JP2004072068A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2004072068A
JP2004072068A JP2003074951A JP2003074951A JP2004072068A JP 2004072068 A JP2004072068 A JP 2004072068A JP 2003074951 A JP2003074951 A JP 2003074951A JP 2003074951 A JP2003074951 A JP 2003074951A JP 2004072068 A JP2004072068 A JP 2004072068A
Authority
JP
Japan
Prior art keywords
region
impurity concentration
conductivity type
type region
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003074951A
Other languages
Japanese (ja)
Other versions
JP4304433B2 (en
Inventor
Yasuhiko Onishi
大西 泰彦
Susumu Iwamoto
岩本 進
Takahiro Sato
佐藤 高広
Tatsuji Nagaoka
永岡 達司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003074951A priority Critical patent/JP4304433B2/en
Publication of JP2004072068A publication Critical patent/JP2004072068A/en
Application granted granted Critical
Publication of JP4304433B2 publication Critical patent/JP4304433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance avalanche breakdown strength of a super-junction semiconductor device in which parallel pn layers are structured and tradeoff relation between breakdown voltage and ON resistance is remarkably improved. <P>SOLUTION: The width of the region or the impurity concentration of n-type drift regions 1 and p-type partitioning regions 2 of the parallel pn structure are controlled such that the impurity concentration in the p-type partitioning regions 2 is higher than that in the neighboring n-type drift regions 1 in the surface side, and the impurity concentration in the p-type partitioning regions 2 is lower than that in the neighboring n-type drift regions 1 in the backside. As a consequence, the electric field distribution in the parallel pn structure portions is improved to make the operating resistance under avalanche breakdown positive resistance, enhancing the avalanche breakdown strength. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、第1導電型領域と、第2導電型領域とを交互に配置した並列pn構造部を備える半導体素子に関し、高耐圧且つ大電流容量のMOSFET(絶縁ゲート型電界効果トランジスタ)、IGBT(絶縁ゲート型パイポーラトランジスタ)等に適用可能である。
【0002】
【従来の技術】
一般に半導体素子は、半導体基板の片面に少なくとも二つの主電極をもつ横型半導体素子と、両面に電極をもつ縦型半導体素子とに大別される。縦型半導体素子は、オン時にドリフト電流が流れる方向と、オフ時の逆バイアス電圧による空乏層が拡がる方向とが同じである。
例えば、通常のプレーナ型のnチヤネル縦型MOSFETの場合、例えば高抵抗のn型ドリフト領域の部分は、単一導電型でほぼ均一な不純物濃度であり、MOSFETがオン状態の時は縦方向にドリフト電流を流す領域として働き、オフ状態の時は空乏化して耐圧を高める。
【0003】
この高抵抗のn型ドリフト領域の厚さを薄くすることは、電流経路を短くしてドリフト抵抗が低くなるのでMOSFETの実質的なオン抵抗を下げる効果に繋がる。しかし、オフ状態の時、耐圧を担うpn接合から進行するドレインーベース間空乏層の広がる幅が狭くなり、シリコンの臨界電界強度に早く達するため、耐圧が低下してしまう。
従って高耐圧の半導体素子では、n型ドリフト領域が厚くなるため必然的にオン抵抗が大きくなり、損失が増すことになる。すなわちオン抵抗と耐圧との間にトレードオフ関係がある。
【0004】
このトレードオフ関係は、IGBT、パイポーラトランジスタ、ダイオード等の半導体素子においても同様に成立することが知られている。また、この問題は、オン時にドリフト電流が流れる方向と、オフ時の逆バイアスによる空乏層の延びる方向が異なる横型半導体素子についても共通である。
この問題に対する解決法として、ドリフト層を、不純物濃度を高めたn型の領域とp型の領域を交互に配置した並列pn構造で構成し、オフ状態の時は空乏化して耐圧を負担するようにした構造の半導体素子が、特許文献1、特許文献2、特許文献3等に開示されている。また、トレンチにエピタキシャル成長層を形成し、深さ方向に均一な拡散層を形成する方法については特許文献4等に開示されている。しかし、この文献では、トレンチ側壁をテーパー角を付けて形成する内容については説明されていない。
【0005】
通常のプレーナ型のnチヤネル縦型MOSFETとの構造上の違いは、ドリフト部が一様・単一の導電型でなく、例えば縦形層状のn型ドリフト領域と縦形層状のp型の仕切領域を交互に繰り返して接合した並列pn構造部となっている点である。
並列pn構造部の不純物濃度が高くても、オフ状態では並列pn構造部の縦方向に配向する各pn接合から空乏層がその横方向双方に拡張し、ドリフト領域全体を空乏化するため、高耐圧化を図ることができる。なお、本発明の発明者らは、オン状態では電流を流すとともに、オフ状態では空乏化する並列pn層からなるドリフト部を備える半導体素子を超接合半導体素子と称することとする。
【0006】
【特許文献1】
特開2001−298190号公報
【特許文献2】
特開2000−286417号公報
【特許文献3】
特開2001−313391号公報
【特許文献4】
特開2001−196573号公報
【0007】
【発明が解決しようとする課題】
図22は従来のnチャネル型超接合MOSFETの主要部の断面図である。
+ ドレイン領域7の上にn型ドリフト領域1とp型仕切り領域2とを交互に配置した並列pn層があり、そのp型仕切り領域2の上にpベース領域3が形成され、そのpベース領域3の表面層に選択的にn+ ソース領域6とp+ コンタクト領域4とが形成されている。n型ドリフト領域1およびp型仕切り領域2はともに縦型層状であり紙面に垂直方向に延びている。
n型ドリフト領域1の上方には不純物濃度の高い表面n型ドリフト領域5が形成されている。表面n型ドリフト領域5とn+ ソース領域6とに挟まれたpベース領域3の表面上にはゲート絶縁膜8を介してゲート電極9が設けられている。n+ ソース領域6とp+ コンタクト領域4との表面に共通に接触してソース電極11が設けられ、n+ ドレイン領域7の裏面に接してドレイン電極12が設けられている。10はゲート電極9とソース電極11とを絶縁するための絶縁膜である。
【0008】
n型ドリフト領域1およびp型仕切り領域2の形状は他の形状とすることもできる。
図22に示す超接合半導体素子において、耐圧を確保しつつ低オン抵抗を得るためには、n型ドリフト領域1とp型仕切り領域2の総不純物量を概ね同じ(それぞれの領域幅が同じ場合は不純物濃度を概ね同じ)にし、深さ方向の不純物濃度が概ね均−となるようにする必要がある。
図23(a)、(b)は、それぞれ図22のA−A’ 線、B−B’ 線に沿った断面の不純物プロフィル図である。n型ドリフト領域1とp型仕切り領域2との不純物濃度がほぼ等しいことがわかる。
【0009】
しかし、上記のような超接合半導体素子は、アバランシェ降伏時の動作抵抗が負性抵抗となるため、アバランシェ電流による局部集中が起こりやすく、十分なアバランシェ耐量を確保することができない問題がある。
図24(a)、(b)は、それぞれ図22のA−A’ 線、B−B’ 線に沿った断面における電界強度分布図である。パラメータは電流密度である。
図23に示したような深さ方向の不純物濃度が均−である超接合MOSFETの場合、アバランシエ降伏時の電界分布は、10mA/cm2 で表面側のp型ベース領域3とn型ドリフト領域1との間のpn接合と裏面側のn+ 型ドレイン領域7とp型仕切り領域2との間のpn接合で最大となるが、その部分を除くと深さ方向にフラットとなる。電界が0の部分は無いのでpn構造部は全て空乏化していると考えられる。
【0010】
しかし、アバランシェ降伏電流が増加し(50mA/cm2 、1000mA/cm2 )、アバランシェによって発生する可動キャリアが増加すると、表面側に蓄積する正孔と裏面側に蓄積する電子によって表面側と裏面側のpn接合の電界は強められ、電界分布は凹状に移行することになる。凹状の底部は低電流時のフラットな電界より低いので、大電流におけるアバランシェ降伏電圧は低電流でのアバランシェ降伏電圧より低くなり、動作抵抗は負性抵抗を示すことになる。この負性抵抗のため、アバランシェ降伏時は電流集中を起こしやすく、アバランシェ耐量向上を難しくさせている。
【0011】
図25(a)、(b)、図26(a)、(b)は、それぞれn型ドリフト領域1とp型仕切り領域2との総不純物量のバランスをn=pからn>p、n<pに約9% 崩した場合の電界強度分布図である。パラメーターは電流密度である。
n=pの場合と同様であり、電流が増す程中間部の電界強度は低くなっている。
図27はシミュレーションで求めたアバランシェ降伏時の電流電圧特性図である。
n=pは、各領域の総不純物量が同じ場合であり、n>pやp>nは総不純物量のバランスを約9%崩した場合である。
【0012】
n=pやp>nの場合は負性抵抗となっていることがわかる。n>pの場合においては、動作抵抗は正性抵抗を示すが、耐圧の低下が問題となってしまう。
また、各領域の不純物量バランスを崩して耐圧を確保した場合に、n型ドリフト領域1とp型仕切り領域2と総不純物量のバラツキを数%以内に抑えなければならず、良品率良く生産するのが困難である。
このような問題に鑑み本発明の目的は、耐圧とオン抵抗とのトレードオフ関係を大幅に改善する超接合半導体素子において、アバランシェ耐量を向上させ、かつ耐圧低下が少なく、しかも耐圧バラツキの少ない超接合半導体素子を提供することにある。
【0013】
【課題を解決するための手段】
前記の目的を達成するために、第1と第2の主面と、第1と第2の主面にそれぞれ設けられた主電極と、第1と第2の主面間に第1導電型低抵抗層と、複数の第1導電型領域と複数の第2導電型領域とを交互に配置した並列pn層とを備える半導体素子において、第1主面側における前記第2導電型領域の不純物濃度が隣接する第1導電型領域の不純物濃度より高く、第2主面側における前記第2導電型領域の不純物濃度が隣接する第1導電型領域の不純物濃度より低い構成とする。
【0014】
また、第1主面側における第2導電型領域の不純物濃度を隣接する第1導電型領域の不純物濃度より高くすることにより、第1主面側の電界を低減することが出来るので、アバランシェ降伏時の動作抵抗が正性抵抗となり、電流集中によるアバランシェ破壊耐量を向上させることができる。
また、第1主面側における前記第2導電型領域の不純物濃度が第2主面側における前記第2導電型領域の不純物濃度より高く、且つ前記第1導電型領域の不純物濃度が深さ方向に概ね均−であることとする。
望ましくは、前記第2導電型領域の不純物濃度が第1主面側から第2主面側に向かい次第に減少し、隣接する第1導電型領域の不純物濃度が第1主面から第2主面に向かい概ね均一であるものとする。または、前記第2導電型領域の不純物濃度が、第1主面側から第2主面側に向かいほぼ一定距離進むごとに、減少していてもよい。
【0015】
或いは、前記第2導電型領域の不純物濃度が厚さ方向に概ね均−であり、且つ第1主面側における前記第1導電型領域の不純物濃度が第2主面側における前記第1導電型領域の不純物濃度より低くなっていても良いし、或いは、前記第1導電型領域の不純物濃度が第1主面側から第2主面側に向かい次第に増加していても良い。前記第1導電型領域の不純物濃度が、第1主面側から第2主面側に向かいほぼ一定距離進むごとに、増加していてもよい。
また、第2導電型領域(あるいは第1導電型領域)の不純物濃度が第1主面側(第2主面側)から第2主面側(第1主面側)に向かい増加するようにすることにより、各領域の不純物濃度バランスを崩すことになり、アバランシェ降伏時の動作抵抗を正性抵抗とし、アバランシェ降伏時の電流集中を緩和することができる。
【0016】
また、第1主面側における各領域の領域幅を異ならせるときは、各領域の不純物濃度を等しくし、不純物濃度を異ならせるときは、各領域幅を等しくすればよい。
また、第1と第2の主面と、第1と第2の主面にそれぞれ設けられた主電極と、第1と第2の主面間に第1導電型低抵抗層と、第1導電型領域と、第2導電型領域とを交互に配置した並列pn層とを備える半導体素子において、第1主面側における前記第2導電型領域の領域幅が隣接する第1導電型領域の領域幅より広く、且つ、不純物濃度が等しく、並列pn層の長さをc(μm)とし、単位並列pn層の最小ピッチをT(μm)とし、第2導電型領域の第1主面側に対するテーパー角をθ(°:degree)とし、c/(T/2)で表されるアスペクト比xとしたとき、
【0017】
【数1】
70≦(−11.27+0.1236θ)(x−(−112.7+1.292θ))2 +(146100−4913θ+55.12θ2 −0.2062θ3 
とし、
【0018】
【数2】
T/2>c/tanθ
となるように、cとθとxとTを決めることで、テーパー角が90°の場合のブレークダウン電圧に対して70%以上のブレークダウン電圧とする構成とする。尚、ブレークダウン電圧はアバランシェ降伏時の電圧のことである。
【0019】
【発明の実施の形態】
〔実施例1〕
