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP4843843B2 (en) Super junction semiconductor device
JP4764987B2 (en) Super junction semiconductor device
JP7471267B2 (en) Semiconductor Device
US6906381B2 (en) Lateral semiconductor device with low on-resistance and method of making the same
JP4564510B2 (en) Power semiconductor device
JP3966151B2 (en) Semiconductor element
JP6907233B2 (en) Power semiconductor device
JP2001135819A (en) Super-junction semiconductor element
JP2004072068A (en) Semiconductor device
JPWO2014125586A1 (en) Semiconductor device
JP2021040131A (en) Silicon carbide device having trench and gate
JP2004134714A (en) Semiconductor device
JP4483001B2 (en) Semiconductor element
JP4265201B2 (en) Super junction semiconductor device
JP4595327B2 (en) Semiconductor element
JP2006324432A (en) Semiconductor device and its manufacturing method
JP6578724B2 (en) Semiconductor device
TW201803125A (en) Vertical SiC MOSFET
JP2006279064A (en) Method of manufacturing semiconductor device
US9502498B2 (en) Power semiconductor device
CN116153984A (en) Shielding structure for silicon carbide device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Ref document number: 4265201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term