IT1219072B - Procedimento per la peparazione di ossidi superconduttivi e compositi ossidometallo - Google Patents

Procedimento per la peparazione di ossidi superconduttivi e compositi ossidometallo

Info

Publication number
IT1219072B
IT1219072B IT67174/88A IT6717488A IT1219072B IT 1219072 B IT1219072 B IT 1219072B IT 67174/88 A IT67174/88 A IT 67174/88A IT 6717488 A IT6717488 A IT 6717488A IT 1219072 B IT1219072 B IT 1219072B
Authority
IT
Italy
Prior art keywords
composite
phase
oxidometal
peparation
composites
Prior art date
Application number
IT67174/88A
Other languages
English (en)
Other versions
IT8867174A0 (it
Inventor
Gregory J Yurek
John B Vandersande
Original Assignee
Massachusetts Inst Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26707204&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=IT1219072(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US07/031,407 external-priority patent/US4826808A/en
Application filed by Massachusetts Inst Technology filed Critical Massachusetts Inst Technology
Publication of IT8867174A0 publication Critical patent/IT8867174A0/it
Application granted granted Critical
Publication of IT1219072B publication Critical patent/IT1219072B/it

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/704Wire, fiber, or cable
    • Y10S505/705Magnetic coil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • Y10S505/732Evaporative coating with superconducting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/733Rapid solidification, e.g. quenching, gas-atomizing, melt-spinning, roller-quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/736From free metal precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/739Molding, coating, shaping, or casting of superconducting material
    • Y10S505/74To form wire or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/742Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/80Material per se process of making same
    • Y10S505/812Stock
    • Y10S505/813Wire, tape, or film
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/80Material per se process of making same
    • Y10S505/815Process of making per se
    • Y10S505/816Sputtering, including coating, forming, or etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/80Material per se process of making same
    • Y10S505/815Process of making per se
    • Y10S505/818Coating
    • Y10S505/819Vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/80Material per se process of making same
    • Y10S505/815Process of making per se
    • Y10S505/818Coating
    • Y10S505/821Wire

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Chemical Vapour Deposition (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Lubricants (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Chemically Coating (AREA)
  • Coating By Spraying Or Casting (AREA)
IT67174/88A 1987-03-27 1988-03-03 Procedimento per la peparazione di ossidi superconduttivi e compositi ossidometallo IT1219072B (it)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/031,407 US4826808A (en) 1987-03-27 1987-03-27 Preparation of superconducting oxides and oxide-metal composites
US07/061,233 US5204318A (en) 1987-03-27 1987-06-10 Preparation of superconducting oxides and oxide-metal composites

Publications (2)

Publication Number Publication Date
IT8867174A0 IT8867174A0 (it) 1988-03-03
IT1219072B true IT1219072B (it) 1990-04-24

Family

ID=26707204

Family Applications (1)

Application Number Title Priority Date Filing Date
IT67174/88A IT1219072B (it) 1987-03-27 1988-03-03 Procedimento per la peparazione di ossidi superconduttivi e compositi ossidometallo

Country Status (21)