図1は本発明にかかる縦型超接合MOSFETの実施例1の主要部断面図である。主要部の周囲に主に耐圧を担う耐圧構造部が設けられるが、その部分も例えば特開2001−298190号公報と同様の並列pn層とし、あるいは更にフィールドプレート構造等の通常の耐圧構造を設ければ良いので省略する。
+ ドレイン領域7の上にn型ドリフト領域1とp型仕切り領域2とを交互に配置した並列pn構造部があり、そのp型仕切り領域2の上にpベース領域3が形成され、そのpベース領域3の表面層に選択的にn+ ソース領域6とp+ コンタクト領域4とが形成されている。n型ドリフト領域1の上方には不純物濃度の高い表面n型ドリフト領域5が形成されている。表面n型ドリフト領域5とn+ ソース領域6とに挟まれたpベース領域3の表面上にはゲート絶縁膜8を介してゲート電極9が設けられている。n+ ソース領域6とp+ コンタクト領域4との表面に共通に接触してソース電極11が設けられ、n+ ドレイン領域7の裏面に接してドレイン電極12が設けられている。10はゲート電極9とソース電極11とを絶縁するための絶縁膜である。
【0020】
n型ドリフト領域1およびp型仕切り領域2は例えば縦型層状であり紙面に垂直方向に延びている。
図22の従来の縦型超接合MOSFETとの違いは、表面側でp型仕切り領域2の幅がn型ドリフト領域1の幅より広く(Wpt> Wnt)、p型仕切り領域の領域幅が表面から裏面に向かい深さ方向に減少していて、裏面側ではp型仕切り領域2の幅がn型ドリフト領域1の幅より狭く(Wnt> Wpt)なっている点である。
p型仕切り領域2の不純物濃度とn型ドリフト領域1の不純物濃度は概ね同じであり、表面側ではp型不純物量がn型不純物量より多く、裏面側ではn型不純物量がp型不純物量より多くなっている。
【0021】
なお、本実施例は600Vクラスであり、各部の寸法及び不純物濃度等は次のような値をとる。
nドリフト領域の厚さ42.0μm、p型仕切り領域2の最表面側と最裏面側における幅5.0μm及び3.0μm(n型ドリフト領域1の幅はp型仕切り領域2とは逆)、並列pn層のピッチ8.0μm、p型仕切り領域2とn型ドリフト領域1の不純物濃度2.5×1015cm−3、pウェル領域3の拡散深さ3.0μm、表面不純物濃度3.0×1017cm−3、n+ ソース領域6の拡散深さ1.0μm、表面不純物濃度3.0×1020cm−3、表面n型ドリフト領域5の拡散深さ2.0μm、表面不純物濃度2,0×1016cm−3、n+ ドレイン領域7の不純物濃度2.0×1018−3、厚さ200μmである。
【0022】
図2(a)、(b)は、それぞれ図1のC−C’ 線、D−D’ 線に沿った断面における電界強度分布図である。パラメーターは電流密度である。
図1の超接合MOSFETの場合、p型仕切り領域2の領域幅が、表面から裏面に向かうに従って狭くなっているため(不純物濃度は各領域で同じ、n=p)、アバランシェ降伏時の電界分布は、表面側のp型ベース領域3とn型ドリフト領域1の間のpn接合と裏面側のn+ ドレイン領域7とp型仕切り領域2との間のpn接合で最大となるがその電界を除き、表面側と裏面側とで深さ方向に中間部で高い凸型の分布となる。
【0023】
この凸型の面積がおよそ降伏電圧となるため、n型ドリフト領域1、p型仕切り領域2の領域幅が均一の場合に比較して低電流でのアバランシェ降伏電圧は低くなってしまう。しかし、アバランシェ降伏電流が増し、電子、正孔からなる可動電荷が増えると、表面側に集められる正孔は表面のpn接合の電界を強めるように作用し、裏面側に集められる電子は裏面のpn接合の電界を強めるように作用するため、深さ方向の電界分布は凸型からフラットな分布へと移行する。
それ故、この状態までアバランシェ降伏時の動作抵抗は正性抵抗を示すことになる。更にアバランシェ降伏電流が増し、可動電荷(電子、正孔)が増えると、表面側のpn接合と裏面側のpn接合の電界は可動電荷によって更に強められ、電界はフラットな分布から凹型の分布へと移行する。
【0024】
この状態では、凹型の底部がフラットな分布より下がるため、アバランシェ降伏時の動作抵抗は負性抵抗を示すことになる。従って、動作抵抗が負性抵抗となるまで、アバランシェ電流は正性抵抗により分散されるので、アバランシェ耐量を向上させることができる。負性抵抗の時のように熱暴走から破壊に至ることが無くなる。
このように、動作抵抗を正性抵抗とするためには、電界分布が表面側と裏面側で電界を緩和された凸型となる不純物量分布にすればよく、必ずしも一様に減少する領域幅を有する必要はない。
【0025】
図3(a)、(b)、図4(a)、(b)、それぞれn型ドリフト領域1とp型仕切り領域2との総不純物量のバランスをn>p、n<pに約9%崩した場合の電界強度分布図である。パラメータは電流密度である。n=pの場合と傾向は同じであり、深さ方向に中間部で高い凸型の分布となる。電流が増すとフラットな分布になって、正性抵抗を示すことを示唆している。特にn<pの場合は、表面側(図の左側)での電界強度分布の低下が大きく、アバランシェ降伏電流の増加に伴いフラットになっている。
図5はシミュレーションで求めたアバランシェ降伏時の電流電圧特性図である。
【0026】
n=pが各領域の総不純物量が同じ場合であり、n>p、p>nは総不純物量のバランスを9%変えた場合である。n=pの場合でも、500A/cm2 の範囲において動作抵抗は正性抵抗を示している。また、総不純物量のバランスを崩した場合においても動作抵抗は正性抵抗を示している。特にn<pの場合に正性抵抗が顕著である。
図1のMOSFETの構造は、これまでの超接合半導体素子と同様に、エピタキシャル成長、選択エッチング、イオン注入と熱処理等の工程により製造できる。
【0027】
n型ドリフト領域1およびp型仕切り領域は縦型層状としたが、いずれかの領域が平面的に正方格子、三方格子、六方格子の格子点上に配置され、他方がそれを取り囲む形状であっても良い。以後の例についても同様である。
〔実施例2〕
図6は本発明にかかる縦型超接合MOSFETの実施例2の主要部断面図である。
実施例1の図1と異なるのは、p型仕切り領域2の領域幅が表面から裏面に向かい周期的に狭くなっている点である。p型仕切り領域2の総不純物量とn型ドリフト領域1の総不純物量はほぼ同じとしている。
【0028】
周期的に変化する層の厚さは6μmであり、領域幅は深さ方向に進む程0.3μmずつ狭くなっている。表面側におけるp型仕切り領域2の領域幅が隣接するn型ドリフト領域1に対し広く、裏面側が狭くなっていれば、実施例1と同様な効果が得られる。
図7は実施例2のアバランシェ降伏時のシミュレーション結果を示した電流電圧特性図である。
総不純物量が同じn=pの場合でも、アバランシェ電流が500A/cm2 以下の範囲において正性抵抗が確保されている。n>p、n<pの場合も実施例1とほぼ同様の特性となっている。
〔実施例3〕
図8は本発明にかかる縦型超接合MOSFETの実施例3の主要部断面図である。
【0029】
実施例1の図1と異なるのは、p型仕切り領域2の領域幅が表面から所定領域だけ広くなっている点である(Wpt> Wnt)。裏面側ではp型仕切り領域2とn型ドリフト領域1の領域幅が同じである(Wpt=Wnt)。例えば、p型仕切り領域2の領域幅が広い領域は表面から13μmの範囲で、その領域幅は5μmである。
なお、不純物濃度はp型仕切り領域2及びn型ドリフト領域1とも同じで、深さ方向においても均一としている。
この場合、アバランシェ降伏時の電界分布は実施例1と異なり、表面側だけで並列pn層の不純物量バランスが崩れているだけなので、電界分布は表面側のpn接合付近で低く、裏面側ではフラットな分布となる。アバランシェ降伏電流が増加するに伴い、アバランシェによって発生した正孔が表面側の電界を強めるため、電界はフラットな分布に近づく。従って、動作抵抗は正性抵抗となり、電流集中によるアバランシェ破壊を抑制することが可能となる。
【0030】
図9は本実施例3のアバランシェ降伏時のシミュレーション結果を示した電流電圧特性図である。総不純物量が同じn=pの場合でも、約500A/cm2 まで正性抵抗が確保されている。平均的な領域幅がp型仕切り領域2の方が大きいので、n<pの場合、不純物量バランスの崩れが大きく、低電流でのアバランシェ降伏電圧が低い。
〔実施例4〕
図10は本発明にかかる縦型超接合MOSFETの実施例4の主要部断面図であり、p型仕切り領域2の不純物濃度が深さ方向に濃度勾配を有する場合である。
【0031】
図11(a)、(b)は図10のE−E’ 断面、F−F’ 断面の不純物濃度プロファイル図である。
p型仕切り領域2の不純物濃度は、表面から裏面に向かい低くなる濃度勾配となっている。一方、n型ドリフト領域1の不純物濃度は深さ方向に均−である。p型仕切り領域2の総不純物量とn型ドリフト領域1の総不純物量とは概ね同じとしている。それ故、表面側ではp型不純物量がn型不純物量より多く、裏面側ではn型不純物量がp型不純物量より多くなっている。
なお、本実施例は600Vクラスであり、各部の寸法及び不純物濃度等は実施例1とほぼ同等である。n型ドリフト領域1及びp型仕切り領域2の幅8.0μm(並列pn層のピッチ16.0μm)。n型ドリフト領域1の不純物濃度2.5×1015cm−3、p型仕切り領域2の不純物濃度(深さ方向の中心)2.5×1015cm−3、不純物濃度勾配は中心の不純物濃度に対し±50%である。
【0032】
本実施例4の超接合MOSFETの場合、p型仕切り領域2の不純物濃度が表面から裏面に向かい低くなるように形成されているため、アバランシェ降伏時の電界分布は、表面側のp型ベース領域3とn型ドリフト領域1との間のpn接合と裏面側のn+ ドレイン領域7とp型仕切り領域2との間のpn接合で最大となるがその電界を除き、深さ方向に凸型の分布となる。この凸型の面積がおよそ降伏電圧となるため、p型仕切り領域2の不純物濃度が均一の場合に比較してアバランシェ降伏電圧は低くなってしまう。
しかし、アバランシェ降伏電流が増し、電子、正孔からなる可動電荷が増えると、表面側に集められる正孔は表面のpn接合の電界を強めるように作用し、裏面側に集められる電子は裏面のpn接合の電界を強めるように作用するため、深さ方向の電界分布は凸型からフラットな分布へと移行する。それ故、この状態までアバランシェ降伏時の動作抵抗は正性抵抗を示すことになる。
【0033】
更にアバランシェ降伏電流が増し、可動電荷が増えると、表面側のpn接合と裏面側のpn接合の電界は可動電荷によって更に強められ、電界はフラットな分布から凹型の分布へと移行する。この状態では、凹型の底部がフラットな分布より下がるため、アバランシェ降伏時の動作抵抗は負性抵抗を示すことになる。
従って、動作抵抗が負性抵抗となるまで、アバランシェ電流は正性抵抗により分散されため、アバランシェ耐量は向上することになる。
このように、動作抵抗を正性抵抗とするためには、電界分布が凸型(表面側と裏面側で電界を緩和する)となる不純物濃度分布にすればよく、一様な不純物濃度勾配を有する必要はない。
【0034】
図12はシミュレーションで求めたアバランシェ降伏時の電流電圧特性図である。
n=pが各領域の総不純物量が同じ場合であり、n>p、n<pは総不純物量のバランスを約9%変えた場合である。n=pの場合でも、500A/cm2 以下の範囲において動作抵抗は正性抵抗を示している。また、総不純物量のバランスを崩した場合においても動作抵抗は正性抵抗を示している。
図13は、耐圧の総不純物量バランス依存性を示した特性図である。総不純物量バランスが取れている条件では(0%)、p型仕切り領域2が均−の場合(従来構造)に比べ耐圧は低下するものの、総不純物量のバラツキに関しては改善されている。p型仕切り領域2に不純物濃度勾配を有する構造では、総不純物量のバラツキに関して鈍感であり、良品率を向上させるのに有利であることがわかる。
〔実施例5〕
主要部断面図が図10と同じ縦型超接合MOSFETにおいて、図10のE−E’ 断面、F−F’ 断面の不純物濃度プロファイルを図14(a)、(b)のようにn型ドリフト領域1の不純物濃度を深さ方向に変化させることもできる。
【0035】
n型ドリフト領域1の不純物濃度が表面から裏面に向かい高くなる濃度勾配となっている。
この点を除き、動作原理はp型仕切り領域2に不純物濃度勾配を持たせた場合と同じである。
図15はn型ドリフト領域1に不純物濃度勾配を持たせた構造でのアバランシェ降伏時のシミュレーション結果を示した電流電圧特性図である。この場合においても、600A/cm2 以下の範囲で正性抵抗が得られる。
〔実施例6〕
図16は本発明にかかる縦型超接合MOSFETの実施例6の主要部断面図であり、p型仕切り領域2の不純物濃度が深さ方向に周期的に変化している場合である。
【0036】
図17(a)、(b)は図16のG−G’ 断面、H−H’ 断面の不純物濃度プロファイル図である。
実施例4と異なるのは、p型仕切り領域2の不純物濃度が表面から裏面に向かい周期的に低くなっている点である。周期的に変化する層の厚さは7μmであり、不純物濃度の勾配は深さ方向の中心に対し±50% としている。p型仕切り領域2の総不純物量とn型ドリフト領域1の総不純物量とは概ね同じとしている。
p型仕切り領域2の不純物濃度が表面側で高く、裏面側が低くなっていれば、実施例4と同様な効果が得られる。
【0037】
図18は実施例6のアバランシェ降伏時のシミュレーション結果を示した電流電圧特性図である。総不純物量が同じ(n=p)場合でも、600A/cm2 以下の範囲で正性抵抗が得られる。
なお、周期的に変わる不純物濃度にピークを有していてもよく、p型仕切り領域2とは逆にn型ドリフト領域1が周期的な不純物濃度勾配を有していても同様の効果が得られる。
〔実施例7〕
図19は、本発明にかかる縦型超接合MOSFETの実施例7の主要部断面図であり、p型仕切り領域2の不純物濃度が表面から所定領域だけ高くなっている場合である。
【0038】
図20(a)、(b)は図19のI−I’ 断面、J−J’ 断面の不純物濃度プロファイル図である。不純物濃度の高い領域は表面から13μmの領域で、不純物濃度はこの領域以外のp型仕切り領域2の150%であり、不純物濃度の高い領域以外の不純物濃度は隣接するn型ドリフト領域1の不純物濃度と同じ2.5×1015/cm3 である。
実施例6と異なり、不純物濃度が高くなっている領域は、表面からの所定領域のみで、裏面側ではp型仕切り領域2とn型ドリフト領域1の不純物濃度が同じ不純物濃度となっている。なお、この場合、アバランシェ降伏時の電界分布は実施例6と異なり、表面側の並列pn層の不純物濃度バランスが崩れているだけなので、電界分布は表面側のpn接合付近で低く、裏面側はフラットな分布となる。
【0039】
アバランシェ降伏電流が増加するに伴い、アバランシェによって発生した、正孔が表面側の電界を強めるため、電界はフラットな分布に近づく。従って、動作抵抗は正性抵抗となり、電流集中によるアバランシェ破壊を抑制することが可能となる。
図21は実施例7のアバランシェ降伏時のシミュレーション結果を示した電流電圧特性図である。総不純物量が同じ(n=p)場合でも、600A/cm2 以下の範囲で正性抵抗が得られる。
なお、本実施例はMOSFETで記載されているが、IGBT、ショットキーダイオード、FWD、バイポーラトランジスタ等でも同様な効果が得られる。
【0040】
つぎに、前記の図1に示した並列pn層はn型ドリフト領域1とp型仕切り領域2で構成され、以下で定義されるテーパー角およびアスペクト比と耐圧およびオン抵抗の関係について説明する。このテーパー角は、トレンチ内にエピタキシャル成長で均一な半導体層(p型仕切り領域2)を形成するときに役立つ。
