ES2946586T3 - Procedimiento para la producción de polímeros a base de etileno multimodales - Google Patents

Procedimiento para la producción de polímeros a base de etileno multimodales Download PDF

Info

Publication number
ES2946586T3
ES2946586T3 ES18840120T ES18840120T ES2946586T3 ES 2946586 T3 ES2946586 T3 ES 2946586T3 ES 18840120 T ES18840120 T ES 18840120T ES 18840120 T ES18840120 T ES 18840120T ES 2946586 T3 ES2946586 T3 ES 2946586T3
Authority
ES
Spain
Prior art keywords
ethylene
gpc
reactor
catalyst
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES18840120T
Other languages
English (en)
Inventor
Daniela Ferrari
Alec Y Wang
Pradeep Jain
Yijian Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Application granted granted Critical
Publication of ES2946586T3 publication Critical patent/ES2946586T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/04Dual catalyst, i.e. use of two different catalysts, where none of the catalysts is a metallocene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/04Broad molecular weight distribution, i.e. Mw/Mn > 6
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/05Bimodal or multimodal molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/10Short chain branches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/26Use as polymer for film forming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/64003Titanium, zirconium, hafnium or compounds thereof the metallic compound containing a multidentate ligand, i.e. a ligand capable of donating two or more pairs of electrons to form a coordinate or ionic bond
    • C08F4/64168Tetra- or multi-dentate ligand
    • C08F4/64186Dianionic ligand
    • C08F4/64193OOOO
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2308/00Chemical blending or stepwise polymerisation process with the same catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Realizaciones de un método para producir un polímero basado en etileno multimodal que comprende un primer catalizador y un segundo catalizador en un primer reactor de polimerización en solución y un tercer catalizador en un segundo reactor de polimerización en solución. (Traducción automática con Google Translate, sin valor legal)