Country Link
US (5) US5204318A (it)
EP (2) EP0720244B1 (it)
JP (4) JP2601504B2 (it)
KR (1) KR940009871B1 (it)
CN (1) CN1038076C (it)
AT (1) ATE219295T1 (it)
AU (2) AU605251B2 (it)
BE (1) BE1000344A3 (it)
CA (1) CA1340849C (it)
CH (2) CH678672A5 (it)
DE (3) DE3810483A1 (it)
DK (1) DK167088A (it)
ES (1) ES2005797A6 (it)
FI (1) FI881150A (it)
FR (1) FR2613138B1 (it)
GB (1) GB2202528B (it)
IT (1) IT1219072B (it)
LU (1) LU87167A1 (it)
NL (1) NL8800747A (it)
NO (1) NO881325L (it)
SE (2) SE466371B (it)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204318A (en) * 1987-03-27 1993-04-20 Massachusetts Institute Of Technology Preparation of superconducting oxides and oxide-metal composites
DE3853965T2 (de) * 1987-03-31 1996-02-22 Sumitomo Electric Industries Supraleitender Verbundwerkstoff.
US4952554A (en) * 1987-04-01 1990-08-28 At&T Bell Laboratories Apparatus and systems comprising a clad superconductive oxide body, and method for producing such body
JPS63274620A (ja) * 1987-04-30 1988-11-11 Sumitomo Electric Ind Ltd 超電導材料の作製方法
US4900716A (en) * 1987-05-18 1990-02-13 Sumitomo Electric Industries, Ltd. Process for producing a compound oxide type superconducting material
US5157017A (en) * 1987-06-12 1992-10-20 At&T Bell Laboratories Method of fabricating a superconductive body
NL8702059A (nl) * 1987-09-02 1989-04-03 Philips Nv Supergeleidend lichaam.
US5132280A (en) * 1987-09-25 1992-07-21 At&T Bell Laboratories Method of producing a superconductive oxide layer on a substrate
JP2507880B2 (ja) * 1987-10-09 1996-06-19 科学技術庁金属材料技術研究所長 超電導成形体とその製造方法
US5106830A (en) * 1988-01-15 1992-04-21 University Of Arkansas High temperature superconductor system having the formula Tl-Ba-Cu-O
US5073536A (en) * 1988-02-12 1991-12-17 The University Of Arkansas High temperature superconductors comprising Tl--Ca--Ba--O, Tl--Sr--Ba--Cu--O--Sr--Cu--O
US4962085A (en) * 1988-04-12 1990-10-09 Inco Alloys International, Inc. Production of oxidic superconductors by zone oxidation of a precursor alloy
US5112800A (en) * 1988-08-25 1992-05-12 The University Of Arkansas Preparation of superconducting Tl-Ba-Ca-Cu-O thin films by Tl2 O3
DE3838670C1 (it) * 1988-11-15 1990-06-28 Access Ev Aachener Centrum Fuer Erstarrung Unter Schwerelosigkeit, 5100 Aachen, De
US5075286A (en) * 1989-04-17 1991-12-24 Westinghouse Electric Corp. Alloy method of making a composite having superconducting capability
DE3921127A1 (de) * 1989-06-28 1991-01-03 Leybold Ag Verfahren fuer die herstellung supraleitender keramiken
US5021658A (en) * 1989-06-29 1991-06-04 Westinghouse Electric Corp. Superconducting infrared detector
US5215962A (en) * 1990-02-26 1993-06-01 The University Of Arkansas 90 K Tl-Ba-Ce-Cu-O superconductor and processes for making same
US5096881A (en) * 1990-03-15 1992-03-17 The University Of Arkansas Preparation of a superconducting Tl2 Ca2 Ba2 Cu3 O.sub.x2 O3 vapor
WO1991015436A1 (en) * 1990-04-02 1991-10-17 Moltech Invent Sa A method of manufacturing superconducting ceramics
JPH0717373B2 (ja) * 1990-08-29 1995-03-01 科学技術庁金属材料技術研究所長 酸化物超電導材料の製造方法
CA2043894A1 (en) * 1990-09-12 1992-03-13 Zhengzhi Sheng M-r-t1-sr-cu-o based superconductors above liquid nitrogen temperature and processes for making same
US5259885A (en) * 1991-04-03 1993-11-09 American Superconductor Corporation Process for making ceramic/metal and ceramic/ceramic laminates by oxidation of a metal precursor
WO1992017420A1 (en) * 1991-04-03 1992-10-15 American Superconductor Corporation Electroceramics and process for making the same
JPH0788578B2 (ja) * 1991-07-10 1995-09-27 財団法人国際超電導産業技術研究センター 酸化物薄膜の製造方法および装置
DE4322533A1 (de) * 1993-07-07 1995-01-12 Leybold Durferrit Gmbh Verfahren zur Herstellung supraleitender Keramiken und die Kermiken selbst
US20020023772A1 (en) 1994-09-30 2002-02-28 Norio Kaneko Superconducting wire and manufacturing method for the same
JP3161938B2 (ja) * 1995-05-11 2001-04-25 キヤノン株式会社 超伝導線の製造方法
EP1650178B1 (en) * 2004-10-19 2007-12-19 Nexans Improved high temperature superconductor material of BSCCO system
US9182296B2 (en) 2012-05-16 2015-11-10 General Electric Company Oven air sampling system
US8632745B1 (en) 2012-12-21 2014-01-21 Ut-Battelle, Llc Method and apparatus for controlling stoichiometry in multicomponent materials