図28は、アスペクト比およびテーパー角の定義について説明する図であり、同図(a)は図1に示した並列pn層の部分拡大図で、同図(b)は同図(a)の単位並列pn層の幅を半分にした図である。
並列pn層20はp層(p型仕切り領域2)、n層(n型ドリフト領域1)で構成される単位並列pn層21が繰り返し並んだ構造となっている。その単位並列pn層21の繰り返しのピッチは単位並列pn層21の幅となる。この単位並列pn層21のp層側およびn層側をそれぞれ半分にした図を図28−図2(b)に示す。単位並列pn層21のp層側およびn層側をそれぞれ半分にして合わせた幅をSJピッチとしてsで表すこととする。
【0041】
表面側でのp型仕切り領域の幅をa(=Wpt:単位はμm)、n型ドリフト領域の幅をb(=Wnt:単位はμm))、裏面側のp型仕切り領域の幅をb(=Wpb)、n型ドリフト領域の幅をa(=Wnb)、単位並列pn層の長さ(以下、SJ長さと呼ぶ。SJとは超接合のこと)をc(単位はμm)とするとき、テーパー角θ(単位は°:degree)、アスペクト比xを次のように定義する。
【0042】
【数5】
アスペクト比x=c/(a+b)
【0043】
【数6】
テーパー角θ=tan− (c/(a−b))
以下に説明するアスペクト比x、テーパー角θについてはこの式で求められる数値であるものとする。ただし、テーパー角θが90°の場合には適用されないものとする。
尚、前記の単位並列pn層の長さcはn+ ソース領域5とn+ ドレイン領域7の間の間隔に等しい。
【0044】
図29は、図1に示した縦型超接合半導体素子を600Vクラスに適用した場合の耐圧(BVds)、オン抵抗(RonA)およびSJピッチ(SJPitch)の関係を示し、同図(a)は耐圧とSJピッチの関係、同図(b)はオン抵抗と耐圧の関係を示す図である。c=40μmとした場合である。尚、BVdsはブレークダウン電圧である。また、SJピッチsはa+bに相当する。従って、単位並列pn層21の繰り返しピッチ(単位並列pn層のピッチ)は2sとなる。
図29(a)からわかるように、テーパー角θが90°では耐圧の低下はほとんどないのにもかかわらず、テーパー角θが90°より小さくなるのに伴って、耐圧が低下していることがわかる。これは、テーパー角θが小さくなると、表面側と底面側の中間位置での電界強度が高くなり耐圧が低下する。また、SJピッチsが狭くなるほど、その低下が大きくなっていることがわかる。これは、SJピッチsが狭くなるほど、中間位置での電界強度が高くなるためである。
【0045】
しかしながら、図29(b)のオン抵抗と耐圧のトレードオフからわかるようにオン抵抗はほとんど変わっていない。これは、テーパー角θおよびSJピッチsが変化しても、n型ドリフト領域1の平均の総断面積が変化しないためである。しかし、テーパー角θとSJピッチsが小さくなるとJFET効果でオン抵抗は増大する。SJピッチsを極端に小さくすると表面側でn型ドリフト領域1が消滅して、チャネルからのキャリアの掃き出し口がなくなりデバイスを構成できなくなる。そのためSJピッチsを極端に小さくする場合はSJ長さcも小さくするかテーパー角θを大きく選ぶ必要がある。
【0046】
前記のことから、耐圧を十分に確保するためには、テーパー角θとSJピッチsの関係を明らかにする必要がある。但し、SJ長さcを固定すると、アスペクト比xはSJピッチsに逆比例する。
図30、図31は、図1に示した縦型超接合半導体素子をそれぞれ200Vクラス、100Vクラスに適用した場合の耐圧(BVds)、オン抵抗(RonA)およびSJピッチ(SJPitch)の関係を示し、同図(a)は耐圧とSJピッチの関係、同図(b)はオン抵抗と耐圧の関係を示す図である。
図29と同様に、テーパー角θが小さくなるほど、また、SJピッチsが狭くなるほど耐圧の低下は顕著になっていることがわかる。なお、図30、図31においてSJ長さcはそれぞれ10μm、5μmである。
【0047】
図32は、図29、図30、図31に示した耐圧を規格化した耐圧(BVds/BVds(90°))とアスペクト比の関係をテーパー角をパラメータとして示した図で、同図(a)は全体図、同図(b)は同図(a)の規格化した耐圧が70%以上を示す領域を拡大した拡大図である。この図32は、図29、図30、図31に示した各耐圧クラスについて、すべてを含んでいる。尚、規格化した耐圧(BVds/BVds(90°))とは、テーパー角θが90°のときのブレークダウン電圧で規格化したブレークダウン電圧のことであり、パーセント(%)で示す。
【0048】
図32からほぼテーパー角θが同じであれば、耐圧クラスには関係なく、規格化した耐圧(BVds/BVds(90°))とアスペクト比xとの関係が同じであることがわかる。特に図32(b)で示したように規格化した耐圧が70%以上となる領域では良い一致を示していることがわかる。
図32(b)に示した関係から、規格化した耐圧(BVds/BVds(90°))とテーパー角θの関係を2次近似のフィッティング(2次方程式での数式化)を行なった。各テーパー角θでの規格化した耐圧とアスペクト比の近似式は次のようになる。
θ=89°では
【0049】
【数7】
y=−0.2756x2 +1.262x+99.55
θ=88°では
【0050】
【数8】
y=−0.4014x2 +0.6467x+101.7
θ=87°では
【0051】
【数9】
y=−0.5227x2 +0.3070x+104.5
ここで、yは各テーパー角θでの規格化した耐圧(BVds/BVds(90°))であり、単位はパーセント(%)である。またxはアスペクト比である。
これらの関係式をもとに、各次数の係数の近似式を求め、すべてのテーパー角θに適用可能な関係式(規格化した耐圧(%)とアスペクト比の関係式)を求めると、次のようになる。
【0052】
【数10】
y=(−11.27+0.1236θ)(x−(−112.7+1.292θ))2 +(146100−4913θ+55.12θ2 −0.2062θ3 
ここで、yは各テーパー角での耐圧を90°での耐圧で規格化した数値であり、単位はパーセントである。また、xはアスペクト比で、θはテーパー角であり、単位は度である。
この計算式から得られるテーパー角θが87°、88°、89°での結果を図33(c)、(b)、(a)にそれぞれ曲線(実線)で示す。また、同図(d)には同図(a)、(b)、(c)を合わせて示す。
【0053】
図33から、規格化した耐圧が70%以上の場合に、ほぼすべてのテーパー角θで上記の3つの近似式が適用できる。
また、最小のSJピッチをW(単位はμm)とすると、最小のSJピッチWとSJ長さcとテーパー角θとの関係は、
【0054】
【数11】
W=c/tanθ
となる。しかし、このWの値では、前記したように、チャネルからのキャリアの掃き出し口がないため、デバイスを動作させるためにはW>c/tanθとする必要がある。つまり、最小の単位並列pn層ピッチT(単位はμm)は2W(=2c/tanθ)となる。
図34は、テーパー角θを89.9°、89.5°、89°、88.5°、88°、87.5°、87°、86.5°、86°、85.5°、85°とした場合の規格化した耐圧とアスペクト比の関係を示す図である。
【0055】
例えば、テーパー角θが89.5°以上で89.9°以下の場合、アスペクト比xをおよそ17以下形成すれば、規格化した耐圧は70%以上で得られることとなる。
同様に、87°以上87.5°以下の場合ではアスペクト比をおよそ9以下にすれば、規格化した耐圧は70%以上で得られる。さらに、85°以上85.5°以下の場合ではアスペクト比をおよそ5.5以下にすれば規格化した耐圧は70%以上で得られる。当然、その他のテーパー角についても同様に計算式で求めたアスペクト比以下とすることで規格化した耐圧は70%以上で得られる。
【0056】
従って、前記のことをまとめると次のようになる。
前記の規格化した耐圧BVds/BVds(90°)を70%以上に確保するためには、
【0057】
【数12】
70≦(−11.27+0.1236θ)(x−(−112.7+1.292θ))2 +(146100−4913θ+55.12θ2 −0.2062θ3 )・・・・(1)
とし、
【0058】
【数13】
W>c/tanθ・・・・(2)
となるよいうに、cとθとxとWを決めるとよい。この(2)式は半導体素子を製作するときの条件となる。勿論、前記したように、単位並列pn層の最小のピッチTは2Wとなる。
尚、(1)式、(2)式は、単位並列pn層20を構成するp型仕切り領域2とn型ドリフト領域1が回転対称で、それぞれの体積が互いに等しい場合を基に導きだしたが、異なっている場合でも構わない。つまり、(1)式、(2)式を満たすと、前記の規格化した耐圧BVds/BVds(90°)を70%以上に確保することができる半導体素子を製作できる。また、p型仕切り領域2とn型ドリフト領域1が互いにチャージバランスがとれていることが望ましい。
【0059】
【発明の効果】
以上説明したように本発明によれば、並列pn構造の第1導電型ドリフト領域と第2導電型仕切り領域との、領域幅或いは不純物濃度を制御して、第1主面側における第2導電型領域の不純物量を隣接する第1導電型ドリフト領域の不純物量より多くし、第2主面側における第2導電型領域の不純物量を隣接する第1導電型ドリフト領域の不純物量より少なくすることにより、並列pn構造部での電界分布が改善されて、アバランシェ降伏時の動作抵抗が正性抵抗となり、アバランシェ破壊耐量を向上させることが可能となる。
【0060】
さらに、総不純物量バラツキに対する耐庄の低下を抑制することができるので、生産性の高い(良品率の高い)超接合半導体素子を提供することが可能となる。
また、並列pn構造のSJ長さ、テーパー角、アスペクト比およびSJピッチを所定の値に設定することで、テーパー角90°の耐圧に対して70%以上の耐圧(規格化した耐圧)を得ることができる。
【図面の簡単な説明】
【図1】本発明実施例1の超接合MOSFETの主要部断面図
【図2】(a)、(b)はそれぞれ図1のC−C’ 、D−D’ 断面における電界分布図(n=pのとき)
【図3】(a)、(b)はそれぞれ図1のC−C’ 、D−D’ 断面における電界分布図(n>pのとき)
【図4】(a)、(b)はそれぞれ図1のC−C’ 、D−D’ 断面における電界分布図(n<pのとき)
【図5】本発明実施例1の超接合MOSFETのアバランシェ電流電圧特性図
【図6】本発明実施例2の超接合MOSFETの主要部断面図
【図7】本発明実施例2の超接合MOSFETのアバランシェ電流電圧特性図
【図8】本発明実施例3の超接合MOSFETの主要部断面図
【図9】本発明実施例3の超接合MOSFETのアバランシェ電流電圧特性図
【図10】本発明実施例4、5の超接合MOSFETの主要部断面図
【図11】(a)、(b)はそれぞれ実施例4の超接合MOSFETのE−E’ 、F−F’ 断面における不純物プロフィル図
【図12】本発明実施例4の超接合MOSFETのアバランシェ電流電圧特性図
【図13】本発明実施例4の総不純物量バランス依存性を示す特性図
【図14】(a)、(b)はそれぞれ実施例5の超接合MOSFETのC−C’ 、D−D’ 断面における不純物プロフィル図
【図15】本発明実施例5の超接合MOSFETのアバランシェ電流電圧特性図
【図16】本発明実施例6の超接合MOSFETの主要部断面図
【図17】(a)、(b)はそれぞれ実施例6の超接合MOSFETののG−G’ 、H−H’ 断面における不純物プロフィル図
【図18】本発明実施例6の超接合MOSFETのアバランシェ電流電圧特性図
【図19】本発明実施例7の超接合MOSFETの主要部断面図
【図20】(a)、(b)はそれぞれ実施例7の超接合MOSFETののI−I’ 、J−J’ 断面における不純物プロフィル図
【図21】本発明実施例7の超接合MOSFETのアバランシェ電流電圧特性図
【図22】従来の超接合MOSFETの主要部断面図
【図23】(a)、(b)はそれぞれ従来の超接合MOSFETののA−A’ 、B−B’ 断面における不純物プロフィル図
【図24】(a)、(b)はそれぞれ図22のA−A’ 、B−B’ 断面における電界分布図(n=pのとき)
【図25】(a)、(b)はそれぞれ図22のA−A’ 、B−B’ 断面における電界分布図(n>pのとき)
【図26】(a)、(b)はそれぞれ図22のA−A’ 、B−B’ 断面における電界分布図(n<pのとき)
【図27】従来の超接合MOSFETのアバランシェ電流電圧特性図
【図28】アスペクト比およびテーパー角の定義について説明する図であり、(a)は図1に示した並列pn層の部分拡大図で、(b)は(a)の単位並列pn層の幅の半分を示す図
【図29】図1に示した縦型超接合半導体素子を600Vクラスに適用した場合の耐圧(BVds)、オン抵抗(RonA)およびSJピッチ(SJPitch)の関係を示し、(a)は耐圧とSJピッチの関係、(b)はオン抵抗と耐圧の関係を示す図
【図30】図1に示した縦型超接合半導体素子を200Vクラスに適用した場合のの耐圧(BVds)、オン抵抗(RonA)およびSJピッチ(SJPitch)の関係を示し、(a)は耐圧とSJピッチの関係、(b)はオン抵抗と耐圧の関係を示す図
【図31】図1に示した縦型超接合半導体素子を100クラスに適用した場合のの耐圧(BVds)、オン抵抗(RonA)およびSJピッチ(SJPitch)の関係を示し、同図(a)は耐圧とSJピッチの関係、同図(b)はオン抵抗と耐圧の関係を示す図
【図32】図29、図30、図31に示した耐圧を規格化した耐圧(BVds/BVds(90°))とアスペクト比の関係をテーパー角をパラメータとして示した図で、(a)は全体図、(b)は(a)の規格化した耐圧が70%以上を示す領域を拡大した拡大図
【図33】規格化した耐圧とアスペクト比の関係を近似式で示す図で、(a)はテーパー角θが89°の場合、(b)はテーパー角θが88°の場合、(c)はテーパー角θが87°の場合、(d)はすべてのテーパー角θの場合の図
【図34】テーパー角θが85°〜89.9°とした場合の規格化した耐圧とアスペクト比の関係を示す図である。
【符号の説明】
1   n型ドリフト領域
2   p型仕切り領域
3   pベース領域
4   p+ コンタクト領域
5   表面n型ドリフト領域
6   n+ ソース領域
7   n+ ドレイン領域
8   ゲート絶縁膜
9   ゲート電極
10   絶縁膜
11   ソース電極
12   ドレイン電極
20   並列pn層
21   単位並列pn層
a   p型仕切り領域の表面側の幅/n型ドリフト領域の底面側の幅
b   p型仕切り領域の裏面側の幅/n型ドリフト領域の表面側の幅
c   SJ長さ
s   SJピッチ
W   最小のSJピッチ
T   最小の単位並列pn層ピッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device having a parallel pn structure in which a first conductivity type region and a second conductivity type region are alternately arranged, and has a high withstand voltage and large current capacity MOSFET (insulated gate type field effect transistor), IGBT (Insulated gate type bipolar transistor) and the like.
