ES2454740T3 - System for washing a gas turbine aeromotor - Google Patents
System for washing a gas turbine aeromotor Download PDFInfo
- Publication number
- ES2454740T3 ES2454740T3 ES07024134.4T ES07024134T ES2454740T3 ES 2454740 T3 ES2454740 T3 ES 2454740T3 ES 07024134 T ES07024134 T ES 07024134T ES 2454740 T3 ES2454740 T3 ES 2454740T3
- Authority
- ES
- Spain
- Prior art keywords
- washing
- spraying device
- washing system
- motor
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/002—Cleaning of turbomachines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/0093—At least a part of the apparatus, e.g. a container, being provided with means, e.g. wheels or casters for allowing its displacement relative to the ground
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/16—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
- B05B7/166—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the material to be sprayed being heated in a container
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/24—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
- B05B7/26—Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/003—Cleaning involving contact with foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/02—Cleaning by the force of jets or sprays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/02—Cleaning by the force of jets or sprays
- B08B3/026—Cleaning by making use of hand-held spray guns; Fluid preparations therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/08—Cleaning involving contact with liquid the liquid having chemical or dissolving effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/10—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/08—Cleaning containers, e.g. tanks
- B08B9/093—Cleaning containers, e.g. tanks by the force of jets or sprays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S3/00—Vehicle cleaning apparatus not integral with vehicles
- B60S3/04—Vehicle cleaning apparatus not integral with vehicles for exteriors of land vehicles
- B60S3/044—Hand-held cleaning arrangements with liquid or gas distributing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F5/00—Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03B—INSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
- E03B1/00—Methods or layout of installations for water supply
- E03B1/04—Methods or layout of installations for water supply for domestic or like local supply
- E03B1/041—Greywater supply systems
- E03B1/042—Details thereof, e.g. valves or pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
- F05D2220/323—Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Water Supply & Treatment (AREA)
- Public Health (AREA)
- Hydrology & Water Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Aviation & Aerospace Engineering (AREA)
- Transportation (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
- Exhaust Gas After Treatment (AREA)
- Filtration Of Liquid (AREA)
- Separation Of Particles Using Liquids (AREA)
Abstract
Un sistema de lavado para lavar un motor (1) de turbina de gas de un avión (40) que comprende: un dispositivo de pulverización (90); una unidad de lavado (31,35) adaptada para distribuir líquido de lavado a dicho dispositivo de pulverización (90); y un dispositivo de posicionamiento (34) adaptado para situar dicho dispositivo de pulverización (90) permitiendo por ello un posicionamiento de dicho dispositivo de comunicación (90) en una posición de operación de lavado con relación a una entrada (110) de dicho motor (1) de turbina de gas, caracterizado por que el dispositivo de pulverización (90) incluye: un cuerpo central (91); varios múltiples (92) de forma anular cada uno con diámetros diferentes, dispuestos simétricamente alrededor del cuerpo central (91); y múltiples boquillas (93) dispuestas simétricamente alrededor del cuerpo central (91), estando dispuestas las boquillas (93) alrededor de los múltiples (92) y adaptadas para inyectar dicho líquido de lavado a dicha entrada (110) del motor durante una operación de lavado, en el que dicho dispositivo de pulverización (90) comprende una unidad con simetría esencialmente rotacional siendo un eje de simetría (501) el centro de simetría; y en el que, cuando el dispositivo de pulverización (90) está en dicha posición de operación de lavado, el eje central (501) del dispositivo de pulverización (90) está esencialmente alineado con el árbol del motor del motor (1) de turbina de gas.A washing system for washing a gas turbine engine (1) of an aircraft (40) comprising: a spraying device (90); a washing unit (31,35) adapted to distribute washing liquid to said spraying device (90); and a positioning device (34) adapted to place said spraying device (90) thereby allowing a positioning of said communication device (90) in a washing operation position relative to an inlet (110) of said motor ( 1) gas turbine, characterized in that the spraying device (90) includes: a central body (91); several manifolds (92) annularly each with different diameters, arranged symmetrically around the central body (91); and multiple nozzles (93) arranged symmetrically around the central body (91), the nozzles (93) being arranged around the manifolds (92) and adapted to inject said washing liquid into said inlet (110) of the engine during an operation of washing, wherein said spraying device (90) comprises a unit with essentially rotational symmetry with a symmetry axis (501) being the center of symmetry; and wherein, when the spraying device (90) is in said washing operation position, the central axis (501) of the spraying device (90) is essentially aligned with the motor shaft of the turbine engine (1) Of gas.
Description
Sistema para lavar un aeromotor de turbina de gas System for washing a gas turbine aeromotor
Campo Técnico Technical Field
El presente invento se refiere en general al campo de lavado de motores de turbina de gas, y más específicamente a sistemas y a un vehículo para lavar un motor de turbina de gas instalado en un avión o aeronave. The present invention relates generally to the field of gas turbine engine washing, and more specifically to systems and to a vehicle for washing a gas turbine engine installed in an aircraft or aircraft.
Antecedentes del invento Background of the invention
Un motor de avión de turbina de gas comprende un compresor que comprime aire ambiente, una cámara de combustión que quema combustible junto con el aire comprimido y una turbina para accionar el compresor. Los gases de combustión al expandirse accionan la turbina y también dan como resultado un empuje para propulsión. A gas turbine aircraft engine comprises a compressor that compresses ambient air, a combustion chamber that burns fuel along with compressed air and a turbine to drive the compressor. The combustion gases when expanding actuate the turbine and also result in a thrust for propulsion.
Los aviones que vuelan a altitud elevada aspiran el aire limpio que predomina a estas alturas. Sin embargo, en los aeródromos el aire contiene partículas extrañas en forma de aerosoles que entran en el motor con la corriente de aire. Partículas típicas encontradas en el aire del aeródromo son polen, insectos, hidrocarburos que proceden de actividades industriales y sal que procede del mar cercano. Mientras el avión está en tierra en el aeropuerto hay partículas adicionales a considerar tales como residuos de combustión en los gases de escape del motor procedentes del avión que está rodando, sustancias químicas que proceden del deshielo del avión y material de la tierra tal como polvo. La mayoría de las partículas extrañas seguirán el trayecto del gas a través del motor y saldrán con los gases de escape. Sin embargo, hay partículas con propiedades de pegajosidad sobre componentes en el trayecto del gas del motor, especialmente en la sección del compresor del motor. Esto es conocido como acumulación de material indeseado. Airplanes that fly at high altitude breathe in the clean air that predominates at this point. However, at airfields the air contains foreign particles in the form of aerosols that enter the engine with the air current. Typical particles found in the air of the airfield are pollen, insects, hydrocarbons that come from industrial activities and salt that comes from the nearby sea. While the plane is on the ground at the airport there are additional particles to consider such as combustion residues in the engine exhaust gases from the airplane being rolled, chemicals that come from the defrosting of the aircraft and earth material such as dust. Most foreign particles will follow the path of the gas through the engine and will exit with the exhaust gases. However, there are particles with tack properties on components in the engine gas path, especially in the engine compressor section. This is known as accumulation of unwanted material.
El acumulación de material indeseado en el compresor da como resultado un cambio en las propiedades de la corriente de aire de capa límite de los componentes del compresor. La presencia de partículas extrañas da como resultado un aumento de la rugosidad de la superficie del componente. Cuando el aire fluye sobre la superficie el aumento de rugosidad de la superficie da como resultado un engrosamiento de la corriente de aire de la capa límite. El engrosamiento de la corriente de aire de la capa límite tiene efectos negativos sobre la aerodinámica del compresor en forma de un flujo de masa reducido. En el borde posterior del álabe la corriente de aire forma una estela. La estela forma un vórtice tipo de turbulencia con un impacto negativo sobre el flujo de aire. Cuanto más gruesa es la capa límite más fuerte es la turbulencia en la estela y más se reduce el flujo de masa. Además, una capa límite gruesa y una turbulencia de borde posterior más fuerte dan como resultado una ganancia de compresión reducida que a su vez da como resultado que el compresor con acumulación de material indeseado comprime aire a una relación de presión reducida. Cualquier experto en la técnica de ciclos de trabajo del motor en caliente comprende que una relación de presión reducida da como resultado una eficiencia térmica menor del motor. El compresor con acumulación de material indeseado no sólo reduce el flujo de masa y la ganancia de presión sino que también reduce la eficiencia iso-entrópica del compresor. Una eficiencia reducida del compresor significa que el compresor requiere más energía para comprimir la misma cantidad de aire. La energía para accionar el compresor es tomada de la turbina a través del árbol. Con la turbina requiriendo más energía para accionar el compresor habrá menos energía para crear empuje para la propulsión. Para el piloto del avión esto significa que debe regular para obtener más combustible de modo que se compense el empuje reducido. La regulación para obtener más combustible significa que el consumo de combustible aumenta y por ello aumentan los costes operativos. The accumulation of unwanted material in the compressor results in a change in the properties of the boundary layer air stream of the compressor components. The presence of foreign particles results in an increase in the surface roughness of the component. When air flows over the surface the increase in surface roughness results in a thickening of the air flow of the boundary layer. The thickening of the air flow of the boundary layer has negative effects on the aerodynamics of the compressor in the form of a reduced mass flow. At the rear edge of the blade the air stream forms a wake. The wake forms a vortex type of turbulence with a negative impact on the air flow. The thicker the boundary layer, the stronger the turbulence in the wake and the more the mass flow is reduced. In addition, a thick boundary layer and a stronger rear edge turbulence result in a reduced compression gain which in turn results in the compressor with accumulation of unwanted material compressing air at a reduced pressure ratio. Any person skilled in the art of hot engine work cycles understands that a reduced pressure ratio results in a lower thermal efficiency of the motor. The compressor with accumulation of unwanted material not only reduces mass flow and pressure gain but also reduces the iso-entropic efficiency of the compressor. Reduced compressor efficiency means that the compressor requires more energy to compress the same amount of air. The energy to drive the compressor is taken from the turbine through the shaft. With the turbine requiring more energy to drive the compressor there will be less energy to create thrust for the propulsion. For the pilot of the plane this means that he must regulate to obtain more fuel so that the reduced thrust is compensated. Regulation to obtain more fuel means that fuel consumption increases and therefore increases operating costs.