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB611813A (en) * 1945-07-28 1948-11-04 Mallory Metallurg Prod Ltd Improvements in and relating to the production of metal-metal oxide compositions or alloys
US2861155A (en) * 1956-04-20 1958-11-18 Gibson Electric Company Internally oxidized electrical contact
US3427154A (en) * 1964-09-11 1969-02-11 Ibm Amorphous alloys and process therefor
US3796553A (en) * 1970-08-03 1974-03-12 Research Corp High field composite superconductive material
US3815224A (en) * 1971-06-08 1974-06-11 Atomic Energy Commission Method of manufacturing a ductile superconductive material
GB1398143A (en) * 1972-07-18 1975-06-18 Square D Co Electrical contact materials
CH588152A5 (it) * 1972-12-11 1977-05-31 Siemens Ag
US3951870A (en) * 1973-09-13 1976-04-20 The Carborundum Company Superconductive transition metal carbonitride fibers and method for the preparation thereof
DE2347507C3 (de) * 1973-09-21 1981-07-02 Heinrich Dr. 6236 Eschborn Winter Verfahren zur Herstellung duktiler supraleitender Formkörper
US3933315A (en) * 1974-07-12 1976-01-20 Popeil Brothers, Inc. Food chopper & cutting surface
US3932315A (en) * 1974-09-24 1976-01-13 E. I. Du Pont De Nemours & Company Superconductive barium-lead-bismuth oxides
US4001146A (en) * 1975-02-26 1977-01-04 E. I. Du Pont De Nemours And Company Novel silver compositions
DE2516747A1 (de) * 1975-04-16 1976-10-28 Battelle Institut E V Verfahren zur herstellung von duktilen und eigenstabilen supraleitenden werkstoffen
US4171464A (en) * 1977-06-27 1979-10-16 The United State of America as represented by the U. S. Department of Energy High specific heat superconducting composite
JPS5474698A (en) * 1977-11-28 1979-06-14 Univ Tohoku Superconductive thin band and method of fabricating same
US4161403A (en) * 1978-03-22 1979-07-17 Chugai Denki Kogyo Kabushiki-Kaisha Composite electrical contact material of Ag-alloy matrix and internally oxidized dispersed phase
US4264358A (en) * 1979-02-12 1981-04-28 California Institute Of Technology Semiconducting glasses with flux pinning inclusions
US4316785A (en) * 1979-11-05 1982-02-23 Nippon Telegraph & Telephone Public Corporation Oxide superconductor Josephson junction and fabrication method therefor
JPS5685814A (en) * 1979-12-14 1981-07-13 Tdk Electronics Co Ltd Condenser
US4406699A (en) * 1981-06-09 1983-09-27 Beck David E High-temperature electrically conductive ceramic composite and method for making same
US4411959A (en) * 1981-08-17 1983-10-25 Westinghouse Electric Corp. Submicron-particle ductile superconductor
US4540546A (en) * 1983-12-06 1985-09-10 Northeastern University Method for rapid solidification processing of multiphase alloys having large liquidus-solidus temperature intervals
US4713360A (en) * 1984-03-16 1987-12-15 Lanxide Technology Company, Lp Novel ceramic materials and methods for making same
FR2581658B1 (fr) * 1985-05-10 1987-07-17 Centre Nat Rech Scient Nouveaux alliages dotes de performances electriques et mecaniques elevees, leur fabrication et leurs applications en particulier dans les domaines electrique, electronique et connectique
JPS6227533A (ja) * 1985-07-26 1987-02-05 Japan Synthetic Rubber Co Ltd 内部酸化型合金およびその成形物の製造方法
US4713300A (en) * 1985-12-13 1987-12-15 Minnesota Mining And Manufacturing Company Graded refractory cermet article
US4770701A (en) * 1986-04-30 1988-09-13 The Standard Oil Company Metal-ceramic composites and method of making
US6630425B1 (en) * 1987-01-09 2003-10-07 Lucent Technologies Inc. Devices and systems based on novel superconducting material
US6638894B1 (en) * 1987-01-09 2003-10-28 Lucent Technologies Inc. Devices and systems based on novel superconducting material
AU1067988A (en) * 1987-01-22 1988-08-04 Director-General Of Agency Of Industrial Science And Technology Superconductive material and method of preparing same
JPS6433005A (en) * 1987-03-04 1989-02-02 Masumoto Takeshi Production of metal oxide superconducting material
EP0282286B2 (en) * 1987-03-13 2013-06-05 Kabushiki Kaisha Toshiba Superconducting wire and method of manufacturing the same
JP2566942B2 (ja) * 1987-03-13 1996-12-25 株式会社東芝 化合物超伝導線の製造方法
JP2711253B2 (ja) * 1987-03-18 1998-02-10 インターナショナル・ビジネス・マシーンズ・コーポレーション 超伝導膜及びその形成方法
JPS63231820A (ja) * 1987-03-19 1988-09-27 Tdk Corp 超電導体の製造方法
CA1332509C (en) * 1987-03-20 1994-10-18 Kazuo Sawada Method of manufacturing superconductive conductor
JP2567389B2 (ja) * 1987-03-24 1996-12-25 住友電気工業株式会社 酸化物超電導材料
US5189009A (en) * 1987-03-27 1993-02-23 Massachusetts Institute Of Technology Preparation of superconducting oxides and oxide-metal composites
US5204318A (en) * 1987-03-27 1993-04-20 Massachusetts Institute Of Technology Preparation of superconducting oxides and oxide-metal composites
US4826808A (en) * 1987-03-27 1989-05-02 Massachusetts Institute Of Technology Preparation of superconducting oxides and oxide-metal composites
US5248656A (en) * 1987-04-06 1993-09-28 Hewlett-Packard Company Method of making superconductor wires, or capillaries
DE3872430T2 (de) * 1987-04-10 1992-12-03 American Telephone & Telegraph Verfahren zur herstellung einer schicht aus supraleitendem material.
JPH01502977A (ja) * 1987-04-23 1989-10-12 アーチ ディベロップメント コーポレーション 超伝導セラミック材料の製造
US5078810A (en) * 1990-02-08 1992-01-07 Seiichi Tanaka Method of making Ag-SnO contact materials by high pressure internal oxidation