[0002]
[Prior art]
In general, semiconductor elements are roughly classified into a horizontal semiconductor element having at least two main electrodes on one side of a semiconductor substrate and a vertical semiconductor element having electrodes on both sides. In the vertical semiconductor device, the direction in which the drift current flows when turned on is the same as the direction in which the depletion layer expands due to the reverse bias voltage when turned off.
For example, in the case of a normal planar n-channel vertical MOSFET, for example, the portion of the high-resistance n-type drift region has a substantially uniform impurity concentration of a single conductivity type, and when the MOSFET is on, the portion is in a vertical direction. It functions as a region through which a drift current flows, and when in an off state, depletes to increase the breakdown voltage.
[0003]
Reducing the thickness of the high-resistance n-type drift region shortens the current path and lowers the drift resistance, leading to an effect of substantially reducing the on-resistance of the MOSFET. However, in the off state, the width of the depletion layer between the drain and the base that progresses from the pn junction that is responsible for the breakdown voltage is narrowed, and the critical electric field strength of silicon is quickly reached, so that the breakdown voltage is reduced.
Therefore, in a semiconductor element having a high breakdown voltage, the on-resistance is inevitably increased because the n-type drift region is thickened, and the loss is increased. That is, there is a trade-off relationship between the on-resistance and the withstand voltage.
[0004]
It is known that this trade-off relationship is similarly established in semiconductor devices such as IGBTs, bipolar transistors, and diodes. This problem is also common to a lateral semiconductor element in which the direction in which the drift current flows when turned on is different from the direction in which the depletion layer extends due to the reverse bias when turned off.
As a solution to this problem, the drift layer is constituted by a parallel pn structure in which n-type regions and p-type regions having an increased impurity concentration are alternately arranged. Patent Document 1, Patent Document 2, Patent Document 3 and the like disclose a semiconductor element having the above structure. Further, a method of forming an epitaxial growth layer in a trench and forming a uniform diffusion layer in a depth direction is disclosed in Patent Document 4 and the like. However, this document does not describe the contents of forming the trench side wall with a taper angle.
[0005]
The difference in structure from a normal planar n-channel vertical MOSFET is that the drift portion is not uniform and has a single conductivity type. For example, a vertical layered n-type drift region and a vertical layered p-type partition region are used. The point is that a parallel pn structure portion is formed by joining alternately and repeatedly.
Even when the impurity concentration of the parallel pn structure portion is high, in the off state, the depletion layer extends in both the lateral direction from each pn junction oriented in the vertical direction of the parallel pn structure portion to deplete the entire drift region. Withstand voltage can be increased. Note that the inventors of the present invention refer to a semiconductor element having a drift portion formed of a parallel pn layer that is depleted in an off state while a current flows in an on state as a super junction semiconductor element.
[0006]
[Patent Document 1]
JP 2001-298190 A
[Patent Document 2]
JP 2000-286417 A
[Patent Document 3]
JP 2001-313391 A
[Patent Document 4]
JP 2001-196573 A
[0007]
[Problems to be solved by the invention]
FIG. 22 is a sectional view of a main part of a conventional n-channel type super junction MOSFET.
n + There is a parallel pn layer in which an n-type drift region 1 and a p-type partition region 2 are alternately arranged on the drain region 7, a p-base region 3 is formed on the p-type partition region 2, and the p-base region 3 selectively on the surface layer + Source region 6 and p + A contact region 4 is formed. Both the n-type drift region 1 and the p-type partition region 2 have a vertical layer shape and extend in the direction perpendicular to the plane of the drawing.
Above the n-type drift region 1, a surface n-type drift region 5 having a high impurity concentration is formed. Surface n-type drift region 5 and n + A gate electrode 9 is provided on the surface of p base region 3 sandwiched between source region 6 and gate insulating film 8. n + Source region 6 and p + Source electrode 11 is provided in common contact with the surface of contact region 4, and n + A drain electrode 12 is provided in contact with the back surface of the drain region 7. Reference numeral 10 denotes an insulating film for insulating the gate electrode 9 from the source electrode 11.
[0008]
The shapes of the n-type drift region 1 and the p-type partition region 2 can be other shapes.
In the super-junction semiconductor device shown in FIG. 22, in order to obtain a low on-resistance while securing a withstand voltage, the total impurity amounts of the n-type drift region 1 and the p-type partition region 2 are substantially the same (when the respective region widths are the same). It is necessary to make the impurity concentration substantially the same) and to make the impurity concentration in the depth direction substantially uniform.
FIGS. 23A and 23B are impurity profile diagrams of cross sections taken along line AA 'and line BB' in FIG. 22, respectively. It can be seen that the impurity concentrations of the n-type drift region 1 and the p-type partition region 2 are substantially equal.
[0009]
However, in the above-described super junction semiconductor element, since the operating resistance at the time of avalanche breakdown becomes negative resistance, local concentration is likely to occur due to the avalanche current, and there is a problem that a sufficient avalanche resistance cannot be secured.
FIGS. 24A and 24B are electric field intensity distribution diagrams in cross sections taken along line AA 'and line BB' in FIG. 22, respectively. The parameter is the current density.
In the case of a super-junction MOSFET having a uniform impurity concentration in the depth direction as shown in FIG. 23, the electric field distribution at the time of avalanche breakdown is 10 mA / cm. 2 And a pn junction between the p-type base region 3 on the front side and the n-type drift region 1 and n on the back side. + The maximum value is obtained at the pn junction between the mold drain region 7 and the p-type partition region 2, but becomes flat in the depth direction except for that portion. Since there is no portion where the electric field is 0, it is considered that the entire pn structure portion is depleted.
[0010]
However, the avalanche breakdown current increases (50 mA / cm 2 , 1000 mA / cm 2 When the number of mobile carriers generated by avalanche increases, the electric field at the pn junction on the front side and the back side is strengthened by holes accumulated on the front side and electrons accumulated on the back side, and the electric field distribution shifts to a concave shape. Become. Since the concave bottom is lower than the flat electric field at low current, the avalanche breakdown voltage at high current will be lower than the avalanche breakdown voltage at low current, and the operating resistance will exhibit negative resistance. Due to this negative resistance, current concentration is likely to occur during avalanche breakdown, making it difficult to improve avalanche withstand capability.
[0011]
FIGS. 25 (a), 25 (b), 26 (a), and 26 (b) show the balance of the total impurity amount between the n-type drift region 1 and the p-type partition region 2 from n = p to n> p, n, respectively. <P> FIG. 9 is an electric field intensity distribution chart when the value of p is collapsed by about 9%. The parameter is current density.
This is the same as the case of n = p, and the electric field strength in the middle part becomes lower as the current increases.
FIG. 27 is a current-voltage characteristic diagram at the time of avalanche breakdown obtained by simulation.
n = p is when the total impurity amount in each region is the same, and n> p and p> n are when the balance of the total impurity amount is broken by about 9%.
[0012]
It can be seen that negative resistance is obtained when n = p or p> n. In the case of n> p, the operating resistance indicates a positive resistance, but a reduction in breakdown voltage poses a problem.
In addition, when the breakdown voltage is maintained by breaking the balance of the amount of impurities in each region, the variation in the total amount of impurities between the n-type drift region 1 and the p-type partition region 2 must be suppressed to within a few%, and the production rate is good. Difficult to do.
In view of such a problem, an object of the present invention is to provide a super-junction semiconductor device that significantly improves the trade-off relationship between the withstand voltage and the on-resistance, has an improved avalanche withstand capability, has a small withstand voltage reduction, and has a small withstand voltage variation. An object of the present invention is to provide a junction semiconductor device.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, first and second main surfaces, main electrodes provided on the first and second main surfaces, respectively, and a first conductivity type between the first and second main surfaces. In a semiconductor device including a low resistance layer and a parallel pn layer in which a plurality of first conductivity type regions and a plurality of second conductivity type regions are alternately arranged, an impurity of the second conductivity type region on a first main surface side is provided. The concentration is higher than the impurity concentration of the adjacent first conductivity type region, and the impurity concentration of the second conductivity type region on the second main surface side is lower than the impurity concentration of the adjacent first conductivity type region.
[0014]
Also, by making the impurity concentration of the second conductivity type region on the first main surface side higher than the impurity concentration of the adjacent first conductivity type region, the electric field on the first main surface side can be reduced, so that avalanche breakdown occurs. The operating resistance at the time becomes a positive resistance, and the avalanche breakdown resistance due to current concentration can be improved.
Further, the impurity concentration of the second conductivity type region on the first main surface side is higher than the impurity concentration of the second conductivity type region on the second main surface side, and the impurity concentration of the first conductivity type region is in the depth direction. It is assumed that they are approximately equal to each other.
Preferably, the impurity concentration of the second conductivity type region gradually decreases from the first main surface side to the second main surface side, and the impurity concentration of the adjacent first conductivity type region decreases from the first main surface to the second main surface. To be generally uniform. Alternatively, the impurity concentration of the second conductivity type region may decrease each time the impurity concentration advances from the first main surface side to the second main surface side for a substantially constant distance.
[0015]
Alternatively, the impurity concentration of the second conductivity type region is substantially uniform in the thickness direction, and the impurity concentration of the first conductivity type region on the first main surface side is the first conductivity type on the second main surface side. The impurity concentration of the region may be lower than the impurity concentration of the region, or the impurity concentration of the first conductivity type region may gradually increase from the first main surface side to the second main surface side. The impurity concentration of the first conductivity type region may increase each time the impurity concentration advances from the first main surface side to the second main surface side for a substantially constant distance.
Further, the impurity concentration of the second conductivity type region (or the first conductivity type region) is increased from the first main surface side (second main surface side) to the second main surface side (first main surface side). By doing so, the impurity concentration balance in each region is broken, the operating resistance at the time of avalanche breakdown is made a positive resistance, and current concentration at the time of avalanche breakdown can be reduced.
[0016]
Further, when the region widths of the respective regions on the first main surface side are made different, the impurity concentrations of the regions are made equal, and when the impurity concentrations are made different, the widths of the regions are made equal.
A first conductive type low-resistance layer between the first and second main surfaces; a main electrode provided on the first and second main surfaces; In a semiconductor device including a parallel pn layer in which a conductivity type region and a second conductivity type region are alternately arranged, a region width of the second conductivity type region on the first main surface side is adjacent to that of the first conductivity type region. The width of the parallel pn layer is wider than the region width, the impurity concentration is equal, the length of the parallel pn layer is c (μm), the minimum pitch of the unit parallel pn layer is T (μm), and the first principal surface side of the second conductivity type region When the taper angle with respect to is θ (°: degree) and the aspect ratio x is expressed by c / (T / 2),
[0017]
(Equation 1)
70 ≦ (−11.27 + 0.1236θ) (x − (− 112.7 + 1.292θ)) 2 + (146100-4913θ + 55.12θ 2 -0.2062θ 3 )
age,
[0018]
(Equation 2)
T / 2> c / tan θ
By determining c, θ, x, and T so that the breakdown voltage becomes 70% or more of the breakdown voltage when the taper angle is 90 °. Note that the breakdown voltage is a voltage at the time of avalanche breakdown.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
[Example 1]
FIG. 1 is a sectional view of a main part of a vertical super junction MOSFET according to a first embodiment of the present invention. A withstand voltage structure that mainly bears the withstand voltage is provided around the main part, and the portion is also formed as a parallel pn layer as in, for example, JP-A-2001-298190, or further provided with a normal withstand voltage structure such as a field plate structure. It will be omitted here.
n + On the drain region 7, there is a parallel pn structure portion in which n-type drift regions 1 and p-type partition regions 2 are alternately arranged. On the p-type partition region 2, a p-base region 3 is formed. The surface layer of region 3 is selectively n + Source region 6 and p + A contact region 4 is formed. Above the n-type drift region 1, a surface n-type drift region 5 having a high impurity concentration is formed. Surface n-type drift region 5 and n + A gate electrode 9 is provided on the surface of p base region 3 sandwiched between source region 6 and gate insulating film 8. n + Source region 6 and p + Source electrode 11 is provided in common contact with the surface of contact region 4, and n + A drain electrode 12 is provided in contact with the back surface of the drain region 7. Reference numeral 10 denotes an insulating film for insulating the gate electrode 9 from the source electrode 11.