La pérdida de rendimiento causada por la acumulación de material indeseado en el compresor también reduce la durabilidad del motor. Como se ha de quemar más combustible para alcanzar un nivel de empuje requerido, se deriva un aumento en la temperatura de combustión del motor. Cuando el piloto en su recorrido acelera para despegar, los componentes de la sección caliente del motor están bajo una carga de temperatura elevada crítica. Controlar la temperatura del gas de combustión es un factor clave en la vigilancia del rendimiento del motor. La temperatura de control conocida como temperatura de los gases de escape (EGT) es medida con sensores en el trayecto de las aguas abajo de la salida de la cámara de combustión. La EGT es vigilada cuidadosamente registrando tanto la temperatura como el tiempo de exposición. Durante la vida del motor el registro de la EGT es revisado frecuentemente. En un cierto punto se requerirá que el motor sea puesto fuera de servicio para una revisión en la que los componentes de la sección caliente son inspeccionados y reemplazados si se requiere. Loss of performance caused by the accumulation of unwanted material in the compressor also reduces engine durability. As more fuel has to be burned to reach a required thrust level, an increase in the combustion temperature of the engine is derived. When the pilot on its way accelerates to take off, the components of the hot section of the engine are under a critical high temperature load. Controlling the flue gas temperature is a key factor in monitoring engine performance. The control temperature known as the exhaust gas temperature (EGT) is measured with sensors in the path downstream of the combustion chamber outlet. The EGT is carefully monitored by recording both the temperature and the exposure time. During the life of the engine the registration of the EGT is checked frequently. At a certain point the engine will be required to be taken out of service for a review in which the components of the hot section are inspected and replaced if required.
La acumulación de material indeseado en el compresor tiene también un efecto negativo sobre el medio ambiente. La diferencia en el consumo de combustible de un motor virgen entregado desde la factoría y un motor con un compresor con acumulación de material indeseado puede ser típicamente del 1%. Con el incremento de consumo de combustible se deriva un aumento de emisiones de gas de invernadero tal como dióxido de carbono. Típicamente la combustión de 1 kg de combustible de aviación da como resultado la formación de 3,1 kg de dióxido de carbono. Además, la alta temperatura de la cámara de combustión tiene un efecto negativo sobre el The accumulation of unwanted material in the compressor also has a negative effect on the environment. The difference in fuel consumption of a virgin engine delivered from the factory and an engine with a compressor with accumulation of unwanted material can typically be 1%. With the increase in fuel consumption, an increase in greenhouse gas emissions such as carbon dioxide is derived. Typically the combustion of 1 kg of aviation fuel results in the formation of 3.1 kg of carbon dioxide. In addition, the high temperature of the combustion chamber has a negative effect on the
medio ambiente. Con el aumento de la temperatura de combustión se deriva un incremento de la formación de NOx. La formación de NOx depende en una gran magnitud del diseño del quemador y no puede preverse un número general. Sin embargo, cualquier elevación incremental de temperatura a un diseño de quemador dado tiene como resultado un incremento en la formación de NOx. Por tanto, la acumulación de material indeseado en el compresor tiene efectos negativos en el rendimiento de un aeromotor tal como un consumo de combustible creciente, la reducción de la vida del motor y emisiones crecientes. environment. With the increase in the combustion temperature, an increase in NOx formation is derived. The formation of NOx depends to a large extent on the design of the burner and a general number cannot be foreseen. However, any incremental temperature rise to a given burner design results in an increase in NOx formation. Therefore, the accumulation of unwanted material in the compressor has negative effects on the performance of an air motor such as increased fuel consumption, reduced engine life and increasing emissions.
Varias técnicas de lavado del motor han sido desarrolladas a lo largo de los años de modo que se reduzcan o eliminen los efectos negativos de la acumulación de material indeseado. El método de lavado más simple es tomar una manguera de jardín y rociar agua en la entrada del motor. Este método tiene sin embargo un éxito limitado debido a la simple naturaleza del proceso. Un método alternativo es restregar a mano lo álabes con un cepillo y líquido. Este método tiene un éxito limitado ya que no permite la limpieza de los álabes en el interior del compresor. Además, requiere tiempo, la Patente Norteamericana nº 5.868.860 de Asplund describe el uso de un múltiple para lavar aeromotores. Además la patente describe el uso de elevada presión de líquido como medio para proporcionar una elevada velocidad de líquido, que junto con la aprobación del árbol del motor mejorará la eficacia de la limpieza. Several engine wash techniques have been developed over the years so that the negative effects of the accumulation of unwanted material are reduced or eliminated. The simplest washing method is to take a garden hose and spray water at the motor inlet. However, this method has limited success due to the simple nature of the process. An alternative method is to scrub the blades by hand with a brush and liquid. This method has limited success since it does not allow cleaning of the blades inside the compressor. In addition, it takes time, Asplund U.S. Patent No. 5,868,860 describes the use of a manifold to wash air motors. In addition, the patent describes the use of high liquid pressure as a means to provide a high liquid velocity, which together with the approval of the motor shaft will improve cleaning efficiency.
El documento EP 0628477 A1 describe un sistema de servicio de avión que comprende cuatro brazos robóticos montados en el suelo. Los brazos pueden moverse de modo que una disposición de boquilla ideal en el extremo de cada brazo pueda descongelar o lavar el avión. El fluido de descongelación es pulverizado a lo largo del fuselaje, de las alas y opcionalmente, del motor. El sistema es controlado autónomamente una vez que un operador ha tecleado en el tipo del avión que ha de ser limpiado o descongelado. EP 0628477 A1 describes an aircraft service system comprising four robotic arms mounted on the ground. The arms can be moved so that an ideal nozzle arrangement at the end of each arm can defrost or wash the plane. Defrosting fluid is sprayed along the fuselage, the wings and optionally, the engine. The system is controlled autonomously once an operator has typed in the type of aircraft to be cleaned or defrosted.
La Patente Norteamericana nº 6.394.108, describe una delgada manguera flexible, un extremo de la cual es insertado desde la entrada del compresor hacia la salida del compresor entre los álabes del compresor. En el extremo insertado de la manguera hay una boquilla. La manguera es retirada lentamente fuera del compresor mientras el líquido está siendo bombeado a la nariz y pulverizado a través de la boquilla. Sin embargo, la eficacia del lavado es limitada porque el rotor del compresor no es capaz de girar durante el lavado. A pesar de las tecnologías y patentes de lavado existentes existe una necesidad de nuevas tecnologías que permitan que un lavado práctico sea conducido en un modo de trabajo menos intenso, de bajo coste, simple y seguro. US Patent No. 6,394,108 describes a thin flexible hose, one end of which is inserted from the compressor inlet to the compressor outlet between the compressor blades. At the inserted end of the hose there is a nozzle. The hose is slowly removed out of the compressor while the liquid is being pumped to the nose and sprayed through the nozzle. However, washing efficiency is limited because the compressor rotor is not able to rotate during washing. Despite existing technologies and patents for washing, there is a need for new technologies that allow a practical wash to be conducted in a less intense, low-cost, simple and safe way of working.
La Patente Norteamericana nº 5.011.540 describe un bastidor de soporte rectangular dispuesto para aplicarse sobre una parte de boca de campana de un motor de turbina de gas. Un único anillo de múltiple está previsto en un lado de una parte de pared de soporte del bastidor de soporte y doce boquillas se extienden desde el múltiple, a través de la parte de pared de soporte, a la boca del motor de turbina de gas. Se pulveriza disolvente líquido en el motor de turbina de gas desde las boquillas. US Patent No. 5,011,540 describes a rectangular support frame arranged to be applied on a bell mouth part of a gas turbine engine. A single manifold ring is provided on one side of a support wall part of the support frame and twelve nozzles extend from the manifold, through the support wall part, to the mouth of the gas turbine engine. Liquid solvent is sprayed into the gas turbine engine from the nozzles.
Resumen del invento Summary of the invention
El tráfico aéreo comercial se ha desarrollado como un útil eficiente para transportar pasajeros y artículos o géneros de un sitio a otro. La flota aérea comprende hoy en un gran número de tipos de aviones suministrados por muchos fabricantes de aviones. Los motores utilizados para propulsar estos aviones son fabricados por varios fabricantes de motores, que suministran motores de diferente tamaño y con diferentes características de rendimiento. Los fabricantes de motores también suministran motores que son compatibles con motores de otros fabricantes lo que significa que hay motores alternativos, aunque no idénticos, disponibles para el mismo avión. Esto da como resultado una gran combinación posible de motores de avión en tipos de aviones. Esto se ha encontrado que es una desventaja cuando se pone en práctica el lavado ya que el equipo de lavado necesita estar dimensionado y concebido para satisfacer los diseños individuales. Es el propósito de este invento simplificar el lavado de los motores. Commercial air traffic has been developed as an efficient tool for transporting passengers and items or goods from one place to another. The air fleet today comprises a large number of types of aircraft supplied by many aircraft manufacturers. The engines used to propel these aircraft are manufactured by several engine manufacturers, which supply engines of different sizes and with different performance characteristics. Engine manufacturers also supply engines that are compatible with third-party engines, which means that alternative, but not identical, engines are available for the same aircraft. This results in a large possible combination of aircraft engines in aircraft types. This has been found to be a disadvantage when washing is carried out since the washing equipment needs to be sized and designed to meet individual designs. It is the purpose of this invention to simplify the washing of the engines.
