HUE034884T2 - Szójaprotein izolátum elõállítása kalcium-kloridos extrakció ("S703") alkalmazásával - Google Patents

Szójaprotein izolátum elõállítása kalcium-kloridos extrakció ("S703") alkalmazásával Download PDF

Info

Publication number
HUE034884T2
HUE034884T2 HUE10793475A HUE10793475A HUE034884T2 HU E034884 T2 HUE034884 T2 HU E034884T2 HU E10793475 A HUE10793475 A HU E10793475A HU E10793475 A HUE10793475 A HU E10793475A HU E034884 T2 HUE034884 T2 HU E034884T2
Authority
HU
Hungary
Prior art keywords
protein
solution
soy
soy protein
minutes
Prior art date
Application number
HUE10793475A
Other languages
English (en)
Inventor
Kevin I Segall
Martin Schweizer
Brent E Green
Sarah Medina
Brandy Gosnell
Original Assignee
Burcon Nutrascience Mb Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Burcon Nutrascience Mb Corp filed Critical Burcon Nutrascience Mb Corp
Publication of HUE034884T2 publication Critical patent/HUE034884T2/hu

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/14Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seeds; from press-cake or oil-bearing seeds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/66Proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/385Concentrates of non-alcoholic beverages
    • A23L2/39Dry compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/70Clarifying or fining of non-alcoholic beverages; Removing unwanted matter
    • A23L2/80Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by adsorption
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/10Production of fats or fatty oils from raw materials by extracting
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/15Inorganic Compounds
    • A23V2250/156Mineral combination
    • A23V2250/1578Calcium
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/54Proteins
    • A23V2250/548Vegetable protein
    • A23V2250/5488Soybean protein

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Fodder In General (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

(12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A23J 1114 (2006 01> A23J 3116 (2006 01> 06.09.2017 Bulletin 2017/36 A23L 2I02<200601> (21) Application number: 10793475.4 (86) International application number: PCT/CA2010/001017 (22) Date of filing: 30.06.2010 (87) International publication number: WO 2011/000098 (06.01.2011 Gazette 2011/01) (54) PREPARATION OF SOY PROTEIN ISOLATE USING CALCIUM CHLORIDE EXTRACTION ("8703") VORBEREITUNG VON SOJA-PROTEIN ZU ISOLIEREN, MIT CALCIUM CHLORIDENTZUG ("S703") PREPARATION D’ISOLAT DE PROTEINE DE SOJA A L’AIDE D’EXTRACTION AU CHLORURE DE CALCIUM (« S703 ») (84) Designated Contracting States: · GOSNELL, Brandy AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Winnipeg GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Manitoba R2M 2K2 (CA)
PL PT RO SESI SKSM TR
Designated Extension States: (74) Representative: Beck Greener BA ME RS Fulwood House 12 Fulwood Place (30) Priority: 30.06.2009 US 213647 P London WC1V 6HR (GB) (43) Date of publication of application: (56) References cited: 08.08.2012 Bulletin 2012/32 EP-A2-0 752 212 EP-A2-0 752 212 WO-A1-2010/045727 WO-A1-2010/045727 (73) Proprietor: Burcon Nutrascience (MB) Corp. WO-A1-2010/083612 WO-A1-2010/083612
Winnipeg, Manitoba R3T 1P9 (CA) WO-A1-2010/091509 WO-A1-2010/091509 WO-A1-2010/091511 WO-A1-2010/091511 (72) Inventors: CA-A1-2 445 147 CA-A1-2 445 147 • SEGALL, Kevin, I. CA-A1- 2 564 400 CA-A1- 2 564 400
Winnipeg US-A- 3 736147 US-A- 3 736147
Manitoba R3P 0W6 (CA) US-A- 4 169 090 US-A- 4 208 323 • SCHWEIZER, Martin US-A- 4 296 026 US-A- 6 005 076
Winnipeg US-B2- 7 465 470
Manitoba R2M 0E3 (CA) • GREEN, Brent, E. Remarks:
Warren Thefile contains technical information submitted after
Manitoba ROC 3E0 (CA) the application was filed and not included in this • MEDINA, Sarah specification
Winnipeg
Manitoba R3T 0E5 (CA)
Description
FIELD OF INVENTION
[0001] The present invention is concerned with the preparation of soy protein products.
[0002] In US Provisional Patent Applications Nos. 61/107,112 (7865-373) filed October 21,2008,611193,457 (7865-374) filed December 2, 2008,611202,070 (7865-376) filed January 26, 2009, 611202,553 filed March 12, 2009 (7865-383), 611213,717 (7865389) filed July 7, 2009, 61/272,241 (7865-400) filed September 3, 2009 and US Patent Application No. 12/603,087 (7865-415) filed October 21,2009 (US Patent Publication No. 2010-0098818), assigned to the assignee hereof, there is described the preparation of a soy protein product, preferably a soy protein isolate, which is completely soluble and is capable of providing transparent and heat stable solutions at low pH values. This soy protein product may be used for protein fortification of, in particular, soft drinks and sports drinks, as well as other acidic aqueous systems, without precipitation of protein. The soy protein product is produced by extracting a soy protein source with aqueous calcium chloride solution at natural pH, optionally diluting the resulting aqueous soy protein solution, adjusting the pH of the aqueous soy protein solution to a pH of about 1.5 to about 4.4, preferably about 2.0 to about 4.0, to produce an acidified clear soy protein solution, which may be optionally concentrated andlor diafiltered before drying.
[0003] EP0752212 describes a process for preparing low-allergenic fractionated soy bean proteins comprising treating soy beans with an aqueous solution at pH 4 or less which contains an acid selected from sulfuric acid, acetic acid and citric acid and, optionally, 0 to 200μ(η of salt or a hydroxide of an alkaline earth metal to form a precipitation fraction, removing the precipitation fraction and collecting a supernatant fraction. Foods containing the fractionated soy bean protein obtained are also described
SUMMARY OF THE INVENTION
[0004] It has now been surprisingly found that a soy protein product having a protein content of at least 60 wt% (N x 6.25) d.b. may be formed by a procedure involving extraction of the soy protein source with calcium chloride at low pH values.
[0005] In one aspect of the present invention, a soy protein source material is extracted with aqueous calcium chloride solution at low pH and the resulting aqueous soy protein solution is diluted, adjusted in pH within the acidic range, then subjected to ultrafiltration and optional diafiltration to provide a concentrated and optionally diafiltered soy protein solution, which may be dried to provide the soy protein product.
[0006] The soy protein product provided by the process of the present invention, having a protein content of at least 60 wt% (N x 6.25) d.b., is soluble at acid pH values to provide transparent and heat stable aqueous solutions thereof. The soy protein product may be used for protein fortification of, in particular, soft drinks and sports drinks, as well as other aqueous systems without precipitation of protein. The soy protein product is preferably an isolate having a protein content of at least 90 wt%, preferably at least 100 wt% (N x 6.25) d.b.
[0007] In accordance with one aspect of the present invention, there is provided a method of producing a soy protein product having a soy protein content of at least 60 wt% (N x 6.25), on a dry weight basis, which comprises: (a) extracting a soy protein source which is soy meal, soy flakes, soy grits or soy flour with aqueous calcium salt solution, generally calcium chloride solution, at a pH, of 1.5 to 5.0 to cause solubilization of soy protein from the soy protein source and to form an aqueous soy protein solution, (b) separating the aqueous soy protein solution from residual soy protein source,
(c) diluting the aqueous soy protein solution with 0.5 to 10 volumes of water to a conductivity of less than 90mS (d) adjusting the pH of the aqueous protein solution to a different value within the range of 1.5 to 5.0, to a pH of 2.0 to 4.0, (e) concentrating the pH adjusted soy protein solution while maintaining the ionic strength substantially constant to product a concentrated soy protein solution having a protein concentration of 50 to 300 g/L, (f) optionally diafiltering the concentrated soy protein solution, and (g) drying the concentrated and optionally diafiltered soy protein solution to provide a soy protein product having a protein content of at least 60 wt%.
[0008] The soy protein product preferably is an isolate having a protein content of at least 90 wt%, preferably at least 100 wt% (Nx 6.25) d.b.
[0009] Although this specification refers mainly to the production of a soy protein isolate, the concentration and/or diafiltration steps described herein may be manipulated to produce a soy protein product of lesser purity, for example, a soy protein concentrate having a protein content of at least 60 wt%, but which has substantially similar properties to the isolate.
[0010] The soy protein product obtained by the process of the invention can be blended with powdered drinks for the formation of aqueous soft drinks or sports drinks by dissolving the same in water. Such blend may be a powdered beverage.
[0011] The soy protein product obtained by the process of the invention may be provided as an aqueous solution thereof having a high degree of clarity at acid pH values and which is heat stable at these pH values.
[0012] The soy protein product obtained by the process of the present invention, may be provided as an aqueous solution, which is heat stable at low pH. The aqueous solution may be a beverage, which may be a clear beverage in which the soy protein product is completely soluble and transparent or an opaque beverage in which the soy protein product does not increase the opacity. The soy protein product also has good solubility at about pH 7. An aqueous solution of the soy protein product, prepared at a near neutral pH, such as a pH of about 6 to about 8, may be a beverage.
[0013] The soy protein product produced according to the process of the present invention lacks the characteristic beany flavour of soy protein isolates and is suitable, not only for protein fortification of acidic media, but may be used in a wide variety of conventional applications of protein isolates, including but not limited to protein fortification of processed foods and beverages, emulsification of oils, as a body former in baked goods and foaming agent in products which entrap gases. In addition, the soy protein product may be fanned into protein fibers, useful in meat analogs, and may be used as an egg white substitute or extender in food products where egg white is used as a binder. The soy protein product may also be used in nutritional supplements. Other uses of the soy protein product are in petfoods, animal feed and in industrial and cosmetic applications and in personal care products.
GENERAL DESCRIPTION OF INVENTION
[0014] The initial step of the process of providing the soy protein product involves solubilizing soy protein from a soy protein source. The soy protein source is soy meal, soy flakes, soy grits or soy flour. The soy protein source may be used in the full fat form, partially defatted form or fully defatted form. Where the soy protein source contains an appreciable amount of fat, an oil-removal step generally is required during the process. The soy protein recovered from the soy protein source may be the protein naturally occurring in soybean or the proteinaceous material may be a protein modified by genetic manipulation but possessing characteristic hydrophobic and polar properties of the natural protein.
[0015] Protein solubilization from the soy protein source material is effected most conveniently using calcium chloride solution, although solutions of other calcium salts may be used. Further, extraction of the soy protein from the soy protein source may be effected using calcium salt solution in combination with another salt solution such as sodium chloride.
[0016] As the concentration of the calcium salt solution increases, the degree of solubilization of protein from the soy protein source initially increases until a maximum value is achieved. Any subsequent increase in salt concentration does not increase the total protein solubilized. The concentration of calcium salt solution which causes maximum protein solubilization varies depending on the salt concerned. It is usually preferred to utilize a concentration value less than 1.0 M, and, more preferably, a value of 0.10 M to 0.15 M.
[0017] In a batch process, the solubilization of the protein is effected at a temperature of from about 1°C to about 100°C, preferably 15° to 35°C, preferably accompanied by agitation to decrease the solubilization time, which is usually about 1 to about 60 minutes. It is preferred to effect the solubilization to extract substantially as much protein from the soy protein source as is practicable, so as to provide an overall high product yield.
[0018] In a continuous process, the extraction of the soy protein from the soy protein source is carried out in any manner consistent with effecting a continuous extraction of soy protein from the soy protein source. In one embodiment, the soy protein source is continuously mixed with calcium salt solution and the mixture is conveyed through a pipe or conduit having a length and at a flow rate for a residence time sufficient to effect the desired extraction in accordance with the parameters described herein. In such a continuous procedure, the solubilization step is effected rapidly, in a time of up to about 10 minutes, preferably to effect solubilization to extract substantially as much protein from the soy protein source as is practicable. The solubilization in the continuous procedure is effected at temperatures between about 1°C and about 100°C, preferably between 15°C and 35°C.
[0019] The extraction is conducted at a pH of 1.5 to 5.0. The pH of the extraction system (soy protein source and calcium salt solution) may be adjusted to any desired value within the range of 1.5 to 5.0 for the extraction step by the use of any convenient food grade acid, usually hydrochloric acid or phosphoric acid.
[0020] The concentration of soy protein source in the calcium salt solution during the solubilization step may vary widely. Typical concentration values are about 5 to about 15% w/v.
[0021] The protein extraction step with the aqueous calcium salt solution has the additional effect of solubilizing fats which may be present in the soy protein source, which then results in the fats being present in the aqueous phase.
[0022] The protein solution resulting from the extraction step generally has a protein concentration of 5 to 50 g/L, preferably 10 to 50 g/L.