[0020]
The n-type drift region 1 and the p-type partition region 2 have, for example, a vertical layer shape and extend in a direction perpendicular to the paper surface.
The difference from the conventional vertical super-junction MOSFET of FIG. 22 is that the width of the p-type partition region 2 on the surface side is wider than the width of the n-type drift region 1 (Wpt> Wnt), and the region width of the p-type partition region is From the back surface to the back surface, and the width of the p-type partition region 2 is smaller than the width of the n-type drift region 1 (Wnt> Wpt) on the back surface side.
The impurity concentration of the p-type partition region 2 and the impurity concentration of the n-type drift region 1 are substantially the same. The p-type impurity amount is larger than the n-type impurity amount on the front side, and the n-type impurity amount is p-type impurity amount on the back side. More and more.
[0021]
Note that the present embodiment is of the 600 V class, and the dimensions, impurity concentrations, and the like of the respective parts take the following values.
The thickness of the n-drift region is 42.0 μm, the width at the outermost surface and the lowermost surface of the p-type partition region 2 is 5.0 μm and 3.0 μm (the width of the n-type drift region 1 is opposite to that of the p-type partition region 2) The pitch of the parallel pn layer is 8.0 μm, and the impurity concentration of the p-type partition region 2 and the n-type drift region 1 is 2.5 × 10 Fifteen cm -3 , P-well region 3 has a diffusion depth of 3.0 μm and a surface impurity concentration of 3.0 × 10 17 cm -3 , N + Source region 6 has a diffusion depth of 1.0 μm and a surface impurity concentration of 3.0 × 10 20 cm -3 The diffusion depth of the surface n-type drift region 5 is 2.0 μm, and the surface impurity concentration is 2.0 × 10 16 cm -3 , N + The impurity concentration of the drain region 7 is 2.0 × 10 18 m -3 , And a thickness of 200 μm.
[0022]
FIGS. 2A and 2B are electric field intensity distribution diagrams in a cross section taken along line CC ′ and line DD ′ in FIG. 1, respectively. The parameter is current density.
In the case of the super-junction MOSFET of FIG. 1, since the region width of the p-type partition region 2 becomes narrower from the front surface to the back surface (the impurity concentration is the same in each region, n = p), the electric field distribution at the time of avalanche breakdown Is a pn junction between the p-type base region 3 on the front side and the n-type drift region 1 and n on the back side. + Although the maximum value is obtained at the pn junction between the drain region 7 and the p-type partition region 2, except for the electric field, a high convex distribution is formed at the intermediate portion in the depth direction between the front surface and the rear surface.
[0023]
Since the area of the projection is approximately equal to the breakdown voltage, the avalanche breakdown voltage at a low current is lower than when the region widths of the n-type drift region 1 and the p-type partition region 2 are uniform. However, when the avalanche breakdown current increases and the mobile charges composed of electrons and holes increase, the holes collected on the front surface act to increase the electric field of the pn junction on the front surface, and the electrons collected on the back surface are removed from the back surface. In order to increase the electric field of the pn junction, the electric field distribution in the depth direction shifts from a convex shape to a flat distribution.
Therefore, the operating resistance at the time of avalanche breakdown shows a positive resistance up to this state. Further, when the avalanche breakdown current increases and mobile charges (electrons and holes) increase, the electric field of the pn junction on the front side and the pn junction on the back side is further strengthened by the mobile charges, and the electric field changes from a flat distribution to a concave distribution. And migrate.
[0024]
In this state, the operating resistance at the time of avalanche breakdown indicates negative resistance because the concave bottom is lower than the flat distribution. Therefore, the avalanche current is dispersed by the positive resistance until the operating resistance becomes the negative resistance, so that the avalanche resistance can be improved. Elimination of thermal runaway to destruction as in the case of negative resistance is eliminated.
As described above, in order to make the operating resistance a positive resistance, the electric field distribution has only to be a convex impurity amount distribution in which the electric field is relaxed on the front surface side and the rear surface side, and the region width which is necessarily reduced uniformly It is not necessary to have
[0025]
3A, 3B, 4A, and 4B, the balance of the total impurity amount between the n-type drift region 1 and the p-type partition region 2 is about 9 for n> p and n <p. It is an electric field strength distribution figure at the time of% collapse. The parameter is the current density. The tendency is the same as in the case of n = p, with a high convex distribution at the middle in the depth direction. As the current increases, the distribution becomes flat, indicating a positive resistance. In particular, when n <p, the electric field intensity distribution on the surface side (left side in the figure) largely decreases and becomes flat with an increase in the avalanche breakdown current.
FIG. 5 is a current-voltage characteristic diagram at the time of avalanche breakdown obtained by simulation.
[0026]
n = p is the case where the total impurity amount in each region is the same, and n> p and p> n are the cases where the balance of the total impurity amount is changed by 9%. Even when n = p, the operating resistance shows a positive resistance in the range of 500 A / cm 2. Further, even when the balance of the total impurity amount is broken, the operating resistance shows a positive resistance. Particularly, when n <p, the positive resistance is remarkable.
The structure of the MOSFET of FIG. 1 can be manufactured by processes such as epitaxial growth, selective etching, ion implantation, and heat treatment, similarly to the conventional super junction semiconductor device.
[0027]
The n-type drift region 1 and the p-type partition region have a vertical layered shape, but any one of the regions is arranged on a lattice point of a square lattice, a triangular lattice, or a hexagonal lattice, and the other region has a shape surrounding it. May be. The same applies to the following examples.
[Example 2]
FIG. 6 is a sectional view of a main part of a vertical super junction MOSFET according to a second embodiment of the present invention.
The difference from FIG. 1 of the first embodiment is that the region width of the p-type partition region 2 is periodically narrowed from the front surface to the back surface. The total impurity amount of the p-type partition region 2 and the total impurity amount of the n-type drift region 1 are almost the same.
[0028]
The thickness of the periodically changing layer is 6 μm, and the width of the region becomes smaller by 0.3 μm in the depth direction. If the width of the p-type partition region 2 on the front surface side is wider than that of the adjacent n-type drift region 1 and the width on the rear surface side is narrower, the same effect as in the first embodiment can be obtained.
FIG. 7 is a current-voltage characteristic diagram showing a simulation result at the time of avalanche breakdown in Example 2.
Even when the total impurity amount is the same, n = p, the positive resistance is ensured in the range where the avalanche current is 500 A / cm 2 or less. In the case of n> p and n <p, the characteristics are almost the same as those of the first embodiment.
[Example 3]
FIG. 8 is a sectional view of a main part of a third embodiment of a vertical super junction MOSFET according to the present invention.
[0029]
The difference from FIG. 1 of the first embodiment is that the region width of the p-type partition region 2 is wider than the surface by a predetermined region (Wpt> Wnt). On the back side, the p-type partition region 2 and the n-type drift region 1 have the same region width (Wpt = Wnt). For example, the region where the region width of the p-type partition region 2 is wide is 13 μm from the surface, and the region width is 5 μm.
Note that the impurity concentration is the same for the p-type partition region 2 and the n-type drift region 1 and is uniform in the depth direction.
In this case, the electric field distribution at the time of avalanche breakdown is different from that of the first embodiment, and the impurity amount balance of the parallel pn layer is only disturbed only on the front surface side. Distribution. As the avalanche breakdown current increases, holes generated by the avalanche strengthen the electric field on the surface side, so that the electric field approaches a flat distribution. Therefore, the operating resistance becomes a positive resistance, and it is possible to suppress avalanche breakdown due to current concentration.
[0030]
FIG. 9 is a current-voltage characteristic diagram showing a simulation result at the time of avalanche breakdown in the third embodiment. Even when the total impurity amount is the same, n = p, the positive resistance is secured up to about 500 A / cm 2. Since the average region width is larger in the p-type partition region 2, when n <p, the impurity amount balance is largely disturbed, and the avalanche breakdown voltage at a low current is low.
[Example 4]
FIG. 10 is a sectional view of a main part of a vertical super junction MOSFET according to a fourth embodiment of the present invention, in which the impurity concentration of the p-type partition region 2 has a concentration gradient in the depth direction.
[0031]
FIGS. 11A and 11B are impurity concentration profile diagrams of the EE ′ section and the FF ′ section of FIG.
The impurity concentration of the p-type partition region 2 has a concentration gradient that decreases from the front surface to the back surface. On the other hand, the impurity concentration of the n-type drift region 1 is uniform in the depth direction. The total impurity amount of the p-type partition region 2 and the total impurity amount of the n-type drift region 1 are substantially the same. Therefore, the p-type impurity amount is larger than the n-type impurity amount on the front surface side, and the n-type impurity amount is larger than the p-type impurity amount on the back surface side.
Note that the present embodiment is of a 600 V class, and the dimensions, impurity concentration, and the like of each part are substantially the same as those of the first embodiment. The width of the n-type drift region 1 and the p-type partition region 2 is 8.0 μm (the pitch of the parallel pn layers is 16.0 μm). 2.5 × 10 impurity concentration of n-type drift region 1 Fifteen cm -3 , Impurity concentration of p-type partition region 2 (center in depth direction) 2.5 × 10 Fifteen cm -3 , The impurity concentration gradient is ± 50% with respect to the central impurity concentration.
[0032]
In the case of the super-junction MOSFET according to the fourth embodiment, the impurity concentration of the p-type partition region 2 is formed so as to decrease from the front surface to the back surface, so that the electric field distribution at the time of avalanche breakdown depends on the p-type base region on the front surface side. 3 and n-type drift region 1 and n on the back side + Although the maximum value is obtained at the pn junction between the drain region 7 and the p-type partition region 2, the distribution becomes convex in the depth direction except for the electric field. Since the area of the projection has a breakdown voltage, the avalanche breakdown voltage is lower than that in the case where the impurity concentration of the p-type partition region 2 is uniform.
However, when the avalanche breakdown current increases and the mobile charges composed of electrons and holes increase, the holes collected on the front surface act to increase the electric field of the pn junction on the front surface, and the electrons collected on the back surface are removed from the back surface. In order to increase the electric field of the pn junction, the electric field distribution in the depth direction shifts from a convex shape to a flat distribution. Therefore, the operating resistance at the time of avalanche breakdown shows a positive resistance up to this state.
[0033]
When the avalanche breakdown current further increases and the mobile charge increases, the electric field of the pn junction on the front surface side and the pn junction on the back surface is further strengthened by the mobile charge, and the electric field shifts from a flat distribution to a concave distribution. In this state, the operating resistance at the time of avalanche breakdown indicates negative resistance because the concave bottom is lower than the flat distribution.
Therefore, the avalanche current is dispersed by the positive resistance until the operating resistance becomes negative resistance, so that the avalanche resistance is improved.
As described above, in order to make the operating resistance a positive resistance, the impurity concentration distribution may be such that the electric field distribution is convex (the electric field is relieved on the front side and the back side), and a uniform impurity concentration gradient is obtained. No need to have.
[0034]
FIG. 12 is a current-voltage characteristic diagram at the time of avalanche breakdown obtained by simulation.
n = p is the case where the total impurity amount of each region is the same, and n> p and n <p are the cases where the balance of the total impurity amount is changed by about 9%. 500 A / cm even when n = p 2 In the following ranges, the operating resistance indicates a positive resistance. Further, even when the balance of the total impurity amount is broken, the operating resistance shows a positive resistance.
FIG. 13 is a characteristic diagram showing the dependency of the breakdown voltage on the total impurity amount balance. Under the condition that the total impurity amount is balanced (0%), the breakdown voltage is lower than that in the case where the p-type partition region 2 is uniform (conventional structure), but the variation in the total impurity amount is improved. The structure having the impurity concentration gradient in the p-type partition region 2 is insensitive to the variation in the total impurity amount, and it can be seen that it is advantageous for improving the yield rate.
[Example 5]
In the vertical super-junction MOSFET whose main part cross-sectional view is the same as that of FIG. 10, the impurity concentration profiles of the EE ′ cross-section and the FF ′ cross-section of FIG. 10 are n-type drifts as shown in FIGS. The impurity concentration of the region 1 can be changed in the depth direction.
[0035]
The impurity concentration of the n-type drift region 1 has a concentration gradient that increases from the front surface to the back surface.
Except for this point, the operating principle is the same as that in the case where the p-type partition region 2 has an impurity concentration gradient.
FIG. 15 is a current-voltage characteristic diagram showing a simulation result at the time of avalanche breakdown in a structure in which the n-type drift region 1 has an impurity concentration gradient. Even in this case, 600 A / cm 2 Positive resistance can be obtained in the following range.
[Example 6]
FIG. 16 is a sectional view of a main part of a vertical super-junction MOSFET according to a sixth embodiment of the present invention, in which the impurity concentration of the p-type partition region 2 changes periodically in the depth direction.
[0036]
FIGS. 17A and 17B are impurity concentration profile diagrams along the GG 'section and the HH' section in FIG.
The difference from the fourth embodiment is that the impurity concentration of the p-type partition region 2 periodically decreases from the front surface to the back surface. The thickness of the periodically changing layer is 7 μm, and the gradient of the impurity concentration is ± 50% with respect to the center in the depth direction. The total impurity amount of the p-type partition region 2 and the total impurity amount of the n-type drift region 1 are substantially the same.
If the impurity concentration of the p-type partition region 2 is high on the front side and low on the back side, the same effect as in the fourth embodiment can be obtained.
[0037]
FIG. 18 is a current-voltage characteristic diagram showing a simulation result at the time of avalanche breakdown in Example 6. Even when the total impurity amount is the same (n = p), 600 A / cm 2 Positive resistance can be obtained in the following range.
It should be noted that a peak may be present in the impurity concentration that changes periodically, and the same effect can be obtained even if the n-type drift region 1 has a periodic impurity concentration gradient contrary to the p-type partition region 2. Can be
[Example 7]
FIG. 19 is a sectional view of a main part of a vertical super-junction MOSFET according to a seventh embodiment of the present invention, in which the impurity concentration of the p-type partition region 2 is higher than the surface by a predetermined region.