La puesta en práctica del lavado de motor descrito con referencia a la fig. 1 es además considerada como de conocimiento común en este campo. Una vista en sección transversal de un motor de turboventilador de dos árboles esta mostrada en la fig. 1. Las flechas muestran el flujo de gas a través del motor. El motor 1 está construido alrededor de un árbol rotor 14 que en su extremo frontal está conectado al ventilador 15 y en el extremo posterior a la turbina 16. La turbina 16 acciona el ventilador 15. Un segundo árbol 19 tiene forma de un árbol coaxial al primer árbol 14. El árbol 19 está conectado en su extremo frontal al compresor 17 y en el extremo posterior a la turbina 18. La turbina 18 acciona el compresor 17. El motor 1 tiene una entrada 110 donde entra el aire de entrada al motor. El carenado 11 sirve como una guía para la corriente de aire de entrada. El flujo de aire de entrada es accionado por el ventilador 15. Una parte del aire de entrada sale por la salida 11. La parte restante del aire de entrada entra en el motor central en la entrada 13. El aire al núcleo del motor es a continuación comprimido por el compresor 17. El aire comprimido junto con el combustible (no mostrado) es quemado en la cámara de combustión 101 dando como resultado gases de combustión calientes presurizados. Los gases de combustión calientes presurizados se expanden hacia la salida 12 del núcleo del motor. La expansión de los gases The implementation of the engine wash described with reference to fig. 1 is also considered common knowledge in this field. A cross-sectional view of a two-shaft turbo fan motor is shown in fig. 1. The arrows show the flow of gas through the engine. The motor 1 is constructed around a rotor shaft 14 which at its front end is connected to the fan 15 and at the rear end to the turbine 16. The turbine 16 drives the fan 15. A second shaft 19 is shaped like a coaxial shaft to the first shaft 14. The shaft 19 is connected at its front end to the compressor 17 and at the rear end to the turbine 18. The turbine 18 drives the compressor 17. The motor 1 has an inlet 110 where the inlet air enters the engine. The fairing 11 serves as a guide for the intake air stream. The inlet air flow is driven by the fan 15. A part of the inlet air exits through the outlet 11. The remaining part of the inlet air enters the central motor at the inlet 13. The air to the motor core is a then compressed by the compressor 17. The compressed air together with the fuel (not shown) is burned in the combustion chamber 101 resulting in pressurized hot combustion gases. Pressurized hot combustion gases expand towards the outlet 12 of the engine core. Gas expansion
de combustión calientes es hecha en dos etapas. En una primera etapa los gases de combustión se expanden a una presión intermedia mientras accionan la turbina 18. En una segunda etapa los gases de combustión caliente se expanden hacia la presión ambiente mientras accionan la turbina 16. Los gases de combustión salen del motor por la salida 12 a elevada velocidad proporcionando empuje. El gas procedente de la salida 12 junto con el aire procedente de la salida 11 constituyen juntos el empuje del motor. Hot combustion is done in two stages. In a first stage the combustion gases expand at an intermediate pressure while driving the turbine 18. In a second stage the hot combustion gases expand towards the ambient pressure while driving the turbine 16. The combustion gases leave the engine through the Exit 12 at high speed providing thrust. The gas coming from the outlet 12 together with the air coming from the outlet 11 together constitute the engine thrust.
Un dispositivo de lavado de acuerdo con la técnica anterior consiste en un múltiple 102 en forma de un tubo que en un extremo está conectado a una boquilla 103 y en el otro extremo conectado a un acoplamiento 104. La manguera 105 está en un extremo conectada al acoplamiento 104 mientras el otro extremo está conectado a una bomba de líquido (no mostrada). El múltiple 102 está descansando sobre el carenado de entrada 11 y es mantenido en posición firme durante el lavado asegurándolo con una correa o medios similares. El procedimiento de lavado comienza haciendo girar el árbol del motor con ayuda del motor de arranque. La bomba bombea un líquido de lavado boquilla 103 donde lo atomiza y forma una pulverización 104. La rotación del árbol da como resultado un flujo de aire a través del motor. Este flujo de aire acciona el líquido a través del motor y libera el material de acumulación indeseado. El material de acumulación indeseado es liberado por una acción mecánica y química del líquido de lavado. El efecto de limpieza es mejorado por la rotación del árbol ya que él humedecimiento de los álabes crea una película de líquido que será sometida a fuerzas tales como la aspiración de aire y las fuerzas centrífugas durante el lavado. A washing device according to the prior art consists of a manifold 102 in the form of a tube that at one end is connected to a nozzle 103 and at the other end connected to a coupling 104. The hose 105 is at one end connected to the coupling 104 while the other end is connected to a liquid pump (not shown). The manifold 102 is resting on the inlet fairing 11 and is held in a firm position during washing by securing it with a belt or similar means. The washing procedure begins by rotating the motor shaft with the help of the starter motor. The pump pumps a nozzle wash liquid 103 where it atomizes and forms a spray 104. The rotation of the shaft results in a flow of air through the engine. This air flow drives the liquid through the engine and releases unwanted accumulation material. The unwanted accumulation material is released by a mechanical and chemical action of the washing liquid. The cleaning effect is improved by the rotation of the tree since the dampening of the blades creates a film of liquid that will be subjected to forces such as air aspiration and centrifugal forces during washing.
La técnica anterior describe el uso de un múltiple con boquillas para inyectar el fluido de lavado a la entrada del motor. Es corriente que el múltiple sea colocado en el carenado de entrada al tiempo que utiliza el carenado para su soporte. El múltiple es así instalado temporalmente para el proceso de lavado y es retirado después de la terminación del lavado. La fig. 2 muestra un ejemplo de un múltiple de la técnica anterior cuando está instalado en la entrada de un motor de turboventilador. Las partes similares son mostradas con los mismos números de referencia que en la fig. 1. El múltiple 102 está descansando sobre el carenado de entrada 11 de la admisión de aire al motor 1. El múltiple 102 es fabricado para adaptarse a la forma del carenado de entrada de modo que esté en una posición firme durante el lavado. Para asegurarse de que el múltiple es mantenido en una posición firme, una correa 21 es unida al múltiple fuera de la entrada y apretada contra un gancho (no mostrado) enganchado a la salida del motor. El líquido de lavado es bombeado por una bomba (no mostrada) a través de la manguera 105 mediante el acoplamiento 104 al múltiple 102 y además a las boquillas 103. El múltiple 102 tiene la forma de un tubo que sirve como un conducto para el líquido de lavado. El múltiple 102 actúa también como un soporte rígido de las boquillas de modo que mantenga las boquillas en posición firme durante el lavado. Para un resultado de lavado bueno es obligatorio un posicionamiento apropiado del múltiple. Con este propósito el múltiple ha de ser diseñado y concebido con respecto a la forma del carenado de entrada y la geometría característica del motor. Además, el múltiple ha de ser diseñado y concebido de modo que soporte apropiadamente las boquillas contra las fuerzas de reacción de la pulverización durante el lavado. The prior art describes the use of a manifold with nozzles to inject the wash fluid into the engine inlet. It is common for the manifold to be placed in the entry fairing while using the fairing for its support. The manifold is thus temporarily installed for the washing process and is removed after the completion of the wash. Fig. 2 shows an example of a prior art manifold when installed at the inlet of a turbo fan motor. Similar parts are shown with the same reference numbers as in fig. 1. The manifold 102 is resting on the inlet fairing 11 of the air intake to the engine 1. The manifold 102 is manufactured to adapt to the shape of the inlet fairing so that it is in a firm position during washing. To ensure that the manifold is held in a firm position, a belt 21 is attached to the manifold outside the inlet and pressed against a hook (not shown) hooked to the motor outlet. The washing liquid is pumped by a pump (not shown) through the hose 105 through the coupling 104 to the manifold 102 and also to the nozzles 103. The manifold 102 is in the form of a tube that serves as a conduit for the liquid washing The manifold 102 also acts as a rigid support for the nozzles so as to keep the nozzles in a firm position during washing. For a good washing result, an appropriate positioning of the manifold is mandatory. For this purpose the manifold must be designed and conceived with respect to the shape of the entry fairing and the characteristic geometry of the motor. In addition, the manifold must be designed and conceived so that it properly supports the nozzles against the reaction forces of the spray during washing.
Como se ha mencionado anteriormente hay muchos tipos de aviones diferentes y muchos motores de aviones diferentes lo que da como resultado muchos diseños de carenado de aire de entrada diferentes. Como el múltiple se soporta sobre el carenado de entrada esto significa que muchos múltiples diferentes tendrán que ser fabricados de modo que den servicio a una gran flota de aviones. As mentioned above there are many different types of aircraft and many different aircraft engines which results in many different inlet air fairing designs. As the manifold is supported on the entry fairing this means that many different manifolds will have to be manufactured so that they serve a large fleet of aircraft.
Los múltiples de acuerdo con la técnica anterior son de grandes dimensiones como resultado de la gran geometría de admisión de grandes motores de avión. Los múltiples requieren por ello un espacio de almacenamiento significativo en el almacenamiento. The manifolds according to the prior art are large as a result of the large intake geometry of large aircraft engines. The multiples therefore require significant storage space in storage.
El invento como se ha descrito en la realizaciones preferidas describe un múltiple universal que es significativamente de menor tamaño comparado con los múltiples de la técnica anterior. Es el propósito de este invento reducir el espacio de almacenamiento previendo un múltiple pequeño. The invention as described in the preferred embodiments describes a universal manifold that is significantly smaller in size compared to the prior art manifolds. It is the purpose of this invention to reduce the storage space by providing a small manifold.
Los múltiples de acuerdo con el diseño de la técnica anterior dan como resultado una cantidad de horas de trabajo significativas para concebir, fabricar y ensayar para su ajuste. Además, el múltiple es puesto en producción sólo en pequeñas series ya que puede no haber demasiados aviones con una combinación específica del motor y carenado de entrada. Este invento como se ha descrito en la realizaciones preferidas describe un múltiple universal aplicable a un gran rango de aviones y motores de aviones. El múltiple de acuerdo con el invento está concebido de manera principal de una vez pero puede ser puesto en producción en grandes series. Esto reducirá los costes para el múltiple universal. Es el propósito de este invento reducir los costes para el operador aéreo. The multiples according to the prior art design result in a significant amount of work hours to conceive, manufacture and test for adjustment. In addition, the manifold is put into production only in small series since there may not be too many aircraft with a specific combination of the engine and entry fairing. This invention as described in the preferred embodiments describes a universal manifold applicable to a wide range of aircraft and aircraft engines. The manifold according to the invention is designed primarily once but can be put into production in large series. This will reduce the costs for the universal manifold. It is the purpose of this invention to reduce costs for the air operator.
El lavado de los motores de avión puede ser conducido por un operador de la línea aérea o por una organización especialista como un Centro de Servicio de Lavado de Motores del Aeropuerto. Si el lavado es conducido por un centro de servicios la desventaja de tener muchos múltiples en esto es incluso más un factor de importancia ya que el centro de servicio prestará servicio a un gran número de aviones diferentes y de motores de avión diferentes. Es el propósito de este invento reducir los costes para el operador del Centro del Servicio de Lavado de The washing of aircraft engines can be conducted by an airline operator or by a specialist organization such as an Airport Engine Wash Service Center. If the washing is conducted by a service center, the disadvantage of having many multiples in this is even more an important factor since the service center will serve a large number of different aircraft and different aircraft engines. It is the purpose of this invention to reduce costs for the operator of the Washing Service Center of
Motores del Aeropuerto. Airport engines.
Así, el invento proporciona un sistema de lavado para lavar un motor de turbina de gas de un avión según ha sido definido en las reivindicaciones adjuntas. Thus, the invention provides a washing system for washing a gas turbine engine of an aircraft as defined in the appended claims.
Otros objetos y ventajas del presente invento serán descritos a continuación por medio de una realización ejemplar. Other objects and advantages of the present invention will be described below by means of an exemplary embodiment.
Breve descripción de los dibujos Brief description of the drawings
A continuación se describirá una realización preferida del invento en mayor detalle con referencia a los dibujos adjuntos, en los que A preferred embodiment of the invention will be described in greater detail below with reference to the accompanying drawings, in which
La fig. 1 muestra la sección transversal de un motor de turboventilador de dos árboles con múltiple y boquillas para lavar de acuerdo con la técnica anterior. Fig. 1 shows the cross section of a two-shaft turbo fan motor with manifold and nozzles for washing according to the prior art.
La fig. 2 muestra el múltiple instalado en la entrada de un aeromotor de acuerdo con la técnica anterior. Fig. 2 shows the manifold installed at the entrance of an air motor in accordance with the prior art.
La fig. 3 muestra una unidad de lavado con una cabeza de pulverización sin contacto que está fuera del marco del invento. Fig. 3 shows a washing unit with a contactless spray head that is outside the scope of the invention.
La fig. 4a muestra la aplicación de la unidad de lavado de la fig. 3 cuando se lava un motor montado "bajo el ala". Fig. 4a shows the application of the washing unit of fig. 3 when washing a motor mounted "under the wing".
La fig. 4b muestra la aplicación de la unidad de lavado de la fig. 3 cuando se lava un motor montado "en la cola". Fig. 4b shows the application of the washing unit of fig. 3 when washing a motor mounted "in the tail".
La fig. 5 muestra detalles de la cabeza de pulverización de la unidad de lavado de la fig. 3. Fig. 5 shows details of the spray head of the washing unit of fig. 3.
La fig. 6 muestra un ejemplo alternativo de la cabeza de pulverización. Fig. 6 shows an alternative example of the spray head.
La fig. 7a muestra el lavado del ventilador de un motor de turboventilador utilizando la unidad de lavado de la fig. 3. Fig. 7a shows the washing of the fan of a turbo fan motor using the washing unit of fig. 3.
La fig. 7b muestra el lavado del motor central de un motor de turboventilador utilizando la unidad de lavado de la fig. 3. Fig. 7b shows the washing of the central motor of a turbo fan motor using the washing unit of fig. 3.
La fig. 8 muestra cómo es controlado el procedimiento de lavado por medio de una cámara y un dispositivo medidor de distancia instalado en la cabeza de pulverización. Fig. 8 shows how the washing procedure is controlled by means of a chamber and a distance measuring device installed in the spray head.
La fig. 9 muestra una cabeza de pulverización universal de acuerdo con el invento. Fig. 9 shows a universal spray head according to the invention.
La fig. 10 muestra la cabeza de pulverización universal y un dispositivo de recogida de agua residual con tratamiento del agua residual para reutilización del líquido de lavado. Fig. 10 shows the universal spray head and a wastewater collection device with wastewater treatment for reuse of the washing liquid.
Descripción de la realización preferida Description of the preferred embodiment
El múltiple aquí descrito es universal en el sentido de que puede dar servicio a motores pequeños así como a motores grandes ya que el múltiple tiene capacidades para múltiples tamaños. Un múltiple que tiene capacidades para múltiples tamaños elimina la dificultad de fabricar muchos múltiples para motores de avión de tamaños variables. The manifold described here is universal in the sense that it can serve small engines as well as large engines since the manifold has capacities for multiple sizes. A manifold that has capacities for multiple sizes eliminates the difficulty of manufacturing many manifolds for aircraft engines of varying sizes.
La fig. 3 muestra la aplicación de un múltiple universal que está fuera del marco de las reivindicaciones. Un aeromotor 1 instalado en un avión (no mostrado) es sometido a lavado. La unidad de lavado 31 es una unidad para entregar líquido de lavado a una cabeza de pulverización 33. La cabeza de pulverización 33 incluye un múltiple 36 para distribuir el líquido a las boquillas (no mostradas por claridad) sobre el múltiple 36. Las boquillas inyectan el líquido de lavado a la entrada del motor. Las boquillas pueden o bien pulverizar el líquido o inyectar el líquido como una corriente maciza. La unidad de lavado 31 comprende el equipo necesario y los componentes para permitir el lavado de elementos tales como depósitos para almacenar líquido de lavado, calentadores para calentar el líquido, una bomba para aumentar la presión del líquido, controles requeridos para permitir y vigilar la operación de lavado. El líquido puede ser agua solamente o agua con sustancias químicas o sustancias químicas solamente tales como disolventes. Típicamente el líquido es calentado ya que lavar con líquido caliente mejora el resultado del lavado. El líquido de lavado es presurizado por la bomba para distribución a las boquillas. Los controles comprende típicamente un manómetro de líquido, un caudalímetro de líquido, un medidor de temperatura del líquido y un interruptor de conexión-desconexión de la bomba. La unidad de lavado 31 puede entonces ser móvil de modo resulte práctica para el uso de lavar motores de avión en un aeropuerto. La unidad de lavado 31 puede entonces ser parte de un vehículo 32. El vehículo 32 puede ser una carretilla arrastrada a mano o una carretilla motorizada o un vehículo que lleva una persona tal como un pequeño camión. Alternativamente, la unidad de lavado 31 puede no ser móvil. Fig. 3 shows the application of a universal manifold that is outside the scope of the claims. An air motor 1 installed in an airplane (not shown) is subjected to washing. The washing unit 31 is a unit for delivering washing liquid to a spray head 33. The spray head 33 includes a manifold 36 to distribute the liquid to the nozzles (not shown for clarity) on the manifold 36. The nozzles inject the washing liquid at the motor inlet. The nozzles can either spray the liquid or inject the liquid as a solid stream. The washing unit 31 comprises the necessary equipment and components to allow the washing of items such as tanks for storing washing liquid, heaters for heating the liquid, a pump for increasing the pressure of the liquid, controls required to allow and monitor the operation washing The liquid may be water only or water with chemical substances or chemical substances only such as solvents. Typically the liquid is heated since washing with hot liquid improves the washing result. The washing liquid is pressurized by the pump for distribution to the nozzles. The controls typically comprise a liquid manometer, a liquid flow meter, a liquid temperature meter and a pump on / off switch. The washing unit 31 can then be mobile so that it is practical for the use of washing aircraft engines at an airport. The washing unit 31 may then be part of a vehicle 32. The vehicle 32 may be a hand-drawn truck or a motorized truck or a vehicle carried by a person such as a small truck. Alternatively, the washing unit 31 may not be mobile.
La cabeza de pulverización 33 es mantenida en posición fija en la entrada del motor 1 por el brazo robótico 34. El brazo robótico 34 está en un extremo instalado sobre la unidad de lavado 31 y tiene una cabeza de pulverización 33 en el otro extremo. El brazo robótico 34 tiene al menos una junta articulada y un muñón que permite el posicionamiento apropiado de la cabeza de pulverización 33 en la entrada 301 del motor 1. El brazo robótico es móvil con al menos tres grados de libertad. El brazo robótico 34 opera mediante un dispositivo operativo hidráulico The spray head 33 is held in a fixed position at the inlet of the motor 1 by the robotic arm 34. The robotic arm 34 is at one end installed on the washing unit 31 and has a spray head 33 at the other end. The robotic arm 34 has at least one articulated joint and a stump that allows proper positioning of the spray head 33 at the inlet 301 of the engine 1. The robotic arm is mobile with at least three degrees of freedom. The robotic arm 34 operates by means of a hydraulic operating device
o neumático o eléctrico o a mano mecánicamente (no mostrado) o puede ser movido a mano. En una realización del presente invento, el brazo robótico puede comprender una o varias partes telescópicas. Por ejemplo, una parte entre dos juntas puede ser telescópica. or pneumatic or electric or mechanically hand-held (not shown) or can be moved by hand. In one embodiment of the present invention, the robotic arm may comprise one or more telescopic parts. For example, a part between two joints can be telescopic.