[0023] The aqueous calcium salt solution may contain an antioxidant. The antioxidant may be any convenient antioxidant, such as sodium sulfite or ascorbic acid. The quantity of antioxidant employed may vary from about 0.01 to about 1 wt% of the solution, preferably about 0.05 wt%. The antioxidant serves to inhibit the oxidation of any phenolics in the protein solution.
[0024] The aqueous phase resulting from the extraction step then may be separated from the residual soy protein source, in any convenient manner, such as by employing a decanter centrifuge, followed by disc centrifugation and/or filtration, to remove residual soy protein source material. The separated residual soy protein source may be dried for disposal. Alternatively, the separated residual soy protein source may be processed to recover some residual protein, such as by a conventional isoelectric precipitation procedure or any other convenient procedure to recover such residual protein.
[0025] Where the soy protein source contains significant quantities of fat, as described in US Patents Nos. 5,844,086 and 6,005,076, assigned to the assignee hereof, then the defatting steps described therein may be effected on the separated aqueous protein. Alternatively, defatting of the separated aqueous protein solution may be achieved by any other convenient procedure.
[0026] The aqueous soy protein solution may be treated with an adsorbent, such as powdered activated carbon or granulated activated carbon, to remove colour and/or odour compounds. Such adsorbent treatment may be carried out under any convenient conditions, generally at the ambient temperature of the separated aqueous protein solution. For powdered activated carbon, an amount of about 0.025% to about 5% w/v, preferably about 0.05% to about 2% w/v, is employed. The adsorbing agent may be removed from the soy protein solution by any convenient means, such as by filtration.
[0027] The resulting aqueous soy protein solution is diluted with water in an amount of 0.5 to 10 volumes, preferably about 1 to about 2 volumes, in order to decrease the conductivity of the aqueous soy protein solution to a value of below 90 mS, preferably 4 to 31 mS.
[0028] The water with which the soy protein solution is mixed may have a temperature of 2° to 70°C, preferably 10° to 50°C, more preferably 20° to 30°C.
[0029] The optionally diluted soy protein solution is adjusted in pH to a value different from the extraction pH but still within the range of 1.5 to 5.0, to a pH of 2.0 to 4.0, by the addition of any suitable food grade acid, such as hydrochloric acid or phosphoric acid, or food grade alkali, usually sodium hydroxide as required.
[0030] The diluted and optionally pH adjusted soy protein solution has a conductivity of generally below 95 mS, preferably 4 to 36 mS.
[0031] The aqueous soy protein solution may be subjected to a heat treatment to inactivate heat labile anti-nutritional factors, such as trypsin inhibitors, present in such solution as a result of extraction from the soy protein source material during the extraction step. Such a heating step also provides the additional benefit of reducing the microbial load. Generally, the protein solution is heated to a temperature of 70° to 160°C, preferably 80° to 120°C, more preferably 85°C to 95°C for 10 seconds to 60 minutes, preferably 30 seconds to 5 minutes. The heat treated acidified soy protein solution then may be cooled for further processing as described below, to a temperature of 2°C to 60°C, preferably 20° to 35°C.
[0032] The resulting aqueous soy protein solution could be directly dried to produce a soy protein product. However, in accordance with the present invention, and in order to provide a soy protein isolate having a decreased impurities content and a reduced salt content, the aqueous soy protein solution is processed prior to drying.
[0033] The aqueous soy protein solution is concentrated to increase the protein concentration thereof while maintaining the ionic strength thereof substantially constant. Such concentration generally is effected to provide a concentrated soy protein solution having a protein concentration of 50 to 300 g/L, preferably 100 to 200 g/L.
[0034] Prior to the concentration step, the aqueous soy protein solution may be subjected to a polishing operation to remove any residual soy source material fines not removed in the separation step discussed above. Such polishing step may be effected in any convenient manner, such as by filtration.
[0035] The concentration step may be effected in any convenient manner consistent with batch or continuous operation, such as by employing any convenient selective membrane technique, such as ultrafiltration or diafiltration, using membranes, such as hollow-fibre membranes or spiral-wound membranes, with a suitable molecular weight cut off, such as 3,000 to 1,000,000 Daltons, preferably 5,000 to 100,000 Daltons, having regard to differing membrane materials and configurations, and, for continuous operation, dimensioned to permit the desired degree of concentration as the aqueous protein solution passes through the membranes.
[0036] As is well known, ultrafiltration and similar selective membrane techniques permit low molecular weight species to pass there through while preventing higher molecular weight species from so doing. The low molecular weight species include not only the ionic species of the food grade salt but also low molecular weight materials extracted from the source material, such as carbohydrates, pigments, low molecular weight proteins and anti-nutritional factors, such as trypsin inhibitor, which themselves are low molecular weight proteins. The molecular weight cut-off of the membrane is usually chosen to ensure retention of a significant proportion of the protein in the solution, while permitting contaminants to pass through having regard to the different membrane materials and configurations.
[0037] The concentrated soy protein solution then may be subjected to a diafiltration step using water or a dilute saline solution. The diafiltration solution may be at its natural pH or at a pH equal to that of the protein solution being diafiltered or at any pH value in between. Such diafiltration may be effected using from 2 to 40 volumes of diafiltration solution, preferably 5 to 25 volumes of diafiltration solution. In the diafiltration operation, further quantities of contaminants are removed from the aqueous soy protein solution by passage through the membrane with the permeate. This purifies the aqueous protein solution and may also reduce its viscosity. The diafiltration operation may be effected until no significant further quantities of contaminants or visible colour are present in the permeate or until the retentate has been sufficiently purified so as, when dried, to provide a soy protein isolate with a protein content of at least 90 wt% (N x 6.25) d.b. Such diafiltration may be effected using the same membrane as for the concentration step. However, if desired, the diafiltration step may be effected using a separate membrane with a different molecular weight cut-off, such as a membrane having a molecular weight cut-off in the range of 3,000 to 1,000,000 Daltons, preferably 5,000 to 100,000 Daltons, having regard to different membrane materials and configuration.
[0038] Diafiltration may also be applied at multiple points during the concentration process. When diafiltration is applied prior to concentration or to the partially concentrated solution, the resulting diafiltered solution is then additionally concentrated. The viscosity reduction achieved by diafiltering multiple times as the protein solution is concentrated may allow a higher final, fully concentrated protein concentration to be achieved. This reduces the volume of material to be dried.
[0039] The concentration step and the diafiltration step may be effected herein in such a manner that the soy protein product subsequently recovered contains less than 90 wt% protein (N x 6.25) d.b., such as at least 60 wt% protein (N x 6.25) d.b. By partially concentrating and/or partially diafiltering the aqueous soy protein solution, it is possible to only partially remove contaminants. This protein solution may then be dried to provide a soy protein product with lower levels of purity. The soy protein product is still able to produce clear protein solutions under acidic conditions.
[0040] An antioxidant may be present in the diafiltration medium during at least part of the diafiltration step. The antioxidant may be any convenient antioxidant, such as sodium sulfite or ascorbic acid. The quantity of antioxidant employed in the diafiltration medium depends on the materials employed and may vary from about 0.01 to about 1 wt%, preferably about 0.05 wt%. The antioxidant serves to inhibit the oxidation of any phenolics present in the concentrated soy protein solution.
[0041] The concentration step and the optional diafiltration step may be effected at any convenient temperature, generally 2°C to 60°C, preferably 20°C to 35°C, and for the period of time to effect the desired degree of concentration and diafiltration. The temperature and other conditions used to some degree depend upon the membrane equipment used to effect the membrane processing, the desired protein concentration of the solution and the efficiency of the removal of contaminants to the permeate.
[0042] There are two main trypsin inhibitors in soy, namely the Kunitz inhibitor, which is a heat-labile molecule with a molecular weight of approximately 21,000 Daltons, and the Bowman-Birk inhibitor, a more heat-stable molecule with a molecular weight of about 8,000 Daltons. The level of trypsin inhibitor activity in the final soy protein product can be controlled by manipulation of various process variables.
[0043] As noted above, heat treatment of the aqueous soy protein solution maybe used to inactivate heat-labile trypsin inhibitors. The partially concentrated or fully concentrated soy protein solution may also be heat treated to inactivate heat labile trypsin inhibitors.
[0044] In addition, the concentration and/or diafiltration steps may be operated in a manner favorable for removal of trypsin inhibitors in the permeate along with the other contaminants. Removal of the trypsin inhibitors is promoted by using a membrane of larger pore size (such as about 30,000 to about 1,000,000 Da), operating the membrane at elevated temperatures (such as about 30°C to about 60°C) and employing greater volumes of diafiltration medium (such as about 20 to about 40 volumes).
[0045] Extracting and/or membrane processing the protein solution at a lower pH (1.5-3.0) may reduce the trypsin inhibitor activity relative to processing the solution at higher pH (3.0-5.0). When the protein solution is concentrated and diafiltered at the low end of the pH range, it may be desired to raise the pH of the retentate prior to drying. The pH of the concentrated and diafiltered protein solution may be raised to the desired value, for example pH 3, by the addition of any convenient food grade alkali such as sodium hydroxide. If it is desired to lower the pH of the retentate prior to drying, this may be done so by the addition of any convenientfood grade acid such as hydrochloric acid or phosphoric acid.
[0046] Further, a reduction in trypsin inhibitor activity may be achieved by exposing soy materials to reducing agents that disrupt or rearrange the disulfide bonds of the inhibitors. Suitable reducing agents include sodium sulfite, cysteine and N-acetylcysteine.
[0047] The addition of such reducing agents may be effected at various stages of the overall process. The reducing agent may be added with the soy protein source material in the extraction step, may be added to the clarified aqueous soy protein solution following removal of residual soy protein source material, may be added to the concentrated protein solution before or after diafiltration or may be dry blended with the dried soy protein product. The addition of the reducing agent may be combined with a heat treatment step and the membrane processing steps, as described above.
[0048] If it is desired to retain active trypsin inhibitors in the concentrated protein solution, this can be achieved by eliminating or reducing the intensity of the heat treatment step, not utilizing reducing agents, operating the concentration and diafiltration steps at the higher end of the pH range (3.0.to 5.0), utilizing a concentration and diafiltration membrane with a smaller pore size, operating the membrane at lower temperatures and employing fewer volumes of diafiltration medium.
[0049] The concentrated and optionally diafiltered protein solution may be subject to a further defatting operation, if required, as described in US Patents Nos. 5,844,086 and 6,005,076. Alternatively, defatting of the concentrated and optionally diafiltered protein solution may be achieved by any other convenient procedure.
[0050] The concentrated and diafiltered aqueous protein solution may be treated with an adsorbent, such as powdered activated carbon or granulated activated carbon, to remove colour and/or odour compounds. Such adsorbent treatment may be carried out under any convenient conditions, generally at the ambient temperature of the concentrated protein solution. For powdered activated carbon, an amount of about 0.025% to about 5% w/v, preferably about 0.05% to about 2% w/v, is employed. The adsorbent may be removed from the soy protein solution by any convenient means, such as by filtration.
[0051] The concentrated and diafiltered aqueous soy protein solution may be dried by any convenient technique, such as spray drying or freeze drying. A pasteurization step may be effected on the soy protein solution prior to drying to reduce the microbial load. Such pasteurization step may be effected under any desired pasteurization conditions. Generally, the concentrated and optionally diafiltered soy protein solution is heated to a temperature of 55° to70°C, preferably 60° to 65°C, for 30 seconds to 60 minutes, preferably 10 minutes to 15 minutes. The pasteurized concentrated and diafiltered soy protein solution then may be cooled for drying, preferably to a temperature of about 25° to about 40°C.
[0052] The dry soy protein product has a protein content in excess of 60 wt% N x 6.25) d.b. Preferably, the dry soy protein product is an isolate with a high protein content, in excess of 90 wt% protein, preferably at least 100 wt% (N x 6.25) d.b.
[0053] The soy protein products produced by the process of the present invention are soluble in an acidic aqueous environment, making the product ideal for incorporation into beverages, both carbonated and uncarbonated, to provide protein fortification thereto. Such beverages have a wide range of acidic pH values, ranging from about 2.5 to about 5. The soy protein products may be added to such beverages in any convenient quantity to provide protein fortification to such beverages, for example, at least about 5 g of the soy protein per serving. The added soy protein product dissolves in the beverage and does not impair the clarity of the beverage, even after thermal processing. The soy protein product may be blended with dried beverage prior to reconstitution of the beverage by dissolution in water. In some cases, modification of the normal formulation of the beverages to tolerate the composition of the invention may be necessary where components present in the beverage may adversely affect the ability of the composition to remain dissolved in the beverage.
EXAMPLES
Comparative Example 1: [0054] This Comparative Example illustrates the preparation of transparent, heat stable protein solutions utilizing extraction with calcium chloride solution at low pH, which is useful in understanding the present invention.
[0055] Soy white flakes (10g) were combined with 0.15M calcium chloride solution (100 ml) and the pH of the samples adjusted immediately to 4.8 and 1.5 with HCI. The samples were extracted at room temperature for 30 minutes using a magnetic stirrer. The pH of the samples was monitored and adjusted two times during the 30 minute extraction. The extract was separated from the spent meal by centrifugation at 10,200 g for 10 minutes and the centrates further clarified by filtration using 25 μ(η pore size filter paper. The clarity of the filtrates was measured using a HunterLab ColorQuest XE operated in transmission mode to supply a percentage haze reading. The samples were then diluted with one volume of reverse osmosis purified water and the haze level measured again. The pH of the diluted samples was then adjusted to 3 using either HCI or NaOH as necessary. The haze level of the pH adjusted samples was then analyzed. The samples were then heat treated to 95°C for 30 seconds, immediately cooled to room temperature in ice water and the haze level re-assessed.
[0056] The haze values determined for the various samples are shown in Tables 1 and 2.
Table 1 - Haze values for the treatment of samples from extraction with calcium chloride solution at pH 1.5 sample haze (%) filtrate 27.8 diluted filtrate 17.1 diluted filtrate at pH 3 16.8 diluted filtrate at pH 3 after heat treatment 10.4
Table 2 - Haze values for the treatment of samples from extraction with calcium chloride solution at pH 4.8 sample haze (%) filtrate 36.2 diluted filtrate 99.1 diluted filtrate at pH 3 8.4 diluted filtrate at pH 3 after heat treatment 6.0 [0057] As may be seen from the results presented in Tables 1 and 2, the initial filtrates were somewhat hay, however improved clarity may have been obtained by utilizing a finer filter. Dilution with one volume of water improved the clarity of the pH 1.5 sample but introduced precipitation in the pH 4.8 sample. Adjusting the pH of the diluted samples to 3 gave good clarity to the sample that was originally at pH 4.8, while the sample that was originally at pH 1.5 had perhaps a slight haze. After heat treatment both samples were considered clear.
Comparative Example 2: [0058] This Comparative Example illustrates the preparation of a soy protein isolate useful for understanding the present invention.
[0059] 20 kg of defatted, minimally heat treated soy flour was added to 200 L of 0.15M calcium chloride solution at ambient temperature and agitated for 30 minutes to provide an aqueous protein solution. Immediately after the flour was dispersed in the calcium chloride solution, the pH of the system was adjusted to 3 by the addition of dilute HCI. The pH was monitored and corrected to 3 periodically over the course of the 30 minute extraction. The residual soy flour was removed by centrifugation to yield 174 L of protein solution having a protein content of 3.37% by weight. The protein solution was then combined with 174 L of reverse osmosis purified water and the pH corrected to 3. This solution was then polished by filtration to yield 385 L of filtered protein solution having a protein content of 1.21 % by weight.
[0060] The filtered protein solution was reduced in volume to 25 L by concentration on a PVDF membrane having a molecular weight cutoff of 5,000 daltons. The concentrated protein solution was then diafiltered with 125 L of reverse osmosis purified water. The resulting diafiltered, concentrated protein solution had a protein content of 14.51% by weight and represented a yield of 81.3 wt% of the filtered protein solution. The diafiltered, concentrated protein solution was then dried to yield a product found to have a protein content of 99.18% (N x 6.25) d.b. The product was termed S005-A13-09A S703.
[0061] A 3.2 wt% protein solution of S005-A13-09A S703 was prepared in water and the colour and clarity assessed using a HunterLab Color Quest XE instrument operated in transmission mode. The pH of the solution was measured with a pH meter.
[0062] The pH, colour and clarity values are set forth in the following Table 3:
Table 3 - pH and HunterLab scores for 3.2% protein solution of S005-A13-09A S703 sample pH L* a* b* haze (%) S703 3.12 87.31 0.67 18.99 43.9 [0063] As may be seen from Table 3, the solution of S703 in water was semitransparent, not transparent. The relatively high level of haze in this sample resulted in the L* value being somewhat lower than expected.
[0064] The colour of the dry powder was also assessed with the HunterLab Color Quest XE instrument in reflectance mode. The colour values are set forth in the following Table 4:
Table 4 - HunterLab scores for S005-A13-09A S703 dry powder sample L* a* b* S703 85.67 0.05 10.57 [0065] As may be seen from Table 4, the dry product was very light in colour.
Comparative Example 3: [0066] This Comparative Example contains an evaluation of the heat stability in water of the soy protein isolate produced by the method of Comparative Example 2 (S703).
[0067] A 2% w/v protein solution of S005-A13-09A S703 in water was produced and the pH adjusted to 3. The clarity of this solution was assessed by haze measurement with the HunterLab Color Quest XE instrument. The solution was then heated to 95°C, held at this temperature for 30 seconds and then immediately cooled to room temperature in an ice bath. The clarity of the heat treated solution was then measured again.
[0068] The clarity of the protein solution before and after heating is set forth in the following Table 5:
Tables - Effect of heat treatment on clarity of S005-A13-09A 8703 solution sample haze (%) before heating 43.6 after heating 30.7 [0069] As can be seen from the results in Table 5, it was found that the initial solution of S005-A13-09A S703 was quite hazy. However, the solution was heat stable, with the haze level actually reduced somewhat by the heat treatment.
Comparative Example 4: [0070] This Comparative Example contains an evaluation of the solubility in water of the soy protein isolate produced by the method of Comparative Example 2 (S703). Solubility was tested based on protein solubility (termed protein method, a modified version of the procedure of Morretal., J. Food Sci. 50:1715-1718) and total product solubility (termed pellet method).
[0071] Sufficient protein powder to supply 0.5 g of protein was weighed into a beaker and then a small amount of reverse osmosis (RO) purified water was added and the mixture stirred until a smooth paste formed. Additional water was then added to bring the volume to approximately 45 ml. The contents of the beaker were then slowly stirred for 60 minutes using a magnetic stirrer. The pH was determined immediately after dispersing the protein and was adjusted to the appropriate level (2, 3, 4, 5, 6 or 7) with diluted NaOH or HCI. A sample was also prepared at natural pH. For the pH adjusted samples, the pH was measured and corrected two times during the 60 minutes stirring. After the 60 minutes of stirring, the samples were made up to 50 ml total volume with RO water, yielding a 1% w/v protein dispersion. The protein content of the dispersions was measured using a Leco FP528 Nitrogen Determinator. Aliquots (20 ml) of the dispersions were then transferred to pre-weighed centrifuge tubes that had been dried overnight in a 100°C oven then cooled in a desiccator and the tubes capped. The samples were centrifuged at 7800 g for 10 minutes, which sedimented insoluble material and yielded a clear supernatant. The protein content of the supernatant was measured by Leco analysis and then the supernatant and the tube lids were discarded and the pellet material dried overnight in an oven set at 100°C. The next morning the tubes were transferred to a desiccator and allowed to cool. The weight of dry pellet material was recorded. The dry weight of the initial protein powder was calculated by multiplying the weight of powder used by a factor of ((100-moisture content of the powder (%))/100). Solubility of the product was then calculated two different ways: , 1) Solubility (protein method) (%) = (% protein in supematant/% protein in initial dispersion) x 100 2) Solubility (pellet method) (%) = (1 - (weight dry insoluble pellet material/((weight of 20 ml of dispersion/weight of 50 ml of dispersion) x initial weight dry protein powder))) x 100 [0072] The natural pH value of the protein isolate produced in Example 1 in water (1% protein) is shown in Table 6:
Table 6-Natural pH of S703 solution prepared in water at 1% protein
[0073] The solubility results obtained are set forth in the following Tables 7 and 8:
Table 7 - Solubility of S703 at different pH values based on protein method
Table 8 - Solubility of S703 at different pH values based on pellet method
[0074] As can be seen from the results of Tables 7 and 8, the S703 product was highly soluble at pH values 2, 3 and 7 as well as at the natural pH. The solubility was slightly lower at pH 4.
Comparative Example 5: [0075] This Comparative Example contains an evaluation of the clarity in water of the soy protein isolate produced by the method of Comparative Example 2 (S703).
[0076] The clarity of the 1 % w/v protein solution prepared as described in Example 3 was assessed by measuring the absorbance at 600 nm, with a lower absorbance score indicating greater clarity. Analysis of the samples on a HunterLab ColorQuest XE instrument in transmission mode also provided a percentage haze reading, another measure of clarity.
[0077] The clarity results are set forth in the following Tables 9 and 10:
Table 9 - Clarity of S703 solution at different pH values as assessed by A600
Table 10 - Clarity of S703 solution at different pH values as assessed by HunterLab analysis
[0078] As can be seen from the results of Tables 9 and 10, the solutions of S703 were clear to slightly hazy at pH 2-3. A slightly hazy solution was also obtained at pH 7.
Comparative Example 6: [0079] This Comparative Example contains an evaluation of the solubility in a soft drink (Sprite) and sports drink (Orange Gatorade) of the soy protein isolate produced by the method of Comparative Example 2 (S703). The solubility was determined with the protein added to the beverages with no pH correction and again with the pH of the protein fortified beverages adjusted to the level of the original beverages.
[0080] When the solubility was assessed with no pH correction, a sufficient amount of protein powder to supply 1 g of protein was weighed into a beaker and a small amount of beverage was added and stirred until a smooth paste formed. Additional beverage was added to bring the volume to 50 ml, and then the solutions were stirred slowly on a magnetic stirrer for 60 minutes to yield a 2% protein w/v dispersion. The protein content of the samples was analyzed using a LECO FP528 Nitrogen Determinator then an aliquot of the protein containing beverages was centrifuged at 7800 g for 10 minutes and the protein content of the supernatant measured.
Solubility (%) = (% protein in supematant/% protein in initial dispersion) x 100 [0081] When the solubility was assessed with pH correction, the pH of the soft drink (Sprite) (3.39) and sports drink (Orange Gatorade) (3.19) without protein was measured. A sufficient amount of protein powder to supply 1 g of protein was weighed into a beaker and a small amount of beverage was added and stirred until a smooth paste formed. Additional beverage was added to bring the volume to approximately 45 ml, and then the solutions were stirred slowly on a magnetic stirrer for 60 minutes. The pH of the protein containing beverages was measured and then adjusted to the original noprotein pH with HCI or NaOH as necessary. The total volume of each solution was then brought to 50 ml with additional beverage, yielding a 2% protein w/v dispersion. The protein content of the samples was analyzed using a LECO FP528 Nitrogen Determinator then an aliquot of the protein containing beverages was centrifuged at 7800 g for 10 minutes and the protein content of the supernatant measured.
Solubility (%) = (% protein in supematant/% protein in initial dispersion) x 100 [0082] The results obtained are set forth in the following Table 11:
Table 11 - Solubility of S703 in Sprite and Orange Gatorade
[0083] As can be seen from the results of Table 11, the S703 was highly soluble in the Sprite and the Orange Gatorade. As S703 is an acidified product, protein addition had little effect on beverage pH.
Comparative Example 7: [0084] This Comparative Example contains an evaluation of the clarity in a soft drink and sports drink of the soy protein isolate produced by the method of Comparative Example 2 (S703).
[0085] The clarity of the 2% w/v protein dispersions prepared in soft drink (Sprite) and sports drink (Orange Gatorade) in Comparative Example 6 were assessed using the methods described in Comparative Example 5. For the absorbance measurements at 600 nm, the spectrophotometer was blanked with the appropriate beverage before the measurement was performed.
[0086] The results obtained are set forth in the following Tables 12 and 13:
Table 12 - Clarity (A600) of S703 in Sprite and Orange Gatorade
Table 13 - HunterLab haze readings for S703 in Sprite and Orange Gatorade
[0087] As can be seen from the results of Tables 12 and 13, the good solubility results obtained for the S703 in the Sprite and the Orange Gatorade did not translate to clarity in these beverages. In fact, the resulting solutions were quite hazy.
SUMMARY OF THE DISCLOSURE
[0088] In summary of this disclosure, the present invention provides a method of producing a soy protein isolate which is soluble in acid media, based on extraction of a soy protein source material using aqueous calcium chloride solution at low pH. Modifications are possible within the scope of the claims.
Claims 1. A process of producing a soy protein product having a soy protein content of at least 60 wt% (N x 6.25) on a dry weight basis, which comprises: (a) extracting a soy protein source which is soy meal, soy flakes, soy grits or soy flour with an aqueous calcium salt solution at a pH of 1.5 to 5 to cause solubilization of soy protein from the soy protein source and to form an aqueous soy protein solution, (b) separating the aqueous soy protein solution from residual soy protein source, and (c) diluting said aqueous soy protein solution with 0.5 to 10 volumes of water to a conductivity of less than 90 mS, (d) adjusting the pH of the aqueous solution to a different value within the range of 1.5 to 5 to a pH of 2.0 to 4.0, (e) concentrating the pH adjusted soy protein solution while maintaining the ionic strength thereof substantially constant to produce a concentrated soy protein solution having a protein concentration of 50 to 300 g/L, and the concentrated soy protein solution is optionally diafiltered, and (f) drying the concentrated and optionally diafiltered soy protein solution to provide a soy protein product having a protein content of at least 60 wt%. 2. The process claimed in claim 1, wherein said extraction step is effected using an aqueous calcium chloride solution having a concentration of less than 1.0 M, preferably 0.10 to 0.15 M. 3. The process claimed in claim 1 or 2, wherein said extraction step is effected at a temperature of 15° to 35°C. 4. The process claimed in any one of claims 1 to 3, wherein said aqueous soy protein solution has a protein concentration of 5 to 50 g/L, preferably 10 to 50 g/L. 5. The process claimed in any one of claims 1 to 4, wherein, following said separation step, said aqueous soy protein solution is treated with an adsorbentto remove colour and/or odour compounds from the aqueous soy protein solution. 6. The process claimed in any one of claims 1 to 5, wherein said aqueous soy protein solution is diluted to provide a conductivity of said soy protein solution of 4 to 31 mS, preferably having a temperature of 2°C to 70°C, preferably 10° to 50°C, more preferably 20° to 30°C. 7. The process claimed in any one of claims 1 to 6, wherein said soy protein solution, following the dilution and pH adjustment steps has a conductivity of less than 95 mS, preferably 4 to 36 mS. 8. The process claimed in any one of claims 1 to 7, wherein said aqueous protein solution is subjected to a heat treatment step to inactivate heat-labile trypsin inhibitors, preferably the heat treatment step also pasteurizing the aqueous soy protein solution, wherein said heat treatment is effected at a temperature of 70° to 160°C for 10 seconds to 60 minutes, preferably at a temperature of 80° to 120°C for 10 seconds to 5 minutes, more preferably at a temperature of 85°C to 95°C for 30 seconds to 5 minutes. 9. The process claimed in claim 8, wherein the heat treated soy protein solution is cooled to a temperature of 2° to 60°C, preferably 20° to 35°C, for further processing. 10. The process claimed in anyone of claims 1 to 9, wherein said soy protein solution is concentrated while maintaining the ionic strength thereof substantially constant to produce a concentrated soy protein solution having a protein concentration of 100 to 200 g/L, and the concentrated soy protein solution is optionally diafiltered, wherein said concentration step and/or optional diafiltration step is preferably effected by ultrafiltration using a membrane having a molecular weight cut-off of 3,000 to 1,000,000 Daltons, preferably 5,000 to 100,000 Daltons, preferably at a temperature of 2° to 60°C, more preferably 20° to 35°C. 11. The process claimed in claim 10, wherein a diafiltration step is effected using water, dilute saline, acidified water or acidified dilute saline on the soy protein solution before or after partial or complete concentration thereof, preferably using 2 to 40 volumes of diafiltration solution, more preferably 5 to 25 volumes of diafiltration solution. 12. The process claimed in claim 11, wherein said diafiltration is effected until no significant further quantities of contaminants or visible colour are present in the permeate, and until the retentate has been sufficiently purified so as, when dried, to provide a soy protein isolate with a protein content of at least 90 wt% (N x 6.25) d.b., preferably in the presence of an antioxidant. 13. The process claimed in any one of claims 10 to 12, wherein the concentrated and optionally diafiltered soy protein solution is subjected to a heat treatment step to inactivate heat-labile trypsin inhibitors, preferably at a temperature of 70° to 160°C for 10 seconds to 60 minutes, more preferably a temperature of 80° to 120°C for 10 seconds to 5 minutes, more preferably 85° to 95°C for 30 seconds to 5 minutes and the heat treated soy protein solution is preferably cooled to a temperature of 2° to 60°C, preferably 20° to 35°C, for further processing. 14. The process claimed in any one of claims 10 to 13, wherein said concentrated and optionally diafiltered soy protein solution is treated with an adsorbent to remove colour and/or odour compounds and/or said concentrated and optionally diafiltered soy protein solution is pasteurized prior to drying, preferably at a temperature of 55° to 70°C for 30 seconds to 60 minutes, preferably 60° to 65°C for 10 to 15 minutes. 15. The process claimed in any one of claims 10 to 14, wherein said concentrated and optionally diafiltered soy protein solution is dried to provide a soy protein isolate having a protein content of at least 90 wt% (N x 6.25) d.b, preferably at least 100 wt% (N x 6.25) d.b. 16. The process claimed in anyone of claims 1 to 15, wherein a reducing agent is present during the extraction step, and/or the concentration step and/or optional diafiltration step, and/or is added to the concentrated and optionally diafiltered soy protein solution prior to drying and/or the dried soy protein product, to disrupt or rearrange the disulfide bonds of trypsin inhibitors to achieve a reduction in trypsin inhibitor activity.
Patentanspriiche 1. Verfahren zur Herstellung eines Sojaproteinprodukts mit einem Sojaproteingehalt von mindestens 60 Gew.-% (N x 6,25) auf Trockengewichtsbasis, welches umfasst: a) Extrahieren einer Sojaproteinquelle, die ein Sojamahl, Sojaflocken, Sojagriitze, oderSojamehl ist, mit einer wassrigen Calciumsalzlosung bei einem pH-Wert von 1,5 bis 5, urn Solubilisieren des Sojaproteins aus der Sojaproteinquelle zu verursachen und eine wassrige Sojaproteinlosung zu bilden, b) Abtrennung der wassrigen Sojaproteinlosung von der restlichen Sojaproteinquelle, und c) Verdiinnung der wassrigen Sojaproteinlosung mit 0,5 bis 10 Volumenteilen Wasser bis zu einer Leitfahigkeit von weniger als 90 mS, d) Einstellen des pH-Werts derwassrigen Losung auf einen unterschiedlichen Wert innerhalb des Bereichs von 1,5 bis 5 zu einem pH-Wert von 2,0 bis 4,0, e) Konzentrierung der pH-eingestellten Sojaproteinlösung während lonenstärke davon im Wesentlichen konstant gehalten wird, um eine konzentrierte Sojaproteinlösung mit einer Proteinkonzentration von 50 - 300 g/L zu erhalten, und die konzentrierte Sojaprotein Lösung wird gegebenenfalls diafiltriert, und f) Trocknung der konzentrierten und gegebenenfalls diafiltrierten Sojaproteinlösung, um ein Sojaprotein mit einem Proteingehalt mit mindestens 60 Gew.-% zu erhalten. 2. Verfahren nach Anspruch 1, worin der Extraktionsschritt bewirkt wird unter Verwendung einer wässrigen Calciumchloridlösung mit einer Konzentration von weniger als 1,0 M, vorzugsweise 0,10 bis 0,15 M. 3. Verfahren nach Anspruch 1 oder 2, worin der Extraktionsschritt bei einer Temperatur von 15°C bis35°C bewirkt wird. 4. Verfahren nach irgendeinem der Ansprüche 1 bis 3, worin die wässrige Sojaproteinlösung eine Konzentration von 5 bis 50 g/L, vorzugsweise 10 bis 50 g/L. 5. Verfahren nach irgendeinem der Ansprüche 1 bis 4, worin im Anschluss an die Abtrennung die wässrige Sojaproteinlösung mit einem Absorptionsmittel behandelt wird, um Färb- und/oder Geruchsverbindungen aus der wässrigen Sojaproteinlösung zu entfernen. 6. Verfahren nach irgendeinem der Ansprüche 1 bis 5, worin die wässrige Sojaproteinlösung verdünnt wird, um eine Leitfähigkeit der Sojaproteinlösung von 4 bis 31 mS zu erhalten, vorzugsweise bei einer Temperatur von 2°C bis 70°C, vorzugsweise 10°C bis 50°C, noch mehr bevorzugt 20°C bis 30°C. 7. Verfahren nach irgendeinem der Ansprüche 1 bis 6, worin die Sojaproteinlösung im Anschluss an die Verdünnung und pH-Einstellungs-Schritte eine Leitfähigkeit von weniger 95 mS hat, vorzugsweise 4-36 mS. 8. Verfahren nach irgendeinem der Ansprüche 1 bis 7, worin die wässrige Sojaproteinlösung einem Wärmebehandlungsschritt unterworfen wird, um wärmelabile Trypsininhibitoren zu inaktivieren, vorzugsweise umfasst der Wärmebehandlungsschritt auch die Pasteurisierung der wässrigen Sojaproteinlösung, worin die Wärmebehandlung bei einer Temperatur von 70°C bis 160°C über 10 Sekunden bis 60 Minuten bewirkt wird, vorzugsweise bei einer Temperatur von 80°C bis 120°C über 10 Sekunden bis 5 Minuten, mehr bevorzugt bei einer Temperatur von 85°C bis 95°C über 30 Sekunden bis 5 Minuten. 9. Verfahren nach Anspruch 8, worin die wärmebehandelte Sojaproteinlösung auf eine Temperatur von 2°C bis 60°C für die weitere Bearbeitung abgekühlt wird, vorzugsweise 20°C bis 35°C. 10. Verfahren nach irgendeinem der Ansprüche 1 bis 9, worin die Sojaproteinlösung konzentriert wird währenddessen die lonenstärke davon im Wesentlichen konstant gehalten wird, um eine konzentrierte Sojaproteinlösung mit einer Proteinkonzentration von 100 bis 200 g/L zu erhalten, und die konzentrierte Soja protei nlösung wird gegebenenfalls diafiltriert, wobei der Konzentrierungsschritt und/oder Diafiltrierungsschritt vorzugweise bewirkt wird durch Ultrafiltration unter Verwendung einer Membran mit einer Molekulargewichtsausschlussgrenze von 3000 bis 1.000.000 Daltons, vorzugsweise 5000 bis 100.000 Daltons, vorzugsweise bei einer Temperatur von 2°C bis 60°C, mehr bevorzugt 20°C bis 35°C. 11. Verfahren nach Anspruch 10, worin der Diafiltrierungsschritt bewirkt wird unter Verwendung von Wasser, verdünnter Saline, angesäuertes Wasser oder angesäuerter verdünnter Saline auf die Sojaproteinlösung vor oder nach teilweiserodervollständiger Konzentrierung davon, vorzugsweise unter Verwendung von 2 bis 40 Volumenteilen einer Diafiltrierungslösung, mehr bevorzugt 5 bis 25 Volumenteile der Diafiltrierungslösung. 12. Verfahren nach Anspruch 11, worin die Diafiltration bewirkt wird bis keine weiteren Mengen an Verunreinigung oder sichtbarem FarbstofF im Permeat vorliegen, und bis das Retentât ausreichend gereinigt wurde, so dass, bei Trocknung, ein Sojaproteinisolat mit einem Proteingehalt von mindestens 90 Gew.-% (N x 6,25) d. b. erhalten wird, vorzugsweise im Gegenwart eines Antioxidationsmittels. 13. Verfahren nach irgendeinem der Ansprüche 10 bis 12, worin die konzentrierte und gegebenenfalls diafiltrierte Soja protei nlösung einem Wärmebehandlungsschritt unterworfen wird, um wärmeempfindliche Trypsininhibitoren zu inaktivieren, vorzugsweise bei einer Temperatur von 70°C bis 160°C über 10 Sekunden bis 60 Minuten, mehr bevorzugt einer Temperatur von 80°C bis 120°C über 10 Sekunden bis 5 Minuten, mehr bevorzugt 85°C bis 95°C über 30 Sekunden bis 5 Minuten, und die wärmebehandelte Sojaproteinlösung wird vorzugsweise abgekühlt auf eine Temperatur von 2°C bis 60°C, vorzugsweise 20°C bis 35°C zur weiteren Verarbeitung. 14. Verfahren nach irgendeinem der Ansprüche 10 bis 13, worin die konzentrierte und gegebenenfalls diafiltrierte So-japroteinlösung mit einem Absorptionsmittel behandelt wird, um Färb- und/oder Geruchsverbindungen zu entfernen, und/oder die konzentrierte und gegebenenfalls diafiltrierte Sojaproteinlösung wird vor der Trocknung pasteurisiert, vorzugsweise bei einer Temperatur von 55°C bis 70°C über 30 Sekunden bis 60 Minuten, vorzugweise 60°C bis 65°C über 10 bis 15 Minuten. 15. Verfahren nach irgendeinem der Ansprüche 10 bis 14, worin die konzentrierte und gegebenenfalls diafiltrierte Sojaproteinlösung getrocknet wird, um ein Sojaproteinisolat zu erhalten mit einem Proteingehalt von mindestens 90 Gew.-% (N X 6,25) d. b., vorzugsweise mindestens 100 Gew.-% (N x 6,25) d. b. 16. Verfahren nach irgendeinem der Ansprüche 1 bis 15, worin ein Reduzierungsmittel vorliegt während des Extraktionsschritts, und/oder des Konzentrierungsschritts und/oder gegebenenfalls Diafiltrierungsschritts, und/oder wird der konzentrierten und gegebenenfalls diafiltrierten Sojaproteinlösung vordem Trocknen und/oder dem getrockneten Proteinproduktzugegeben, um die Disulfidbindungen des Trypsininhibitors aufzubrechen oder umzulagern, um eine Reduktion der Trypsininhibitoraktivität zu erreichen.
Revendications 1. Procédé de production d’un produit à base de protéine de soja ayant une teneur en protéine de soja d’au moins 60 % en poids (N x 6,25) sur la base du poids sec, qui comprend : (a) l’extraction d’une source de protéine de soja qui est un tourteau de soja, des flocons de soja, des gruaux de soja ou une farine de soja avec une solution aqueuse de sel de calcium à un pH de 1,5 à 5 pour provoquer la solubilisation de la protéine de soja à partir de la source de protéine de soja et pour former une solution aqueuse de protéine de soja, (b) la séparation de la solution aqueuse de protéine de soja d’une source de protéine de soja résiduelle, et (c) la dilution de ladite solution aqueuse de protéine de soja avec 0,5 à 10 volumes d’eau à une conductivité inférieure à 90 mS, (d) l’ajustement du pH de la solution aqueuse à une valeur différente comprise dans la plage allant de 1,5 à 5 à un pH de 2,0 à 4,0, (e) la concentration de la solution de protéine de soja ayant son pH ajusté tout en maintenant la résistance ionique de celle-ci sensiblement constante pour produire une solution de protéine de soja concentrée ayant une concentration en protéine de 50 à 300 g/l et la solution de protéine de soja concentrée est facultativement diafiltrée, et (f) le séchage de la solution de protéine de soja concentrée et facultativement diafiltrée pour fournir un produit à base de protéine de soja ayant une teneur en protéine d’au moins 60 % en poids. 2. Procédé selon la revendication 1, dans lequel ladite étape d’extraction est réalisée en utilisant une solution aqueuse de chlorure de calcium ayant une concentration inférieure à 1,0 M, de préférence de 0,10 à 0,15 M. 3. Procédé selon la revendication 1 ou 2, dans lequel ladite étape d’extraction est réalisée à une température comprise dans la plage allant de 15 °C à 35 °C. 4. Procédé selon l’une quelconque des revendications 1 à 3, dans lequel ladite solution aqueuse de protéine de soja a une concentration en protéine comprise dans la plage allant de 5 à 50 g/l, de préférence de 10 à 50 g/l. 5. Procédé selon l’une quelconque des revendications 1 à 4, dans lequel, après ladite étape de séparation, ladite solution aqueuse de protéine de soja est traitée avec un adsorbant pour éliminer les composés colorés et/ou odorants de la solution aqueuse de protéine de soja. 6. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel ladite solution aqueuse de protéine de soja est diluée pour fournir une conductivité de ladite solution de protéine de soja comprise dans la plage allant de 4 à 31 mS, de préférence ayant une température comprise dans la plage allant de 2 °C à 70 °C, de préférence de 10 °C à 50 °C, plus préférablement de 20 °C à 30 °C. 7. Procédé selon l’une quelconque des revendications 1 à 6, dans lequel ladite solution de protéine de soja, après les étapes de dilution et d’ajustement de pH a une conductivité inférieure à 95 mS, de préférence comprise dans la plage allant de 4 à 36 mS. 8. Procédé selon l’une quelconque des revendications 1 à 7, dans lequel ladite solution aqueuse de protéine est soumise à une étape de traitement thermique pour inactiver les inhibiteurs de trypsine thermiquement labiles, de préférence l’étape de traitement thermique comprend également la pasteurisation de la solution aqueuse de protéine de soja, ledit traitement thermique étant effectué à une température comprise dans la plage allant de 70 °C à 160 °C pendant 10 secondes à 60 minutes, de préférence à une température comprise dans la plage allant de 80 °C à 120 °C pendant 10 secondes à 5 minutes, plus préférablement à une température comprise dans la plage allant de 85 °C à 95 °C pendant 30 secondes à 5 minutes. 9. Procédé selon la revendication 8, dans lequel la solution de protéine de soja traitée thermiquement est refroidie à une température comprise dans la plage allant de 2 °C à 60 °C, de préférence de 20 °C à 35 °C, pour un traitement ultérieur. 10. Procédé selon l’une quelconque des revendications 1 à 9, dans lequel ladite solution de protéine de soja est concentrée tout en maintenant la résistance ionique de celle-ci sensiblement constante pour produire une solution de protéine de soja concentrée ayant une concentration en protéine comprise dans la plage allant de 100 à 200 g/ln et la solution de protéine de soja concentrée est facultativement diafiltrée, ladite étape de concentration et/ou ladite étape facultative de diafiltration étant de préférence réalisées par ultrafiltration en utilisant une membrane ayant une limite de masse moléculaire comprise dans la plage allant de 3 000 à 1 000 000 Daltons, de préférence de 5 000 à 100 000 Daltons, de préférence à une température comprise dans la plage allant de 2 °C à 60 °C, plus préférablement de 20 °C à 35 °C. 11. Procédé selon la revendication 10, dans lequel une étape de diafiltration est réalisée en utilisant de l’eau, une solution saline diluée, de l’eau acidifiée ou une solution saline diluée acidifiée sur la solution de protéine de soja avant ou après sa concentration partielle ou totale, de préférence en utilisant de 2 à 40 volumes de solution de diafiltration, plus préférablement de 5 à 25 volumes de solution de diafiltration. 12. Procédé selon la revendication 11, dans laquelle ladite diafiltration est réalisée jusqu’à ce qu’il n’y ait plus de quantité significative de contaminants ou de couleur visible dans le perméat, et jusqu’à ce que le rétentat soit suffisamment purifié afin, lorsqu’il est sec, de fournir un isolat de protéine de soja ayant une teneur en protéine d’au moins 90 % en poids (N x 6,25) sur la base du poids sec, de préférence en présence d’un antioxydant. 13. Procédé selon l’une quelconque des revendications 10 à 12, dans lequel la solution de protéine de soja concentrée et facultativement diafiltrée est soumise à une étape de traitement thermique pour inactiver les inhibiteurs de trypsine thermiquement labiles, de préférence à une température comprise dans la plage allant de 70 à 160 °C pendant 10 secondes à 60 minutes, plus préférablement à une température comprise dans la plage allant de 80 °C à 120 °C pendant 10 secondes à 5 minutes, plus préférablement de 85 °C à 95 °C pendant 30 secondes à 5 minutes et la solution de protéine de soja thermiquement traitée est de préférence refroidie à une température comprise dans la plage allant de 2 °C à 60 °C, de préférence 20 °C à 35 °C, pour un traitement ultérieur. 14. Procédé selon l’une quelconque des revendications 10 à 13, dans lequel ladite solution de protéine de soja concentrée et facultativement diafiltrée est traitée avec un adsorbant pour éliminer les composés colorés et/ou odorants et/ou ladite solution de protéine de soja concentrée et facultativement diafiltrée est pasteurisée avant le séchage, de préférence aune température comprise dans la plage allant de 55 °C à 70 °C pendant 30 secondes à 60 minutes, de préférence de 60 °C à 65 °C pendant 10 à 15 minutes. 15. Procédé selon l’une quelconque des revendications 10 à 14, dans lequel ladite solution de protéine de soja concentrée et facultativement diafiltrée est séchée pour fournir un isolat de protéine de soja ayant une teneur en protéine d’au moins 90 % en poids (N x 6,25) sur la base du poids sec, de préférence d’au moins 100 % en poids (N x 6,25) sur la base du poids sec. 16. Procédé selon l’une quelconque des revendications 1 à 15, dans lequel un agent de réduction est présent pendant l’étape d’extraction et/ou l’étape de concentration et/ou l’étape de diafiltration facultative et/ou est ajouté à la solution de protéine de soja concentrée et facultativement diafiltrée avant le séchage et/ou le produit à base de protéine de soja séché pour désorganiser ou réarranger les liaisons disulfure des inhibiteurs de trypsine afin d’obtenir une reduction de I’activite des inhibiteurs de trypsine.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • US 61107112 A [0002] · US 7865389 B [0002] • US 7865373 B [0002] · US 61272241 A [0002] • US 611193457 B [0002] · US 7865400 B [0002] • US 7865374 B [0002] · US 12603087 A [0002] • US 611202070 B [0002] · US 7865415 B [0002] • US 7865376 B [0002] · US 20100098818 A [0002] • US 611202553 B [0002] · EP 0752212 A [0003] • US 7865383 B [0002] · US 5844086 A [0025] [0049] • US 611213717 B [0002] · US 6005076 A [0025] [0049]
Non-patent literature cited in the description • MORR. J. Food Sci., vol. 50, 1715-1718 [0070]

Claims (6)

  1. Szabadalmi sgénypatsták' IkEpőis £z#pPf#t tennék vMlUÉ&amp;Éív amelynek sj^jsprotem Mii léplébb fN κ 6,25) szára:?, tömege alapján, amely eljáris lsítssmaa^a a következőket; (a) extrahálunk egy szójaprolein forrást, sméiy szójaörlemény, szójapehell, :i^|«l8M'Pgy széjallszh vizes fealcmmsö-oldaftal 1,5*5 pH-«, így ei&amp;segj|y$. a szójaprotm kioldódását &amp; sgé|i^rpts:k km-ásMI, és: Így vizes szöjaprotein Oldatot áliitunk elé, .{'»} a visss saójaproiein-oldatot elválasztjuk a vksmnamáá íej az esnilleti vizes szójaprxttein'Old^^^íÖ ttóogat vixKeí :higSt|tík:JtkmSrni61::kíSéBb vezeiSpíXísgé·' glg. ki) a vizes öklát pH-jáfra* 1,1-5 tstlötsáapst beiéi beállítják egy eltérő értékre:, ^Ö^Jfílrtts, |g) a beállított pM-jú szélapíöiesH-öldalöl ksíícenij'áyyk. kikbe® ss«erSsságét:íéRye|ébp állsndéiBékSn lartj'Mk,: így kottecntráit szö)ap?e:elb-el<i§t8t:SII:ia8Íí elő, amelynek sPíapivPfekköscenMei^a: SÖ*|ÖÖ p| eSík kööSenfráR riséji^roteln-öliatöt sdötkassti^Stkímszérésaek vetjük aki, és |l|: &amp; iköscentráit és adott esöÉesvdlaszMss^ mepzáriigtk, így legalább Sö Pinfegvk
  2. 2. Az L igénypont szerint! eljárás,Aöltíz említeti éxsrakciős lépést 1,ü mélynél kis#h, előnyőseit Ö,ií3--ŐÁ5 rnol/1 köaccmrációjó vizes kaJemíSéklosíid-tjIdat alkaktaeásával hajtjuk végte>
  3. 3. Az k ytigy 2. IgÉtpoht szerinti e|árás, ahelm étrdilétt extntkéiós lépést 15¾ „ 35¾ itőtitémékleíéh: hatjuk végre.
  4. 4. Az 1¾ igéhyperttök .bármelyike szernsts éfárás, ahol az említett vizes szijáprotem-oldat protein--koncentrációja 5-50 grl, előnyösen lÖ-Sög/k §. Μ M. igénpohtök hánaeiylke stísti eljárás, ahol az elválasztási lépést köveiden az említed vizek szöjaptBteki-oÍdatot egy adszoröenssei kezepfc, így eMvoHtv» a vizes szAjaproteisr-okiatből a színes éisévagy szagos vegyüieieket. &amp; Az::1-.5. igénypontok bátmslyíke szerinti s|ÉÍá, ahol az «gőj^p>léibstetat hígjuk,· így 4-31 mS vszetöképességü szój&amp;proíeia-oldatot áilitonk elő, amelynek MhMs®ékkle előnyösen 3!>C - TŐT', előnyösen i 0: ti? :KPC, előnyösebbet! 2ÖT - 3őeC. % Az i-ő. igényposttok bápnélylke szerinti eljárás, ahol a hígítást ép pld ÖsáHításl lépés^eí tóvátben; az emiiiett szójaprotein-oldat vezetlkápésségé kisebb '«Éift előnyösen: M§ mB, 8 Az 1-7. igénypontok bánóiké mtM· fijÉs^Éiöi is* etftlíte«i.S^i^t«i8*#Jáá^lSia«e||$í ttek: vetjük alá, igy inakti váljak a bőre botoló blpáZití ísbiblörokat, antelya hőkezelést lépés! elbnyösen a:ytzés;: szASjapTOtóm-oldatot k pasztőrisálja, ahol az s®iieö:ii¾^&amp;ysr lS, * M0!'€ hőmérsékleten végezzék 10 másodperc ··· 60 perc időtartamig, előnyösen 8TO- :130¾Mn^rsiíleisn 10 másodperc - 5 perc ídőiamnbg.. niég előnyösebben 85Λ€ - 95 hőmérsékleten atmásóapérs:- S pőm M|láksí«%. 56 A 8i igénjipönt Sis0npll:éijéráS:öáÖo1 a hökezétt szöíapmtssn-öidatöí 2—^60bQ.. enőayösen 20!V- MÁJ hőmérsékletre hütjök a további fcklolgozéshö?:. 10 Az 1-0. ígénypontöfeAápneiyiks szsnntt nyitás, ahol stz: .említett szőjtiprütébi-oldstot köneentráíink, közben iönerösségét lényegében Éllandő ŐSéken .tartjuk, ^":ΪΜ$Μ·- £βί :|í»ncentr3lt szé|spröttáiv oldatot őlHtnok elő, és a kpósnlnsli ssőjaptxPánmldthöi adóit esetben diaszarésnefe vetjük alá, ahol m említett koneenteáiási lŐpM #/íá5.gy adóit éselhöü vágastt diasztrésr lépési előnyösen nltmssűrésse! végezzük 3000-iÖÖOQÖÖ Didién, előnyösen 5000-100000 'Datoitótototőitt^'^gSsiLiÉÖlt; membrán airaí-mazásával, előnyösen 2CC -- 60“'C, előnyösebben 20“€ · 35°C hőmérsékleten. 11, A 10. igénypont szerinti eljárás, ahol a diaszüréxi lépést víz, hígított séoldat, savanyított víz vagy savanyított higitotl siSeidat alkalmazásával hajtjuk végre a széjaprotetn-okíaion, annak részleges vagy teljes koncentrálása elön vagy titán, előnyösen: 2-40 téríőgat diaszürö-oklat. előnyösen 5-25 térfogat diaszürö-oldai al-kalnmzáséyal. 12, A 11, igénypont mmMi eJjmés, ahol; az említőit dÍMzürést addig végezzük, előnyösen egy anéíom-dlas; jelenlétében, mig. a permeáonnbao jelentős: mennyiségi szennyeződés vagy :j®bsh§ elszíneződés már rmos jéteni és amíg a retentát niegíélelően meg .nm Ι&amp;κίηί, Így rnegs^ii’liyaiífcgalább 90 tőmegüfoiN χίή25| d>b. ^«Iníaílai&amp;n&amp;sK^spyotel»· ízölátumei kapunk,:
  5. 13, A lO-jl, Igáitypontok bármelyike íSzeiünti elánig. almía koncentrált és adóit esőiben álasznct szója- pKtmífooldatöt hőkezelő® lépésnek véljük alti, jgydn:aktyiö|luk; a.iiőre érzékeny tdpszin Wibiiorökai, előnyösen 20* - 160¾ hőmérsékleten 10 xnásodpere ™ M pere időtartamig, előnyösen §0*0 - 1:20°Í3: liOmérsékleten 10 másodpere - 5 pere időtartamig, meg «iőiiyőáebbenSMCJ - 9FCKs».oM::máse# ős a kőkének szólaprose m-oldatos 2:>C 69*C, előnyösen 20*0' - 35A3 Wmtoiklte;foMölgnzMioz. 14>:A 10-13, ígénypomoií bánnelylkAszeríntl aljáig :.sho! káp esetben dia- szőjápfotem-öldatot: egy adsaorbensselikeselíök a színes ésfoagy szagos vegyöiélek nkávolMsára, éslvagy az említeti koneentrák és adod esetben dtasz&amp;t szófaprotaín-ölíMöt szárítás előtt pasz?örföá|ínk, elöttyösén 5$S0 - 2Ő®Cdtöniétséklelen:3Ö::inásodpere:·- 60 pere időtartamig,: előnyösen 60°C: - 65A2-on iO-lő percig.
    13, A lö-id.igénjppnfok bármelyike szerinti eljárás., ahöl a» említett c.meeniráli és adok esetben dia-szőrt szőjaprotein-oldatot mégszárítitik, így legalább 90 tömegük (N x 6,25) <3 Sk, előnyösen légtdább 100 tö-mégvo {N κ 6,25) d.h. proíéilStiiríalniú szöjaproteln izoiátumot állítunk elő;
  6. 16. Az 143. fgésypoakík b&amp;meiyiks sssrinsi affárák ahol egy miakáibsaeí vmjeto a&amp; axtaakakss lépésben és/vagy s kPaeeakáfási lépésben ékvagy sa abeö esetben véggsk álasafkésl lépésben, és/vsgy ilyet sílgak a. kMéenírák és adók esetben űtasáört .^4|ap'fötefe-ökíaSfeöX szMtL· előtt étvágy a megszakítok szsője-proteis teroiékheg, így » 'túpsén íabtblknök klsKnlijd-kbíéseioak MhasMsával vagy annnilegésével esőkként·' jők a ktpseia: Múbikn· aktivitási:,
HUE10793475A 2009-06-30 2010-06-30 Szójaprotein izolátum elõállítása kalcium-kloridos extrakció ("S703") alkalmazásával HUE034884T2 (hu)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US21364709P 2009-06-30 2009-06-30

Publications (1)

Publication Number Publication Date
HUE034884T2 true HUE034884T2 (hu) 2018-03-28

Family

ID=43381051

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE10793475A HUE034884T2 (hu) 2009-06-30 2010-06-30 Szójaprotein izolátum elõállítása kalcium-kloridos extrakció ("S703") alkalmazásával

Country Status (20)

Country Link
US (3) US8557321B2 (hu)
EP (1) EP2482670B1 (hu)
JP (1) JP5990098B2 (hu)
KR (1) KR101828360B1 (hu)
CN (2) CN107691963A (hu)
AU (1) AU2010268660B2 (hu)
BR (1) BRPI1011581B1 (hu)
CA (1) CA2765745C (hu)
DK (1) DK2482670T3 (hu)
ES (1) ES2651303T3 (hu)
HK (1) HK1250888A1 (hu)
HU (1) HUE034884T2 (hu)
MX (1) MX2012000189A (hu)
NO (1) NO2482670T3 (hu)
NZ (1) NZ597844A (hu)
PL (1) PL2482670T3 (hu)
PT (1) PT2482670T (hu)
RS (1) RS56686B1 (hu)
RU (1) RU2552847C2 (hu)
WO (1) WO2011000098A1 (hu)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RS56829B1 (sr) * 2009-06-30 2018-04-30 Burcon Nutrascience Mb Corp Proizvodnja izolata proteina soje rastvorljivih u kiselini (“s800”)
US8404299B2 (en) 2009-06-30 2013-03-26 Burcon Nutrascience (Mb) Corp. Preparation of soy protein isolate using calcium chloride extraction (“S703 CIP”)
US9700066B2 (en) 2009-06-30 2017-07-11 Burcon Nutrascience (Mb) Corp. Preparation of soy protein isolate using calcium chloride extraction (“S703 cip”)
RU2595819C2 (ru) * 2010-08-18 2016-08-27 Баркон Ньютрасайнс (Мб) Корп. Усовершенствованное получение белкового раствора из сои
RU2577963C2 (ru) * 2010-11-24 2016-03-20 Баркон Ньютрасайнс (Мб) Корп. Вяжущий вкус в соевых белковых растворах
US9629381B2 (en) * 2011-05-19 2017-04-25 Burcon Nutrascience (Mb) Corp. Production of soluble soy protein product (“S704”)
CN103102409B (zh) * 2011-11-14 2014-06-11 上海枫华制药有限公司 灭活人尿中提取的胰蛋白酶抑制剂所含病毒的方法
US20130129905A1 (en) * 2011-11-18 2013-05-23 Nicolas Deak Novel soy-based ingredients and uses thereof
CN104411181A (zh) * 2012-03-08 2015-03-11 伯康营养科学(Mb)公司 使用大豆蛋白制品的冷冻甜食混合料
EP2890678A4 (en) * 2012-08-31 2016-01-27 Alectos Therapeutics Inc GLYCOSIDASE INHIBITORS AND USES THEREOF
KR20150063536A (ko) * 2012-10-02 2015-06-09 버콘 뉴트라사이언스 (엠비) 코포레이션 염화칼슘 추출을 이용한 콩류 단백질 제품의 제조
US9635875B2 (en) * 2013-05-30 2017-05-02 Burcon Nutrascience (Mb) Corp. Production of pulse protein products with reduced astringency
CN113349283A (zh) * 2014-07-28 2021-09-07 伯康营养科学(Mb)公司 豆类蛋白质产品(“yp810”)的制备
CN105432934A (zh) * 2014-08-07 2016-03-30 中粮营养健康研究院有限公司 一种大豆分离蛋白的制备方法
US10433571B2 (en) * 2014-08-27 2019-10-08 Burcon Nutrascience (Mb) Corp. Preparation of soy protein products (“S810”)
EP3829319A1 (de) 2018-07-30 2021-06-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Zuckerhaltiges pflanzenproteinpräparat mit besonderen funktionellen eigenschaften
EP4073084A1 (en) * 2019-12-12 2022-10-19 Nutrition & Biosciences USA 1, LLC Protein bioprocess

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736147A (en) * 1971-04-05 1973-05-29 Coca Cola Co Process for preparing protein products
JPS5235739B2 (hu) * 1972-07-21 1977-09-10
CA1028552A (en) * 1976-09-30 1978-03-28 Edward D. Murray Protein product and process for preparing same
CA1099576A (en) * 1978-03-23 1981-04-21 Chester D. Myers Improved process for isolation of proteins
JPS55118351A (en) * 1979-02-28 1980-09-11 Kyowa Hakko Kogyo Co Ltd Preparation of powdery soybean protein
US4307014A (en) * 1980-09-22 1981-12-22 General Foods Inc. Soybean protein isolate production
US4296026A (en) * 1980-09-22 1981-10-20 General Foods Inc. Production of soybean protein isolate of improved purity
US4642238A (en) * 1986-02-03 1987-02-10 Ralston Purina Company Process for the production of a mineral fortified protein composition
US4889921A (en) * 1987-04-29 1989-12-26 The University Of Toronto Innovations Foundation Production of rapeseed protein materials
JPS6427433U (hu) * 1987-08-07 1989-02-16
JP3586976B2 (ja) * 1995-07-07 2004-11-10 不二製油株式会社 分画大豆蛋白の製造法及びこれを用いた食品
EP0752212B1 (en) 1995-07-07 2004-05-26 Fuji Oil Company, Limited Process for preparing fractionated soybean proteins and foods using the same
US5844086A (en) * 1996-01-31 1998-12-01 Stilts Corporation Oil seed protein extraction
EP1364585B1 (en) * 2001-02-28 2011-04-06 Fuji Oil Company, Ltd. Soybean protein, process for manufacture thereof and acidic protein foods thereof
EP1389920B1 (en) * 2001-05-04 2011-03-02 Burcon Nutrascience (MB) Corp. Production of oil seed protein isolate
JP2004073181A (ja) * 2002-06-20 2004-03-11 Fuji Oil Co Ltd 塩基性7sグロブリンに富む大豆蛋白の製造方法
BRPI0416231A (pt) * 2003-11-05 2007-01-02 Kerry Group Services Internati proteìnas de soja estáveis em ácido solúveis na água, bebida acìdica, produto alimentìcio acìdico e métodos de fortalecimento de bebida acìdica com proteìna de soja, de preparação de proteìna de soja estável em ácido solúvel em água e de preparação de alimento ou bebida
ZA200610169B (en) * 2004-05-07 2008-06-25 Burcon Nutrascience Mb Corp Protein isolation procedures for reducing phytic acid
US7687088B2 (en) * 2004-05-07 2010-03-30 Burcon Nutrascience (Mb) Corp. Protein isolation procedures for reducing phytic acid
US8241692B2 (en) * 2005-09-21 2012-08-14 Burcon Nutra Science (MB) Corp. Preparation of canola protein isolate involving isoelectric precipitation
MX2011004373A (es) * 2008-10-21 2011-11-04 Burcon Nutrascience Mb Corp Produccion de soluciones de proteina soluble a partir de soya ("s701").
CN102387712B (zh) * 2009-01-26 2015-04-01 伯康营养科学(Mb)公司 从大豆蛋白胶束团制备可溶性大豆蛋白产品
US9603377B2 (en) * 2009-02-11 2017-03-28 Burcon Nutrascience (Mb) Corp. Production of soy protein product using calcium chloride extraction (“S7301”)
MX2011008570A (es) 2009-02-11 2012-01-20 Burcon Nutrascience Mb Corp Preparacion de un producto de proteina de soya utilizando extraccion con agua ("s803").

Also Published As

Publication number Publication date
ES2651303T3 (es) 2018-01-25
EP2482670A1 (en) 2012-08-08
US20100330249A1 (en) 2010-12-30
US8501265B2 (en) 2013-08-06
KR20120097367A (ko) 2012-09-03
CA2765745A1 (en) 2011-01-06
WO2011000098A1 (en) 2011-01-06
US20120141651A1 (en) 2012-06-07
CN107691963A (zh) 2018-02-16
HK1250888A1 (zh) 2019-01-18
CN102821618A (zh) 2012-12-12
KR101828360B1 (ko) 2018-02-12
CA2765745C (en) 2019-02-05
BRPI1011581B1 (pt) 2018-05-29
US20140010944A1 (en) 2014-01-09
PL2482670T3 (pl) 2018-04-30
JP2012531215A (ja) 2012-12-10
BRPI1011581A2 (pt) 2015-08-25
JP5990098B2 (ja) 2016-09-07
DK2482670T3 (en) 2017-12-11
PT2482670T (pt) 2017-12-11
US8557321B2 (en) 2013-10-15
AU2010268660B2 (en) 2014-12-11
EP2482670A4 (en) 2013-09-04
NO2482670T3 (hu) 2018-02-03
RU2552847C2 (ru) 2015-06-10
NZ597844A (en) 2014-04-30
RU2012102986A (ru) 2013-08-10
RS56686B1 (sr) 2018-03-30
MX2012000189A (es) 2012-06-25
AU2010268660A1 (en) 2012-02-09
EP2482670B1 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
HUE034884T2 (hu) Szójaprotein izolátum elõállítása kalcium-kloridos extrakció (&#34;S703&#34;) alkalmazásával
JP6513111B2 (ja) 酸可溶性大豆タンパク質単離物(「s800」)の製造
EP3586644B1 (en) Production of pulse protein products with reduced astringency
US9603377B2 (en) Production of soy protein product using calcium chloride extraction (“S7301”)
RU2556819C2 (ru) ПОЛУЧЕНИЕ РАСТВОРИМОГО ПРОДУКТА СОЕВОГО БЕЛКА ИЗ МИЦЕЛЛЯРНОЙ МАССЫ СОЕВОГО БЕЛКА (S200Ca)
AU2010213324B2 (en) Preparation of soy protein product using water extraction (&#34;S803&#34;)
AU2010268727B2 (en) Production of acid soluble soy protein isolates (&#34;S700&#34;)
US20120135117A1 (en) Production of soluble protein solutions from pulses
US20150147452A1 (en) Soy protein product with neutral or near neutral ph (&#34;s701n2&#34;)
US20120130051A1 (en) Astringency in soy protein solutions
US20230345966A1 (en) Soy protein product with neutral or near neutral ph (&#34;s701n2&#34;)
US20170006893A1 (en) Preparation of soy protein product using water extraction (&#34;s803&#34;)
US20150366237A1 (en) Preparation of soy protein isolate using calcium chloride extraction (&#34;s703 cip&#34;)