[0038]
FIGS. 20A and 20B are impurity concentration profile diagrams taken along the line II ′ and the line JJ ′ in FIG. The region with a high impurity concentration is a region 13 μm from the surface, the impurity concentration is 150% of the p-type partition region 2 other than this region, and the impurity concentration other than the region with a high impurity concentration is the impurity of the adjacent n-type drift region 1. 2.5 × 10 same as concentration Fifteen / Cm 3 It is.
Unlike the sixth embodiment, the region where the impurity concentration is high is only a predetermined region from the front surface, and the p-type partition region 2 and the n-type drift region 1 have the same impurity concentration on the back surface side. In this case, the electric field distribution at the time of avalanche breakdown is different from that of the sixth embodiment, and only the impurity concentration balance of the parallel pn layer on the front surface side is disturbed. It has a flat distribution.
[0039]
As the avalanche breakdown current increases, holes generated by the avalanche increase the electric field on the surface side, so that the electric field approaches a flat distribution. Therefore, the operating resistance becomes a positive resistance, and it is possible to suppress avalanche breakdown due to current concentration.
FIG. 21 is a current-voltage characteristic diagram showing a simulation result at the time of avalanche breakdown in Example 7. Even when the total impurity amount is the same (n = p), 600 A / cm 2 Positive resistance can be obtained in the following range.
Although the present embodiment is described using a MOSFET, similar effects can be obtained with an IGBT, a Schottky diode, an FWD, a bipolar transistor, or the like.
[0040]
Next, the parallel pn layer shown in FIG. 1 is composed of an n-type drift region 1 and a p-type partition region 2, and the relationship between the taper angle and the aspect ratio defined below, the breakdown voltage, and the on-resistance will be described. This taper angle is useful when a uniform semiconductor layer (p-type partition region 2) is formed in the trench by epitaxial growth.
FIG. 28 is a diagram for explaining the definitions of the aspect ratio and the taper angle. FIG. 28 (a) is a partially enlarged view of the parallel pn layer shown in FIG. 1, and FIG. 28 (b) is a diagram of FIG. It is the figure which reduced the width of the unit parallel pn layer to half.
The parallel pn layer 20 has a structure in which unit parallel pn layers 21 composed of a p-layer (p-type partition region 2) and an n-layer (n-type drift region 1) are repeatedly arranged. The repetition pitch of the unit parallel pn layer 21 is the width of the unit parallel pn layer 21. FIGS. 28 to 2B are diagrams in which the p-layer side and the n-layer side of the unit parallel pn layer 21 are respectively halved. The width obtained by halving the p-layer side and the n-layer side of the unit parallel pn layer 21 is represented by s as the SJ pitch.
[0041]
The width of the p-type partition region on the front side is a (= Wpt: unit is μm), the width of the n-type drift region is b (= Wnt: unit is μm), and the width of the p-type partition region on the back side is b (= Wpb), the width of the n-type drift region is a (= Wnb), and the length of the unit parallel pn layer (hereinafter, referred to as SJ length; SJ is a super junction) is c (unit is μm). At this time, the taper angle θ (unit: °: degree) and the aspect ratio x are defined as follows.
[0042]
(Equation 5)
Aspect ratio x = c / (a + b)
[0043]
(Equation 6)
Taper angle θ = tan (C / (ab))
It is assumed that the aspect ratio x and the taper angle θ described below are numerical values obtained by this equation. However, it is not applied when the taper angle θ is 90 °.
The length c of the unit parallel pn layer is n + Source region 5 and n + Equal to the spacing between the drain regions 7.
[0044]
FIG. 29 shows the relationship among the breakdown voltage (BVds), the on-resistance (RonA), and the SJ pitch (SJPitch) when the vertical superjunction semiconductor device shown in FIG. 1 is applied to the 600 V class. FIG. 4B shows the relationship between the withstand voltage and the SJ pitch, and FIG. 6B shows the relationship between the on-resistance and the withstand voltage. This is the case where c = 40 μm. BVds is a breakdown voltage. The SJ pitch s corresponds to a + b. Therefore, the repetition pitch of the unit parallel pn layer 21 (the pitch of the unit parallel pn layer) is 2 s.
As can be seen from FIG. 29 (a), the withstand voltage decreases as the taper angle θ becomes smaller than 90 ° although the withstand voltage hardly decreases when the taper angle θ is 90 °. I understand. This is because, as the taper angle θ becomes smaller, the electric field strength at an intermediate position between the front surface side and the bottom surface side increases, and the breakdown voltage decreases. In addition, it can be seen that the smaller the SJ pitch s, the greater the decrease. This is because the smaller the SJ pitch s, the higher the electric field intensity at the intermediate position.
[0045]
However, as can be seen from the trade-off between the on-resistance and the withstand voltage in FIG. 29B, the on-resistance hardly changes. This is because even if the taper angle θ and the SJ pitch s change, the average total cross-sectional area of the n-type drift region 1 does not change. However, when the taper angle θ and the SJ pitch s decrease, the on-resistance increases due to the JFET effect. If the SJ pitch s is made extremely small, the n-type drift region 1 disappears on the surface side, and there is no port for sweeping out carriers from the channel, so that a device cannot be constructed. Therefore, when the SJ pitch s is made extremely small, it is necessary to reduce the SJ length c or select a large taper angle θ.
[0046]
From the above, it is necessary to clarify the relationship between the taper angle θ and the SJ pitch s in order to ensure a sufficient withstand voltage. However, when the SJ length c is fixed, the aspect ratio x is inversely proportional to the SJ pitch s.
FIGS. 30 and 31 show the relationship among the breakdown voltage (BVds), the on-resistance (RonA), and the SJ pitch (SJPitch) when the vertical superjunction semiconductor device shown in FIG. 1 is applied to the 200 V class and the 100 V class, respectively. FIG. 4A is a diagram showing the relationship between the breakdown voltage and the SJ pitch, and FIG. 4B is a diagram showing the relationship between the on-resistance and the breakdown voltage.
As in FIG. 29, it can be seen that as the taper angle θ becomes smaller and the SJ pitch s becomes narrower, the reduction in withstand voltage becomes more remarkable. In FIGS. 30 and 31, the SJ length c is 10 μm and 5 μm, respectively.
[0047]
FIG. 32 shows the relationship between the withstand voltage (BVds / BVds (90 °)) obtained by standardizing the withstand voltage shown in FIGS. 29, 30 and 31 and the aspect ratio using the taper angle as a parameter. () Is an overall view, and FIG. (B) is an enlarged view in which the region where the standardized breakdown voltage of FIG. (A) is 70% or more is enlarged. FIG. 32 includes all the breakdown voltage classes shown in FIGS. 29, 30, and 31. Note that the normalized breakdown voltage (BVds / BVds (90 °)) is a breakdown voltage normalized by a breakdown voltage when the taper angle θ is 90 °, and is expressed as a percentage (%).
[0048]
From FIG. 32, it can be seen that if the taper angle θ is substantially the same, the relationship between the normalized breakdown voltage (BVds / BVds (90 °)) and the aspect ratio x is the same regardless of the breakdown voltage class. Particularly, as shown in FIG. 32B, it can be seen that good agreement is shown in the region where the normalized breakdown voltage is 70% or more.
From the relationship shown in FIG. 32 (b), the relationship between the standardized breakdown voltage (BVds / BVds (90 °)) and the taper angle θ was subjected to a quadratic approximation fitting (formulation by a quadratic equation). The approximate expression of the standardized breakdown voltage and aspect ratio at each taper angle θ is as follows.
At θ = 89 °
[0049]
(Equation 7)
y = -0.2756x 2 + 1.262x + 99.55
At θ = 88 °
[0050]
(Equation 8)
y = −0.4014x 2 + 0.6467x + 101.7
At θ = 87 °
[0051]
(Equation 9)
y = -0.5227x 2 + 0.3070x + 104.5
Here, y is a standardized breakdown voltage (BVds / BVds (90 °)) at each taper angle θ, and the unit is percent (%). X is an aspect ratio.
Based on these relational expressions, an approximate expression of the coefficient of each order is obtained, and a relational expression applicable to all the taper angles θ (a relational expression of standardized breakdown voltage (%) and aspect ratio) is obtained. become that way.
[0052]
(Equation 10)
y = (− 11.27 + 0.1236θ) (x − (− 112.7 + 1.292θ)) 2 + (146100-4913θ + 55.12θ 2 -0.2062θ 3 )
Here, y is a numerical value obtained by standardizing the breakdown voltage at each taper angle with the breakdown voltage at 90 °, and the unit is percent. Further, x is an aspect ratio, θ is a taper angle, and the unit is degree.
The results at the taper angles θ of 87 °, 88 °, and 89 ° obtained from this calculation formula are shown by curves (solid lines) in FIGS. 33C, 33B, and 33A, respectively. FIG. 3D also shows FIGS. 3A, 3B, and 3C.
[0053]
From FIG. 33, when the standardized withstand voltage is 70% or more, the above three approximate expressions can be applied to almost all the taper angles θ.
When the minimum SJ pitch is W (unit: μm), the relationship between the minimum SJ pitch W, the SJ length c, and the taper angle θ is:
[0054]
[Equation 11]
W = c / tan θ
It becomes. However, with this value of W, as described above, since there is no outlet for discharging carriers from the channel, it is necessary to satisfy W> c / tan θ in order to operate the device. That is, the minimum unit parallel pn layer pitch T (unit is μm) is 2W (= 2c / tan θ).
FIG. 34 shows that the taper angles θ are 89.9 °, 89.5 °, 89 °, 88.5 °, 88 °, 87.5 °, 87 °, 86.5 °, 86 °, 85.5 °, It is a figure which shows the relationship between the standardized withstand voltage and aspect ratio in case of 85 degrees.
[0055]
For example, when the taper angle θ is 89.5 ° or more and 89.9 ° or less, if the aspect ratio x is formed to be about 17 or less, the standardized withstand voltage can be obtained at 70% or more.
Similarly, when the aspect ratio is set to about 9 or less in the case of 87 ° or more and 87.5 ° or less, the standardized withstand voltage can be obtained at 70% or more. Furthermore, in the case of 85 ° or more and 85.5 ° or less, if the aspect ratio is set to about 5.5 or less, the standardized withstand voltage can be obtained at 70% or more. Naturally, the standardized withstand voltage can be obtained at 70% or more by setting the other taper angles to be equal to or less than the aspect ratio obtained by the same calculation formula.
[0056]
Therefore, the above can be summarized as follows.
In order to secure the standardized breakdown voltage BVds / BVds (90 °) to 70% or more,
[0057]
(Equation 12)
70 ≦ (−11.27 + 0.1236θ) (x − (− 112.7 + 1.292θ)) 2 + (146100-4913θ + 55.12θ 2 -0.2062θ 3 ) ・ ・ ・ ・ (1)
age,
[0058]
(Equation 13)
W> c / tan θ (2)
It is advisable to determine c, θ, x, and W so that The equation (2) is a condition for manufacturing a semiconductor device. Of course, as described above, the minimum pitch T of the unit parallel pn layer is 2W.
Equations (1) and (2) are derived based on the case where the p-type partition region 2 and the n-type drift region 1 constituting the unit parallel pn layer 20 are rotationally symmetric and their volumes are equal to each other. However, they may be different. That is, when the expressions (1) and (2) are satisfied, a semiconductor element capable of securing the standardized breakdown voltage BVds / BVds (90 °) to 70% or more can be manufactured. Further, it is desirable that the p-type partition region 2 and the n-type drift region 1 have a charge balance with each other.
[0059]
【The invention's effect】
As described above, according to the present invention, by controlling the region width or impurity concentration of the first conductivity type drift region and the second conductivity type partition region having the parallel pn structure, the second conductivity type on the first main surface side is controlled. The impurity amount of the mold region is made larger than the impurity amount of the adjacent first conductivity type drift region, and the impurity amount of the second conductivity type region on the second main surface side is made smaller than the impurity amount of the adjacent first conductivity type drift region. As a result, the electric field distribution in the parallel pn structure is improved, the operating resistance at the time of avalanche breakdown becomes a positive resistance, and the avalanche breakdown resistance can be improved.
[0060]
Furthermore, since a decrease in resistance to variations in the total amount of impurities can be suppressed, it is possible to provide a super-junction semiconductor element with high productivity (high yield rate).
Also, by setting the SJ length, taper angle, aspect ratio and SJ pitch of the parallel pn structure to predetermined values, a withstand voltage (standardized withstand voltage) of 70% or more with respect to the withstand voltage of 90 ° taper angle is obtained. be able to.
[Brief description of the drawings]
FIG. 1 is a sectional view of a main part of a super junction MOSFET according to a first embodiment of the present invention.
FIGS. 2 (a) and 2 (b) are electric field distribution diagrams (when n = p) in the sections taken along the lines CC ′ and DD ′ in FIG. 1, respectively.
FIGS. 3 (a) and 3 (b) are electric field distribution diagrams (when n> p) in the CC ′ and DD ′ cross sections in FIG. 1, respectively.
FIGS. 4 (a) and 4 (b) are electric field distribution diagrams (when n <p) in the CC ′ and DD ′ cross sections of FIG. 1, respectively.
FIG. 5 is an avalanche current-voltage characteristic diagram of the super-junction MOSFET according to the first embodiment of the present invention.
FIG. 6 is a sectional view of a main part of a super junction MOSFET according to a second embodiment of the present invention.
FIG. 7 is an avalanche current-voltage characteristic diagram of the super junction MOSFET according to the second embodiment of the present invention.
FIG. 8 is a sectional view of a main part of a super junction MOSFET according to a third embodiment of the present invention.
FIG. 9 is an avalanche current-voltage characteristic diagram of the super junction MOSFET according to the third embodiment of the present invention.
FIG. 10 is a sectional view of a main part of a super junction MOSFET according to Examples 4 and 5 of the present invention.
FIGS. 11A and 11B are impurity profile diagrams in the EE ′ and FF ′ cross sections of the super junction MOSFET of Example 4, respectively.
FIG. 12 is an avalanche current-voltage characteristic diagram of a super junction MOSFET according to Embodiment 4 of the present invention.
FIG. 13 is a characteristic diagram showing the total impurity amount balance dependency of Example 4 of the present invention.
14 (a) and (b) are impurity profile diagrams in CC ′ and DD ′ cross sections of the super junction MOSFET of Example 5, respectively.