La cabeza de pulverización 33 esta dimensionada para ser menor que la abertura de entrada 301. La cabeza de pulverización 33 es preferiblemente posicionada en la entrada 301 por el brazo robótico operativo 34 desde un panel de control (no mostrado) por un operador. La cabeza de pulverización 33 es posicionada esencialmente en el centro de la abertura de entrada 301. Cuando la cabeza de pulverización 33 está en su posición apropiada no hay contacto entre el avión y la cabeza de pulverización o cualesquiera otras partes del dispositivo de lavado. La unidad de lavado 31 entrega el líquido de lavado presurizado a la cabeza de pulverización 33 mediante el conducto 35 donde el conducto 35 comprende o bien una manguera flexible o un dispositivo similar para ese servicio. En la cabeza de pulverización 33 el líquido es distribuido a un múltiple de boquillas mediante el múltiple 36 donde las boquillas tienen el propósito de inyectar el líquido de lavado al motor. The spray head 33 is sized to be smaller than the inlet opening 301. The spray head 33 is preferably positioned at the inlet 301 by the operating robotic arm 34 from a control panel (not shown) by an operator. The spray head 33 is essentially positioned in the center of the inlet opening 301. When the spray head 33 is in its proper position there is no contact between the plane and the spray head or any other parts of the washing device. The washing unit 31 delivers the pressurized washing liquid to the spray head 33 through the conduit 35 where the conduit 35 comprises either a flexible hose or a similar device for that service. In the spray head 33 the liquid is distributed to a manifold of nozzles by means of manifold 36 where the nozzles are intended to inject the washing liquid into the engine.
La figura 4a ejemplifica la unidad de lavado 31 cuando está en posición para su uso cuando se lava un motor de un avión del tipo de 'motor bajo el ala'. Se han mostrado partes similares con los mismos números de referencia que en la fig. 1 y en la fig. 3. El avión 40 tiene un ala 41 sobre la que está instalado el motor 1. El vehículo 32 con la unidad de lavado es aparcado junto al motor. El vehículo 32 es aparcado preferiblemente a un lado del motor de modo que no permanezca en la corriente de aire directa durante el lavado. Esto es para evitar que cualesquiera objetos sueltos en el vehículo puedan ser llevados accidentalmente por la corriente de aire al motor. El brazo robótico 34 mantiene la cabeza de pulverización con su múltiple 36 en posición en la entrada del motor. No hay contacto entre el avión y el múltiple o cualesquiera otras partes de la unidad de lavado. La fig. 4b ejemplifica la unidad de lavado 31 cuando está en posición de utilización cuando se lava un motor de un avión del tipo de "motor en la cola". Las partes similares están mostradas con los mismos números de referencia que en la fig. 1 y en la fig. Figure 4a exemplifies the washing unit 31 when it is in position for use when washing an engine of an 'engine under the wing' type aircraft. Similar parts have been shown with the same reference numbers as in fig. 1 and in fig. 3. The plane 40 has a wing 41 on which the engine 1 is installed. The vehicle 32 with the washing unit is parked next to the engine. The vehicle 32 is preferably parked on one side of the engine so that it does not remain in the direct air stream during washing. This is to prevent any loose objects in the vehicle from being accidentally carried by the air flow to the engine. The robotic arm 34 keeps the spray head with its manifold 36 in position at the motor inlet. There is no contact between the plane and the manifold or any other parts of the washing unit. Fig. 4b exemplifies the washing unit 31 when it is in the use position when washing an engine of an "tail engine" type airplane. Similar parts are shown with the same reference numbers as in fig. 1 and in fig.
3. El vehículo 32 con la unidad de lavado es aparcado junto al motor. El brazo robótico 34 mantiene la cabeza de pulverización y su múltiple 36 en posición en la entrada del motor. No hay contacto entre el avión y el múltiple o cualesquiera otras partes de la unidad de lavado. La unidad de lavado no está limitada a las ilustraciones en las fig. 4a y en la fig. 4b ya que hay muchos otros aviones de diseños diferentes en los que la unidad de lavado (31) es igualmente aplicable. Además puede haber aviones en los que sea beneficioso disponer que el equipo de lavado sea soportado por el carenado u otras partes del avión. 3. The vehicle 32 with the washing unit is parked next to the engine. The robotic arm 34 keeps the spray head and its manifold 36 in position at the motor inlet. There is no contact between the plane and the manifold or any other parts of the washing unit. The washing unit is not limited to the illustrations in fig. 4a and in fig. 4b since there are many other planes of different designs in which the washing unit (31) is equally applicable. There may also be airplanes in which it is beneficial to provide that the washing equipment be supported by the fairing or other parts of the aircraft.
La fig. 5 muestra los detalles de la cabeza de pulverización 33. La cabeza de pulverización 33 está mostrada en una vista en perspectiva donde la flecha muestra la dirección del flujo de aire del motor. Partes similares están mostradas con los mismos números de referencia que en la fig. 3. La cabeza de pulverización 33 comprende una unidad con simetría esencialmente rotacional, siendo el eje 501 el centro de simetría. Cuando la cabeza de pulverización 33 está en posición para lavar, el eje 501 está esencialmente alineado con el centro de simetría del árbol del motor. La cabeza de pulverización 33 tiene un cuerpo central 509. El cuerpo 50 tiene un extremo frontal 58 enfrentado hacia el motor. El cuerpo 50 tiene un extremo posterior 59 opuesto al extremo frontal 58. El extremo posterior 59 está conectado al brazo robótico 34. El cuerpo 50 incluye un dispositivo detector óptico 55 utilizado como una ayuda para posicionar la cabeza de pulverización 33 y para vigilar la operación de lavado. El dispositivo detector óptico 55 está dirigido esencialmente hacia la entrada del motor. El dispositivo detector óptico 55 puede comprender una cámara en la que la visión de la cámara puede ser vista instantáneamente por el operador en el panel de control. Alternativamente, el dispositivo detector óptico puede comprender un dispositivo de fibra óptica con el mismo propósito que la cámara. Alternativamente, hay otros medios de registrar la vista de la cabeza de pulverización. El dispositivo detector óptico 55 sirve para el propósito de entregar una vista de la entrada del motor al operador. La vista de la cámara es utilizada para ayudar al operador a alinear la cabeza de pulverización con el centro del árbol del motor maniobrando el brazo robótico desde el panel de control del operador. Además, la vista de la cámara permite que el operador posicione la cabeza de pulverización a la distancia apropiada aguas arriba del motor. Además, la visión de la cámara permite que el operador vigile el proceso de lavado entregando una vista desde la línea central del motor durante el lavado. Además, la vista de la cámara ayuda al operador a tomar la decisión en el ajuste de cualquier parámetro de lavado a partir de la vista que la cámara entrega. Además, la visión de la cámara es un dispositivo que mejora la seguridad ya que el operador puede detener el proceso de lavado cuando observa alguna cosa en la cámara. Fig. 5 shows the details of the spray head 33. The spray head 33 is shown in a perspective view where the arrow shows the direction of engine air flow. Similar parts are shown with the same reference numbers as in fig. 3. The spray head 33 comprises a unit with essentially rotational symmetry, the axis 501 being the center of symmetry. When the spray head 33 is in the position for washing, the shaft 501 is essentially aligned with the center of symmetry of the motor shaft. The spray head 33 has a central body 509. The body 50 has a front end 58 facing the engine. The body 50 has a rear end 59 opposite the front end 58. The rear end 59 is connected to the robotic arm 34. The body 50 includes an optical detector device 55 used as an aid to position the spray head 33 and to monitor the operation. washing The optical detector device 55 is essentially directed towards the motor inlet. The optical detector device 55 may comprise a camera in which the camera vision can be instantly seen by the operator on the control panel. Alternatively, the optical detector device may comprise a fiber optic device for the same purpose as the camera. Alternatively, there are other means of recording the sight of the spray head. The optical detector device 55 serves the purpose of delivering a view of the motor input to the operator. The camera view is used to help the operator align the spray head with the center of the engine shaft by maneuvering the robotic arm from the operator control panel. In addition, the camera view allows the operator to position the spray head at the appropriate distance upstream of the engine. In addition, the camera's vision allows the operator to monitor the washing process by delivering a view from the center line of the engine during washing. In addition, the camera view helps the operator to make the decision in adjusting any wash parameter from the view that the camera delivers. In addition, the camera's vision is a device that improves safety since the operator can stop the washing process when he observes something in the camera.
El cuerpo 50 en la fig. 5 incluye un dispositivo medidor de distancia para medir la distancia al motor. Típicamente el dispositivo medidor de distancia comprende un transmisor 56 y un receptor 57. El dispositivo medidor de distancia podría comprender un dispositivo detector de sonido tal como un dispositivo detector de ultrasonidos donde el transmisor emite un haz de sonido que se refleja sobre la parte cónica de la nariz del motor y donde el The body 50 in fig. 5 includes a distance measuring device to measure the distance to the engine. Typically the distance measuring device comprises a transmitter 56 and a receiver 57. The distance measuring device could comprise a sound detecting device such as an ultrasonic detecting device where the transmitter emits a sound beam that is reflected on the conical part of the nose of the engine and where the
haz reflejado es recibido por el receptor. La distancia desde el transmisor al receptor es entonces estimada por la diferencia de tiempo para la señal procedente del transmisor al receptor. Alternativamente, el dispositivo medidor de distancia podría ser un dispositivo medidor óptico tal como un láser en que el transmisor emite un haz láser que se refleja sobre la parte cónica de la nariz del motor y es recibido por el receptor. Alternativamente, hay otros dispositivos medidores de distancia que podrían ser utilizados. La distancia registrada es entregada al panel operativo donde el operador utilizará la información cuando ajuste la posición apropiada de la cabeza de pulverización aguas arriba del motor. Durante el lavado la distancia medida ayuda al operador a controlar el proceso de lavado informando de cualesquiera cambios en las distancias. La medición de la distancia ayuda al operador a tomar la decisión de ajustar cualquier parámetro de lavado si encuentra que la distancia no es apropiada. El dispositivo medidor de distancia es un dispositivo de mejora de la seguridad ya que el operador puede detener el proceso de lavado si encuentra que la distancia no es segura. El dispositivo medidor de distancia puede incluir alarmas que emiten una señal de alarma en forma de un sonido acústico o un ligero destello si la distancia está fuera de rango. Por ejemplo, si la distancia medida disminuye por debajo de un valor predeterminado. Este valor límite puede ser ajustado por el operador por medio del panel de control. reflected beam is received by the receiver. The distance from the transmitter to the receiver is then estimated by the time difference for the signal from the transmitter to the receiver. Alternatively, the distance measuring device could be an optical measuring device such as a laser in which the transmitter emits a laser beam that is reflected on the conical part of the nose of the motor and is received by the receiver. Alternatively, there are other distance measuring devices that could be used. The recorded distance is delivered to the operating panel where the operator will use the information when adjusting the proper position of the spray head upstream of the engine. During washing the measured distance helps the operator to control the washing process by reporting any changes in the distances. The distance measurement helps the operator make the decision to adjust any washing parameter if he finds that the distance is not appropriate. The distance measuring device is a safety improvement device since the operator can stop the washing process if he finds that the distance is not safe. The distance measuring device may include alarms that emit an alarm signal in the form of an acoustic sound or a slight flash if the distance is out of range. For example, if the measured distance decreases below a predetermined value. This limit value can be adjusted by the operator through the control panel.