Description

DESCRIPCIÓN
Procedimiento para la producción de polímeros a base de etileno multimodales
Referencia cruzada a solicitudes relacionadas
Esta solicitud reivindica la prioridad de la solicitud provisional estadounidense con n.° de serie 62/610.384, presentada el 26 de diciembre de 2017.
Campo técnico
Las realizaciones de la presente descripción se refieren en general a métodos para la producción de polímeros a base de etileno multimodales, y más específicamente se refieren a sistemas y métodos para producir polímeros a base de etileno multimodales.
Antecedentes
Históricamente, la producción de polímeros a base de etileno multimodales se produce a través de procedimientos con un único reactor con un único catalizador o un reactor doble con un doble catalizador. En la mayoría de los métodos para la producción de polímeros a base de etileno multimodales, el control del procedimiento continúa siendo un reto importante. Actualmente, el muestreo directo y la determinación de manera analítica de los componentes individuales son las únicas opciones para controlar las estructuras de múltiples componentes. Tales métodos conducen a una latencia inherente y un control ineficaz del procedimiento en tiempo real.
El documento US2017/267822 A1 se refiere a artículos rotomoldeados.
El documento EP 2185611 A2 se refiere a un procedimiento de polimerización de etileno, a un catalizador para usar en el procedimiento, a un método de producción que emplea el catalizador y a un producto producido de este modo.
El documento WO 01/40330 A1 se refiere a métodos para introducir múltiples catalizadores, activadores o sistemas de catalizadores en un reactor de fase gaseosa.
El documento WO 2015/200742 A1 se refiere a películas coladas formadas a partir de polietileno.
Resumen
Por tanto, a medida que aumenta la competencia en la industria de los polímeros, los productores de polímeros a base de etileno se esfuerzan por hacer sus procedimientos más rentables utilizando los equipos existentes de maneras más eficientes. Como tal, existen necesidades en curso para los procedimientos que utilizan reactores de múltiples catalizadores sin sacrificar el control del procedimiento.
Por consiguiente, las realizaciones de la presente descripción se refieren a sistemas de reactores dobles que tienen diversas combinaciones de catalizadores que pueden producir una variedad de productos multimodales sin cambiar el sistema de control de reactores actual.
Las realizaciones de la presente descripción se refieren a un método para producir un polímero a base de etileno multimodal. El método comprende hacer pasar un monómero de etileno, al menos un comonómero C3-C12, un disolvente, un primer catalizador y un segundo catalizador a través de un primer reactor de polimerización en disolución para producir un polímero a base de etileno bimodal. Opcionalmente, en algunas realizaciones, el primer reactor de polimerización en disolución también incluye hidrógeno. Además, el polímero a base de etileno bimodal resultante tiene un primer componente a base de etileno y un segundo componente a base de etileno, donde el primer componente a base de etileno tiene una primera densidad (P1), y el segundo componente a base de etileno tiene una segunda densidad (P2). La densidad del primer componente a base de etileno (P1) es menor que la densidad del segundo componente a base de etileno (P2). Adicionalmente, el método comprende hacer pasar el polímero a base de etileno bimodal, el monómero de etileno, al menos un comonómero C3-C12, y un segundo disolvente a través de un segundo reactor de polimerización en disolución para producir el polímero a base de etileno multimodal. Opcionalmente, en algunas realizaciones, el segundo reactor de polimerización en disolución también incluye hidrógeno. Como resultado, el polímero a base de etileno multimodal comprende el primer componente a base de etileno, el segundo componente a base de etileno y un tercer componente a base de etileno. El tercer componente a base de etileno tiene una densidad (p3).
Estas y otras realizaciones se describen con más detalle en la siguiente descripción detallada.
Breve descripción de los dibujos
La siguiente descripción detallada de realizaciones específicas de la presente descripción puede entenderse mejor cuando se lee junto con los dibujos adjuntos, donde se indica una estructura similar.
La figura 1 es una representación esquemática de una configuración de sistema de reactores en serie según una o más realizaciones de la presente descripción.
La figura 2 representa perfiles de elución de distribución de ramificación de cadena corta uno junto a otro (SCBD) y gráficos de distribución de peso molecular (MWD) del polímero inventivo 3, que se usa para estimar los parámetros iniciales para el procedimiento de desconvolución numérico descrito a continuación.
Descripción detallada
Ahora se describirán realizaciones específicas de la presente solicitud. Sin embargo, esta descripción puede implementarse de formas diferentes y no debe interpretarse como limitada a las realizaciones expuestas en esta descripción. Más bien, estas realizaciones se proporcionan de modo que esta descripción sea exhaustiva y completa, y transmita completamente el alcance del contenido a los expertos en la técnica.
Definiciones
El término “ polímero” se refiere a un compuesto polimérico preparado polimerizando monómeros, ya sea del mismo tipo o de un tipo diferente. El término genérico polímero abarca así el término “ homopolímero” , normalmente empleado para referirse a polímeros preparados a partir de solo un tipo de monómero, así como “copolímero” , que se refiere a polímeros preparados a partir de dos o más monómeros diferentes. El término “ interpolímero” , como se usa en el presente documento, se refiere a un polímero preparado mediante la polimerización de al menos dos tipos diferentes de monómeros. El término genérico interpolímero incluye así copolímeros, y polímeros preparados a partir de más de dos tipos diferentes de monómeros, tales como terpolímeros.
Tal como se usa en el presente documento, “ multimodal” significa composiciones que pueden caracterizarse por tener al menos tres (3) subcomponentes poliméricos con densidades variables y pesos moleculares promedio en peso y, opcionalmente, también pueden tener diferentes valores de índice de fusión. En una realización, puede definirse multimodal por tener al menos tres picos distintos en un cromatograma de cromatografía de permeación en gel (GPC) que muestra la distribución de peso molecular. En otra realización, puede definirse multimodal por tener al menos tres picos distintos en un cromatograma de fraccionamiento por elución de cristalización (CEF) que muestra la distribución de ramificación de cadena corta. El término multimodal incluye resinas que tienen tres picos, así como las resinas que tienen más de tres picos.
El término “ polímero trimodal” significa un polímero a base de etileno multimodal que tiene tres componentes principales: un primer componente polimérico a base de etileno, un segundo componente polimérico a base de etileno y un tercer componente polimérico a base de etileno.
Tal como se usa en el presente documento, el “ reactor de polimerización en disolución” es un recipiente, que realiza polimerización en disolución, en donde el monómero de etileno y al menos el comonómero de a-olefina C3-C12 se copolimerizan después de disolverse en un disolvente no reactivo que contiene un catalizador. En el procedimiento de polimerización en disolución, puede utilizarse hidrógeno; sin embargo, no se requiere en todos los procedimientos de polimerización en disolución.
“ Polietileno” o “ polímero a base de etileno” significará polímeros que comprenden más del 50 % en moles de unidades derivadas de monómero de etileno. Esto incluye homopolímeros o copolímeros a base de etileno (lo que significa unidades derivadas de dos o más comonómeros). Las formas comunes de polietileno conocidas en la técnica incluyen, pero no se limitan a, Low Density Polyethylene (polietileno de baja densidad - LDPE); polietileno lineal de baja densidad (LLDPE); polietileno de densidad ultra baja (ULDPE); polietileno de densidad muy baja (VLDPE); polietileno lineal de baja densidad catalizado de un solo sitio, que incluye resinas tanto lineales como sustancialmente lineales de baja densidad (m-LLDPE); polietileno de densidad media (MDPE); y polietileno de alta densidad (HDPE).
El término “ LDPE” también puede denominarse “polímero de etileno a alta presión” o “polietileno altamente ramificado” y se define como que significa que el polímero está parcial o totalmente homopolimerizado o copolimerizado en reactores de autoclave o tubulares a presiones superiores a 14.500 psi (100 MPa) con el uso de iniciadores de radicales libres, tales como peróxidos (véase, por ejemplo, el documento U.S. 4.599.392). Las resinas de LDPE tienen normalmente una densidad en el intervalo de 0,916 a 0,940 g/cm.
El término “ LLDPE” incluye una resina elaborada usando sistemas de catalizadores de Ziegler-Natta, así como la resina elaborada usando catalizadores de sitio único, incluyendo, pero sin limitarse a, catalizadores de bis-metaloceno (a veces denominados “ m-LLDPE” ), fosfinimina y catalizadores de geometría restringida; y la resina elaborando usando el postmetaloceno, catalizadores moleculares, incluyendo, pero sin limitarse a, catalizadores de bis(bifenilfenoxilo) (también denominados catalizadores polivalentes de aril oxil éter). LLDPE incluye copolímeros o homopolímeros a base de etileno lineales, sustancialmente lineales o heterogéneos. Los LLDPE contienen menos ramificación de cadena larga que los LDPE e incluyen los polímeros de etileno sustancialmente lineales que se definen adicionalmente en lapatente estadounidense n.° 5.272.236; lapatente estadounidense n.° 5.278.272; la patente estadounidense n.° 5.582.923; y la patente estadounidense n.° 5.733.155; los polímeros de etileno homogéneamente ramificados tales como los de lapatente estadounidense n.° 3.645.992; los polímeros de etileno heterogéneamente ramificados tales como los preparados según el procedimiento descrito en lapatente estadounidense n.° 4.076.698; y mezclas de los mismos (tales como los descritos en lapatente estadounidense n.° 3.914.342 o la patente estadounidense n.° 5.854.045). Las resinas de LLDPE pueden elaborarse mediante polimerización en fase gaseosa, en fase en disolución o en suspensión o cualquier combinación de las mismas, usando cualquier tipo de reactor o configuración de reactores conocidos en la técnica. Las resinas de LLDPE pueden elaborarse mediante polimerización en fase gaseosa, en fase en disolución o en suspensión o cualquier combinación de las mismas, usando cualquier tipo de reactor o configuración de reactores conocido en la técnica.
“ Estructura multicapa” significa cualquier estructura que tenga más de una capa. Por ejemplo, la estructura multicapa (por ejemplo, una película) puede tener dos, tres, cuatro, cinco o más capas. Puede describirse una estructura multicapa que tiene las capas designadas con letras. Por ejemplo, una estructura de tres capas que tiene una capa de núcleo B, y dos capas exteriores A y C puede designarse como A/B/C. Asimismo, una estructura que tiene dos capas de núcleo B y C y dos capas exteriores A y D se designarían A/B/C/D. En algunas realizaciones, una película multicapa de la presente descripción comprende hasta 11 capas.
Ahora se hará referencia en detalle a configuraciones de reactor y métodos de uso de estas realizaciones de configuraciones de la presente descripción.
Realizaciones de procedimiento
Ahora se hará referencia en detalle a métodos para producir un polímero a base de etileno multimodal. En algunas realizaciones, la descripción proporciona un sistema que tiene al menos dos reactores para producir polímeros a base de etileno multimodales.
Según una realización, se proporciona un método para producir un polímero a base de etileno multimodal. Con referencia ahora a la figura 1, las realizaciones del método pueden comprender hacer pasar un monómero de etileno, al menos un comonómero de a-olefina C3-C12, un disolvente, un primer catalizador y un segundo catalizador en un primer reactor 101 de polimerización en disolución a través de la corriente 10 para producir un polímero a base de etileno bimodal. Opcionalmente, en algunas realizaciones, la corriente 10 puede incluir además hacer pasar hidrógeno al primer reactor 101 de polimerización en disolución. Aunque la alimentación al primer reactor 101 de polimerización en disolución se representa como una corriente 10, se contempla que puedan usarse más o menos entradas de alimentación. En algunas realizaciones, el polímero a base de etileno bimodal resultante puede tener un primer componente a base de etileno y un segundo componente a base de etileno, donde el primer componente a base de etileno tiene una primera densidad (P1), y el segundo componente a base de etileno tiene una segunda densidad (P2). Además, la densidad del primer componente a base de etileno (P1) es menor que la densidad del segundo componente a base de etileno (P2).
En algunas realizaciones, el método puede comprender hacer pasar el polímero a base de etileno bimodal del primer reactor 101 de polimerización en disolución a través de la corriente 30 y el monómero de etileno, al menos un comonómero de a-olefina C3-C12, un tercer catalizador y un disolvente a través de la corriente 20 a un segundo reactor 102 de polimerización en disolución para producir un polímero a base de etileno multimodal. Aunque la alimentación al segundo reactor 102 de polimerización en disolución se representa como dos corrientes 20 y 30, se contempla que puedan usarse más o menos entradas de alimentación. Opcionalmente, en algunas realizaciones, la alimentación 20 al segundo reactor 102 de polimerización en disolución puede incluir hidrógeno. Como resultado, el polímero a base de etileno multimodal puede comprender el primer componente a base de etileno, el segundo componente a base de etileno y un tercer componente a base de etileno. El tercer componente a base de etileno tiene una densidad (p3).
El polímero a base de etileno multimodal puede tener una densidad de desde 0,900 hasta 0,960 g/cm3 medido según la norma ASTM D792. El polímero a base de etileno multimodal también puede tener un índice de fusión (I2) de desde 0,1 hasta 10 g/10 min. En realizaciones adicionales, el polímero a base de etileno puede tener una densidad de desde 0,905 hasta 0,930 g/cm3. Además, el polímero a base de etileno multimodal puede tener un I2 de desde 0,1 hasta 5 g/10 min, o desde 0,1 hasta 5 g/10 min, o desde 0,5 hasta 2 g/10 min. Además, el polímero a base de etileno multimodal tiene un valor de I10/I2 de desde 7 hasta 15, donde I10 se mide según la norma ASTM D1238 a una carga de 10 kg y una temperatura de 190 0C. En realizaciones adicionales, el polímero a base de etileno multimodal tiene un I10/I2 de desde 7,5 hasta 12, o desde 8 hasta 10.
El polímero a base de etileno multimodal comprende el producto de reacción polimerizado del monómero de etileno y al menos un comonómero de a-olefina C3-C12. En otra realización, el comonómero de a-olefina C3-C12 puede comprender más preferiblemente de 3 a 8 átomos de carbono. Los comonómeros de a-olefina ilustrativos incluyen, pero no se limitan a, propileno, 1 -buteno, 1 -penteno, 1 -hexeno, 1 -hepteno, 1 -octeno, 1 -noneno, 1 -deceno y 4-metil-1 -penteno. El uno o más comonómeros de a-olefina pueden seleccionarse del grupo que consiste en propileno, 1 -buteno, 1-hexeno y 1-octeno, o en la alternativa, del grupo que consiste en 1-buteno, 1-hexeno y 1-octeno, y adicionalmente 1-hexeno y 1-octeno.
Se contemplan diversos niveles de incorporación de monómero de etileno y comonómero de a-olefina C3-C12 para el polímero a base de etileno multimodal. Por ejemplo, el polímero a base de etileno multimodal puede incluir al menos el 50 % en moles de monómero de etileno, o al menos el 60 % en moles de monómero de etileno, o al menos el 70 % en moles de monómero de etileno, o al menos el 80 % en moles de monómero de etileno, o al menos el 90 % en moles de monómero de etileno. Por el contrario, el polímero a base de etileno multimodal puede comprender menos del 50 % en moles de comonómero de a-olefina C3-C12. En realizaciones adicionales, el polímero a base de etileno multimodal puede comprender desde el 1 hasta el 40 % en moles de comonómero de a-olefina C3-C12, o desde el 1 hasta el 30 % en moles de comonómero de a-olefina C3-C12, o desde el 1 hasta el 20 % en moles de comonómero de a-olefina C3-C12, o desde el 1 hasta el 10 % en moles de comonómero de a-olefina C3-C12.
En realizaciones adicionales, el polímero a base de etileno multimodal puede tener una distribución de peso molecular (MWD=Mw(GPC)/Mn(GPC)) de al menos 3, o al menos 4. En realizaciones adicionales, la MWD es de desde 3 hasta 12, o desde 4 hasta 10, o desde 4 hasta 9.
El polímero a base de etileno multimodal comprende al menos tres componentes a base de etileno, que son cada uno productos de reacción polimerizados de un monómero de etileno y al menos un comonómero de a-olefina C3-C12.
Según otras realizaciones, el polímero a base de etileno multimodal comprende del 20 al 55 por ciento (%) en peso del primer componente a base de etileno, del 10 al 40 % en peso del segundo componente a base de etileno, del 35 al 65 % en peso del tercer componente a base de etileno.
La cantidad de cada componente en el polímero a base de etileno multimodal puede ajustarse basándose en la aplicación o el uso. Por ejemplo, un equilibrio diferente de propiedades puede ser deseable en aplicaciones de baja temperatura (por ejemplo, por debajo de 0 0C) frente a aplicaciones donde el polímero a base de etileno multimodal se somete a temperaturas más altas (por ejemplo, temperaturas superiores a 40 0C). En una realización, el polímero a base de etileno multimodal puede comprender al menos el 20 % en peso del primer componente a base de etileno. En otras realizaciones, el polímero a base de etileno multimodal comprende desde el 20 hasta el 55 % en peso del primer componente a base de etileno, o desde el 25 hasta el 55 % en peso del primer componente a base de etileno. Adicionalmente, en algunas realizaciones, el polímero a base de etileno multimodal comprende desde el 10 hasta el 40 % en peso del segundo componente a base de etileno, o desde el 10 hasta el 30 % en peso del segundo componente a base de etileno. Además, en algunas realizaciones, el polímero a base de etileno multimodal comprende del 35 al 65 % en peso del tercer componente a base de etileno, o desde el 35 hasta el 55 % en peso del tercer componente a base de etileno.
El primer componente a base de etileno tiene una densidad de aproximadamente 0,870 a 0,915 g/cm3. Las densidades para los componentes a base de etileno (por ejemplo, primer, segundo y tercer componentes a base de etileno) se calculan a partir de las ecuaciones proporcionadas a continuación. En otra realización, el primer componente a base de etileno tiene una densidad de 0,880 a 0,910 g/cm3, o de 0,885 a 0,905 g/cm3. Además, en algunas realizaciones, el índice de fusión (I2) del primer componente a base de etileno es de desde 0,01 hasta 10 g/10 min, o desde 0,05 hasta 5 g/10 min, o desde 0,1 hasta 1,0 g/10 min.
Además, en realizaciones adicionales, el primer componente a base de etileno puede tener un Mw(gpc) de 100.000 a 200.000 g/mol, o de 125.000 a 175.000 g/mol. En otras realizaciones, el primer componente a base de etileno puede tener una MWD (Mw(GPC)/Mn(GPC)) de 1,5 a 4,0, o desde 1,6 hasta 3,5, o desde 1,7 hasta 3,0, o desde 1,8 hasta 2,5.
Se contemplan diversas cantidades adicionales de incorporación de comonómero de a-olefina C3-C12 para el polímero a base de etileno multimodal. Por ejemplo, el primer componente a base de etileno puede tener desde el 0,5 hasta el 30 % en moles de comonómero de a-olefina C3-C12, o desde el 1 hasta el 20 % en moles de comonómero de a-olefina C3-C12, o desde el 1,5 hasta el 15 % en moles de comonómero de a-olefina C3-C12, o desde el 2 hasta el 10 % en moles de comonómero de a-olefina C3-C12.
El segundo componente a base de etileno tiene una densidad mayor que la densidad del primer componente a base de etileno y menos de 0,980 g/cm3. En algunas realizaciones, la densidad del segundo componente a base de etileno es de desde 0,920 hasta 0,960 g/cm3, o desde 0,930 hasta 0,955 g/cm3, o desde 0,935 hasta 0,955 g/cm3.
En realizaciones adicionales, la densidad del segundo componente a base de etileno es mayor que la densidad del primer componente a base de etileno en al menos 0,03 g/cm3. Además, en algunas realizaciones, la densidad del segundo componente a base de etileno es mayor que la densidad en al menos 0,04 g/cm3.
Además, en realizaciones adicionales, el segundo componente a base de etileno puede tener un Mw(gpc) de 100.000 a 363.000 g/mol, o desde 150.000 hasta 360.000 g/mol, o desde 200.000 hasta 355.000 g/mol, o desde 250.000 hasta 350.000 g/mol. En otras realizaciones, el segundo componente a base de etileno puede tener una MWD (Mw(GPC)/Mn(GPC)) de 1,5 a 4,0, o desde 1,6 hasta 3,5, o desde 1,7 hasta 3,0, o desde 1,8 hasta 2,5.
También se contempla que el segundo componente a base de etileno tenga diversos niveles de incorporación de comonómero de a-olefina C3-C12. En una realización, el segundo componente a base de etileno puede tener una incorporación de comonómero de a-olefina C3-C12 menor que el primer componente a base de etileno. Por ejemplo, el segundo componente a base de etileno puede tener del 0,5 al 25 % en moles de comonómero de a-olefina C3-C12, o desde el 0,5 hasta el 20 % en moles de comonómero de a-olefina C3-C12, o desde el 1 hasta el 15 % en moles de comonómero de a-olefina C3-C12.
El tercer componente a base de etileno tiene una densidad mayor que la densidad del primer componente a base de etileno. En algunas realizaciones, la densidad del tercer componente a base de etileno es de desde 0,910 hasta 0,940 g/cm3 o de 0,915 hasta 0,940 g/cm3. Además, en algunas realizaciones, el tercer componente a base de etileno tiene un índice de fusión (I2) de 50 a 5000 g/10 minutos, o desde 100 hasta 4000 g/10 minutos.
Además, en realizaciones adicionales, el tercer componente a base de etileno puede tener un Mw(gpc) de 10.000 a 50.000 g/mol. En realizaciones adicionales, el tercer componente a base de etileno puede tener un Mw(gpc) de desde 10.000 hasta 40.000 g/mol. En realizaciones adicionales, el tercer componente a base de etileno puede tener una MWD (Mw(GPC)/Mn(GPC)) de 1,5 a 5, o desde 1,8 hasta 3,0.
Reactor
Ahora se hará referencia en detalle a métodos para producir un polímero a base de etileno multimodal. En algunas realizaciones, la descripción proporciona un sistema que tiene al menos dos reactores para producir polímeros a base de etileno multimodales.
Diversas realizaciones del procedimiento de polimerización se consideran adecuadas para producir el polímero a base de etileno multimodal. En una o más realizaciones, el polímero a base de etileno multimodal se produce a través de un proceso de polimerización en disolución en un sistema de reactores dobles. Estos reactores de polimerización en disolución dobles pueden ser reactores convencionales, por ejemplo, reactores de tipo bucle, reactores isotérmicos, reactores adiabáticos y reactores continuos de tanque agitado en paralelo, en serie y cualquier combinación de los mismos. Con referencia nuevamente a la figura 1, en una realización, el polímero a base de etileno multimodal puede producirse en dos reactores de tipo bucle en una configuración en serie.
En algunas realizaciones, el primer reactor 101 de polimerización en disolución puede tener una temperatura en el intervalo de desde 115 hasta 200 0C, por ejemplo, desde 140 hasta 170 0C, y el segundo reactor 102 de polimerización en disolución puede tener una temperatura en el intervalo de desde 150 hasta 210 0C, por ejemplo, desde 160 hasta 200 0C.
En el procedimiento de polimerización en disolución, el monómero de etileno, uno o más comonómeros de a-olefina C3-C12, un disolvente, uno o más sistemas de catalizadores, opcionalmente uno o más cocatalizadores, y opcionalmente hidrógeno, pueden alimentarse continuamente a los reactores de polimerización en disolución dobles (es decir, el primer reactor 101 de polimerización en disolución y el segundo reactor 102 de polimerización en disolución).
En una o más realizaciones, el primer reactor 101 de polimerización en disolución, el segundo reactor 102 de polimerización en disolución, o ambos pueden incluir dos catalizadores. En una realización específica, el primer reactor 101 de polimerización en disolución puede incluir dos catalizadores y el segundo reactor 102 de polimerización en disolución, que está aguas abajo del primer reactor 101 de polimerización en disolución, incluye un catalizador.
Los dos catalizadores del primer reactor de polimerización en disolución son catalizadores homogéneos, mientras que el catalizador del segundo reactor de polimerización en disolución podría incluir un catalizador homogéneo, un catalizador heterogéneo o ambos.
En realizaciones a modo de ejemplo, los catalizadores en el primer reactor 101 de polimerización en disolución pueden ser catalizadores homogéneos diferentes que tienen diferentes razones de reactividad en el primer entorno del reactor.
En una o más realizaciones, el polímero a base de etileno multimodal se hace pasar adicionalmente a un reactor tubular (no mostrado) aguas abajo del segundo reactor de polimerización en disolución.
Componentes de alimentación