FIG. 15 is an avalanche current-voltage characteristic diagram of a super junction MOSFET according to Embodiment 5 of the present invention.
FIG. 16 is a sectional view of a main part of a super junction MOSFET according to a sixth embodiment of the present invention.
17 (a) and (b) are impurity profile diagrams in a GG ′ and HH ′ cross section of the super junction MOSFET of Example 6, respectively.
FIG. 18 is an avalanche current-voltage characteristic diagram of a super junction MOSFET according to Embodiment 6 of the present invention.
FIG. 19 is a sectional view of a main part of a super junction MOSFET according to a seventh embodiment of the present invention.
FIGS. 20 (a) and (b) are impurity profile diagrams in the II ′ and JJ ′ cross sections of the super junction MOSFET of Example 7, respectively.
FIG. 21 is an avalanche current-voltage characteristic diagram of a super junction MOSFET according to Embodiment 7 of the present invention.
FIG. 22 is a sectional view of a main part of a conventional super junction MOSFET.
FIGS. 23A and 23B are impurity profile diagrams in AA ′ and BB ′ cross sections of a conventional super junction MOSFET, respectively.
FIGS. 24A and 24B are electric field distribution diagrams (when n = p) in AA ′ and BB ′ cross sections in FIG. 22, respectively.
25 (a) and (b) are electric field distribution diagrams (when n> p) in AA ′ and BB ′ cross sections in FIG. 22, respectively.
26 (a) and (b) are electric field distribution diagrams in the AA ′ and BB ′ cross sections of FIG. 22 (when n <p).
FIG. 27 is a diagram showing avalanche current-voltage characteristics of a conventional super junction MOSFET.
28A and 28B are diagrams illustrating definitions of an aspect ratio and a taper angle. FIG. 28A is a partially enlarged view of the parallel pn layer illustrated in FIG. 1, and FIG. Diagram showing half of
29 shows the relationship among the breakdown voltage (BVds), the on-resistance (RonA), and the SJ pitch (SJPitch) when the vertical superjunction semiconductor device shown in FIG. 1 is applied to a 600V class, and (a) shows the breakdown voltage and FIG. 4B is a diagram showing the relationship between the SJ pitch and FIG.
FIG. 30 shows a relationship among a breakdown voltage (BVds), an on-resistance (RonA), and an SJ pitch (SJPitch) when the vertical superjunction semiconductor device shown in FIG. 1 is applied to a 200 V class; FIG. 4B is a diagram showing the relationship between ON resistance and SJ pitch, and FIG.
FIG. 31 shows the relationship among breakdown voltage (BVds), on-resistance (RonA), and SJ pitch (SJPitch) when the vertical superjunction semiconductor element shown in FIG. FIG. 3 shows the relationship between the breakdown voltage and the SJ pitch, and FIG. 4B shows the relationship between the on-resistance and the breakdown voltage.
FIG. 32 is a diagram showing the relationship between the withstand voltage (BVds / BVds (90 °)) obtained by standardizing the withstand voltage shown in FIGS. 29, 30, and 31 and the aspect ratio using the taper angle as a parameter; (B) is an enlarged view in which the region where the standardized breakdown voltage of (a) is 70% or more is enlarged.
33A and 33B are diagrams showing the relationship between normalized withstand voltage and aspect ratio by an approximate expression. FIG. 33A shows a case where the taper angle θ is 89 °, FIG. 33B shows a case where the taper angle θ is 88 °, and FIG. Is a diagram when the taper angle θ is 87 °, and (d) is a diagram when the taper angle θ is all.
FIG. 34 is a diagram showing a relationship between a standardized breakdown voltage and an aspect ratio when the taper angle θ is 85 ° to 89.9 °.
[Explanation of symbols]
1 n-type drift region
2 p-type partition area
3p base region
4 p + Contact area
5 Surface n-type drift region
6 n + Source area
7 n + Drain region
8 Gate insulating film
9 Gate electrode
10 Insulating film
11 Source electrode
12 Drain electrode
20 parallel pn layers
21 unit parallel pn layer
a Width on the surface side of p-type partition region / Width on the bottom surface side of n-type drift region
bp Width of back side of p-type partition region / width of front side of n-type drift region
c SJ length
s SJ pitch
W Minimum SJ pitch
T Minimum unit parallel pn layer pitch

Claims (8)

第1と第2の主面と、第1と第2の主面にそれぞれ設けられた主電極と、第1と第2の主面間に第1導電型低抵抗層と、第1導電型領域と第2導電型領域とを交互に配置した並列pn層とを備える半導体素子において、第1主面側における前記第2導電型領域の不純物濃度が隣接する第1導電型領域の不純物濃度より高く、第2主面側における前記第2導電型領域の不純物濃度が隣接する第1導電型領域の不純物濃度より低いことを特徴とする半導体素子。A first conductive type low resistance layer between the first and second main surfaces, a first electrode provided on the first and second main surfaces, a first conductive type low resistance layer between the first and second main surfaces; In a semiconductor device having a parallel pn layer in which regions and second conductivity type regions are alternately arranged, the impurity concentration of the second conductivity type region on the first main surface side is higher than the impurity concentration of the adjacent first conductivity type region. A semiconductor device, wherein the impurity concentration of the second conductivity type region on the second main surface side is higher than the impurity concentration of an adjacent first conductivity type region. 第1主面側における前記第2導電型領域の不純物濃度が第2主面側における前記第2導電型領域の不純物濃度より高く、且つ前記第1導電型領域の不純物濃度が深さ方向に均−であることを特徴とする請求項1に記載の半導体素子。The impurity concentration of the second conductivity type region on the first main surface side is higher than the impurity concentration of the second conductivity type region on the second main surface side, and the impurity concentration of the first conductivity type region is uniform in the depth direction. The semiconductor device according to claim 1, wherein 前記第2導電型領域の不純物濃度が、第1主面側から第2主面側に向かい一定距離進むごとに、減少していることを特徴とする請求項2に記載の半導体素子。3. The semiconductor device according to claim 2, wherein the impurity concentration of the second conductivity type region decreases as the distance from the first main surface toward the second main surface increases by a predetermined distance. 4. 前記第2導電型領域の不純物濃度が厚さ方向に均−であり、且つ第1主面側における前記第1導電型領域の不純物濃度が第2主面側における前記第1導電型領域の不純物濃度より低くなることを特徴とする請求項1に記載の半導体素子。The impurity concentration of the second conductivity type region is uniform in the thickness direction, and the impurity concentration of the first conductivity type region on the first main surface side is the impurity concentration of the first conductivity type region on the second main surface side. 2. The semiconductor device according to claim 1, wherein the concentration is lower than the concentration. 前記第1導電型領域の不純物濃度が、第1主面側から第2主面側に向かい一定距離進むごとに、増加していることを特徴とする請求項4に記載の半導体素子。5. The semiconductor device according to claim 4, wherein the impurity concentration of the first conductivity type region increases as the distance from the first main surface toward the second main surface increases by a predetermined distance. 6. 第1と第2の主面と、第1と第2の主面にそれぞれ設けられた主電極と、第1と第2の主面間に第1導電型低抵抗層と、第1導電型領域と、第2導電型領域とを交互に配置した並列pn層とを備える半導体素子において、第1主面側における前記第2導電型領域の領域幅が隣接する第1導電型領域の領域幅より広く、且つ、不純物濃度が等しいことを特徴とする半導体素子。A first conductive type low resistance layer between the first and second main surfaces, a first electrode provided on the first and second main surfaces, a first conductive type low resistance layer between the first and second main surfaces; In a semiconductor device including a region and a parallel pn layer in which a second conductivity type region is alternately arranged, the region width of the second conductivity type region on the first main surface side is adjacent to that of the first conductivity type region. A semiconductor element which is wider and has the same impurity concentration. 第1と第2の主面と、第1と第2の主面にそれぞれ設けられた主電極と、第1と第2の主面間に第1導電型低抵抗層と、第1導電型領域と第2導電型領域とを交互に配置した並列pn層とを備える半導体素子において、第1主面側における前記第2導電型領域の不純物濃度が隣接する第1導電型領域の不純物濃度より高く、且つ、領域幅が等しいことを特徴とする半導体素子。A first conductive type low resistance layer between the first and second main surfaces, a first electrode provided on the first and second main surfaces, a first conductive type low resistance layer between the first and second main surfaces; In a semiconductor device having a parallel pn layer in which regions and second conductivity type regions are alternately arranged, the impurity concentration of the second conductivity type region on the first main surface side is higher than the impurity concentration of the adjacent first conductivity type region. A semiconductor device having a high height and an equal region width. 第1と第2の主面と、第1と第2の主面にそれぞれ設けられた主電極と、第1と第2の主面間に第1導電型低抵抗層と、第1導電型領域と、第2導電型領域とを交互に配置した並列pn層とを備える半導体素子において、第1主面側における前記第2導電型領域の領域幅が隣接する第1導電型領域の領域幅より広く、且つ、不純物濃度が等しく、並列pn層の長さをc(μm)とし、単位並列pn層の最小ピッチをT(μm)とし、第2導電型領域の第1主面側に対するテーパー角をθ(°:degree)とし、c/(T/2)で表されるアスペクト比xとしたとき、
Figure 2004072068
とし、
Figure 2004072068
となるように、cとθとxとTを決めることで、テーパー角が90°の場合のブレークダウン電圧に対して70%以上のブレークダウン電圧とすることを特徴とする半導体素子。
First and second main surfaces, main electrodes provided on the first and second main surfaces, a first conductivity type low-resistance layer between the first and second main surfaces, and a first conductivity type. In a semiconductor device including a region and a parallel pn layer in which a second conductivity type region is alternately arranged, the region width of the second conductivity type region on the first main surface side is adjacent to the first conductivity type region. Wider and equal in impurity concentration, the length of the parallel pn layer is c (μm), the minimum pitch of the unit parallel pn layer is T (μm), and the taper of the second conductivity type region with respect to the first main surface is When the angle is θ (°: degree) and the aspect ratio x is represented by c / (T / 2),
Figure 2004072068
age,
Figure 2004072068
A semiconductor device characterized by determining c, θ, x, and T so that the breakdown voltage is 70% or more of the breakdown voltage when the taper angle is 90 °.