Also Published As

Publication number Publication date
BE1000344A3 (fr) 1988-10-25
KR880011832A (ko) 1988-10-31
DE3855905D1 (de) 1997-06-19
CA1340849C (en) 1999-12-14
SE466371B (sv) 1992-02-03
JP2001233605A (ja) 2001-08-28
CN1038076C (zh) 1998-04-15
DK167088D0 (da) 1988-03-25
DE3810483A1 (de) 1988-10-27
SE8801123D0 (sv) 1988-03-25
FI881150A (fi) 1988-09-28
NL8800747A (nl) 1988-10-17
NO881325D0 (no) 1988-03-25
LU87167A1 (fr) 1988-08-23
JP2691126B2 (ja) 1997-12-17
DK167088A (da) 1988-09-28
US5883052A (en) 1999-03-16
US5439880A (en) 1995-08-08
SE8801123L (sv) 1988-09-28
FR2613138A1 (fr) 1988-09-30
JPH06321505A (ja) 1994-11-22
AU1252988A (en) 1988-09-29
ATE219295T1 (de) 2002-06-15
CN88101708A (zh) 1988-10-05
GB2202528A (en) 1988-09-28
US5643856A (en) 1997-07-01
EP0720244B1 (en) 2002-06-12
JPH01100003A (ja) 1989-04-18
NO881325L (no) 1988-09-28
EP0286289B1 (en) 1997-05-14
AU642229B2 (en) 1993-10-14
IT8867174A0 (it) 1988-03-03
ES2005797A6 (es) 1989-03-16
EP0286289A1 (en) 1988-10-12
SE9101555D0 (sv) 1991-05-22
JPH09188504A (ja) 1997-07-22
CH678246A5 (it) 1991-08-15
KR940009871B1 (ko) 1994-10-18
US5204318A (en) 1993-04-20
AU7427391A (en) 1991-07-11
GB8807426D0 (en) 1988-05-05
FI881150A0 (fi) 1988-03-11
DE3856532D1 (de) 2002-07-18
FR2613138B1 (fr) 1990-01-26
EP0720244A1 (en) 1996-07-03
US5545613A (en) 1996-08-13
GB2202528B (en) 1992-01-02
AU605251B2 (en) 1991-01-10
DE3855905T2 (de) 1997-08-21
CH678672A5 (it) 1991-10-15
JP2601504B2 (ja) 1997-04-16

Similar Documents

Publication Publication Date Title
IT1219072B (it) Procedimento per la peparazione di ossidi superconduttivi e compositi ossidometallo
CA2000722A1 (en) Superconductive metal matrix composites and method for making same
CA2029744A1 (en) Method of using oxide superconducting conductor
JPS6430644A (en) Nox decomposition catalyst
JPS6412585A (en) Josephson junction device
Itsushiki The current situation of rare metals
Lyon Engineering Applications of ZA Alloys
Guan et al. Forged Semi-Steel and Its Use
Hsu et al. Critical current densities and mechanical properties of superconducting oxide/metal microcomposites.
Chen et al. Age Hardening Tool Steels
Nagata et al. Superconductivity in a Splat-Quenched and Aged Cu-4 At. per cent Nb Alloy
Kenward BISMUTH REVEALS THE PLANE TRUTH ABOUT SUPERCONDUCTORS.
Selvamanickam et al. Copper- YBa sub (2) Cu sub (3) O sub (7-x) superconducting metal matrix composites.
Kahn et al. Fabrication of High Purity Vanadium. I. Production and Reduction of High Purity V sub 2 O sub 5
Rhodes Cold Formed Steel Sections--State of the Art in Great Britain
Majoros et al. AC losses in fine filamentary NbTi superconductors with copper and CuNi matrix
Korbel et al. Analysis of the Effect of Alloying Elements on the Electrical and Mechanical Properties of Copper Alloys
Kilbourn Annual Ceramic Mineral Resources Review: Lanthanides and Yttrium
Kuhne et al. The Nature of Martensite in Ferro-Alloys
Branovitskii et al. The Role of Magnetic Macrostructure in Studying Heat Losses in Electrical Steel
Yam Current events: trends in superconductivity
Kieger et al. C-FFOX: Steelmaking by Preheating and Oxidizing Melting of Scrap
Hirth Microstructure and Mechanical Properties of Metals
Fisher et al. Investigation of the Hysteresis Losses in Nb--Ti Alloys and of the Eddy Current Losses in High-Purity Aluminum
Alexander Annual Ceramic Mineral Resources Review: Lithium

Legal Events

Date Code Title Description
TA Fee payment date (situation as of event date), data collected since 19931001

Effective date: 19980327