Se contemplan diversas realizaciones para el comonómero C3-C12, el disolvente y los catalizadores. Se consideran adecuados diversos catalizadores. Estos pueden incluir, pero no se limitan a, un catalizador de Ziegler-Natta, un catalizador de cromo, un catalizador de metaloceno, un catalizador de post-metaloceno, un catalizador de complejo de geometría restringida (CGC), un catalizador de fosfinimina o un catalizador bis(bifenilfenoxilo). Se proporcionan detalles y ejemplos de catalizadores de CGC en laspatentes estadounidenses n.os 5.272.236; 5.278.272; 6.812.289; y la publicación WO 93/08221. Los detalles y ejemplos de catalizadores de bis(bifenilfenoxilo) se proporcionan en las patentes estadounidenses n.os 6.869.9047.030.256; 8.101.696; 8.058.373; 9.029.487. Los catalizadores utilizados en los reactores de polimerización en disolución pueden variar para conferir diferentes propiedades al primer componente a base de etileno, el segundo componente a base de etileno y el tercer componente a base de etileno. Por ejemplo, se contempla usar diferentes catalizadores en los reactores de polimerización en disolución para variar la densidad, índice de fusión, incorporación de comonómero, etc. del primer, segundo y tercer componentes a base de etileno. Sin estar limitado por la teoría, variar estos parámetros para el primer, segundo y tercer componentes a base de etileno puede permitir que el polímero a base de etileno multimodal tenga una combinación deseada de tenacidad y elaborabilidad.
En una o más realizaciones, el primer reactor de polimerización en disolución, el segundo reactor de polimerización en disolución o ambos pueden incluir dos catalizadores. En una realización específica, el primer reactor de polimerización en disolución puede incluir dos catalizadores y el segundo reactor de polimerización en disolución, que está aguas abajo del primer reactor de polimerización en disolución, incluye un catalizador. Los dos catalizadores del primer reactor de polimerización en disolución son catalizadores homogéneos, mientras que el catalizador del segundo reactor de polimerización en disolución podría incluir un catalizador homogéneo, un catalizador heterogéneo o ambos. Los catalizadores homogéneos, a menudo denominados de sitio único, son compuestos organometálicos que tienen normalmente una estructura molecular discreta, y se usan para generar polímeros, que tienen una distribución de peso molecular estrecha, así como una distribución de composición estrecha, en el caso en el que se elaboran interpolímeros. Los catalizadores homogéneos pueden disolverse en un procedimiento de disolución o soportarse para su uso en procedimientos de formación de partículas, tales como suspensión o fase gaseosa. Los catalizadores heterogéneos no son compuestos discretos, sino que resultan de una mezcla de reacción de compuestos metálicos con precursores para formar un complejo, que tiene múltiples sitios activos en alguna forma de una partícula. Los polímeros producidos a través de catalizadores heterogéneos demuestran normalmente distribuciones de peso molecular más amplias y, en el caso de interpolímeros, distribuciones de composición más amplias que los catalizadores homogéneos. En realizaciones a modo de ejemplo, los catalizadores en el primer reactor pueden ser catalizadores homogéneos diferentes que tienen diferentes razones de reactividad en el primer entorno del reactor.
El catalizador de bis(bifenilfenoxilo) es un ejemplo de un catalizador homogéneo. Otros ejemplos de catalizadores homogéneos incluyen catalizadores de geometría restringida. Los ejemplos de catalizadores heterogéneos pueden incluir catalizadores de Ziegler-Natta heterogéneos, que son particularmente útiles a las altas temperaturas de polimerización del procedimiento en disolución. Ejemplos de tales catalizadores de Ziegler-Natta son aquellos derivados de compuestos de organomagnesio, haluros de alquilo o haluros de aluminio o cloruro de hidrógeno, y un compuesto de metal de transición. Ejemplos de tales catalizadores se describen en laspatentes estadounidenses n.os 4.314.912 (Lowery, Jr. y col.), 4.547.475 (Glass y col.), y 4.612.300 (Coleman, III).
Los compuestos de organomagnesio particularmente adecuados incluyen, por ejemplo, dihidrocarbilmagnesio soluble en hidrocarburos, tal como dialquilos de magnesio y diarilos de magnesio. Los dialquilos de magnesio adecuados a modo de ejemplo incluyen particularmente n-butil-secbutilmagnesio, diisopropilmagnesio, di-n-hexilmagnesio, isopropil-n-butilmagnesio, etil-n-hexilmagnesio, etil-n-butilmagnesio, di-n-octilmagnesio y otros en donde el alquilo tiene desde 1 hasta 20 átomos de carbono. Los diarilos de magnesio adecuados a modo de ejemplo incluyen difenilmagnesio, dibencilmagnesio y ditolilmagnesio. Los compuestos de organomagnesio adecuados incluyen alcóxidos y arilóxidos de alquil y arilmagnesio y haluros de aril y alquilmagnesio, siendo más deseables los compuestos de organomagnesio libres de halógeno.
Los catalizadores de bis(bifenilfenoxilo) son sistemas de catalizadores de múltiples componentes que comprenden un procatalizador de bis(bifenilfenoxilo), un cocatalizador, así como componentes opcionales adicionales. El procatalizador de bis(bifenilfenoxilo) puede incluir un complejo de metal-ligando según la fórmula (I):
Figure imgf000007_0001
En la fórmula (I), M es un metal elegido de titanio, zirconio o hafnio, estando el metal en un estado de oxidación formal de 2, 3 o 4; n es 0, 1 o 2; cuando n es 1, x es un ligando monodentado o un ligando bidentado; cuando n es 2, cada X es un ligando monodentado y es igual o diferente; el complejo metal-ligando es la carga general-neutral; O es
O (un átomo de oxígeno); cada Z se elige independientemente de -O-, -S-, -N(RN)- o -P(RP)-; L es hidrocarbileno (C1-C40) o heterohidrocarbileno (C1-C40), en donde el hidrocarbileno (C1-C40) tiene una porción que comprende una estructura principal de ligador de 1 átomo de carbono a 10 átomos de carbono que une los dos grupos Z en la fórmula
(I) (a la que L está unido) o el heterohidrocarbileno (C1-C40) tiene una porción que comprende una estructura principal de ligador de 1 átomo a 10 átomos que une los dos grupos Z en la fórmula (I), en donde cada uno de los 1 a 10 átomos de la estructura principal de ligador de 1 átomo a 10 átomos del heterohidrocarbileno (C1-C40) es independientemente un átomo de carbono o heteroátomo, en donde cada heteroátomo es independientemente O, S, S(O), S(O)2 , Si(RC)2 , Ge(R)C)2 , P(RC), o N(RC), en donde independientemente cada RC es hidrocarbilo(C1-C30) o heterohidrocarbilo(C1-C30);
R1 y R8 se seleccionan independientemente del grupo que consiste en hidrocarbilo (C1-C40), heterohidrocarbilo (C1-C40), -Si(RC)3, -Ge(RC)3, -P(Rp)2 , -N(Rn)2 , -ORc, -SRc, -NO2 , -CN, -CF3 , RCS(O)-, RCS(O)2-, (Rc)2C=N-, RCOC(O)-, RcC(O)N(Rn)-, (Rn)2NC(O)-, halógeno, radicales que tienen la fórmula (II), la fórmula (III) o la fórmula (IV):
Figure imgf000008_0001
En las fórmulas (II), (III) y (IV), cada uno de R31-35, R41-48 o R51-59 se elige independientemente de hidrocarbilo (C1-C40), heterohidrocarbilo (C1-C40), -Si(RC)3, -Ge(RC)3, -P(Rp)2, -N(RN)2, -ORC, -SRC, -NO2, -CN, -CF3 , RCS(O)-, RCS(O)2-, (Rc)2C=N-, RcC(O)O-, RcOc (O)-, RcC(O)N(Rn)-, (Rn)2NC(O)-, halógeno o -H, siempre que al menos uno de R1 o R8 sea un radical que tiene la fórmula (II), la fórmula (III) o la fórmula (IV).
En la fórmula (I), cada uno de R2-4, R5-7 y R9-16 se selecciona independientemente de hidrocarbilo (C1-C40), heterohidrocarbilo(C1-C40), -Si(RC)3, -Ge(RC)3, -P(Rp)2 , -N(Rn)2-ORc, -SRC, -NO2 , -CN, -CF3 , RCS(O)-, RCS(O)2-, (Rc)2C=N-, RcC(O)O-, RcOC(O)-, RcC(O)N(Rn)-, (Rc)2NC(O)-, halógeno y -H.
Ahora se describirán realizaciones específicas de sistemas de catalizadores. Debe entenderse que los sistemas de catalizadores de esta descripción pueden implementarse de formas diferentes y no debe interpretarse como limitados a las realizaciones expuestas en esta descripción. Más bien, las realizaciones se proporcionan de modo que esta descripción sea exhaustiva y completa, y transmita completamente el alcance del contenido a los expertos en la técnica.
La expresión “seleccionado independientemente” se usa en el presente documento para indicar que los grupos R, tales como, R1, R2, R3, R4 y R5, pueden ser idénticos o diferentes (por ejemplo, R1, R2, R3, R4 y R5 pueden ser todos alquilos sustituidos o R1 y R2 pueden ser un alquilo sustituido y R3 puede ser un arilo, etc.). El uso del singular incluye el uso del plural y viceversa (por ejemplo, un disolvente de hexano, incluye hexanos). Un grupo llamado R tendrá generalmente la estructura reconocida en la técnica como correspondiente a grupos R que tienen ese nombre. Estas definiciones están destinadas a complementar e ilustrar, no excluir, las definiciones conocidas por los expertos en la técnica.
El término “ procatalizador” se refiere a un compuesto que tiene actividad catalítica cuando se combina con un activador. El término “activador” se refiere a un compuesto que reacciona químicamente con un procatalizador de una manera que convierte el procatalizador en un catalizador catalíticamente activo. Tal como se usan en el presente documento, los términos “ cocatalizador” y “activador” son términos intercambiables.
Cuando se usa para describir determinados grupos químicos que contienen átomos de carbono, una expresión entre paréntesis que tiene la forma “ (Cx-Cy)” significa que la forma no sustituida del grupo químico tiene desde x átomos de carbono hasta y átomos de carbono, incluyendo x e y. Por ejemplo, un alquilo (C1-C40) es un grupo alquilo que tiene desde 1 hasta 40 átomos de carbono en su forma no sustituida. En algunas realizaciones y estructuras generales, determinados grupos químicos pueden estar sustituidos por uno o más sustituyentes tales como RS. Una versión sustituida RS de un grupo químico definido usando el “ (Cx-Cy)” entre paréntesis puede contener más de y átomos de carbono dependiendo de la identidad de cualquier grupo RS. Por ejemplo, un “alquilo (C1-C40) sustituido con exactamente un grupo RS, donde RS es fenilo (-C6H5)” puede contener desde 7 hasta 46 átomos de carbono. Por tanto, en general cuando un grupo químico definido usando el “ (Cx-Cy)” entre paréntesis está sustituido por uno o más sustituyentes que contienen átomos de carbono RS, el número total mínimo y máximo de átomos de carbono del grupo químico se determina añadiendo tanto x como y a la suma combinada del número de átomos de carbono de todos los sustituyentes que contienen átomos de carbono RS.
En algunas realizaciones, cada uno de los grupos químicos (por ejemplo, X, R, etc.) del complejo de metal-ligando de fórmula (I) puede no estar sustituido no teniendo sustituyentes RS. En otras realizaciones, al menos uno de los grupos químicos del complejo de metal-ligando de fórmula (I) puede contener independientemente uno o más de un RS. En algunas realizaciones, la suma total de RS en los grupos químicos del complejo de metal-ligando de fórmula (I) no supera los 20. En otras realizaciones, la suma total de RS en los grupos químicos no supera los 10. Por ejemplo, si cada R1- 5 se sustituyó por dos RS, entonces X y Z no pueden sustituirse con un RS. En otra realización, la suma total de RS en los grupos químicos del complejo de metal-ligando de fórmula (I) no puede superar los 5 RS. Cuando dos o más de dos RS están unidos a un mismo grupo químico del complejo de metal-ligando de fórmula (I), cada RS se une independientemente al mismo o diferente átomo de carbono o heteroátomo y puede incluir persustitución del grupo químico.
El término “ sustitución” significa que al menos un átomo de hidrógeno (-H) unido a un átomo de carbono o heteroátomo de un compuesto o grupo funcional no sustituido correspondiente se reemplaza por un sustituyente (por ejemplo, RS). El término “ presustitución” significa que cada átomo de hidrógeno (H) unido a un átomo de carbono o heteroátomo de un compuesto o grupo funcional no sustituido correspondiente se reemplaza por un sustituyente (por ejemplo, RS). El término “ polisustitución” significa que al menos dos, pero menos de todos, los átomos de hidrógeno unidos a átomos de carbono o heteroátomos de un compuesto o grupo funcional no sustituido correspondiente se reemplazan por un sustituyente.
El término “ -H” significa un hidrógeno o radical hidrógeno que está unido covalentemente a otro átomo. “ Hidrógeno” y “ -H” son intercambiables, y a menos que se especifique claramente tienen significados idénticos.
El término “ hidrocarbilo (C1-C40)” significa un radical hidrocarbonado de desde 1 hasta 40 átomos de carbono y el término “ hidrocarbileno (C1-C40)” significa un dirradical hidrocarbonado de desde 1 hasta 40 átomos de carbono, en donde cada radical hidrocarbonado y cada dirradical hidrocarbonado es aromático o no aromático, saturado o insaturado, de cadena lineal o ramificada, cíclico (incluyendo mono- y policíclico, policíclico condensado y no condensado, incluyendo bicíclico; 3 átomos de carbono o más) o acíclico y está no sustituido o sustituido por uno o más RS.
En esta descripción, un hidrocarbilo (C1-C40) puede ser un alquilo (C1-C40), cicloalquilo (C3-C40), cicloalquil (C3-C20)-alquileno (C1-C20), arilo (C6-C40) o aril (C6-C2ü)-alquileno (C1-C20). En algunas realizaciones, cada uno de los grupos hidrocarbilo (C1-C40) mencionados anteriormente tienen un máximo de 20 átomos de carbono (es decir, hidrocarbilo (C1-C20) y otras realizaciones, un máximo de 12 átomos de carbono.
Los términos “alquilo (C1-C40)” y “alquilo (C1-C18)” significan un radical hidrocarbonado lineal o ramificado saturado de desde 1 hasta 40 átomos de carbono o desde 1 hasta 18 átomos de carbono, respectivamente, que no está sustituido o está sustituido con uno o más RS. Ejemplos de alquilo (C1-C40) no sustituido son alquilo (C1-C20) no sustituido; alquilo (C1-C10) no sustituido; alquilo (C1-C5) no sustituido; metilo; etilo; 1 -propilo; 2-propilo; 1 -butilo; 2-butilo; 2-metilpropilo; 1,1 -dimetiletilo; 1 -pentilo; 1-hexilo; 1 -heptilo; 1-nonilo; y 1-decilo. Ejemplos de alquilo (C1-C40) sustituido son alquilo (C1-C20) sustituido, alquilo (C1-C10) sustituido, trifluorometilo y alquilo [C45]. El término “ alquilo [C45]” (con corchetes) significa que hay un máximo de 45 átomos de carbono en el radical, incluyendo sustituyentes, y es, por ejemplo, un alquilo (C27-C40) sustituido con un RS, que es un alquilo (C1-C5), respectivamente. Cada alquilo (C1-C5) puede ser metilo, trifluorometilo, etilo, 1 -propilo, 1 -metiletilo o 1, 1 -dimetiletilo.
El término “ arilo (C6-C40)” significa un radical hidrocarbonado aromático no sustituido o sustituido (con uno o más RS), mono-, bi o tricíclico de desde 6 hasta 40 átomos de carbono, de los cuales al menos desde 6 hasta 14 de los átomos de carbono son átomos de carbono del anillo aromático, y el radical mono-, bi- o tricíclico comprende de 1,2 o 3 anillos, respectivamente; en donde el anillo 1 es aromático y los 2 o 3 anillos están condensados o no independientemente, y al menos uno de los anillos 2 o 3 es aromático. Los ejemplos de arilo (C6-C40) no sustituido son arilo (C6-C20) no sustituido, arilo (C6-C18) no sustituido; 2-alquil (C1-Cs)-fenilo; 2,4-bis-alquil (C1-Cs)-fenilo; fenilo; fluorenilo; tetrahidrofluorilo; indacenilo; hexahidroindacenilo; indenilo; dihidroindenilo; naftilo; tetrahidronaftilo; y fenantreno. Los ejemplos de arilo (C6-C40) sustituido son arilo (C1-C20) sustituido; arilo (C6-C18) sustituido; 2,4-bis(alquil [C20])-fenilo; polifluorofenilo; pentafluorofenilo; y fluoren-9-ona-1-ilo.
El término “cicloalquilo (C3-C40)” significa un radical hidrocarbonado cíclico saturado de desde 3 hasta 40 átomos de carbono que está sin sustituir o sustituido con uno o más RS. Otros grupos cicloalquilo (por ejemplo, cicloalquilo (Cx-Cy)) se definen de manera análoga como que tienen desde x hasta y átomos de carbono y que están no sustituidos o sustituidos con uno o más RS. Ejemplos de cicloalquilo (C3-C40) no sustituido son cicloalquilo (C3-C20) no sustituido, cicloalquilo (C3-C10) no sustituido, ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, cicloheptilo, ciclooctilo, ciclononilo y ciclodecilo. Ejemplos de alquilo (C3-C40) sustituido son alquilo (C3-C20) sustituido, alquilo (C3-C10) sustituido, ciclopentanon-2-ilo y 1 -fluorociclohexilo.
Los ejemplos de hidrocarbileno (C1-C40) incluyen arileno (C6-C40), cicloalquileno (C3-C40) y alquileno (C1-C40) (por ejemplo, alquileno (C1-C20)) no sustituidos o sustituidos. En algunas realizaciones, los dirradicales están en el mismo átomo de carbono (por ejemplo, -CH2-) o en átomos de carbono adyacentes (es decir, 1,2-dirradicales), o están separados por uno, dos o más de dos átomos de carbono intermedios (por ejemplo, 1,3-dirradicales, 1,4-dirradicales, respectivos etc.). Algunos dirradicales incluyen a,w-dirradical. El a,w-dirradical es un dirradical que tiene una separación máxima de la estructura principal de carbonos entre los carbonos radicales. Algunos ejemplos de a,wdirradicales de alquileno (C2-C20) incluyen etan-1,2-diilo (es decir, -CH2CH2), propan-1,3-diilo (es decir, -CH2CH2CH2-), 2-metilpropan-1,3-diilo (es decir, -CH2CH(CH3)CH2-). Algunos ejemplos de a,w-dirradicales de arileno (C6-C40) incluyen fenil-1,4-diilo, naftalen-2,6-diilo o naftalen-3,7-diilo.
El término “alquileno (C1-C40)” significa un dirradical de cadena lineal o ramificada saturado (es decir, los radicales no están en átomos de anillo) de desde 1 hasta 40 átomos de carbono que está no sustituido o sustituido con uno o más RS. Ejemplos de alquileno (C1-C40) no sustituido son alquileno (C1-C20) no sustituido, incluyendo -CH2CH2-, -(CH2)3-, -(CH2)4-, -(CH2)5-, -(CH2)6-, -(CH2)7-, -(CH2)8-, -CH2C*HCH3, y -(CH2)4C*(H)(CH3) no sustituidos, en los que “ C*” indica un átomo de carbono del cual se elimina un átomo de hidrógeno para formar un radical alquilo secundario o terciario. Ejemplos de alquileno (C1-C40) sustituido son alquileno (C1-C20) sustituido, -CF2-, -C(O)- y -(CH2)uC(CH3)2(CH2)5-(es decir, un 1 -20-eicosileno normal sustituido con 6,6-dimetilo). Debido a que como se ha mencionado anteriormente dos RS pueden tomarse juntos para formar un alquileno (C1-C18), los ejemplos de alquileno (C1-C40) sustituido también incluyen 1,2-bis(metilen)ciclopentano, 1,2-bis(metilen)ciclohexano, 2,3-bis(metilen)-7,7-dimetil-biciclo[2.2.1]heptano y 2,3-bis(metilen)biciclo[2.2.2]octano.
El término “cicloalquileno (C3-C40)” significa un dirradical cíclico (es decir, los radicales no están en átomos de anillo) de desde 3 hasta 40 átomos de carbono que está no sustituido o sustituido con uno o más RS.
El término “ heteroátomo” se refiere a un átomo distinto de hidrógeno o carbono. Los ejemplos de grupos que contienen uno o más de un heteroátomo incluyen O, S, S(O), S(O)2 , Si(RC)2 , P(RP), N(RN), -N=C(Rc)2 , -Ge(RC)2-, o -Si(RC)-, donde cada RC y cada RP es hidrocarbilo (C1-C18) no sustituido o -H, y donde cada RN es hidrocarbilo (C1-C18) no sustituido. El término “ heterohidrocarburo” se refiere a una molécula o entramado molecular en donde uno o más átomos de carbono de un hidrocarburo se reemplazan con un heteroátomo. El término “ heterohidrocarbilo (C1-C40)” significa un radical heterohidrocarbonado de desde 1 hasta 40 átomos de carbono, y el término “ heterohidrocarbileno (C1-C40)” significa un dirradical heterohidrocarbonado de desde 1 hasta 40 átomos de carbono y cada heterohidrocarbono tiene uno o más heteroátomos. El radical del heterohidrocarbilo está en un átomo de carbono o un heteroátomo, y los dirradicales del heterohidrocarbilo pueden estar en: (1) uno o dos átomos de carbono, (2) uno o dos heteroátomos, o (3) un átomo de carbono y un heteroátomo. Cada heterohidrocarbilo (C1-C40) y heterohidrocarbileno (C1-C40) puede estar no sustituido o sustituido (con uno o más RS), ser aromático o no aromático, saturado o insaturado, de cadena lineal o ramificada, cíclico (incluyendo mono- y policíclico, policíclico condensado y no condensado) o acíclico.
El heterohidrocarbilo (C1-C40) puede estar no sustituido o sustituido. Los ejemplos no limitativos de heterohidrocarbilo (C1-C40) incluyen heteroalquilo (C1-C40), hidrocarbil (C1-C40)-O-, hidrocarbil (C1-C40)-S-, hidrocarbil (C1-C40)-S(O) -, hidrocarbil (C1-C40)-S(O)2-, hidrocarbil (C1-C40)-Si(RC)2-, hidrocarbil (C1-C40)-N(R)N-, hidrocarbil (C1-C40)-P(RP), heterocicloalquilo (C2-C40), heterocicloalquil (C2-C19)-alquileno (C1-C20), cicloalquil (C3-C20)-heteroalquileno (C1-C19), heterocicloalquil (C2-C19) -heteroalquileno (C1-C20), heteroarilo (C1-C50), heteroaril (C1-C19)-alquileno (C1-C20), aril (C6-C20)-heteroalquileno (C1-C19) o heteroaril (C1-C19)-heteroalquileno (C1-C20).
El término “ heteroarilo (C1-C40)” significa un radical hidrocarbonado heteroaromático mono-, bi- o tricíclico no sustituido o sustituido (por uno o más RS) de desde 1 hasta 40 átomos de carbono totales y desde 1 hasta 10 heteroátomos, y el radical mono-, bi- o tricíclico comprende 1, 2 ó 3 anillos, respectivamente, en donde los anillos 2 ó 3 están condensados o no están condensados independientemente y al menos uno de los anillos 2 ó 3 es heteroaromático. Otros grupos heteroarilo (por ejemplo, heteroarilo (Cx-Cy) generalmente, tal como heteroarilo (C1-C12)) se definen de manera análoga como que tienen desde x hasta y átomos de carbono (tal como de 1 a 12 átomos de carbono) y que están no sustituidos o sustituidos con uno o más de un RS. El radical hidrocarbonado heteroaromático monocíclico es un anillo de 5 miembros o un anillo de 6 miembros. El anillo de 5 miembros tiene 5 menos h de átomos de carbono, en donde h es el número de heteroátomos y puede ser 1, 2 o 3; y cada heteroátomo puede ser O, S, N o P. Los ejemplos de radical hidrocarbonado heteroaromático de anillos de 5 miembros son pirrol-1-ilo; pirrol-2-ilo; furan-3-ilo; tiofen-2-ilo; pirazol-1-ilo; isoxazol-2-ilo; isotiazol-5-ilo; imidazol-2-ilo; oxazol-4-ilo; tiazol-2-ilo; 1,2,4-triazol-1-ilo; 1,3,4-oxadiazol-2-ilo; 1,3,4-tiadiazol-2-ilo; tetrazol-1 -ilo; tetrazol-2-ilo; y tetrazol-5-ilo. El anillo de 6 miembros tiene 6 menos h de átomos de carbono, en donde h es el número de heteroátomos y puede ser 1 o 2 y los heteroátomos pueden ser N o P. Los ejemplos de radical hidrocarbonado heteroaromático de anillos de 6 miembros son piridin-2-ilo; pirimidin-2-ilo; y pirazin-2-ilo. El radical hidrocarbonado heteroaromático bicíclico puede ser un sistema de anillos de 5,6- o 6,6-condensados. Los ejemplos del radical hidrocarbonado heteroaromático bicíclico de sistema de anillos condensados 5,6 son indol-1-ilo; y bencimidazol-1-ilo. Los ejemplos del radical hidrocarbonado heteroaromático bicíclico de sistema de anillos 6,6 condensado son quinolin-2-ilo; e isoquinolin-1-ilo. El radical hidrocarbonado heteroaromático tricíclico puede ser un sistema de anillos 5,6,5-; 5,6,6-; 6,5,6; o 6,6,6- condensados. Un ejemplo del sistema de anillos 5,6,5 condensado es 1,7-dihidropirrolo [3,2-f]indol-1 -ilo. Un ejemplo del sistema de anillos 5,6,6 condensado es 1H-benzo[f]indol-1-ilo. Un ejemplo del sistema de anillos 6,5,6 condensado es 9H-carbazol-9-ilo. Un ejemplo del sistema de anillos 6,6,6 condensado es acridin-9ilo.
El heteroalquilo mencionado anteriormente puede ser radicales de cadena lineal o ramificada saturados que contienen (C1-C40) átomos de carbono, o menos átomos de carbono y uno o más de los heteroátomos. De la misma manera, el heteroalquileno puede ser dirradicales de cadena lineal o ramificada saturados que contiene desde 1 hasta 50 átomos de carbono y uno o más de un heteroátomo. Los heteroátomos, como se definen anteriormente, pueden incluir Si(RC)3, Ge(RC)3, Si(RC)2 , Ge(RC)2 , P(RP)2 , P(RP), N(RN)2 , N(RN), N, O, ORC, S, SRC, S(O) y S(O)2 , en donde cada uno de los grupos heteroalquilo y heteroalquileno no está sustituido o está sustituido con uno o más RS.
Ejemplos de heterocicloalquilo (C2-C40) no sustituido son heterocicloalquilo (C2-C20) no sustituido, heterocicloalquilo (C2-C10) no sustituido, aziridin-1-ilo, oxetan-2-ilo, tetrahidrofuran-3-ilo, pirrolidin-1-ilo, tetrahidrotiofen-S,S-dióxido-2-ilo, morfolin-4-ilo, 1,4-dioxano-2-ilo, hexahidroazepin-4-ilo, 3-oxa-ciclooctilo, 5-tio-ciclononilo y 2-aza-ciclodecilo.
La expresión “átomo de halógeno” o el término “ halógeno” significa el radical de un átomo de flúor (F), átomo de cloro (Cl), átomo de bromo (Br) o átomo de yodo (I). El término “ haluro” significa forma aniónica del átomo de halógeno; fluoruro (F -), cloruro (Cl-), bromuro (Br-), o yoduro (I-).
El término “saturado” significa que carece de dobles enlaces carbono-carbono, triples enlaces carbono-carbono y (en grupos que contienen heteroátomos) dobles enlaces carbono-nitrógeno, carbono-fósforo y carbono-silicio. Cuando un grupo químico saturado está sustituido con uno o más sustituyentes RS, uno o más enlaces dobles y/o triples pueden estar o no presentes opcionalmente en los sustituyentes RS. El término “ insaturado” significa que contiene uno o más dobles enlaces carbono-carbono o triples enlaces carbono-carbono, y (en grupos que contienen heteroátomos) dobles enlaces carbono-nitrógeno, carbono-fósforo y carbono-silicio, que no incluyen cualquiera de tales dobles enlaces que pueden estar presentes en los sustituyentes RS, si es que los hay, o en anillos (hetero) aromáticos, si es que los hay.
En algunas realizaciones, los sistemas de catalizadores que comprenden un complejo de metal-ligando de fórmula (I) pueden volverse catalíticamente activos mediante cualquier técnica conocida en la técnica para activar catalizadores a base de metales de reacciones de polimerización de olefinas. Por ejemplo, comprendiendo un complejo de metalligando de fórmula (I) puede volverse catalíticamente activo poniendo en contacto el complejo o combinando el complejo con un cocatalizador de activación. Los cocatalizadores de activación adecuados para su uso en el presente documento incluyen alquilaluminios; alumoxanos poliméricos u oligoméricos (también conocidos como aluminoxanos); ácidos de Lewis neutros; y compuestos no poliméricos, no coordinantes, formadores de iones (incluyendo el uso de tales compuestos en condiciones oxidantes). Una técnica de activación adecuada es la electrólisis a granel. También se contemplan combinaciones de uno o más de los cocatalizadores de activación y técnicas anteriores. El término “alquilaluminio” significa un dihidruro de monoalquilaluminio o dihaluro de monoalquilaluminio, un hidruro de dialquilaluminio o haluro de dialquilaluminio o un trialquilaluminio. Ejemplos de alumoxanos poliméricos u oligoméricos incluyen metilalumoxano, metilalumoxano modificado con triisobutilaluminio e isobutilalumoxano.
Los activadores de ácido de Lewis (cocatalizadores) incluyen compuestos metálicos del grupo 13 que contienen desde 1 hasta 3 sustituyentes hidrocarbilo(C1-C20) tal como se describe en el presente documento. En una realización, los compuestos metálicos del Grupo 13 son compuestos de aluminio sustituido con tri(hidrocarbilo C1-C20) o tri(hidrocarbilo C1-C20)-boro. En otras realizaciones, los compuestos metálicos del grupo 13 son compuestos de aluminio sustituido con tri(hidrocarbilo), tri(hidrocarbilo)-boro, compuestos de tri(alquilo (C1-C10))-aluminio, tri(arilo (C6-C18))-boro, y derivados halogenados (incluyendo perhalogenados) de los mismos. En realizaciones adicionales, los compuestos metálicos del grupo 13 son tris(fenilo sustituido con fluoro)boranos, tris(pentafluorofenil)borano. En algunas realizaciones, el cocatalizador de activación es un borato de tetrakis(hidrocarbilo (C1-C20)) (por ejemplo, tetrafluoroborato de tritilo) o un tri(hidrocarbilo (C1-C20))amoniotetra(hidrocarbilo (C1-C20))borano (por ejemplo, bis(octadecil)metilamoniotetrakis(pentafluorofenil)borano). Como se usa en el presente documento, el término “ amonio” significa un catión de nitrógeno que es un (hidrocarbilo (C1-C20))4N+, un (hidrocarbilo (C1-C20))3N(H)+, un (hidrocarbilo (C1-C20))2N(H)2+, hidrocarbilo(C1-C20)N(H)3+, o N(H)4+, en donde cada hidrocarbilo (C1-C20), cuando dos o más están presentes, pueden ser iguales o diferentes.
Las combinaciones de activadores de ácido de Lewis neutros (cocatalizadores) incluyen mezclas que comprenden una combinación de un compuesto de tri(alquilo (C1-C4))aluminio y un compuesto de tri(arilo (C6-C18))boro halogenado, especialmente un tris(pentafluorofenil)borano. Otras realizaciones son combinaciones de tales mezclas neutras de ácido de Lewis con un aluminoxano polimérico u oligomérico, y combinaciones de un único ácido de Lewis neutro, especialmente tris(pentafluorofenil)borano con un aluminoxano polimérico u oligomérico. Razones de números de moles de (complejo de metal-ligando): (tris(pentafluoro-fenilborano): (alumoxano) [por ejemplo, (complejo de metal del grupo 4-ligando):(tris(pentafluoro-fenilborano):(alumoxano)] son desde 1:1:1 hasta 1:10:30, en otras realizaciones, desde 1:1:1,5 hasta 1:5:10.
El sistema de catalizadores que comprende el complejo de metal-ligando de fórmula (I) puede activarse para formar una composición de catalizadores activa mediante combinación con uno o más cocatalizadores, por ejemplo, un cocatalizador formador de cationes, un ácido de Lewis fuerte, o combinaciones de los mismos. Los cocatalizadores de activación adecuados incluyen aluminoxanos poliméricos u oligoméricos, especialmente aluminoxano de metilo, así como compuestos formadores de iones inertes, compatibles, no coordinantes. Los cocatalizadores adecuados a modo de ejemplo incluyen, pero no se limitan a: aluminoxano de metilo modificado (MMAO), amina de tetrakis(pentafluorofenil)borato(1-) de bis(alquil de sebo hidrogenado)metilo, y combinaciones de los mismos.
En algunas realizaciones, uno o más de los cocatalizadores de activación anteriores se usan en combinación entre sí. Una combinación especialmente preferida es una mezcla de un tri(hidrocarbilo (C1-C4))aluminio, tri(hidrocarbilo (C1-C4))borano, o un borato de amonio con un compuesto de alumoxano oligomérico o polimérico. La razón del número total de moles de uno o más complejos de metal-ligando de fórmula (I) con respecto al número total de moles del uno o más de los cocatalizadores de activación es de desde 1:10.000 hasta 100:1. En algunas realizaciones, la razón es de al menos 1:5000, en algunas otras realizaciones, al menos 1:1000; y 10:1 o menos, y en algunas otras realizaciones, 1:1 o menos. Cuando se usa un alumoxano solo como cocatalizador de activación, preferiblemente el número de moles del alumoxano que se emplean es al menos 100 veces el número de moles del complejo de metalligando de fórmula (I). Cuando se usa tris(pentafluorofenil)borano solo como cocatalizador de activación, en algunas otras realizaciones, el número de moles del tris(pentafluorofenil)borano que se emplean con respecto al número total de moles de uno o más complejos de metal-ligando de fórmula (I) de 0,5: 1 a 10:1, de 1:1 a 6:1, o de 1:1 a 5:1. Los cocatalizadores de activación restantes se emplean generalmente en cantidades molares aproximadamente iguales a las cantidades molares totales de uno o más complejos de metal-ligando de fórmula (I).
Se contemplan diversos disolventes, por ejemplo, disolventes aromáticos y de parafina. Los disolventes ilustrativos incluyen, pero no se limitan a, isoparafinas. Por ejemplo, tales disolventes de isoparafina están disponibles comercialmente con el nombre ISOPAR E de ExxonMobil Chemical.
Las razones de reactividad se determinan mediante la diferencia resultante en las velocidades de polimerización (es decir, selectividad) entre etileno y el comonómero de a-olefina C3-C12 con el catalizador de polimerización en el procedimiento de polimerización. Se cree que las interacciones estéricas para los catalizadores de polimerización dan como resultado la polimerización de etileno de manera más selectiva que la a-olefinas tales como las a-olefinas C3-C12 (es decir, el catalizador polimeriza preferentemente etileno en presencia de la a-olefina). De nuevo sin limitarse a la teoría, se cree que tales interacciones estéricas hacen que el catalizador, por ejemplo, el catalizador homogéneo preparado con o a partir del complejo de metal-ligando de fórmula (I) adopte una conformación que permita que el etileno acceda al M sustancialmente más fácilmente, o adopte una conformación reactiva más fácilmente, o tanto que el catalizador permita que la a-olefina lo haga.
Para copolímeros al azar en los que la identidad del último monómero insertado dicta la velocidad a la que se insertan los monómeros posteriores, se emplea el modelo de copolimerización terminal. En este modelo, las reacciones de inserción del tipo
Figure imgf000012_0002
donde C representa el catalizador, Mi representa el monómero i, y kij es la constante de velocidad que tiene la ecuación de velocidad como sigue.
Figure imgf000012_0003
La fracción molar de comonómero (i=2) en el medio de reacción se define por la ecuación:
Figure imgf000012_0004
Puede derivarse una ecuación simplificada para la composición de comonómero tal como se describe en George Odian, Principles of Polymerization, segunda edición, John Wiley and Sons, 1970, de la siguiente manera:
Figure imgf000012_0001
A partir de esta ecuación, la fracción molar del comonómero en el polímero depende únicamente de la fracción molar del comonómero en los medios de reacción y dos razones de reactividad dependientes de la temperatura definidas en términos de las constantes de velocidad de inserción como:
Figure imgf000012_0005
Para este modelo, también la composición del polímero es una función sólo de las razones de reactividad dependientes de la temperatura y la fracción molar de comonómero en el reactor. Lo mismo también es cierto cuando puede producirse la inserción de comonómero o monómero inverso o en el caso de la interpolimerización de más de dos monómeros.
Las razones de reactividad para su uso en los modelos anteriores pueden predecirse usando técnicas teóricas bien conocidas o empíricamente derivadas de datos de polimerización reales. Las técnicas teóricas adecuadas se describen, por ejemplo, en B. G. Kyle, Chemical and Process Thermodynamics, tercer suplemento, Prentice-Hall, 1999 y en Redlich-Kwong-Soave (RKS) Equation of State, Chemical Engineering Science, 1972, págs. 1197-1203. Pueden usarse programas de software disponibles comercialmente para ayudar a derivar las razones de reactividad a partir de los datos obtenidos experimentalmente. Un ejemplo de tal software es Aspen Plus de Aspen Technology, Inc., Ten Canal Park, Cambridge, Massachusetts 02141-2201, EE. UU.
Se contemplan diversas metodologías de control del procedimiento. En una realización, el espectrómetro de infrarrojo cercano de transformada de Fourier (FTnIR) puede utilizarse en un bucle de retroalimentación de control de procedimiento. Por ejemplo, en el primer reactor de polimerización en disolución, el primer y segundo componentes a base de etileno se producirán con densidades suficientemente diferentes usando dos catalizadores con razones de reactividad suficientemente diferentes. El porcentaje en peso de cada componente puede monitorizarse entonces con precisión en tiempo real a través de la concentración de comonómero medida por el espectrómetro FTnIR en la primera salida del reactor. La razón de alimentación del catalizador puede ajustarse en consecuencia para alcanzar la concentración de comonómero objetivo que es responsable de alcanzar el porcentaje en peso objetivo de cada componente dentro del primer reactor. Alternativamente, el espectrómetro Raman puede utilizarse en el bucle de retroalimentación de control del procedimiento, ya que proporciona una mejor resolución y precisión de medición de la concentración de comonómero que el espectrómetro de infrarrojo cercano de transformada de Fourier (FTnIR).
Películas
Tal como se indicó anteriormente, las presentes realizaciones de composición que comprenden LDPE y los polímeros a base de etileno multimodales pueden incorporarse en películas. Las películas pueden ser películas monocapa o multicapa producidas mediante procedimientos de película soplada o película colada. Las películas pueden incorporarse en una variedad de artículos que incluyen, por ejemplo, envases de alimentos, materiales de envasado industriales y de consumo, películas de construcción, películas espumadas y otros.
Opcionalmente, las películas pueden comprender además uno o más aditivos. Tales aditivos incluyen, pero no se limitan a, agentes antiestáticos, potenciadores del color, tintes, lubricantes, cargas (por ejemplo, TiO2 o CaCO3), opacificantes, nucleadores, adyuvantes de procesamiento, pigmentos, antioxidantes primarios, antioxidantes secundarios, estabilizadores frente a UV, antibloqueantes, agentes deslizantes, agentes adherentes, retardantes de llama, agentes antimicrobianos, agentes reductores de olores, agentes antifúngicos y combinaciones de los mismos.
En algunas realizaciones, la película es una película monocapa soplada que tiene una tenacidad mejorada, por ejemplo, tal como se demuestra por la mejora de la resistencia al impacto por dardo y el módulo secante.
Métodos de prueba
Los métodos de prueba incluyen lo siguiente:
Índice de fusión (I2) e (I10)
Valores de índice de fusión (I2) para los polímeros a base de etileno multimodales medidos según la norma ASTM D1238 a 190 0C a 2,16 kg. De manera similar, los valores de índice de fusión (I10) para los polímeros a base de etileno multimodales se midieron según la norma ASTM D1238 a 190 0C a 10 kg. Los valores se notifican en g/10 min, que corresponden a gramos eluidos por 10 minutos. Los valores de índice de fusión (I2) para el primer componente a base de etileno, el segundo componente a base de etileno y el tercer componente a base de etileno se calcularon según la ecuación 30 y la metodología descrita a continuación.
Densidad
Las mediciones de densidad para los polímeros a base de etileno multimodales se realizaron según la norma ASTM D792, método B. Para el primer y segundo componentes a base de etileno, los valores de densidad se obtuvieron usando la ecuación 28 y la metodología descrita a continuación. Para el tercer componente a base de etileno, el valor de densidad se calculó usando la ecuación 29.
Cromatografía de permeación en gel convencional (GPC convencional)
El sistema cromatográfico consistió en un cromatógrafo GPC de alta temperatura PolymerChar GPC-IR (Valencia, España) equipado con un detector de infrarrojos IR5 interno (IR5). El compartimento de horno de inyector automático se ajustó a 160 °C y el compartimento de columna se ajustó a 150 °C. Las columnas usadas fueron 4 columnas de lecho mixto lineales de 20 micrómetros y 30 cm “ Mixed A” de Agilent. El disolvente cromatográfico usado fue 1,2,4 triclorobenceno y contenía 200 ppm de hidroxitolueno butilado (BHT). La fuente de disolvente se roció con nitrógeno.
El volumen de inyección usado fue 200 microlitros y el caudal fue 1,0 mililitros/minuto.
La calibración del conjunto de columnas de GPC se realizó con 20 patrones de poliestireno de distribución del peso molecular estrecha con pesos moleculares que oscilan entre 580 y 8.400.000 g/mol y estaban dispuestos en 6 mezclas de tipo “ cóctel” con al menos una decena de separación entre los pesos moleculares individuales. Los patrones se adquirieron de la empresa Agilent Technologies. Los patrones de poliestireno se prepararon a 0,025 gramos en 50 mililitros de disolvente para pesos moleculares iguales o superiores a 1.000.000 g/mol y 0,05 gramos en 50 mililitros de disolvente para pesos moleculares inferiores a 1.000.000 g/mol. Los patrones de poliestireno se disolvieron a 80 °C, con agitación suave, durante 30 minutos. Los pesos moleculares de picos de patrones de poliestireno se convirtieron en pesos moleculares de polímero a base de etileno usando la ecuación 6 (tal como se describe en Williams y Ward, J. Polym. Sci., Polym. Let., 6, 621 (1968)).:
Figure imgf000014_0004
(MpolieslireJ‘
donde M es el peso molecular, A tiene un valor de 0,4315 y B es igual a 1,0.
Se usó un polinomio de quinto orden para ajustar los respectivos puntos de calibración equivalentes de polímero a base de etileno. Se hizo un pequeño ajuste a A (desde aproximadamente 0,39 hasta 0,44) para corregir los efectos de resolución de la columna y ensanchamiento de banda, de modo que el NIST según la norma NBS 1475 se obtiene a un peso molecular de 52.000 g/mol.
Se realizó el recuento total de placas del conjunto de columnas de GPC con eicosano (preparado a 0,04 g en 50 mililitros de TCB y disuelto durante 20 minutos con agitación suave). El recuento de placas (ecuación 7) y simetría (ecuación 8) se midieron en una inyección de 200 microlitros según las siguientes ecuaciones:
Figure imgf000014_0001
donde RV es el volumen de retención en mililitros, la anchura de pico está en mililitros, el pico máx. es la altura máxima del pico, y la media altura es la mitad de la altura del pico máximo.
Figure imgf000014_0002
donde RV es el volumen de retención en mililitros y la anchura de pico está en mililitros, el pico máx. es la posición máxima del pico, una décima altura es una décima parte de la altura del pico máximo, y donde el pico trasero se refiere a la cola de pico en volúmenes de retención posteriores al pico máx., y donde el pico frontal se refiere al frente de pico en volúmenes de retención anteriores al pico máx. El recuento de placas para el sistema cromatográfico debería ser mayor de 22.000 y la simetría debería estar entre 0,98 y 1,22.
Las muestras se prepararon de manera semiautomática con el software PolymerChar “ Instrument Control” , en donde las muestras se seleccionaron en peso a 2 mg/ml, y se añadió el disolvente (contenía 200 ppm de BHT) a un vial con tapa de septa rociada con nitrógeno previamente, a través del muestreador automático de alta temperatura PolymerChar. Las muestras se disolvieron durante 3 horas a 160 °C bajo agitación de “ baja velocidad” .
Los cálculos de Mn(GPC), Mw(gpc), y Mz(gpc) se basaron en los resultados de GPC utilizando el detector IR5 interno (canal de medición) del cromatógrafo de GPC-IR de PolymerChar según las ecuaciones 9-12, usando el software PolymerChar GPCOne™, el cromatograma de IR restado de la línea base en cada punto i de recolección de datos igualmente separado (IR í ) , y el peso molecular equivalente de polímero a base de etileno obtenido de la curva de calibración convencional estrecha para el punto i (Mpoetíienoj in g/mol) a partir de la ecuación 6. Posteriormente, puede obtenerse un gráfico de distribución de peso molecular por GPC (GPC-MWD) (wtGPc(lgMW) frente a un gráfico de lgMW, donde pGPc(lgMW) es la fracción en peso de moléculas de polímero a base de etileno con un peso molecular de lgMW) para la muestra de polímero a base de etileno. El peso molecular está en g/mol y el wtGPc(lgMW) sigue la ecuación 9.
Figure imgf000014_0003
El peso molecular promedio en número Mn(GPC), el peso molecular promedio en peso Mw(gpc) y el peso molecular promedio z Mz(gpc) pueden calcularse como las siguientes ecuaciones.
Figure imgf000015_0001
Para monitorizar las desviaciones a lo largo del tiempo, se introdujo un marcador de velocidad de flujo (decano) en cada muestra a través de una microbomba controlada con el sistema PolymerChar GPC-IR. Este marcador de velocidad de flujo (FM) se usó para corregir linealmente la velocidad de flujo de bombeo (velocidad de flujo (nominal)) para cada muestra mediante la alineación RV del respectivo pico de decano dentro de la muestra (RV(FM de la muestra)) a la del pico de decano dentro de la calibración de patrones estrecha (RV (FM calibrado)). Se supone entonces que cualquier cambio en el momento del pico del marcador de decano está relacionado con un desplazamiento lineal en la velocidad de flujo (velocidad de flujo (efectiva) para toda la prueba. Para facilitar la mayor precisión de una medición de RV del pico del marcador de flujo, se usa una rutina de ajuste de mínimos cuadrados para ajustar el pico del cromatograma de concentración de marcador de flujo a una ecuación cuadrática. La primera derivada de la ecuación cuadrática se usa entonces para resolver la posición pico real. Después de calibrar el sistema basándose en un pico de marcador de flujo, la velocidad de flujo efectiva (con respecto a la calibración de patrones estrecha) se calcula como la ecuación 13. El procesamiento del pico del marcador de flujo se realizó mediante el software PolymerChar GPCOne™. La corrección de velocidad de flujo aceptable es tal que la velocidad de flujo efectiva debería estar dentro del 0,5 % de la velocidad de flujo nominal.
Velocidad de flujo eficaz= Velocidad de flujonominal x (RV(FMcalibrado/RV(FMMuestra)) (Ecuación 13)
Gráfico de contenido de comonómero mediante GPC con IR5 (GPC-CC)
Se realizó una calibración para la relación del detector IR5 usando al menos diez patrones de polímeros a base de etileno (homopolímero de polímero a base de etileno y copolímeros de etileno/octeno) de frecuencia de ramificación de cadena corta (SCB) conocida (el contenido de comonómero de los materiales de referencia se determina usando el análisis de 13C RMN según las técnicas descritas, por ejemplo, en la patente estadounidense n.° 5.292.845 (Kawasaki, y col.) y J. C. Randall en Rev. Macromol. Chem. Phys., C29, 201 -317), que varía desde homopolímero (0 SCB/1000 C totales) hasta aproximadamente 50 SCB/1000 C totales, donde el C total es igual a los carbonos en la estructura principal más los carbonos en ramificaciones. Cada patrón tenía un peso molecular promedio en peso de desde 36.000 g/mol hasta 126.000 g/mol y tenía una distribución de peso molecular de desde 2,0 hasta 2,5, tal como se determina mediante GPC. Las propiedades y mediciones de los patrones de copolímero típicos se muestran en la tabla A.
Tabla A: Patrones de “ copolímero”
Figure imgf000015_0002
Figure imgf000016_0001
La “ razón de área de IR5 (o” I R5área de canal de metilo / IR5 área de canal de medición’
base del sensor de canal de metilo de IR5” con respecto a “ la respuesta de área restada de la línea base del sensor de canal de medición de IR5” (filtros convencionales y rueda de filtros tal como se suministra por PolymerChar: número de pieza IR5_FWM01 incluido como parte del instrumento de GPC-IR) se calculó para cada uno de los patrones de “ copolímero” . Un ajuste lineal del % en peso de comonómero frente a la “ razón de área de IR5” se construyó en forma de la siguiente ecuación 14:
% en peso de comonómero = A0 + [A1(IR5área de canal de metilo/ IR5área de canal de medición)] (Ecuación 14)
Por tanto, puede obtenerse un gráfico de GPC-CC (contenido de comonómero por GPC) (% en peso de comonómero frente a IgMW). La corrección de grupos finales de los datos de comonómero en % en peso puede realizarse mediante el conocimiento del mecanismo de terminación si hay una superposición espectral significativa con la terminación de comonómero (metilos) a través del peso molecular determinado en cada corte cromatográfico.
Método de fraccionamiento por elución de cristalización (CEF)
El análisis de distribución de comonómeros, también denominado comúnmente distribución de ramificación de cadena corta (SCBD), se mide con fraccionamiento por elución de cristalización (CEF) (PolymerChar, España) (Monrabal y col., Macromol. Symp. 257, 71-79 (2007)) equipado con un detector de IR (IR-4 o IR-5) (PolymerChar, España) y un detector de dispersión de luz de 2 ángulos, modelo 2040 (Precision Detectors, actualmente Agilent Technologies). Como disolvente se usa orto-diclorobenceno (ODCB) con 600 ppm de antioxidante hidroxitolueno butilado (BHT). Para el inyector automático con la capacidad de purga de N2 , no se añadió BHT. Se instala una precolumna de GPC (20 micrómetros, o 10 micrómetros, 50 x 7,5 mm) (Agilent Technologies) justo antes del detector de IR en el horno detector. La preparación de muestras se realiza con un inyector automático a 160 °C durante 2 horas con agitación a 4 mg/ml (salvo que se especifique lo contrario). El volumen de inyección es de 300 |jl. El perfil de temperatura de CEF es: cristalización a 3 °C/min desde 110 °C hasta 30 °C, equilibrio térmico a 30 °C durante 5 minutos, elución a 3 °C/min desde 30 °C hasta 140 °C. La velocidad de flujo durante la cristalización es a 0,052 ml/min. El caudal durante la elución es a 0,50 ml/min. Los datos se recopilaron en un punto de datos/segundo.
La columna de CEF está empaquetada por The Dow Chemical Company con perlas de vidrio a 125 |jm ± 6 % (MO-SCI Specialty Products) con tubos de acero inoxidable de 1/8 pulgadas. Las perlas de vidrio se lavan con ácido por MO-SCI Specialty a pedido de The Dow Chemical Company. El volumen de columna es de 2,06 ml. La calibración de la temperatura de columna se realiza mediante el uso de una mezcla de polímero a base de etileno lineal 1475a de material de referencia convencional del NIST (1,0 mg/ml) y eicosano (2 mg/ml) en ODCB. La temperatura se calibró mediante el ajuste de la velocidad de calentamiento de elución, de modo que el polímero a base de etileno lineal 1475a del NIST tenga una temperatura máxima de 101,0 °C y el eicosano tenga una temperatura máxima de 30,0 °C. La resolución de la columna de CEF se calculó con una mezcla de polímero a base de etileno lineal 1475a del NIST (1,0 mg/ml) y hexacontano (Fluka, de pureza >97,0 %, 1 mg/ml). Se logra una separación de línea base de hexacontano y polímero a base de etileno 1475a del NIST. El área de hexacontano (desde 35,0 hasta 67,0 °C) respecto al área de 1475a del NIST desde 67,0 hasta 110,0 °C es de 50 a 50 y la cantidad de fracción soluble por debajo de 35,0 °C es menos del 1,8 % en peso. La resolución de la columna de CEF se define en la ecuación 15:
Resolución Temperatura máxima N1ST 1475A- temperatura máxima h_ > 6fi (Ecuaci-n 15)
Anchura a media alturaNIST 1475A anchura a media altura hexacontano
donde la anchura a media altura se mide en la temperatura y la resolución es de al menos 6,0.
El instrumento de CEF estaba equipado con un detector de dispersión de luz de 2 ángulos, modelo 2040 de Agilent (Santa Clara, CA) y la dispersión de luz se calibró usando el canal de señal de 90 grados con un patrón de polímero a base de etileno de homopolímero conocido de peso molecular conocido (aproximadamente 120.000 g/mol). El detector de IR (infrarrojo) también se calibró para la respuesta en masa. El peso molecular (Mw (cef)) en cada punto de elución se calculó en función de la temperatura de elución en regiones de señal/ruido adecuadas. Se usaron cálculos de área (que representan el área total de la señal de dispersión de luz de 90 grados dividido entre el área de IR y el factor de IR respectivos entre las constantes de detector respectivas) para evaluar el peso molecular promedio en peso en las regiones de la temperatura de elución y para obtener un gráfico de CEF-MW (Mw (cef) frente a la curva de temperatura). Los cálculos del área tienen una ventaja inherente de señal/ruido sobre los cálculos continuos. Tanto las señales de IR como de LS (dispersión de luz) se restaron de sus niveles de señal de línea base según las técnicas normales de integración cromatográfica.
Un cálculo de la “ temperatura crítica (Tcrítica),” la fracción en peso del polímero y el peso molecular promedio en peso en el intervalo de temperatura de hasta e incluyendo la temperatura crítica (Mw (cef) de la fracción de CEF entre 20 °C y Tcrítica) se obtuvieron de la siguiente manera:
Obtener un gráfico de CEF-SCBD (CEF-distribución de ramificación de cadena corta) usando la fracción en peso (wtcEF(T)) a cada temperatura (T) desde 20,0 °C hasta 119,9 °C con un aumento de escalón de temperatura de 0,2 °C, donde
Figure imgf000017_0001
La temperatura crítica se define por la densidad de la resina (en g/cm3) según
Tcritica (° c ) = 1108,1(° C ■ cc / £) x Densidad (g / cc) - 952,1(° C) (Ecuación 17) La fracción en peso de CEF entre 20 °C y la T c rít ic a se calcula a partir de CEF-SCBD como
Figure imgf000017_0002
De manera similar, el peso molecular promedio en peso de la fracción desde 20 °C hasta e incluyendo la temperatura crítica (Mw(cef) de la fracción de CEF entre 20 °C y la Tcrítica) se calculó como la razón de área de la suma de las respuestas de dispersión de luz de 90 grados divididas entre la suma de las respuestas del detector de IR entre 20 °C y la Tcrítica y factorizadas para las constantes de detector calibradas. Los cálculos y calibraciones de peso molecular se realizaron en el software GPCOne®.
Desconvolución numérica de datos bivariables