JP2003074951A 2002-06-14 2003-03-19 Semiconductor element Expired - Fee Related JP4304433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003074951A JP4304433B2 (en) 2002-06-14 2003-03-19 Semiconductor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002173990 2002-06-14
JP2003074951A JP4304433B2 (en) 2002-06-14 2003-03-19 Semiconductor element

Publications (2)

Publication Number Publication Date
JP2004072068A true JP2004072068A (en) 2004-03-04
JP4304433B2 JP4304433B2 (en) 2009-07-29

Family

ID=32032339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003074951A Expired - Fee Related JP4304433B2 (en) 2002-06-14 2003-03-19 Semiconductor element

Country Status (1)

Country Link
JP (1) JP4304433B2 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888195B2 (en) 2002-09-25 2005-05-03 Kabushiki Kaisha Toshiba Semiconductor device with alternating conductivity type layers having different vertical impurity concentration profiles
JP2006066421A (en) * 2004-08-24 2006-03-09 Toshiba Corp Semiconductor device and its manufacturing method
JP2006179598A (en) * 2004-12-21 2006-07-06 Toshiba Corp Power semiconductor device
JP2007300034A (en) * 2006-05-02 2007-11-15 Toshiba Corp Semiconductor device, and its fabrication process
US7372111B2 (en) 2004-08-04 2008-05-13 Fuji Electric Device Technology Co., Ltd. Semiconductor device with improved breakdown voltage and high current capacity
JP2008140968A (en) * 2006-12-01 2008-06-19 Shindengen Electric Mfg Co Ltd Trench schottky barrier diode
JP2008159601A (en) * 2005-11-28 2008-07-10 Fuji Electric Device Technology Co Ltd Semiconductor device and manufacturing method thereof
DE102008023349A1 (en) 2007-05-17 2008-11-20 Denso Corp., Kariya-shi Semiconductor device
JP2008305927A (en) * 2007-06-06 2008-12-18 Denso Corp Semiconductor device and manufacturing method thereof
US7535059B2 (en) 2005-11-28 2009-05-19 Fuji Electric Holdings Co., Ltd. Semiconductor device and manufacturing method of the semiconductor device
DE102008061962A1 (en) 2007-12-17 2009-06-25 DENSO CORPORARTION, Kariya-shi Semiconductor device i.e. n-channel super-junction-MOS-transistor, for power applications, has PN-column layer comprising column layers with impurity amount differences that are positive and negative, respectively
JP2009141243A (en) * 2007-12-10 2009-06-25 Toshiba Corp Semiconductor device
US7595530B2 (en) 2005-03-01 2009-09-29 Kabushiki Kaisha Toshiba Power semiconductor device with epitaxially-filled trenches
JP2010171221A (en) * 2009-01-23 2010-08-05 Toshiba Corp Semiconductor device
WO2011093473A1 (en) 2010-01-29 2011-08-04 富士電機システムズ株式会社 Semiconductor device
US8058688B2 (en) 2006-09-29 2011-11-15 Kabushiki Kaisha Toshiba Semiconductor device
KR101216897B1 (en) 2011-08-09 2012-12-28 주식회사 케이이씨 High voltage semiconductor device
CN103123893A (en) * 2011-11-21 2013-05-29 上海华虹Nec电子有限公司 Process method for improving super junction product yield
CN103151384A (en) * 2013-03-07 2013-06-12 矽力杰半导体技术(杭州)有限公司 Semiconductor device and manufacturing method thereof
KR101279222B1 (en) 2011-08-26 2013-06-26 주식회사 케이이씨 High voltage semiconductor device
CN103258853A (en) * 2006-01-31 2013-08-21 株式会社电装 Semiconductor device having super junction structure and method for manufacturing the same
WO2013161116A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Semiconductor device and method for manufacturing same
US8735982B2 (en) 2010-11-09 2014-05-27 Fuji Electric Co., Ltd. Semiconductor device with superjunction structure
US8742500B2 (en) 2010-10-21 2014-06-03 Fuji Electric Co., Ltd Semiconductor device
CN103915500A (en) * 2013-01-07 2014-07-09 瑞萨电子株式会社 Vertical power mosfet
US8823083B2 (en) 2011-10-06 2014-09-02 Denso Corporation Semiconductor device with vertical semiconductor element
KR101505553B1 (en) * 2008-05-16 2015-03-24 페어차일드코리아반도체 주식회사 Power semiconductor device and method of fabricating the same
JP2015220367A (en) * 2014-05-19 2015-12-07 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of the same
JP2016036009A (en) * 2014-07-31 2016-03-17 株式会社東芝 Semiconductor device
JP2016139761A (en) * 2015-01-29 2016-08-04 富士電機株式会社 Semiconductor device
CN105932059A (en) * 2015-02-27 2016-09-07 株式会社东芝 Semiconductor device
US9478441B1 (en) 2003-10-21 2016-10-25 Siliconix Technology C. V. Method for forming a superjunction device with improved ruggedness
CN107195685A (en) * 2017-06-30 2017-09-22 上海华虹宏力半导体制造有限公司 The manufacture method of super-junction device
US10056249B2 (en) 2011-10-12 2018-08-21 Asm International N.V. Atomic layer deposition of antimony oxide films
CN108475703A (en) * 2016-01-05 2018-08-31 三菱电机株式会社 Manufacturing silicon carbide semiconductor device
CN108574011A (en) * 2017-03-08 2018-09-25 无锡华润华晶微电子有限公司 Vertical super-junction bilateral diffusion metal oxide semiconductor device and preparation method thereof
US10090408B2 (en) 2016-09-14 2018-10-02 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
EP3382760A1 (en) * 2017-03-31 2018-10-03 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
CN108878534A (en) * 2018-06-29 2018-11-23 上海华虹宏力半导体制造有限公司 Super-junction structure and its manufacturing method
CN109643734A (en) * 2016-11-11 2019-04-16 新电元工业株式会社 MOSFET and power conversion circuit
CN109643656A (en) * 2016-09-02 2019-04-16 新电元工业株式会社 MOSFET and power conversion circuit
JP2019096840A (en) * 2017-11-28 2019-06-20 新電元工業株式会社 Mosfet and power inverter circuit
JP2019192932A (en) * 2019-07-03 2019-10-31 富士電機株式会社 Semiconductor device
CN111200010A (en) * 2018-11-20 2020-05-26 深圳尚阳通科技有限公司 Super junction device and manufacturing method thereof
CN111341827A (en) * 2018-12-18 2020-06-26 深圳尚阳通科技有限公司 N-type super junction device and manufacturing method thereof
CN114649406A (en) * 2022-05-18 2022-06-21 浙江大学 Multilevel super junction structure and self-aligned preparation method thereof

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888195B2 (en) 2002-09-25 2005-05-03 Kabushiki Kaisha Toshiba Semiconductor device with alternating conductivity type layers having different vertical impurity concentration profiles
USRE46799E1 (en) 2002-09-25 2018-04-17 Kabushiki Kaisha Toshiba Semiconductor device with alternating conductivity type layers having different vertical impurity concentration profiles
US9478441B1 (en) 2003-10-21 2016-10-25 Siliconix Technology C. V. Method for forming a superjunction device with improved ruggedness
US7372111B2 (en) 2004-08-04 2008-05-13 Fuji Electric Device Technology Co., Ltd. Semiconductor device with improved breakdown voltage and high current capacity
JP2006066421A (en) * 2004-08-24 2006-03-09 Toshiba Corp Semiconductor device and its manufacturing method
JP2006179598A (en) * 2004-12-21 2006-07-06 Toshiba Corp Power semiconductor device
US7276773B2 (en) 2004-12-21 2007-10-02 Kabushiki Kaisha Toshiba Power semiconductor device
US7898031B2 (en) 2005-03-01 2011-03-01 Kabushiki Kaisha Toshiba Semiconductor device with tapered trenches and impurity concentration gradients
US7936015B2 (en) 2005-03-01 2011-05-03 Kabushiki Kaisha Toshiba Semiconductor device having trenches filled with a semiconductor having an impurity concentration gradient
US8431992B2 (en) 2005-03-01 2013-04-30 Kabushiki Kaisha Toshiba Semiconductor device including first and second semiconductor regions with increasing impurity concentrations from a substrate surface
US7595530B2 (en) 2005-03-01 2009-09-29 Kabushiki Kaisha Toshiba Power semiconductor device with epitaxially-filled trenches
JP2008159601A (en) * 2005-11-28 2008-07-10 Fuji Electric Device Technology Co Ltd Semiconductor device and manufacturing method thereof
US7535059B2 (en) 2005-11-28 2009-05-19 Fuji Electric Holdings Co., Ltd. Semiconductor device and manufacturing method of the semiconductor device
JP2013048279A (en) * 2005-11-28 2013-03-07 Fuji Electric Co Ltd Semiconductor device
US8138542B2 (en) 2005-11-28 2012-03-20 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of the semiconductor device
US9368575B2 (en) 2006-01-31 2016-06-14 Denso Coporation Semiconductor device having super junction structure and method for manufacturing the same
CN103258853A (en) * 2006-01-31 2013-08-21 株式会社电装 Semiconductor device having super junction structure and method for manufacturing the same
JP2007300034A (en) * 2006-05-02 2007-11-15 Toshiba Corp Semiconductor device, and its fabrication process
US8058688B2 (en) 2006-09-29 2011-11-15 Kabushiki Kaisha Toshiba Semiconductor device
JP2008140968A (en) * 2006-12-01 2008-06-19 Shindengen Electric Mfg Co Ltd Trench schottky barrier diode
US7692241B2 (en) 2007-05-17 2010-04-06 Denso Corporation Semiconductor device
DE102008023349B4 (en) 2007-05-17 2018-07-26 Denso Corporation Semiconductor device
DE102008023349A1 (en) 2007-05-17 2008-11-20 Denso Corp., Kariya-shi Semiconductor device
JP2008305927A (en) * 2007-06-06 2008-12-18 Denso Corp Semiconductor device and manufacturing method thereof
JP2009141243A (en) * 2007-12-10 2009-06-25 Toshiba Corp Semiconductor device
US9105716B2 (en) 2007-12-10 2015-08-11 Kabushiki Kaisha Toshiba Semiconductor device
US7872308B2 (en) 2007-12-10 2011-01-18 Kabushiki Kaisha Toshiba Semiconductor device
DE102008061962A1 (en) 2007-12-17 2009-06-25 DENSO CORPORARTION, Kariya-shi Semiconductor device i.e. n-channel super-junction-MOS-transistor, for power applications, has PN-column layer comprising column layers with impurity amount differences that are positive and negative, respectively
US7859048B2 (en) 2007-12-17 2010-12-28 Denso Corporation Semiconductor device having super junction
JP2009147234A (en) * 2007-12-17 2009-07-02 Denso Corp Semiconductor device
KR101066988B1 (en) 2007-12-17 2011-09-23 가부시키가이샤 덴소 Semiconductor device having super junction
DE102008061962B4 (en) * 2007-12-17 2017-02-09 Denso Corporation Semiconductor device with super junction
JP4530036B2 (en) * 2007-12-17 2010-08-25 株式会社デンソー Semiconductor device
KR101505553B1 (en) * 2008-05-16 2015-03-24 페어차일드코리아반도체 주식회사 Power semiconductor device and method of fabricating the same
JP2010171221A (en) * 2009-01-23 2010-08-05 Toshiba Corp Semiconductor device
US8159023B2 (en) 2009-01-23 2012-04-17 Kabushiki Kaisha Toshiba Semiconductor device
US9087893B2 (en) 2010-01-29 2015-07-21 Fuji Electric Co., Ltd. Superjunction semiconductor device with reduced switching loss
WO2011093473A1 (en) 2010-01-29 2011-08-04 富士電機システムズ株式会社 Semiconductor device
US8742500B2 (en) 2010-10-21 2014-06-03 Fuji Electric Co., Ltd Semiconductor device
US8735982B2 (en) 2010-11-09 2014-05-27 Fuji Electric Co., Ltd. Semiconductor device with superjunction structure
KR101216897B1 (en) 2011-08-09 2012-12-28 주식회사 케이이씨 High voltage semiconductor device
KR101279222B1 (en) 2011-08-26 2013-06-26 주식회사 케이이씨 High voltage semiconductor device
US8823083B2 (en) 2011-10-06 2014-09-02 Denso Corporation Semiconductor device with vertical semiconductor element
US10056249B2 (en) 2011-10-12 2018-08-21 Asm International N.V. Atomic layer deposition of antimony oxide films
US10699899B2 (en) 2011-10-12 2020-06-30 Asm International N.V. Atomic layer deposition of antimony oxide films
CN103123893A (en) * 2011-11-21 2013-05-29 上海华虹Nec电子有限公司 Process method for improving super junction product yield
WO2013161116A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Semiconductor device and method for manufacturing same
JPWO2013161116A1 (en) * 2012-04-26 2015-12-21 三菱電機株式会社 Semiconductor device and manufacturing method thereof
CN103915500A (en) * 2013-01-07 2014-07-09 瑞萨电子株式会社 Vertical power mosfet
JP2014132612A (en) * 2013-01-07 2014-07-17 Renesas Electronics Corp Vertical type power mosfet
CN103151384A (en) * 2013-03-07 2013-06-12 矽力杰半导体技术(杭州)有限公司 Semiconductor device and manufacturing method thereof
JP2015220367A (en) * 2014-05-19 2015-12-07 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of the same
US9972713B2 (en) 2014-05-19 2018-05-15 Renesas Electronics Corporation Semiconductor device and method of manufacturing same
US9590093B2 (en) 2014-07-31 2017-03-07 Kabushiki Kaisha Toshiba Semiconductor device
JP2016036009A (en) * 2014-07-31 2016-03-17 株式会社東芝 Semiconductor device
US10199458B2 (en) 2015-01-29 2019-02-05 Fuji Electric Co., Ltd. Semiconductor device
JP2016139761A (en) * 2015-01-29 2016-08-04 富士電機株式会社 Semiconductor device
CN105932059A (en) * 2015-02-27 2016-09-07 株式会社东芝 Semiconductor device
US9704953B2 (en) 2015-02-27 2017-07-11 Kabushiki Kaisha Toshiba Semiconductor device
CN108475703A (en) * 2016-01-05 2018-08-31 三菱电机株式会社 Manufacturing silicon carbide semiconductor device
CN108475703B (en) * 2016-01-05 2021-05-18 三菱电机株式会社 Silicon carbide semiconductor device
CN109643656A (en) * 2016-09-02 2019-04-16 新电元工业株式会社 MOSFET and power conversion circuit
US10090408B2 (en) 2016-09-14 2018-10-02 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
CN109643734A (en) * 2016-11-11 2019-04-16 新电元工业株式会社 MOSFET and power conversion circuit
CN109643734B (en) * 2016-11-11 2021-11-16 新电元工业株式会社 MOSFET and power conversion circuit
CN108574011A (en) * 2017-03-08 2018-09-25 无锡华润华晶微电子有限公司 Vertical super-junction bilateral diffusion metal oxide semiconductor device and preparation method thereof
US10651277B2 (en) 2017-03-31 2020-05-12 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
EP3382760A1 (en) * 2017-03-31 2018-10-03 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
CN107195685A (en) * 2017-06-30 2017-09-22 上海华虹宏力半导体制造有限公司 The manufacture method of super-junction device
CN107195685B (en) * 2017-06-30 2021-01-22 上海华虹宏力半导体制造有限公司 Method for manufacturing super junction device
JP2019096840A (en) * 2017-11-28 2019-06-20 新電元工業株式会社 Mosfet and power inverter circuit
CN108878534B (en) * 2018-06-29 2020-11-24 上海华虹宏力半导体制造有限公司 Super junction structure and manufacturing method thereof
US10923564B2 (en) 2018-06-29 2021-02-16 Shanghai Huahong Grace Semiconductor Manufacturing Corporation Super-junction structure and method for manufacturing same
CN108878534A (en) * 2018-06-29 2018-11-23 上海华虹宏力半导体制造有限公司 Super-junction structure and its manufacturing method
CN111200010A (en) * 2018-11-20 2020-05-26 深圳尚阳通科技有限公司 Super junction device and manufacturing method thereof
CN111200010B (en) * 2018-11-20 2023-09-29 深圳尚阳通科技股份有限公司 Superjunction device and method of manufacturing the same
CN111341827A (en) * 2018-12-18 2020-06-26 深圳尚阳通科技有限公司 N-type super junction device and manufacturing method thereof
JP2019192932A (en) * 2019-07-03 2019-10-31 富士電機株式会社 Semiconductor device
CN114649406A (en) * 2022-05-18 2022-06-21 浙江大学 Multilevel super junction structure and self-aligned preparation method thereof

Also Published As

Publication number Publication date
JP4304433B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4304433B2 (en) Semiconductor element
US8188521B2 (en) Power semiconductor device
US8772869B2 (en) Power semiconductor device
US9087893B2 (en) Superjunction semiconductor device with reduced switching loss
US8884364B2 (en) Semiconductor device with field-plate electrode
JP4843843B2 (en) Super junction semiconductor device
US7964912B2 (en) High-voltage vertical transistor with a varied width silicon pillar
JP3908572B2 (en) Semiconductor element
JP4564510B2 (en) Power semiconductor device
JP2018164081A (en) Silicon carbide semiconductor device and manufacturing method of the same
US6465844B2 (en) Power semiconductor device and method of manufacturing the same
US10020388B2 (en) Insulated gate bipolar transistor including charge injection regions
US6949798B2 (en) Semiconductor device
US9881997B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2010062557A (en) Semiconductor device with trench-gate structure, and method of manufacturing the same
US20090273031A1 (en) Semiconductor device
CN112017954A (en) Silicon carbide device with compensation region and method of manufacturing the same
JPWO2014013888A1 (en) Semiconductor device and manufacturing method of semiconductor device
US10199457B2 (en) Silicon carbide semiconductor device
US20170110572A1 (en) Semiconductor Devices, Power Semiconductor Devices, and Methods for Forming a Semiconductor Device
JP2005203565A (en) Semiconductor device and its manufacturing method
JP6809071B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP4265201B2 (en) Super junction semiconductor device
US20220344475A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
US20230246102A1 (en) Superjunction semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4304433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees