IL58128A - High power mosfet and method of manufacture - Google Patents
High power mosfet and method of manufactureInfo
- Publication number
- IL58128A IL58128A IL58128A IL5812879A IL58128A IL 58128 A IL58128 A IL 58128A IL 58128 A IL58128 A IL 58128A IL 5812879 A IL5812879 A IL 5812879A IL 58128 A IL58128 A IL 58128A
- Authority
- IL
- Israel
- Prior art keywords
- manufacture
- high power
- power mosfet
- mosfet
- power
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title 1
- 238000000034 method Methods 0.000 title 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7811—Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
- H01L29/0692—Surface layout
- H01L29/0696—Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
- H01L29/0852—Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
- H01L29/0873—Drain regions
- H01L29/0878—Impurity concentration or distribution
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1095—Body region, i.e. base region, of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7809—Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/0601—Structure
- H01L2224/0603—Bonding areas having different sizes, e.g. different heights or widths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
Landscapes
- Microelectronics & Electronic Packaging (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Computer Hardware Design (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
- Bipolar Transistors (AREA)
- Thyristors (AREA)
- Amplifiers (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Electronic Switches (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US95131078A | 1978-10-13 | 1978-10-13 | |
US3866279A | 1979-05-14 | 1979-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
IL58128A true IL58128A (en) | 1981-12-31 |
Family
ID=26715426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IL58128A IL58128A (en) | 1978-10-13 | 1979-08-28 | High power mosfet and method of manufacture |
Country Status (19)
Country | Link |
---|---|
JP (2) | JP2622378B2 (en) |
AR (1) | AR219006A1 (en) |
BR (1) | BR7906338A (en) |
CA (2) | CA1123119A (en) |
CH (2) | CH660649A5 (en) |
CS (1) | CS222676B2 (en) |
DE (2) | DE2954481C2 (en) |
DK (3) | DK157272C (en) |
ES (1) | ES484652A1 (en) |
FR (1) | FR2438917A1 (en) |
GB (1) | GB2033658B (en) |
HU (1) | HU182506B (en) |
IL (1) | IL58128A (en) |
IT (1) | IT1193238B (en) |
MX (1) | MX147137A (en) |
NL (1) | NL175358C (en) |
PL (1) | PL123961B1 (en) |
SE (2) | SE443682B (en) |
SU (1) | SU1621817A3 (en) |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4593302B1 (en) * | 1980-08-18 | 1998-02-03 | Int Rectifier Corp | Process for manufacture of high power mosfet laterally distributed high carrier density beneath the gate oxide |
DE3040775C2 (en) * | 1980-10-29 | 1987-01-15 | Siemens AG, 1000 Berlin und 8000 München | Controllable MIS semiconductor device |
US4412242A (en) | 1980-11-17 | 1983-10-25 | International Rectifier Corporation | Planar structure for high voltage semiconductor devices with gaps in glassy layer over high field regions |
GB2111745B (en) * | 1981-12-07 | 1985-06-19 | Philips Electronic Associated | Insulated-gate field-effect transistors |
CA1188821A (en) * | 1982-09-03 | 1985-06-11 | Patrick W. Clarke | Power mosfet integrated circuit |
US4532534A (en) * | 1982-09-07 | 1985-07-30 | Rca Corporation | MOSFET with perimeter channel |
DE3346286A1 (en) * | 1982-12-21 | 1984-06-28 | International Rectifier Corp., Los Angeles, Calif. | High-power metal-oxide field-effect transistor semiconductor component |
JPS59167066A (en) * | 1983-03-14 | 1984-09-20 | Nissan Motor Co Ltd | Vertical type metal oxide semiconductor field effect transistor |
JPS6010677A (en) * | 1983-06-30 | 1985-01-19 | Nissan Motor Co Ltd | Vertical mos transistor |
JPH0247874A (en) * | 1988-08-10 | 1990-02-16 | Fuji Electric Co Ltd | Manufacture of mos semiconductor device |
US5766966A (en) * | 1996-02-09 | 1998-06-16 | International Rectifier Corporation | Power transistor device having ultra deep increased concentration region |
IT1247293B (en) * | 1990-05-09 | 1994-12-12 | Int Rectifier Corp | POWER TRANSISTOR DEVICE PRESENTING AN ULTRA-DEEP REGION, AT A GREATER CONCENTRATION |
US5404040A (en) * | 1990-12-21 | 1995-04-04 | Siliconix Incorporated | Structure and fabrication of power MOSFETs, including termination structures |
US5304831A (en) * | 1990-12-21 | 1994-04-19 | Siliconix Incorporated | Low on-resistance power MOS technology |
IT1250233B (en) * | 1991-11-29 | 1995-04-03 | St Microelectronics Srl | PROCEDURE FOR THE MANUFACTURE OF INTEGRATED CIRCUITS IN MOS TECHNOLOGY. |
EP0586716B1 (en) * | 1992-08-10 | 1997-10-22 | Siemens Aktiengesellschaft | Power MOSFET with improved avalanche stability |
JPH06268227A (en) * | 1993-03-10 | 1994-09-22 | Hitachi Ltd | Insulated gate bipolar transistor |
EP0660402B1 (en) * | 1993-12-24 | 1998-11-04 | Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno | Power semiconductor device |
DE69321965T2 (en) * | 1993-12-24 | 1999-06-02 | Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno, Catania | MOS power chip type and package assembly |
US5798287A (en) * | 1993-12-24 | 1998-08-25 | Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno | Method for forming a power MOS device chip |
EP0665597A1 (en) * | 1994-01-27 | 1995-08-02 | Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno - CoRiMMe | IGBT and manufacturing process therefore |
US5817546A (en) * | 1994-06-23 | 1998-10-06 | Stmicroelectronics S.R.L. | Process of making a MOS-technology power device |
EP0689238B1 (en) * | 1994-06-23 | 2002-02-20 | STMicroelectronics S.r.l. | MOS-technology power device manufacturing process |
DE69418037T2 (en) * | 1994-08-02 | 1999-08-26 | Consorzio Per La Ricerca Sulla Microelettronica Ne | Power semiconductor device made of MOS technology chips and housing structure |
US5798554A (en) * | 1995-02-24 | 1998-08-25 | Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno | MOS-technology power device integrated structure and manufacturing process thereof |
DE69534919T2 (en) * | 1995-10-30 | 2007-01-25 | Stmicroelectronics S.R.L., Agrate Brianza | Power device in MOS technology with a single critical size |
DE69533134T2 (en) * | 1995-10-30 | 2005-07-07 | Stmicroelectronics S.R.L., Agrate Brianza | Power component of high density in MOS technology |
US6228719B1 (en) | 1995-11-06 | 2001-05-08 | Stmicroelectronics S.R.L. | MOS technology power device with low output resistance and low capacitance, and related manufacturing process |
DE69518653T2 (en) * | 1995-12-28 | 2001-04-19 | Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno, Catania | MOS technology power arrangement in an integrated structure |
EP0961325B1 (en) | 1998-05-26 | 2008-05-07 | STMicroelectronics S.r.l. | High integration density MOS technology power device |
WO2000062345A1 (en) | 1999-04-09 | 2000-10-19 | Shindengen Electric Manufacturing Co., Ltd. | High-voltage semiconductor device |
JP4122113B2 (en) * | 1999-06-24 | 2008-07-23 | 新電元工業株式会社 | High breakdown strength field effect transistor |
US6344379B1 (en) | 1999-10-22 | 2002-02-05 | Semiconductor Components Industries Llc | Semiconductor device with an undulating base region and method therefor |
JP4845293B2 (en) * | 2000-08-30 | 2011-12-28 | 新電元工業株式会社 | Field effect transistor |
JP2006295134A (en) | 2005-03-17 | 2006-10-26 | Sanyo Electric Co Ltd | Semiconductor device and method for manufacture |
US9484451B2 (en) | 2007-10-05 | 2016-11-01 | Vishay-Siliconix | MOSFET active area and edge termination area charge balance |
US9431249B2 (en) | 2011-12-01 | 2016-08-30 | Vishay-Siliconix | Edge termination for super junction MOSFET devices |
US9614043B2 (en) | 2012-02-09 | 2017-04-04 | Vishay-Siliconix | MOSFET termination trench |
US9842911B2 (en) | 2012-05-30 | 2017-12-12 | Vishay-Siliconix | Adaptive charge balanced edge termination |
US9530844B2 (en) | 2012-12-28 | 2016-12-27 | Cree, Inc. | Transistor structures having reduced electrical field at the gate oxide and methods for making same |
US10115815B2 (en) | 2012-12-28 | 2018-10-30 | Cree, Inc. | Transistor structures having a deep recessed P+ junction and methods for making same |
JP5907097B2 (en) * | 2013-03-18 | 2016-04-20 | 三菱電機株式会社 | Semiconductor device |
US9508596B2 (en) | 2014-06-20 | 2016-11-29 | Vishay-Siliconix | Processes used in fabricating a metal-insulator-semiconductor field effect transistor |
US9887259B2 (en) | 2014-06-23 | 2018-02-06 | Vishay-Siliconix | Modulated super junction power MOSFET devices |
CN106575666B (en) | 2014-08-19 | 2021-08-06 | 维西埃-硅化物公司 | Super junction metal oxide semiconductor field effect transistor |
US11489069B2 (en) | 2017-12-21 | 2022-11-01 | Wolfspeed, Inc. | Vertical semiconductor device with improved ruggedness |
US10615274B2 (en) | 2017-12-21 | 2020-04-07 | Cree, Inc. | Vertical semiconductor device with improved ruggedness |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4015278A (en) * | 1974-11-26 | 1977-03-29 | Fujitsu Ltd. | Field effect semiconductor device |
JPS52106688A (en) * | 1976-03-05 | 1977-09-07 | Nec Corp | Field-effect transistor |
JPS52132684A (en) * | 1976-04-29 | 1977-11-07 | Sony Corp | Insulating gate type field effect transistor |
US4055884A (en) * | 1976-12-13 | 1977-11-01 | International Business Machines Corporation | Fabrication of power field effect transistors and the resulting structures |
JPS5374385A (en) * | 1976-12-15 | 1978-07-01 | Hitachi Ltd | Manufacture of field effect semiconductor device |
US4148047A (en) * | 1978-01-16 | 1979-04-03 | Honeywell Inc. | Semiconductor apparatus |
JPH05185381A (en) * | 1992-01-10 | 1993-07-27 | Yuum Kogyo:Kk | Handle for edge-replaceable saw |
-
1979
- 1979-08-22 DK DK350679A patent/DK157272C/en not_active IP Right Cessation
- 1979-08-28 IL IL58128A patent/IL58128A/en unknown
- 1979-09-25 AR AR278193A patent/AR219006A1/en active
- 1979-09-28 MX MX179453A patent/MX147137A/en unknown
- 1979-09-28 CS CS796589A patent/CS222676B2/en unknown
- 1979-10-02 ES ES484652A patent/ES484652A1/en not_active Expired
- 1979-10-02 BR BR7906338A patent/BR7906338A/en not_active IP Right Cessation
- 1979-10-08 DE DE19792954481 patent/DE2954481C2/en not_active Expired - Lifetime
- 1979-10-08 DE DE2940699A patent/DE2940699C2/en not_active Expired
- 1979-10-09 CA CA337,182A patent/CA1123119A/en not_active Expired
- 1979-10-09 GB GB7935059A patent/GB2033658B/en not_active Expired
- 1979-10-09 NL NLAANVRAGE7907472,A patent/NL175358C/en not_active IP Right Cessation
- 1979-10-09 FR FR7925070A patent/FR2438917A1/en active Granted
- 1979-10-11 HU HU79IE891A patent/HU182506B/en not_active IP Right Cessation
- 1979-10-11 PL PL1979218878A patent/PL123961B1/en unknown
- 1979-10-11 IT IT26435/79A patent/IT1193238B/en active
- 1979-10-11 SU SU792835965A patent/SU1621817A3/en active
- 1979-10-12 CH CH7696/81A patent/CH660649A5/en not_active IP Right Cessation
- 1979-10-12 SE SE7908479A patent/SE443682B/en not_active IP Right Cessation
- 1979-10-12 CH CH923279A patent/CH642485A5/en not_active IP Right Cessation
-
1981
- 1981-11-12 CA CA000389973A patent/CA1136291A/en not_active Expired
-
1985
- 1985-07-26 SE SE8503615A patent/SE465444B/en not_active IP Right Cessation
-
1987
- 1987-04-28 JP JP62106158A patent/JP2622378B2/en not_active Expired - Lifetime
-
1988
- 1988-09-15 DK DK512488A patent/DK512488A/en not_active Application Discontinuation
- 1988-09-15 DK DK512388A patent/DK512388A/en not_active Application Discontinuation
-
1994
- 1994-10-12 JP JP6246144A patent/JP2643095B2/en not_active Expired - Lifetime
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
IL58128A (en) | High power mosfet and method of manufacture | |
EP0094891A3 (en) | Power mosfet structure and method of fabricating it | |
JPS5563526A (en) | Stator and method of manufacturing same | |
JPS54115738A (en) | Cell paste and method of producing same | |
JPS5549860A (en) | Battery and method of manufacturing same | |
JPS54103450A (en) | Composition and method of making same | |
DE3169519D1 (en) | Semi-conductor power device assembly and method of manufacture thereof | |
JPS55104911A (en) | Cilicagel and method of producing same | |
JPS5543488A (en) | Electrode assembly and method of producing same | |
JPS54124168A (en) | Energy attenuator and method of producing same | |
IL58351A0 (en) | Power generation-refrigerationsysten and method of operating same | |
JPS54131728A (en) | Depolarizer* method of producing same and cell | |
JPS54132730A (en) | Lithiummiodine cell and method of producing same | |
JPS54121685A (en) | Ic and method of fabricating same | |
JPS54109130A (en) | Sealed electric apparatus and method of making same | |
JPS553698A (en) | Power thyristor* method of fabricating and using same | |
JPS5416690A (en) | Waterrproof type power cable and method of making same | |
JPS553689A (en) | Power thyristor and method of manufacturing same | |
JPS5495322A (en) | Selffcontained electrode and method of producing same | |
JPS5564334A (en) | Method of and device for manufacturing cathode | |
JPS5533514A (en) | Method of previous cooling | |
JPS54104541A (en) | Organic electrolyte and method of producing same | |
JPS54152126A (en) | Battery and method of producing same | |
GB2019650B (en) | Thyristor and method of making the thyristor | |
JPS54147349A (en) | Waterrproof nut and method of producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
KB | Patent renewed |