La desconvolución numérica de datos bivariables se usa para obtener la densidad, el peso molecular y el índice de fusión (I2) del primer componente a base de etileno, el segundo componente a base de etileno y el tercer componente a base de etileno. Se realizó la desconvolución numérica de los datos de CEF-SCBD combinados (gráfico de wtcEF(T) frente a temperatura (T) del CEF y gráfico de GPC-MWD (wtGPc(lgMW) frente a IgMW a partir de GPC convencional) utilizando Microsoft Excel® Solver (2013). Para CEF-SCBD, los datos calculados de fracción en peso (wtsuma, cef (T)) frente a la temperatura (T) obtenidos usando el método descrito en la sección CEF (en el intervalo de aproximadamente 23 a 120 °C) se contuvieron a aproximadamente 200 puntos de datos separados por igual con el fin de un equilibrio de la velocidad iterativa y la resolución de temperatura apropiadas. Se sumaron una sola o una serie (hasta 3 picos para cada componente) de distribuciones gaussianas modificadas exponencialmente (ecuación 19) para representar cada componente (wtc, cef (T)), y se sumaron los componentes para producir el peso total (wtsuma, cef (T)) a cualquier temperatura (T) tal como se muestra en la ecuación 20A-D.
Figure imgf000017_0003
donde C significa componente (C=1,2 ó 3), P significa pico (P=1,2 ó 3), a0,c,P es el área cromatográfica en °C para el pico P-ésimo del componente C-ésimo, a1,C,P es el centro del pico en °C para el pico P-ésimo del componente C-ésimo, a2 ,c,P es la anchura de pico en °C para el pico P-ésimo del componente C-ésimo, a3,c,P es la asimetría de pico en °C para el pico P-ésimo del componente C-ésimo, y T es la temperatura de elución en °C. En el caso de usarse una única distribución gaussiana modificada exponencialmente para representar el CEF-SCBD de un componente, Yt,c,2=yt,c,3 = 0. En el caso de usarse dos distribuciones gaussianas modificadas exponencialmente para representar el CEF-SCBD de un componente, sólo yT,c,3 = 0.
Figure imgf000017_0004
Figure imgf000018_0001
La fracción en peso de cada componente (wc, cef) a partir de la desconvolución de CEF-SCBD puede expresarse mediante
Figure imgf000018_0002
donde w/C+cef es la fracción en peso del primer componente a base de etileno obtenido a partir de la desconvolución de CEF-SCBD, w/C2,cef es la fracción en peso del segundo componente a base de etileno obtenido a partir de la desconvolución de CEF-SCBD, w/C3,cef es la fracción en peso del tercer componente a base de etileno obtenido de la desconvolución de CEF-SCBD, y la suma de las fracciones se normaliza a 1,00.
Para GPC-MWD, la MWD obtenida por la sección de descripción de GPC convencional se importó en la misma hoja de cálculo en incrementos de 0,01 lg (MW/ (g/mol) entre 2,00 y 7,00 (501 puntos de datos totales). Una distribución de Flory-Schulz con un peso molecular promedio en peso de Mw,objetivo y una polidispersidad (Mw(GPC)/Mn(GPC)) de 2,0 se muestra en las siguientes ecuaciones.
lg
Figure imgf000018_0003
donde wtF-S, i es la fracción en peso de las moléculas en lg (Mi/(g/mol)) (Mi en g/mol), i son números enteros que oscilan entre 0 y 500 para representar cada punto de datos en el gráfico de GPC-MWD y correspondientes lg (Mi/(g/mol)) es de 2+0,01 xi.
La distribución de Flory-Schulz se ensancha posteriormente utilizando una suma de una distribución normal en serie en cada lg(Mi/(g/mol)). La fracción en peso de la distribución normal con su valor máximo en lg(Mi/(g/mol)) se mantiene igual que la distribución original de Flory-Schulz. La curva de distribución de Flory-Schulz ensanchada puede describirse como la siguiente ecuación.
Figure imgf000018_0004
=~s'1 e 1<7'
donde wtGPc (lg(Mi/(g/mol)) es la fracción en peso de las moléculas en lg(Mi/(g/mol)), j son números enteros que oscilan entre 0 y 500, a es la desviación estándar de la distribución normal. Por tanto, las curvas de distribución de peso molecular para los tres componentes pueden expresarse como las siguientes ecuaciones. El peso molecular promedio
en número (Mn (gpc)), el peso molecular promedio en peso (Mw(gpc)) y la MWD (Mw(GPC)/Mn(GPC)) pueden calcularse a partir de la distribución de Flory-Schulz ensanchada.
Figure imgf000019_0001
wtsuma GPC (lg(A# . i {gfmol ))) = wtChGPC (lg(M , / (gfmol)))
+ wtC 2,arc , /(g f m o l ))) w tC30FC Qg(Mi i{g i mol))) (Ecuación 26D )
donde o es el parámetro de anchura de distribución normal, los subíndices C1, C2 y C3 representan el primero, el segundo y el tercer componente a base de etileno, respectivamente. wfci,GPc, wfc2,GPc y wfc3,GPc son las fracciones en peso del primer, el segundo y el tercer componentes a base de etileno a partir de GPC-MWD, respectivamente.
Cada uno de los componentes emparejados (el primer componente a base de etileno (C1), el segundo componente a base de etileno (C2) y el tercer componente a base de etileno (C3)) de CEF-SCBD y GPC-MWD se consideran masas equivalentes para sus respectivas técnicas tal como se muestra en las ecuaciones 27A-E.
Figure imgf000019_0002
Los datos del procedimiento y el catalizador, incluyendo la eficiencia de los catalizadores y el balance de masas del reactor, pueden aprovecharse para estimaciones iniciales de la producción en peso relativa de cada componente. Alternativamente, las estimaciones iniciales de la fracción en peso para cada componente pueden compararse integrando áreas parciales del gráfico de CEF-SCBD o GPC-MWD del polímero a base de etileno multimodal, teniendo en cuenta especialmente áreas visibles con picos definidos o puntos de inflexión máximos. Por ejemplo, el área de pico para cada componente en la curva de CEF-SCBD (Inv3), si está bien separada puede estimarse dejando caer líneas verticales entre picos tal como se muestra en la figura 2. La asociación del orden de peso molecular y la estimación inicial del peso molecular pueden obtenerse a partir de las posiciones de los picos de las áreas de componentes asociadas en los gráficos de CEF-SCBD y CEF-MW y debería esperarse una coincidencia con las mediciones de GPC-CC tal como se muestra en la figura 2. En algunos casos, la asignación inicial de áreas de pico y composición puede obtenerse a partir de una GPC-MWD multimodal como punto de partida y validarse bajo los gráficos de CEF-SCBD y CEF-MW.
Las estimaciones iniciales de la anchura de pico y la asimetría en CEF-SCBD para cada componente pueden obtenerse a partir de una calibración de anchura de pico frente a la temperatura usando una serie de muestras convencionales de sitio único, tales como las presentadas previamente en la tabla A.
Microsoft Excel® Solver está programado para minimizar la suma combinada de cuadrados de residuos entre el wtsuma, GPc(lgMi) y la GPC-MWD medida, y la suma de cuadrados de residuos entre el wt
(en donde la anchura de muestreo y las áreas de las dos distribuciones observadas se normalizan con respecto a la otra). El ajuste de GPC-MWD y CEF-SCBD reciben la misma ponderación ya que convergen simultáneamente. Se utilizan valores estimados iniciales para la fracción en peso y la anchura de pico en CEF-SCBD así como el objetivo de peso molecular para cada componente para Microsoft Excel®Solver para comenzar tal como se describe en el presente documento.
Los efectos de la cocristalización que distorsionan la forma del pico en CEF se compensan mediante el uso del ajuste del pico gaussiano modificado exponencialmente (EMG) y en casos extremos, el uso de múltiples picos de EMG (hasta 3) sumados para describir un único componente. Un componente producido a través de un catalizador de sitio único puede modelarse mediante un único pico de EMG. Un componente producido a través de un catalizador de Ziegler-Natta puede modelarse mediante 1,2 ó 3 picos de EMG, o un único pico de EMG que posee una cola larga orientada hacia baja temperatura suficiente para un componente de Ziegler-Natta de muy alta densidad, objetivos de peso molecular muy bajo en el gráfico de CEF-SCBD. En todos los casos, sólo se usa una única distribución de Flory-Schulz ensanchada (ecuaciones 26A-C) con la fracción en peso asignada como la suma asociada de uno o más de los componentes de EMG del modelo de CEF-SCBD (ecuaciones 27A-E).
La desconvolución de GPC se restringe con un parámetro de anchura de distribución normal (oc1 o 002) de la ecuación 26A, 26B entre 0,000 y 0,170 (polidispersidades correspondientes de aproximadamente 2,00 a 2,33) para el primer, segundo y tercer componentes a base de etileno que se fabrican mediante catalizadores de sitio único. El Mw,objetivo en la ecuación 22 se restringe para ser el más bajo para el tercer componente a base de etileno en estos casos, ya que se dirige a ser el más bajo de este esquema de reacción específico. Obsérvese que no está restringido por la definición para ser el más bajo en todos los casos posibles, dependiendo del objetivo de rendimiento deseado de la mezcla combinada de resina en reactor. La clasificación (estimación preliminar) de los dos pesos moleculares promedio en peso (Mw,objetivo) del primer componente a base de etileno y el segundo componente a base de etileno se observa por el Mw(cef) del gráfico de CEF-MW (Mw(cef) frente a la curva de temperatura) a las temperaturas a las que se observan los picos del primer y segundo componentes a base de etileno en el gráfico de CEF-SCBD (wtcEF(T) frente a la curva de temperatura). Por tanto, el orden de los pesos moleculares para los tres componentes es bien conocido. Un balance de masas del reactor produce el porcentaje en masa (Wf) de la ecuación 26C del tercer componente a base de etileno, o alternativamente puede calcularse a partir de la desconvolución usando la ecuación 26D, dependiendo de la intensidad de los modelos de distribución conocidos para CEF y GPC y la fracción en peso total debe sumarse a la unidad (ecuaciones 27A-E).
En general, se ha encontrado que aproximadamente 20 iteraciones de resolución tendrán normalmente una buena convergencia en la solución utilizando Excel®. Si existe un desacuerdo en el orden de los picos frente al peso molecular medido por el gráfico de CEF-MW y la medición del % en peso observada del comonómero medida mediante GPC-CC, entonces los datos deben conciliarse cambiando los puntos de partida de iteración (temperatura o lgMW) en Excel o cambiando los factores de anchura y de cola ligeramente de manera que la iteración continuará con la convergencia a una solución consistente entre las mediciones, o debe aumentarse la resolución de las mediciones, o puede añadirse un pico adicional al CEF-SCBD para aproximar mejor la forma del pico de elución de los componentes individuales. Tales componentes podrían modelarse a priori mediante varias distribuciones de EMG si se preparan individualmente. La figura 2 (Inv3) muestra una alta resolución de CEF-SCBD y una menor resolución de GPC-MWD en cuanto a la separación de picos, en donde la ordenación medida usando los métodos de relación de LS y IR y las fracciones en peso permiten una excelente convergencia de iteración en la solución combinada. En este caso, el pico de densidad más baja a 30 0C (el cual se atribuye a la fracción soluble) puede modelarse mediante la suma de 2 picos de EMG separados por separado, y cada componente a base de etileno puede modelarse a partir de un único pico de EMG.
Adicionalmente, una respuesta prevista de Mw(cef) para CEF-MW puede generarse usando el peso molecular promedio en peso mediante GPC-MWD de cada uno de los componentes multiplicado por la fracción en peso observada de cada uno de los componentes en cada punto a lo largo del gráfico de CEF-SCBD. El Mw(cef) previsto necesita estar de acuerdo con el Mw(cef) medido en el gráfico de CEF-MW. Al representar gráficamente la incorporación de comonómero en función de la temperatura de elución basándose en una serie de patrones de copolímero conocidos, el gráfico de GPC-CC también puede predecirse usando el Mw(cef) medido y la incorporación de comonómero del componente individual a partir de los gráficos de CEF-MW y CEF-SCBD. El gráfico de GPC-CC previsto debe estar de acuerdo con el GPC-CC medido.
Una correlación de temperatura máxima frente a densidad para los datos de CEF-SCBD se obtiene usando una serie de resinas convencionales de polímero a base de etileno lineales polimerizadas a partir de catalizadores de sitio único de un índice de fusión (I2) de aproximadamente 1 g/10 min, o un peso molecular promedio en peso nominal de aproximadamente 105.000 g/mol por GPC, y polidispersidades (o m WD) menores de 2,3 por GPC. Se usan al menos 10 resinas convencionales de contenido de comonómero conocido, densidad y peso molecular dentro del intervalo de densidad de 0,87 a 0,96 g/cm3. Los datos de temperatura y densidad máximos se ajustan con una curva polinómica de 5 orden para obtener la curva de calibración.
Una anchura de pico y una cola de pico frente a la correlación de temperatura máxima se obtiene de manera similar ajustando la anchura de pico y la cola de pico frente a la temperatura de las resinas anteriores con una línea recta, que es muy útil para estimaciones iniciales en el proceso de desconvolución.
El primer componente a base de etileno y el segundo componente a base de etileno se observaron en los polímeros de la invención presentados en el presente documento directamente a partir del gráfico de desconvolución de CEFSCBD como el primer y el tercer picos de desde 35 °C hasta 110 °C de temperatura de elución. Una “densidad en bruto” (densidaden bruto) se calculó a partir de estas posiciones de pico observadas usando la curva de calibración de la temperatura máxima frente a la densidad. La densidaden bruto (en g/cm3) se corrigió a la densidadverdadera (en g/cm3) teniendo en cuenta las contribuciones de peso molecular (en g/mol) usando la ecuación 28:
Figure imgf000021_0001
donde Mw(gpc) es el peso molecular promedio en peso del componente único desconvolucionado de GPC-MWD.
La densidad del tercer componente a base de etileno puede calcularse basándose en la densidad conocida de la resina, densidadverdadera del primer componente a base de etileno, la densidadverdadera del segundo componente a base de etileno, y las fracciones en peso de cada componente según la siguiente ecuación 29.
Figure imgf000021_0002
El índice de fusión (I2) de cada componente a base de etileno puede estimarse a partir de su peso molecular promedio en peso mediante la siguiente ecuación:
Figure imgf000021_0003
donde Mw (gpc) es el peso molecular promedio en peso (en g/mol) del componente único desconvolucionado de la curva de GPC-MWD e I2 es el índice de fusión en (g/10 min). Tenga en cuenta que la cantidad de ramificación de cadena larga puede cambiar los coeficientes.
Además, para la determinación de la composición del producto, el muestreo directo de un único reactor con un único catalizador con las mismas condiciones del reactor, un primer muestreo del reactor para una configuración de doble reactor en serie, o el muestreo de ambos reactores para una configuración paralela de doble reactor puede usarse para ayudar en la determinación de la densidad, el índice de fusión (I2), GPC-MWD y CEF-SCBD de cada componente individual del polímero a base de etileno multimodal, proporcionando especialmente que la reacción se destruya eficazmente más allá del punto de muestreo. Esto permite una mejor confirmación en los casos en donde las posiciones de pico del primer y segundo componentes a base de etileno no pueden determinarse adecuadamente a partir de la mezcla de 3 componentes.
El examen directo y la cuantificación mediante fraccionamiento cruzado analítico en GPC-TREF, tal como la unidad de CFC de PolymerChar (Valencia, España) equipada con dispersión de luz en línea y empleando calibraciones similares en espacio bivariable que representa SCBD y peso molecular y calibrando la relación a densidad, puede usarse para medir cantidades o también discriminar más precisamente cada uno de los componentes, especialmente para las estimaciones iniciales o en casos que pueden producir cocristalización alta o baja resolución/discriminación de especies particularmente en el espacio de MWD y SCBD. (Development of an Automated Cross-Fractionation Apparatus (TREF-GPC) for a Full Characterization of the Bivariate Distribution of Polyolefins. Polyolefin Characterization. Macromolecular Symposia, volumen 257, 2007, páginas 13-28. A. Ortín, B. Monrabal, J. Sancho-Tello) Debe obtenerse una resolución adecuada tanto en el espacio de IgMW como en el espacio de temperatura y la verificación debe hacerse a través de la medición directa de la proporción de composición, por ejemplo, IR-5 y la medición de peso molecular por dispersión de luz. VéaseCharacterization of Chemical Composition along the Molar Mass Distribution in Polyolefin Copolymers by GPC Using a Modern Filter-Based IR Detector. Polyolefin Characterization - ICPC 2012 Macromolecular Symposia volumen 330, 2013, páginas 63-80, A. Ortín, J. Montesinos, E. López, P. del Hierro, B. Monrabal, J.R. Torres-Lapasió, M.C. García-Álvarez-Coque. La desconvolución de los componentes debe usar un conjunto similar de ecuaciones y una calibración análoga verificada por una serie de resinas de sitio único y mezclas de resina.
Dardo
La prueba de caída de dardo en película determina la energía que provoca que falle una película de plástico, en condiciones específicas de impacto por un dardo descendente libre. El resultado de la prueba es la energía, expresada en cuanto al peso del proyectil que cae desde una altura especificada, lo que daría como resultado un fallo del 50 % de las muestras sometidas a prueba.
La resistencia al impacto por dardo (dardo) se mide según la norma ASTM D1709, método A, usando una altura de caída de 26 pulgadas ± 0,4 pulgadas (66 cm ± 1 cm) y un cabezal hemisférico de aluminio pulido de 38,10 ± 0,13 mm de diámetro. La temperatura de ensayo fue de 23 0C y la humedad era del 50 % de humedad relativa (HR).
Módulo Secante
Se determinó el módulo secante al 2 % en la MD (dirección de la máquina) y la CD (dirección transversal) de la película según la norma ASTM D882 a una velocidad de cruceta de 20 pulgadas/minuto. La anchura de la muestra es de 1 pulgada y la separación inicial de agarre es de 4 pulgadas. El valor del módulo secante al 2 % notificado fue el promedio de cinco mediciones. La temperatura de ensayo fue de 23 0C y la humedad era del 50 % de la humedad relativa (HR).
Tracción
Las propiedades de tracción tanto en la dirección de la máquina (MD) como en la dirección transversal (CD) se determinaron según la norma ASTM D882 a una velocidad de cruceta de 20 pulgadas/minuto. La temperatura de ensayo fue de 23 0C y la humedad era del 50 % de la HR. La anchura de la muestra era de 1 pulgada y la separación inicial de agarre era de 2 pulgadas. La tensión de rotura se registró como resistencia a la tracción. Se informó un valor promedio de cinco muestras.
Punción
La prueba de punción se realizó usando la norma ASTM D 5748 con una sonda recubierta de teflón de 0,75 pulgadas de diámetro a 23 0C y el 50 % de HR. Se mantuvo una muestra de película en una pinza neumática con una abertura de 4 pulgadas de diámetro a temperatura ambiente. La velocidad de impacto fue de 10 pulgadas/minuto. La energía de punción se calculó basándose en el área bajo la curva de fuerza-desplazamiento. Se sometieron a prueba cinco muestras para obtener un valor promedio.
Desgarro
Se realizó una prueba de desgarro de Elmendorf tanto en la dirección de la máquina (MD) como en la dirección transversal (CD) según la norma ASTM D1922, tipo B, radio constante. La temperatura de ensayo fue de 23 0C y la humedad era del 50 % de la HR.
Ejemplos
Los siguientes ejemplos ilustran características de la presente descripción, pero no pretenden limitar el alcance de la descripción.
Polímeros comerciales utilizados
Los polímeros utilizados en los siguientes ejemplos se proporcionan en la tabla 1.
Tabla 1
Figure imgf000022_0001
La siguiente tabla 2 enumera la densidad, el índice de fusión (I2), el peso molecular promedio en peso (Mw (gpc)). La MWD (Mw (GPC)/Mn(GPC)), y el porcentaje en peso del primer, segundo y tercer componentes a base de etileno de polímeros a base de etileno multimodales de la invención.
Tabla 2
Figure imgf000022_0002
Figure imgf000023_0001
Los polímeros de la invención Inv1-Inv4 se prepararon según el siguiente procedimiento y se basaron en las condiciones de reacción indicadas en la tabla 3. La configuración del reactor fue la operación del reactor doble en serie. El sistema de reactor doble en serie consistió en un reactor de tanque agitado continuo, adiabático, lleno de un líquido (CSTR) y un reactor de tipo bucle lleno de líquido, no adiabático, isotérmico, circulante, que imita a un reactor de tanque agitado continuo (CSTR) con eliminación de calor. El CSTR adiabático fue el primer reactor.
En la configuración de reactores dobles en serie, el efluente del primer reactor de polimerización (que contiene disolvente, monómero, comonómero, hidrógeno, componentes del catalizador y polímero disuelto) sale del primer reactor y se añade al segundo reactor independientemente de las otras alimentaciones al segundo reactor. El tipo de reactor puede ser un reactor de tanque agitado continuo, adiabático, lleno de un líquido (CSTR) o un reactor de tipo bucle lleno de líquido, no adiabático, isotérmico, circulante, que imita a un reactor de tanque agitado continuo (CSTR) con eliminación de calor. El efluente del reactor final (efluente del segundo reactor para reactores dobles en serie) entra en una zona donde se desactiva con la adición de y la reacción con un reactivo adecuado (agua). En esta ubicación de salida del reactor, se inyectan otros aditivos para la estabilización del polímero.
Después de la desactivación del catalizador y la adición de aditivos, el efluente del reactor entró en un sistema de desvolatilización donde el polímero se retiró de la corriente no polimérica. La corriente no polimérica se retiró del sistema. La masa fundida de polímero aislada se granuló y se recogió.
Todas las materias primas (monómero y comonómero) y el disolvente del procedimiento (un disolvente parafínico de alta pureza de intervalo de ebullición estrecho, ISOPAR E) se purificaron con tamices moleculares antes de la introducción en el entorno de reacción. El hidrógeno se suministró presurizado como un grado de alta pureza y no se purificó adicionalmente. La corriente de alimentación del monómero del reactor se presurizó mediante un compresor mecánico a la presión de reacción anterior. La alimentación de disolvente se presurizó a través de una bomba a la presión de reacción anterior. La alimentación de comonómero se presurizó a través de una bomba a la presión de reacción anterior. Los componentes individuales del catalizador se diluyeron manualmente por lotes a concentraciones de componente especificadas con disolvente purificado y se presurizaron a la presión de reacción anterior. Todos los flujos de alimentación de reacción se midieron con medidores de flujo másico y se controlaron independientemente con bombas dosificadoras.
Se utilizó un control independiente de todas las alimentaciones de disolvente, monómero, comonómero, hidrógeno y componentes de catalizador recién preparados a cada reactor. Se controló la temperatura de las corrientes de alimentación recién preparadas totales a cada reactor (disolvente, monómero, comonómero e hidrógeno) haciendo pasar la corriente de alimentación a través de un intercambiador de calor. La alimentación recién preparada total a cada reactor de polimerización se inyectó en el reactor en una o más ubicaciones. Los componentes del catalizador se inyectaron en el reactor de polimerización independientemente de las otras fuentes. Un agitador en un reactor CSTR o una serie de elementos de mezclado estáticos en un reactor de tipo bucle fue responsable del mezclado continuo de los reactivos. El baño de aceite (para un reactor CSTR) y el intercambiador de calor (para un reactor de tipo bucle) proporcionaron un ajuste fino del control de la temperatura del reactor.
Para el reactor que utiliza catalizadores primarios dobles en un reactor, se controlan dos variables calculadas: (1) el flujo másico total del catalizador primario 1 y el catalizador primario 2, y (2) la fracción másica para el catalizador primario 1 del flujo másico total de ambos catalizadores primarios. El flujo másico total de ambos catalizadores primarios se controló por ordenador para mantener la conversión del monómero del reactor individual en el objetivo especificado. La fracción másica del catalizador primario 1 se controló para mantener la fracción másica relativa del polímero producido por cada catalizador en ese reactor individual. Los componentes del cocatalizador para el reactor utilizando catalizadores primarios dobles se alimentaron basándose en las razones molares especificadas calculadas con respecto al total de ambos componentes del catalizador primario.
Tabla 3
Figure imgf000024_0001
Figure imgf000025_0001
Las fórmulas del catalizador A, el catalizador B y el catalizador C para preparar los polímeros de la invención se muestran a continuación. Los resultados se enumeran en la tabla 4.
Figure imgf000026_0001
Tabla 4
Figure imgf000026_0002
Las películas sopladas multicapa de 2 mil se fabrican usando una línea de película soplada de LabTech. La línea estaba compuesta por cinco extrusoras de un solo husillo. Las dos extrusoras exteriores (extrusora A y extrusora E) tenían 25 mm de diámetro y las tres extrusoras de núcleo (extrusora B, extrusora C y extrusora D) tenían 20 mm de diámetro. La razón de L/D de las cinco extrusoras fue 30/1. La hilera anular tenía 75 mm de diámetro y se usó un sistema de enfriamiento de anillo de aire de doble labio. El hueco hilera-labio era de 2 mm y la razón de soplado (BUR) fue de 2,5. La altura de la línea de escarcha era de 11 pulgadas. La velocidad de salida total fue de 30 libras/hora para el Inv1 y el Inv2. La velocidad de salida total fue de 25 libras/hora para el Inv3 y el Inv4. La temperatura de fusión fue de 230 0C y la temperatura de la hilera se ajustó a 230 0C. El mismo polímero se alimentó a las cinco extrusoras al mismo tiempo para preparar una película monocapa. La razón de tasa de rendimiento de la extrusora fue del 20 %/20 %/20 %/20 %/20 %.
Las propiedades de película de Inv1 -Inv 5 se enumeran en la tabla 5.
Tabla 5
Figure imgf000027_0001

Claims (15)

  1. REIVINDICACIONES
    i. Un método para producir un polímero a base de etileno multimodal que comprende:
    hacer pasar un monómero de etileno, al menos un comonómero C3-C12, un disolvente, un primer catalizador, un segundo catalizador y opcionalmente hidrógeno en un primer reactor de polimerización en disolución para producir un polímero a base de etileno bimodal, comprendiendo el polímero a base de etileno bimodal un primer componente a base de etileno que tiene una densidad (P1) polimerizado a partir del primer catalizador y un segundo componente a base de etileno que tiene una densidad (P2), polimerizado a partir del segundo catalizador, en donde p1 < P2 ; y
    hacer pasar el polímero a base de etileno bimodal, el monómero de etileno, al menos un comonómero C3-C12, un disolvente, un tercer catalizador, y opcionalmente hidrógeno en un segundo reactor de polimerización en disolución para producir el polímero a base de etileno multimodal, comprendiendo el polímero a base de etileno multimodal el primer componente a base de etileno, el segundo componente a base de etileno y un tercer componente a base de etileno, teniendo el tercer componente a base de etileno una densidad (p3).
  2. 2. El método según cualquier reivindicación anterior, en donde el polímero a base de etileno multimodal tiene una distribución de peso molecular (Mw(GPC)/Mn(GPC)) de al menos 4, o preferiblemente de desde 4 hasta 10; en donde la distribución de peso molecular (Mw(GPC)/Mn(GPC)) se mide según la descripción.
  3. 3. El método según cualquier reivindicación anterior, en donde el polímero a base de etileno multimodal tiene una densidad de desde 0,905 hasta 0,930 g/cm3, medido según la norma ASTM D792, método B.
  4. 4. El método según cualquier reivindicación precedente, en donde el polímero a base de etileno multimodal tiene un índice de fusión de desde 0,1 hasta 10 g/10 min medido según la norma ASTM D1238 a 190 0C a 2,16 kg.
  5. 5. El método según cualquier reivindicación anterior, en donde p2 es mayor que p1 en al menos 0,03 g/cm3; en donde la densidad se mide según la norma ASTM D792, método B.
  6. 6. El método según cualquier reivindicación anterior, en donde p2 es mayor que p1 en al menos 0,04 g/cm3; en donde la densidad se mide según la norma ASTM D792, método B.
  7. 7. El método según cualquier reivindicación anterior, en donde p3es de desde 0,910 hasta 0,940 g/cm3; en donde la densidad se mide según la norma ASTM D792, método B.
  8. 8. El método según cualquier reivindicación anterior, en donde el primer componente a base de etileno tiene un peso molecular promedio en peso (Mw (gpc)) de 100.000 a 200.000 g/mol; en donde el peso molecular promedio en peso (Mw (gpc)) se mide según la descripción
  9. 9. El método según cualquier reivindicación anterior, en donde el segundo componente a base de etileno tiene un peso molecular promedio en peso (Mw (gpc)) de 100.000 a 363.000 g/mol; en donde el peso molecular promedio en peso (Mw (gpc)) se mide según la descripción.
  10. 10. El método según cualquier reivindicación anterior, en donde el tercer componente a base de etileno tiene un peso molecular promedio en peso (Mw (gpc)) de 10.000 a 50.000 g/mol; en donde el peso molecular promedio en peso (Mw (gpc)) se mide según la descripción.
  11. 11. El método según cualquier reivindicación anterior, en donde el primer reactor de polimerización en disolución, el segundo reactor de polimerización en disolución, o ambos comprenden un reactor de tipo bucle.
  12. 12. El método según cualquier reivindicación anterior, en donde el primer reactor de polimerización en disolución, el segundo reactor de polimerización en disolución, o ambos comprenden un reactor continuo de tanque agitado.
  13. 13. El método según cualquier reivindicación anterior, en donde la incorporación de comonómero de al menos dos del primer, segundo o tercer componentes a base de etileno es superior al 0,5 % en moles, y en donde el comonómero C3-C12 es octeno o hexeno.
  14. 14. El método según cualquier reivindicación anterior, en donde el polímero a base de etileno multimodal comprende del 20 al 55 % en peso del primer componente a base de etileno, del 10 al 40 % en peso del segundo componente a base de etileno, del 35 al 65 % en peso del tercer componente a base de etileno.
  15. 15. El método según cualquier reivindicación anterior, que comprende además hacer pasar el polímero a base de etileno multimodal a un reactor tubular aguas abajo del segundo reactor de polimerización en disolución.
ES18840120T 2017-12-26 2018-12-19 Procedimiento para la producción de polímeros a base de etileno multimodales Active ES2946586T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762610384P 2017-12-26 2017-12-26
PCT/US2018/066475 WO2019133378A1 (en) 2017-12-26 2018-12-19 Process for the production of multimodal ethylene-based polymers

Publications (1)

Publication Number Publication Date
ES2946586T3 true ES2946586T3 (es) 2023-07-21

Family

ID=65237143

Family Applications (1)

Application Number Title Priority Date Filing Date
ES18840120T Active ES2946586T3 (es) 2017-12-26 2018-12-19 Procedimiento para la producción de polímeros a base de etileno multimodales

Country Status (9)

Country Link
US (1) US11680119B2 (es)
EP (1) EP3732216B1 (es)
JP (2) JP7467341B2 (es)
KR (1) KR102663571B1 (es)
CN (1) CN111683979B (es)
BR (1) BR112020012805A2 (es)
ES (1) ES2946586T3 (es)
SG (1) SG11202005778VA (es)
WO (1) WO2019133378A1 (es)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202005779SA (en) 2017-12-26 2020-07-29 Dow Global Technologies Llc Compositions comprising multimodal ethylene based polymers and low density polyethylene (ldpe)
CN111479832B (zh) * 2017-12-26 2024-03-15 陶氏环球技术有限责任公司 用于生产多峰乙烯类聚合物的双反应器溶液法
EP3732213B1 (en) 2017-12-26 2022-01-12 Dow Global Technologies LLC Multimodal ethylene-based polymer compositions having improved toughness
EP3732216B1 (en) 2017-12-26 2023-04-19 Dow Global Technologies LLC Process for the production of multimodal ethylene-based polymers
KR102663559B1 (ko) 2017-12-26 2024-05-20 다우 글로벌 테크놀로지스 엘엘씨 다중모드 에틸렌계 중합체 처리 시스템 및 방법
KR102571139B1 (ko) * 2018-06-08 2023-08-28 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 에틸렌 중합체 혼합물과 이의 제조방법 및 이를 이용한 성형품
BR112022000973A2 (pt) * 2019-07-31 2022-03-08 Dow Global Technologies Llc Polímero à base de etileno, e, processo
JP2023508134A (ja) * 2019-12-26 2023-03-01 ダウ グローバル テクノロジーズ エルエルシー 優れた加工性を有するポリマー組成物の製造のための方法
WO2021191019A1 (en) * 2020-03-24 2021-09-30 Borealis Ag Polyethylene composition for a film layer

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076698A (en) 1956-03-01 1978-02-28 E. I. Du Pont De Nemours And Company Hydrocarbon interpolymer compositions
CA849081A (en) 1967-03-02 1970-08-11 Du Pont Of Canada Limited PRODUCTION OF ETHYLENE/.alpha.-OLEFIN COPOLYMERS OF IMPROVED PHYSICAL PROPERTIES
US3914342A (en) 1971-07-13 1975-10-21 Dow Chemical Co Ethylene polymer blend and polymerization process for preparation thereof
US4314912A (en) 1977-02-03 1982-02-09 The Dow Chemical Company High efficiency, high temperature catalyst for polymerizing olefins
US4599392A (en) 1983-06-13 1986-07-08 The Dow Chemical Company Interpolymers of ethylene and unsaturated carboxylic acids
US4547475A (en) 1984-09-07 1985-10-15 The Dow Chemical Company Magnesium halide catalyst support and transition metal catalyst prepared thereon
US4612300A (en) 1985-06-06 1986-09-16 The Dow Chemical Company Novel catalyst for producing relatively narrow molecular weight distribution olefin polymers
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
US5278272A (en) 1991-10-15 1994-01-11 The Dow Chemical Company Elastic substantialy linear olefin polymers
US5582923A (en) 1991-10-15 1996-12-10 The Dow Chemical Company Extrusion compositions having high drawdown and substantially reduced neck-in
US5292845A (en) 1992-01-23 1994-03-08 Mitsui Petrochemical Industries, Ltd. Ethylene/alpha-olefin/7-methyl-1,6-octadiene copolymer rubber and composition of the same
US5693488A (en) 1994-05-12 1997-12-02 The Rockefeller University Transmembrane tyrosine phosphatase, nucleic acids encoding the same, and methods of use thereof
FI96216C (fi) 1994-12-16 1996-05-27 Borealis Polymers Oy Prosessi polyeteenin valmistamiseksi
JP3375780B2 (ja) 1995-03-29 2003-02-10 三井化学株式会社 重包装袋用ポリエチレン樹脂組成物およびその組成物からなる重包装袋用ポリエチレン樹脂フィルム
JP3258534B2 (ja) 1995-07-28 2002-02-18 タイコエレクトロニクスアンプ株式会社 雌型コンタクト
JP3564548B2 (ja) 1995-09-22 2004-09-15 新日本石油化学株式会社 エチレン/α−オレフィン共重合体の連続多段重合法
ATE218599T1 (de) 1996-11-13 2002-06-15 Dow Chemical Co Schrumpffolie mit ausgeglichenen eigenschaften oder verbesserter zähigkeit und verfahren zu ihrer herstellung
US6812289B2 (en) 1996-12-12 2004-11-02 Dow Global Technologies Inc. Cast stretch film of interpolymer compositions
US6319998B1 (en) 1998-03-04 2001-11-20 Exxon Mobil Chemical Patents Inc. Method for making polymer blends by using series reactors
CA2247703C (en) 1998-09-22 2007-04-17 Nova Chemicals Ltd. Dual reactor ethylene polymerization process
EP0989141A1 (en) 1998-09-25 2000-03-29 Fina Research S.A. Production of multimodal polyethelene
EP1041113A1 (en) 1999-03-30 2000-10-04 Fina Research S.A. Polyolefins and uses thereof
JP3973800B2 (ja) 1999-07-13 2007-09-12 大倉工業株式会社 二軸延伸用ポリエチレン系樹脂組成物
CA2285723C (en) 1999-10-07 2009-09-15 Nova Chemicals Corporation Multimodal polyolefin pipe
US6399722B1 (en) * 1999-12-01 2002-06-04 Univation Technologies, Llc Solution feed of multiple catalysts
US7135526B2 (en) 2001-06-22 2006-11-14 Univation Technologies, Llc Very low density polyethylene and high density polyethylene blends
AU2003225156A1 (en) 2002-04-24 2003-11-10 Symyx Technologies, Inc. Bridged bi-aromatic ligands, complexes, catalysts and processes for polymerizing and poymers therefrom
ATE507472T1 (de) 2003-08-08 2011-05-15 Shikoku Research Inst Inc Verfahren und vorrichtung zur überwachung von wasserstoffgas und einer wasserstoffflamme
DE602004003960T2 (de) 2004-11-03 2007-11-08 Borealis Technology Oy Multimodale Polyethylenzusammensetzung mit verbesserter Homogenität
DE102005009916A1 (de) 2005-03-01 2006-09-07 Basell Polyolefine Gmbh Polyethylen Formmasse zum Herstellen von Blasfolien mit verbesserten mechanischen Eigenschaften
US7928164B2 (en) 2005-06-22 2011-04-19 Exxonmobil Chemical Patents Inc. Homogeneous polymer blend and process of making the same
DE102005030941A1 (de) 2005-06-30 2007-01-11 Basell Polyolefine Gmbh Polyethylen Formmasse zur Herstellung von spritzgegossenen Fertigteilen
WO2007011462A1 (en) 2005-07-19 2007-01-25 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
DE102005040390A1 (de) 2005-08-25 2007-03-01 Basell Polyolefine Gmbh Multimodale Polyethylen Formmasse zur Herstellung von Rohren mit verbesserten mechanischen Eigenschaften
US7473745B2 (en) * 2005-09-02 2009-01-06 Equistar Chemicals, Lp Preparation of multimodal polyethylene
US7589162B2 (en) 2006-02-22 2009-09-15 Chevron Philips Chemical Company Lp Polyethylene compositions and pipe made from same
EP2024399B1 (en) 2006-05-17 2014-04-09 Dow Global Technologies LLC Ethylene/ alpha-olefin/ diene solution polymerization process
ATE477284T1 (de) 2006-10-24 2010-08-15 Basell Polyolefine Gmbh Multimodale polyethylenformmasse zur herstellung von rohren mit verbesserten mechanischen eigenschaften
CN102083902B (zh) 2006-12-22 2014-08-13 巴塞尔聚烯烃股份有限公司 多峰聚乙烯组合物、用于制备该组合物的混合催化剂和方法
WO2008077530A2 (en) 2006-12-22 2008-07-03 Basell Polyolefine Gmbh Multimodal polyethylene composition, mixed catalyst and process for preparing the composition
GB0713010D0 (en) 2007-07-04 2007-08-15 Dickinson Simon Safety or booster seat for use in conjunction with a vehicle
KR101141494B1 (ko) 2007-09-05 2012-05-03 에스케이이노베이션 주식회사 다봉 분자량 분포를 갖는 에틸렌 공중합체 및 이의제조방법
US7928162B2 (en) 2007-09-13 2011-04-19 Exxonmobil Research And Engineering Company In-line process for producing plasticized polymers and plasticized polymer blends
EP2042292B1 (en) 2007-09-28 2011-01-05 Borealis Technology Oy Composition
WO2009071323A1 (en) 2007-12-05 2009-06-11 Borealis Technology Oy Multi-modal linear low density polyethylene polymer
CN101981110B (zh) 2007-12-18 2013-03-27 巴塞尔聚烯烃股份有限公司 生产注塑螺帽盖子的pe模塑组合物和用其生产的用于充碳酸气的饮料的高强度螺帽盖子
US7829641B2 (en) * 2008-07-16 2010-11-09 Equistar Chemicals, Lp Process for the preparation of multimodal polyethylene resins
US9090761B2 (en) 2008-08-29 2015-07-28 Basell Polyolefine Gmbh Polyethylene for injection moldings
KR101152413B1 (ko) 2008-09-12 2012-06-05 에스케이이노베이션 주식회사 에틸렌 공중합체 및 이의 제조방법
US9187627B2 (en) 2008-10-23 2015-11-17 Equistar Chemicals, Lp Polyethylene having faster crystallization rate and improved environmental stress cracking resistance
ES2381849T3 (es) 2008-11-17 2012-06-01 Borealis Ag Procedimiento multietapa para producir polietileno con formación de gel reducida
CN102333798B (zh) 2009-02-27 2014-06-04 巴塞尔聚烯烃股份有限公司 乙烯聚合的多级方法
US8114493B2 (en) 2009-04-28 2012-02-14 Equistar Chemicals, Lp Polyethylene pipe resins
CN102471547B (zh) 2009-06-30 2014-11-12 巴塞尔聚烯烃股份有限公司 聚乙烯模塑组合物
EP2501729B1 (en) 2009-11-20 2015-08-26 Basell Polyolefine GmbH Novel trimodal polyethylene for use in blow moulding
CN102741409A (zh) 2009-11-25 2012-10-17 生命科技公司 等位基因梯基因座
MX2012006786A (es) * 2009-12-18 2012-10-05 Total Petrochemicals Res Feluy Metodo para producir una mezcla de suspension de catalizadores.
WO2011092266A1 (en) 2010-01-29 2011-08-04 Borealis Ag Improving homogeneity in polyethylene blends
PL2354184T3 (pl) 2010-01-29 2013-01-31 Borealis Ag Tłoczywo polietylenowe o ulepszonym stosunku odporność na pękanie /sztywność i ulepszone udarności
WO2012004422A1 (es) 2010-07-06 2012-01-12 Dow Global Technologies Llc Mezclas de polímeros de etileno y artículos orientados con resistencia mejorada a la contracción
EP2415598B1 (en) 2010-08-06 2014-02-26 Borealis AG Multilayer film
BR112013003706A2 (pt) 2010-08-25 2016-08-16 Dow Global Technologies Llc processo para copolimerizar olefinas polimerizáveis, complexo de ligante-metal, catalisador e ligante
EP2643141B1 (en) 2010-11-22 2017-03-15 Basell Polyolefine GmbH Blow molded article comprising trimodal polyethylene
EP2520625A1 (en) 2011-05-06 2012-11-07 Borealis AG Coating composition
US9493641B2 (en) 2011-06-10 2016-11-15 Dow Global Technologies Llc Resin compositions for extrusion coating
DE102011056162A1 (de) 2011-12-08 2013-06-13 Krones Aktiengesellschaft Vorrichtung und Verfahren zur Sterilisation von Innenwandungen von Behältnissen mit einer Reflektorvorrichtung
US8580893B2 (en) 2011-12-22 2013-11-12 Fina Technology, Inc. Methods for improving multimodal polyethylene and films produced therefrom
ES2657137T3 (es) 2012-03-28 2018-03-01 Borealis Ag Polímero multimodal
WO2013144328A1 (en) 2012-03-28 2013-10-03 Borealis Ag Multimodal polymer
BR112014031191B1 (pt) 2012-06-26 2021-08-24 Dow Global Technologies Llc Composição-mistura de polietileno apropriada para película soprada e película soprada
US20140127438A1 (en) 2012-11-08 2014-05-08 Robert L. Sherman, Jr. Stabilized high-density polyethylene composition with improved resistance to deterioration and stabilizer system
US8912285B2 (en) 2012-12-06 2014-12-16 Chevron Phillips Chemical Company Lp Catalyst system with three metallocenes for producing broad molecular weight distribution polymers
EP2931763B1 (en) 2012-12-14 2018-01-31 Nova Chemicals (International) S.A. Ethylene copolymer compositions, film and polymerization processes
EP2746299A1 (en) 2012-12-19 2014-06-25 Basell Poliolefine Italia S.r.l. Multistage process for the polymerization of ethylene
CN104822716B (zh) 2012-12-21 2017-11-14 埃克森美孚化学专利公司 具有改进的加工性的支化聚乙烯及由其制成的高抗撕裂性膜
US9527940B2 (en) 2012-12-27 2016-12-27 Dow Global Technologies Llc Polymerization process for producing ethylene based polymers
SG11201503581PA (en) 2012-12-27 2015-06-29 Dow Global Technologies Llc Catalyst systems for olefin polymerization
EP2860203B1 (en) 2013-10-10 2016-12-14 Borealis AG Multistage process for producing polyethylene compositions
US10457787B2 (en) 2014-04-09 2019-10-29 Dow Global Technologies Llc Oriented polyethylene films and a method for making the same
KR101770086B1 (ko) 2014-05-20 2017-08-21 바젤 폴리올레핀 게엠베하 개선된 슬러리 펌프 성능을 갖는 에틸렌 중합 방법
US20170152377A1 (en) 2014-06-26 2017-06-01 Dow Global Technologies Llc Breathable films and articles incorporating same
BR112016029163B8 (pt) 2014-06-26 2022-07-26 Dow Global Technologies Llc Película soprada, artigo e película espumada
CN106470838B (zh) * 2014-06-26 2019-05-17 陶氏环球技术有限责任公司 具有改进的韧性的流延膜
US20160095499A1 (en) 2014-10-02 2016-04-07 Capso Vision, Inc. Colon Capsule with Textured Structural Coating for Improved Colon Motility
WO2016063200A1 (en) 2014-10-21 2016-04-28 Nova Chemicals (International) S.A. Continuous solution polymerization process
CA2868640C (en) 2014-10-21 2021-10-26 Nova Chemicals Corporation Solution polymerization process
WO2016063205A2 (en) 2014-10-21 2016-04-28 Nova Chemicals (International) S.A. Dilution index
BR102015027108B1 (pt) 2014-10-27 2021-01-12 China Petroleum & Chemical Corporation composição de polietileno, e, película
JP6664391B2 (ja) 2014-10-30 2020-03-13 ダウ グローバル テクノロジーズ エルエルシー 多層フィルム及び関連材料及び方法
US10431100B2 (en) 2014-10-31 2019-10-01 Aircraft Owners And Pilots Association Interactive and customizable flight planning tool
GB2533770B (en) 2014-12-22 2021-02-10 Norner Verdandi As Polyethylene for pipes
CN108137830B (zh) 2015-06-10 2021-02-26 博里利斯股份公司 多峰聚乙烯共聚物
WO2016198273A1 (en) 2015-06-10 2016-12-15 Borealis Ag Multimodal copolymer of ethylene and at least two alpha-olefin comonomers and final articles made thereof
BR112018000715B1 (pt) 2015-07-15 2021-12-21 Total Research & Technology Feluy Processo para preparação de um produto de polietileno
CA2914166C (en) 2015-12-08 2022-07-26 Nova Chemicals Corporation High density rotomolding resin
CA3018952C (en) 2016-03-31 2023-06-27 Exxonmobil Chemical Patents Inc. Low crystalline polymer compositions prepared in a dual reactor
EP3257895A1 (en) 2016-06-17 2017-12-20 Borealis AG Bi- or multimodal polyethylene terpolymer with enhanced rheological properties
PT3293210T (pt) 2016-09-12 2019-06-12 Scg Chemicals Co Ltd Película de polietileno multimodal
PL3293214T3 (pl) 2016-09-12 2020-07-27 Thai Polyethylene Co., Ltd. Wielomodalny polietylen o ultradużej masie cząsteczkowej o wysokich parametrach
HUE047424T2 (hu) 2016-09-12 2020-04-28 Thai Polyethylene Co Ltd Multimodális polietilén vékony film
ES2767704T3 (es) 2016-09-12 2020-06-18 Thai Polyethylene Co Ltd Tubería de polietileno multimodal
EP3544815B1 (en) 2016-11-25 2020-12-30 Borealis AG A process for producing polyolefin film composition and films prepared thereof
EP3385959A1 (en) 2017-04-06 2018-10-10 Borealis AG Cable jacket composition
US10442920B2 (en) * 2017-04-19 2019-10-15 Nova Chemicals (International) S.A. Means for increasing the molecular weight and decreasing the density of ethylene interpolymers employing homogeneous and heterogeneous catalyst formulations
US10538654B2 (en) 2017-04-19 2020-01-21 Nova Chemicals (International) S.A. Multi reactor solution polymerization, polyethylene and polyethylene film
US10442921B2 (en) 2017-04-19 2019-10-15 Nova Chemicals (International) S.A. Means for increasing the molecular weight and decreasing the density employing mixed homogeneous catalyst formulations
US9963529B1 (en) * 2017-04-19 2018-05-08 Nova Chemicals (International) S.A. Multi reactor solution polymerization
WO2019027605A1 (en) 2017-08-04 2019-02-07 Exxonmobil Chemical Patents Inc. FILMS MANUFACTURED FROM POLYETHYLENE COMPOSITIONS AND METHODS OF MAKING THE SAME
CN111479832B (zh) * 2017-12-26 2024-03-15 陶氏环球技术有限责任公司 用于生产多峰乙烯类聚合物的双反应器溶液法
EP3732216B1 (en) 2017-12-26 2023-04-19 Dow Global Technologies LLC Process for the production of multimodal ethylene-based polymers

Also Published As

Publication number Publication date
JP2023179426A (ja) 2023-12-19
BR112020012805A2 (pt) 2020-11-24
WO2019133378A1 (en) 2019-07-04
SG11202005778VA (en) 2020-07-29
JP7467341B2 (ja) 2024-04-15
EP3732216A1 (en) 2020-11-04
KR20200117996A (ko) 2020-10-14
US20200392269A1 (en) 2020-12-17
KR102663571B1 (ko) 2024-05-09
JP2021509419A (ja) 2021-03-25
CN111683979B (zh) 2024-08-23
EP3732216B1 (en) 2023-04-19
CN111683979A (zh) 2020-09-18
US11680119B2 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
ES2946586T3 (es) Procedimiento para la producción de polímeros a base de etileno multimodales
ES2953350T3 (es) Composiciones que comprenden polímeros basados en etileno multimodales y polietileno de baja densidad (LDPE)
ES2911254T3 (es) Proceso de disolución en reactor dual para la producción de polímero multimodal basado en etileno
ES2966658T3 (es) Composiciones con polímeros basados en etileno multimodales que tienen tenacidad mejorada a bajas temperaturas
KR102663559B1 (ko) 다중모드 에틸렌계 중합체 처리 시스템 및 방법
EP3732213B1 (en) Multimodal ethylene-based polymer compositions having improved toughness
BR112020012017B1 (pt) Composição de polímeros, e, artigo