El cuerpo 50 incluye una lámpara 52 para iluminar la entrada del motor. La iluminación mejora la visión desde la cámara así como la visión de contacto directo del ojo con la entrada del motor. El cuerpo 50 puede incluir otro dispositivo para mejorar la seguridad o para mejorar la operación de lavado. The body 50 includes a lamp 52 to illuminate the motor inlet. The lighting improves the vision from the camera as well as the direct contact vision of the eye with the motor inlet. The body 50 may include another device to improve safety or to improve the washing operation.
Como el experto en la técnica percibe fácilmente, pueden cada una de las siguientes características: el dispositivo detector óptico 55, el dispositivo medidor de distancia 56, 57, o la lámpara 52 ser usadas de manera independiente de las otras. Es decir, la cabeza pulverizadora 33 puede, por ejemplo, incluir solamente los medios detectores ópticos 55 o solo el dispositivo medidor de distancia 56, 57. As one skilled in the art readily perceives, each of the following characteristics can be achieved: the optical sensing device 55, the distance measuring device 56, 57, or the lamp 52 can be used independently of the others. That is, the spray head 33 may, for example, include only the optical detecting means 55 or only the distance measuring device 56, 57.
La cabeza pulverizadora 33 en la fig. 5 muestra el múltiple como un tubo de forma anular, es decir, un toroide. El líquido es bombeado desde la unidad de lavado (no mostrada) mediante una manguera (no mostrada) al múltiple The spray head 33 in fig. 5 shows the manifold as an annular tube, that is, a toroid. The liquid is pumped from the washing unit (not shown) through a hose (not shown) to the manifold
36. El múltiple 36 es esencialmente circular con el centro del círculo alineado con el eje 501. El plano del múltiple 36 es esencialmente perpendicular al eje 501. El múltiple 36 está conectado al cuerpo 50. El múltiple 36 tiene múltiples boquillas dispuestas alrededor del múltiple para diferentes servicios de lavado. Por ejemplo, la boquilla 53 sirve para el propósito de lavar el ventilador del motor. La boquilla 54 sirve para el propósito de lavar el núcleo del motor. La boquilla 510 sirve para el propósito de lavar la parte cónica de la nariz. La boquilla 511 sirve para el propósito de lavar el carenado. Además de las boquillas 53, 54, 510 y 511 el múltiple puede comprender otras boquillas (no mostradas) para lavar otros detalles del motor. El múltiple 36 tiene al menos una boquilla 54. Las boquillas pueden pulverizar el líquido en una pulverización de gotitas. Alternativamente, las boquillas pueden entregar el líquido como un chorro no pulverizado. El objetivo de utilizar múltiples de forma anular es que los múltiples pueden ser fabricados a partir de un tubo que es curvado a un anillo requiriendo solo una unión (una soldadura). Esta es una ventaja sobre diseños alternativos que requieren más uniones. Cualquier reducción en las uniones es considerada como una característica de seguridad ya que las uniones pueden romperse y pueden causar daño si las partes sueltas entran en el motor. Además, el múltiple de forma anular es considerado seguro ya que cualquier contacto accidental entre el múltiple y cualesquiera partes del avión no implicaría contacto con ningún borde afilado. Alternativamente el múltiple puede ser equipado con un cojín tal como de material de esponja de caucho (no mostrado) de modo que absorba cualquier fuerza en caso de un contacto accidental con el motor. 36. The manifold 36 is essentially circular with the center of the circle aligned with the axis 501. The plane of the manifold 36 is essentially perpendicular to the axis 501. The manifold 36 is connected to the body 50. The manifold 36 has multiple nozzles arranged around the manifold for different washing services. For example, the nozzle 53 serves the purpose of washing the motor fan. The nozzle 54 serves the purpose of washing the motor core. The nozzle 510 serves the purpose of washing the conical part of the nose. The nozzle 511 serves the purpose of washing the fairing. In addition to the nozzles 53, 54, 510 and 511 the manifold may comprise other nozzles (not shown) for washing other engine details. The manifold 36 has at least one nozzle 54. The nozzles can spray the liquid in a droplet spray. Alternatively, the nozzles can deliver the liquid as an unsprayed jet. The objective of using annular manifolds is that the manifolds can be manufactured from a tube that is curved to a ring requiring only a joint (a weld). This is an advantage over alternative designs that require more joints. Any reduction in the joints is considered as a safety feature since the joints can break and can cause damage if the loose parts enter the engine. In addition, the ring-shaped manifold is considered safe since any accidental contact between the manifold and any parts of the aircraft would not imply contact with any sharp edge. Alternatively, the manifold can be equipped with a cushion such as rubber sponge material (not shown) so that it absorbs any force in case of accidental contact with the engine.
La fig. 6 muestra una cabeza de pulverización alternativa. Las partes similares están mostradas con los mismos números de referencia que en la fig. 3 y en la fig. 5. El múltiple de forma anular está aquí sustituido por tubos 61 que sujetan las boquillas en posición. Alternativamente, el múltiple puede estar hecho de forma diferente. Fig. 6 shows an alternative spray head. Similar parts are shown with the same reference numbers as in fig. 3 and in fig. 5. The ring-shaped manifold is here replaced by tubes 61 that hold the nozzles in position. Alternatively, the manifold can be made differently.
Las figs. 7a, 7b y 8 muestran la aplicación de la unidad de lavado (31) cuando se lava un motor de turboventilador. Las partes similares están mostradas con los mismos números de referencia que en las figuras previas. La fig. 7a muestra el lavado del ventilador del motor 1 de turboventilador mediante el uso de boquillas para lavar el ventilador. Durante el lavado el ventilador es forzado a rotación mediante el uso del motor de arranque del motor. La boquilla 53 está atomizando el líquido de lavado a la pulverización 71. Las boquillas tienen un diseño de pulverización que da como resultado una distribución de líquido limitada por un lado por la línea de corriente 75 y por el otro lado por la línea de corriente 76. La distribución de la pulverización en el borde delantero del álabe 72 del ventilador es esencialmente igual a toda la longitud del álabe limitada por el punto 702 de la punta y el punto 701 del cubo. La pulverización cubre así toda la longitud del álabe. El múltiple 51 puede comprender solo una boquilla 53 que entonces cubre solamente una parte de la entrada del motor. El humedecimiento del ventilador completo es entonces conseguido por la rotación del ventilador. La fig. 7b muestra el lavado del núcleo del motor del motor 1 de turboventilador. Durante el lavado el árbol del motor es hecho girar mediante el uso del motor de arranque. La boquilla 54 está atomizando el líquido de lavado a la pulverización 73. Las boquillas tienen un diseño de pulverización que da como resultado una distribución de líquido limitada en un lado por la línea de corriente 77 y en el otro lado por la línea de corriente 78. El propósito de la pulverización es entregar líquido a la entrada 74 del núcleo del motor. La entrada del núcleo del motor es limitada por el divisor de aire 705 y un punto 704 sobre el Figs. 7a, 7b and 8 show the application of the washing unit (31) when a turbo fan motor is washed. Similar parts are shown with the same reference numbers as in the previous figures. Fig. 7a shows the fan wash of the turbo fan motor 1 by using nozzles to wash the fan. During washing the fan is forced to rotate through the use of the engine starter. The nozzle 53 is atomizing the spray wash liquid 71. The nozzles have a spray design that results in a limited liquid distribution on one side by the current line 75 and on the other side by the current line 76 The distribution of the spray on the leading edge of the fan blade 72 is essentially equal to the entire length of the blade limited by point 702 of the tip and point 701 of the hub. The spray thus covers the entire length of the blade. The manifold 51 may comprise only one nozzle 53 which then covers only a part of the engine inlet. The humidification of the complete fan is then achieved by the rotation of the fan. Fig. 7b shows the washing of the engine core of the turbo fan motor 1. During washing the motor shaft is rotated by using the starter motor. The nozzle 54 is atomizing the spray wash liquid 73. The nozzles have a spray design that results in a limited liquid distribution on one side by the stream line 77 and on the other side by the stream line 78 The purpose of the spray is to deliver liquid to the inlet 74 of the motor core. The inlet of the motor core is limited by the air splitter 705 and a point 704 on the
cubo en el lado opuesto del divisor de aire 705. La distribución de pulverización en la entrada del núcleo del motor es igual a la abertura de la entrada del núcleo del motor limitada por el divisor de aire 705 y el punto 704. Por ello el líquido que emana desde la boquilla 54 entrará en la entrada 74 del núcleo del motor. Además, la boquilla 54 está orientada de modo que permita que el líquido penetre entre los álabes durante la rotación del ventilador. La fig. 7a y la fig. 7b describen el lavado del motor de turboventilador mediante el uso del motor de arranque del motor. Alternativamente puede ser utilizado otro dispositivo de arranque tal como un arrancador APU separado. Alternativamente, el lavado puede ser conducido sin hacer girar el árbol del motor. hub on the opposite side of the air splitter 705. The spray distribution at the engine core inlet is equal to the opening of the engine core inlet limited by the air splitter 705 and point 704. Thus the liquid emanating from the nozzle 54 will enter the inlet 74 of the motor core. In addition, the nozzle 54 is oriented so as to allow the liquid to penetrate between the blades during fan rotation. Fig. 7a and fig. 7b describe the washing of the turbo fan motor by using the engine starter. Alternatively, another starting device such as a separate APU starter can be used. Alternatively, washing can be conducted without rotating the motor shaft.
La fig. 8 muestra el uso de la cámara y del dispositivo medidor de distancia. Partes similares están mostradas con los mismos números de referencia que en las figuras previas. Una cámara 55 tiene un ángulo de visión limitado por las líneas 81. La cámara proporcionará una visión de la parte cónica de la nariz del motor que permite que el operador mueva la cabeza de pulverización a la posición apropiada para el lavado. Cuando el motor es accionado por su motor de arranque la visión de la cámara es utilizada para vigilar la rotación del árbol. La cámara puede entonces estar unida a un dispositivo informático (no mostrado) con software para estimar la velocidad rotacional. La velocidad rotacional sirve como un parámetro de entrada al operador cuando pone en marcha el bombeo del líquido. Tener control de la velocidad rotacional es esencial para un buen resultado del lavado. Además, la visión de la cámara permite ver la distribución del líquido sobre el ventilador así como la penetración del líquido en el núcleo del motor. Fig. 8 shows the use of the camera and the distance measuring device. Similar parts are shown with the same reference numbers as in the previous figures. A chamber 55 has a viewing angle limited by lines 81. The chamber will provide a view of the conical part of the nose of the engine that allows the operator to move the spray head to the proper position for washing. When the engine is driven by its starter, the camera's vision is used to monitor the rotation of the tree. The camera can then be attached to a computer device (not shown) with software to estimate rotational speed. The rotational speed serves as an input parameter to the operator when starting the pumping of the liquid. Having rotational speed control is essential for a good wash result. In addition, the vision of the camera allows to see the distribution of the liquid on the fan as well as the penetration of the liquid in the motor core.
Esta visión sirve con una entrada importante al operador ya que puede ajustar el posicionamiento de la cabeza de pulverización o ajustar los parámetros de lavado de modo que sirvan mejor a sus objetivos. Para evitar que la lente de la cámara resulte contaminada con líquido aéreo, la lente es purgada mediante una corriente de aire suministrado desde una fuente de aire comprimido (no mostrada). El dispositivo medidor de distancia comprende un transmisor 56 que emite un haz 82 hacia la parte cónica 83 de la nariz donde se refleja y vuelve el haz reflejado al receptor 57. La señal es alimentada a una unidad informática (no mostrada) para calcular la distancia. La unidad informática puede ser establecida con niveles de alarma de modo que proporcione, por ejemplo una alarma acústica, si la distancia a cualquier objeto resulta críticamente corta. El dispositivo medidor de distancia puede ser dirigido hacia otros objetos distintos de la parte cónica de la nariz en la entrada del motor de manera que proporcione información sobre distancias medidas. Para evitar que los sensores del dispositivo medidor resulten contaminados con líquido aéreo son purgados mediante una corriente de aire suministrada desde una fuente de aire comprimido (no mostrada). This vision serves with an important input to the operator since it can adjust the positioning of the spray head or adjust the washing parameters so that they better serve their objectives. To prevent the camera lens from becoming contaminated with aerial liquid, the lens is purged by a stream of air supplied from a source of compressed air (not shown). The distance measuring device comprises a transmitter 56 that emits a beam 82 towards the conical part 83 of the nose where the reflected beam is reflected and returned to the receiver 57. The signal is fed to a computer unit (not shown) to calculate the distance . The computer unit can be set up with alarm levels so that it provides, for example, an acoustic alarm, if the distance to any object is critically short. The distance measuring device can be directed towards objects other than the conical part of the nose at the motor inlet so as to provide information on measured distances. To prevent the sensors of the measuring device from being contaminated with airborne liquid, they are purged by a stream of air supplied from a source of compressed air (not shown).
La fig. 9 muestra una cabeza de pulverización universal de acuerdo con el invento y que dará servicio a un amplio rango de motores de diferente tamaño. La cabeza de pulverización 90 está mostrada en una vista en perspectiva donde la flecha muestra la dirección del flujo de aire. La cabeza de pulverización 90 tiene un cuerpo central 91 con cámara, dispositivo medidor de distancia y lámpara similares a como se ha descrito anteriormente en la cabeza de pulverización 33 en la fig. 5. La cabeza de pulverización 90 comprende varios múltiples 92 de forma anular cada uno con un diámetro diferente. Los anillos 92 están dispuestos simétricamente alrededor del eje central 501. Los anillos 92 están todos esencialmente en el mismo plano donde los planos son esencialmente perpendiculares al eje Fig. 9 shows a universal spray head according to the invention and which will serve a wide range of engines of different sizes. Spray head 90 is shown in a perspective view where the arrow shows the direction of air flow. Spray head 90 has a central body 91 with camera, distance measuring device and lamp similar to that described above in spray head 33 in fig. 5. The spray head 90 comprises several manifolds 92 annularly each with a different diameter. The rings 92 are arranged symmetrically around the central axis 501. The rings 92 are all essentially in the same plane where the planes are essentially perpendicular to the axis
501. Los anillos están dispuestos con un espacio entre anillos de modo que permitan el flujo de aire a través de la cabeza de pulverización. Cada anillo comprende una o múltiples boquillas 93 donde el tipo de boquilla, el número de boquillas y la separación entre boquillas es acorde con el servicio de lavado que hará el anillo. Las boquillas pueden ser utilizadas para lavar el ventilador, el núcleo del motor, el carenado, la parte cónica de la nariz o para un servicio similar. En principio, los anillos interiores son utilizados para lavar motores menores mientras que los anillos exteriores son utilizados para lavar motores mayores. Además, un anillo pueden estar dedicado a lavar un tipo específico de motor o una familia de motores específica. El anillo con el mayor diámetro , es decir el anillo exterior, tiene un diámetro menor que el diámetro del carenado de entrada de los motores más pequeños a los que dará servicio la cabeza de pulverización. Por ejemplo, los motores de aerolíneas comerciales populares que transportan pasajeros tienen un diámetro de carenado de entrada variable de entre 1,5 a 3 m. La cabeza de pulverización para dar servicio a esos motores tendría entonces un diámetro exterior menor de 1,5 m. 501. The rings are arranged with a gap between rings so that they allow air to flow through the spray head. Each ring comprises one or multiple nozzles 93 where the type of nozzle, the number of nozzles and the separation between nozzles is consistent with the washing service that the ring will do. The nozzles can be used to wash the fan, the motor core, the fairing, the conical part of the nose or for a similar service. In principle, inner rings are used to wash smaller engines while outer rings are used to wash larger engines. In addition, a ring may be dedicated to washing a specific type of engine or a specific family of engines. The ring with the largest diameter, that is to say the outer ring, has a diameter smaller than the diameter of the entrance fairing of the smaller engines that will be serviced by the spray head. For example, the engines of popular commercial airlines that carry passengers have a variable fairing diameter of between 1.5 and 3 m. The spray head to service these engines would then have an outside diameter of less than 1.5 m.
Para lavar un motor típicamente solo está en servicio un anillo. Esto se consigue teniendo cada anillo 92 conectado mediante un conducto a un distribuidor (no mostrado por claridad) en la cabeza de pulverización. El distribuidor comprende válvulas individuales para cerrar cada conducto. Antes de establecer el lavado el operador activaría el anillo que ha de ser usado abriendo la válvula correspondiente. Todas las demás válvulas estarían entonces cerradas. To wash an engine typically only one ring is in service. This is achieved by having each ring 92 connected through a conduit to a distributor (not shown for clarity) in the spray head. The distributor comprises individual valves to close each duct. Before establishing the wash, the operator would activate the ring to be used by opening the corresponding valve. All other valves would then be closed.
Aunque la cabeza de pulverización 90 es universal en el significado de que puede dar servicio a un amplio rango de tipos de aviones y tipos de motores, es práctico tener múltiples cabezas de pulverización que sean intercambiables. Esto puede ser razonado por diferentes requisitos establecidos por las instituciones de aviación u otras instrucciones. Otra razón puede ser una cabeza de pulverización separada para satisfacer requisitos militares de aviación. Puede haber razones adicionales. Para conseguir cambiar las cabezas de pulverización, la cabeza de pulverización está montada sobre el brazo robótico con un acoplamiento que permite un intercambio fácil. Although spray head 90 is universal in the sense that it can service a wide range of aircraft types and engine types, it is practical to have multiple spray heads that are interchangeable. This can be reasoned by different requirements established by aviation institutions or other instructions. Another reason may be a separate spray head to meet military aviation requirements. There may be additional reasons. In order to change the spray heads, the spray head is mounted on the robotic arm with a coupling that allows easy exchange.
El invento como se ha descrito aquí proporciona medios para reducir el tiempo de lavado así como para reducir los requisitos de trabajo. La fig. 10 muestra la disposición para lavar motores que requiere tanto menos tiempo como menor intensidad de trabajo comparada con la técnica anterior. Partes similares están mostradas con los mismos números de referencia que en las figuras previas. El proceso descrito aquí requeriría típicamente sólo un operador 5 para conducir el lavado. Una unidad de lavado 31 suministra líquido de lavado mediante el conducto 35 a una cabeza de pulverización sujeta por el brazo robótico 34. Durante el lavado el operador controla el proceso desde el panel de control 113. Controlar incluye ver la imagen de la cámara de la cabeza de pulverización desde el monitor The invention as described herein provides means to reduce washing time as well as to reduce work requirements. Fig. 10 shows the willingness to wash engines that requires both less time and less labor intensity compared to the prior art. Similar parts are shown with the same reference numbers as in the previous figures. The process described here would typically require only one operator 5 to conduct the wash. A washing unit 31 supplies washing liquid through the conduit 35 to a spray head held by the robotic arm 34. During washing the operator controls the process from the control panel 113. Control includes viewing the image of the chamber of the spray head from the monitor
112. El líquido de lavado residual que emana desde el motor es recogido por el dispositivo de recogida 114 en la parte posterior del motor. El líquido residual recogido entra en un depósito (no mostrado) en la unidad 116 a través 10 del conducto 115. La unidad 116 puede estar equipada con ruedas para su movilidad. Un dispositivo de recogida adecuado esta descrito en la solicitud internacional PCT/SE 2004/000922, en la que el contenido de dicha solicitud está aquí incluido como referencia. El líquido residual es bombeado a través del conducto 118 a un depósito en la unidad de lavado 31 donde el material de acumulación indeseada liberado es separado del líquido mediante un proceso de tratamiento adecuado del agua residual. El agua tratada será a continuación utilizada para lavar el 112. The residual washing liquid that emanates from the engine is collected by the collection device 114 at the rear of the engine. The collected residual liquid enters a tank (not shown) in the unit 116 through the conduit 115. The unit 116 may be equipped with wheels for mobility. A suitable collection device is described in the international application PCT / SE 2004/000922, in which the content of said application is included herein by reference. The residual liquid is pumped through the conduit 118 to a reservoir in the washing unit 31 where the unwanted accumulation material released is separated from the liquid by an appropriate wastewater treatment process. The treated water will then be used to wash the
15 siguiente motor o será descargada a un sumidero. Mientras el agua residual está siendo tratada el operador puede mover su vehículo 32 y otro equipo al siguiente motor para ajustarlo para el siguiente lavado. 15 next engine or it will be discharged to a sump. While the wastewater is being treated the operator can move his vehicle 32 and other equipment to the next engine to adjust it for the next wash.
Aunque se ha mostrado y descrito una realización específica aquí con propósitos de ilustración y ejemplificación, se comprenderá por los expertos en la técnica que la realización específica mostrada y descrita puede ser sustituida para una amplia variedad de puestas en práctica alternativas y/o equivalentes sin salir del marco del 20 presente invento. Consecuentemente el presente invento es definido por los textos de las reivindicaciones adjuntas. Although a specific embodiment has been shown and described herein for purposes of illustration and exemplification, it will be understood by those skilled in the art that the specific embodiment shown and described can be substituted for a wide variety of alternative and / or equivalent implementations without leaving of the framework of the present invention. Consequently the present invention is defined by the texts of the appended claims.
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/SE2004/000922 WO2005121509A1 (en) | 2004-06-14 | 2004-06-14 | System and devices for collecting and treating waste water from engine washing |
WOPCT/SE2004/000922 | 2004-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2454740T3 true ES2454740T3 (en) | 2014-04-11 |
Family
ID=35276280
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES04736825T Expired - Lifetime ES2343409T3 (en) | 2004-06-14 | 2004-06-14 | SYSTEM AND DEVICES FOR COLLECTION AND TREATMENT OF WASTEWASH WASTEWATER. |
ES05753939T Active ES2297725T3 (en) | 2004-06-14 | 2005-06-08 | SYSTEM FOR CLEANING A GAS TURBINE AERONAUTICAL ENGINE. |
ES07024134.4T Active ES2454740T3 (en) | 2004-06-14 | 2005-06-08 | System for washing a gas turbine aeromotor |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES04736825T Expired - Lifetime ES2343409T3 (en) | 2004-06-14 | 2004-06-14 | SYSTEM AND DEVICES FOR COLLECTION AND TREATMENT OF WASTEWASH WASTEWATER. |
ES05753939T Active ES2297725T3 (en) | 2004-06-14 | 2005-06-08 | SYSTEM FOR CLEANING A GAS TURBINE AERONAUTICAL ENGINE. |
Country Status (21)
Country | Link |
---|---|
US (9) | US7297260B2 (en) |
EP (5) | EP2196394B1 (en) |
JP (5) | JP4249243B2 (en) |
KR (2) | KR101214321B1 (en) |
CN (3) | CN1788143B (en) |
AR (1) | AR049106A1 (en) |
AT (2) | ATE462870T1 (en) |
AU (4) | AU2004320619B2 (en) |
BR (2) | BRPI0418904A (en) |
CA (3) | CA2506174C (en) |
DE (5) | DE602004026362D1 (en) |
DK (3) | DK1756399T3 (en) |
ES (3) | ES2343409T3 (en) |
HK (2) | HK1092854A1 (en) |
MX (3) | MX344139B (en) |
MY (1) | MY139149A (en) |
NO (3) | NO20052431L (en) |
PL (1) | PL1756399T3 (en) |
RU (2) | RU2412086C2 (en) |
TW (2) | TWI419744B (en) |
WO (2) | WO2005121509A1 (en) |
Families Citing this family (197)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8246753B2 (en) | 2002-05-13 | 2012-08-21 | Aero Jet Wash Llc | Gaspath cleaning system |
US8974662B2 (en) * | 2002-10-30 | 2015-03-10 | William J Gannon | Filtration of a pumped hydrocarbon containing liquid |
DE602004026362D1 (en) | 2004-06-14 | 2010-05-12 | Gas Turbine Efficiency Ab | SYSTEM AND DEVICES FOR COLLECTING AND TREATING WASTEWATER FROM ENGINE CLEANING |
US9790808B2 (en) * | 2005-04-04 | 2017-10-17 | Ecoservices, Llc | Mobile on-wing engine washing and water reclamation system |
JP4611914B2 (en) * | 2006-02-28 | 2011-01-12 | トーカロ株式会社 | Compressor blade, method for manufacturing the same, and gas turbine for thermal power generation |
US7597012B2 (en) * | 2006-06-15 | 2009-10-06 | Hitachi Global Storage Technologies Netherlands B.V. | System and method for using a spray/liquid particle count (LPC) to measure particulate contamination |
GB0614874D0 (en) * | 2006-07-27 | 2006-09-06 | Rolls Royce Plc | Aeroengine washing system and method |
GB0617043D0 (en) | 2006-08-30 | 2006-10-11 | Rolls Royce Plc | Aeroengine washing system and method |
US7571735B2 (en) * | 2006-09-29 | 2009-08-11 | Gas Turbine Efficiency Sweden Ab | Nozzle for online and offline washing of gas turbine compressors |
US8685176B2 (en) * | 2006-10-16 | 2014-04-01 | Ecoservices, Llc | System and method for optimized gas turbine compressor cleaning and performance measurement |
US7849878B2 (en) * | 2006-10-16 | 2010-12-14 | Gas Turbine Efficiency Sweden Ab | Gas turbine compressor water wash control of drain water purge and sensing of rinse and wash completion |
US8197609B2 (en) * | 2006-11-28 | 2012-06-12 | Pratt & Whitney Line Maintenance Services, Inc. | Automated detection and control system and method for high pressure water wash application and collection applied to aero compressor washing |
US8524010B2 (en) | 2007-03-07 | 2013-09-03 | Ecoservices, Llc | Transportable integrated wash unit |
EP1970133A1 (en) * | 2007-03-16 | 2008-09-17 | Lufthansa Technik AG | Device and method for cleaning the core engine of a turbojet engine |
EP2052792A3 (en) * | 2007-10-09 | 2011-06-22 | Gas Turbine Efficiency Sweden AB | Drain valve, washing system and sensing of rinse and wash completion |
US8277647B2 (en) * | 2007-12-19 | 2012-10-02 | United Technologies Corporation | Effluent collection unit for engine washing |
US8069582B2 (en) * | 2007-12-27 | 2011-12-06 | Daewoo Electronics Corporation | Dryer |
DE102008014607A1 (en) * | 2008-03-17 | 2010-02-25 | Lufthansa Technik Ag | Device for collecting washing liquid from a jet engine wash |
JP4959612B2 (en) * | 2008-03-18 | 2012-06-27 | 株式会社日立製作所 | Intake air cooling system for gas turbine |
DE102008021746A1 (en) | 2008-04-30 | 2009-11-19 | Lufthansa Technik Ag | Method and device for cleaning a jet engine |
US7445677B1 (en) | 2008-05-21 | 2008-11-04 | Gas Turbine Efficiency Sweden Ab | Method and apparatus for washing objects |
US20090288691A1 (en) * | 2008-05-23 | 2009-11-26 | Hunt Gene C | Solar panel cleaning system |
JP2011529232A (en) * | 2008-07-25 | 2011-12-01 | ユナイテッド テクノロジーズ コーポレイション | A method to acquire carbon credits by specifying CO2 reduction amount |
DE102008047493B4 (en) * | 2008-09-17 | 2016-09-22 | MTU Aero Engines AG | Method for cleaning an engine |
US20100102835A1 (en) * | 2008-10-27 | 2010-04-29 | General Electric Company | Method and system for detecting a corrosive deposit in a compressor |
EP2344729A2 (en) * | 2008-11-06 | 2011-07-20 | General Electric Company | Gas turbine engine wash system and method |
US20110083705A1 (en) * | 2008-11-06 | 2011-04-14 | Stone Roy L | Engine wash system |
US8245952B2 (en) * | 2009-02-20 | 2012-08-21 | Pratt & Whitney Canada Corp. | Compressor wash nozzle integrated in an inlet case strut |
US9080460B2 (en) * | 2009-03-30 | 2015-07-14 | Ecoservices, Llc | Turbine cleaning system |
US20100242994A1 (en) * | 2009-03-30 | 2010-09-30 | Gas Turbine Efficiency Sweden Ab | Device and method for collecting waste water from turbine engine washing |
US9016293B2 (en) * | 2009-08-21 | 2015-04-28 | Gas Turbine Efficiency Sweden Ab | Staged compressor water wash system |
US20110186096A1 (en) | 2010-02-02 | 2011-08-04 | Gas Turbine Efficiency Sweden Ab | Aircraft maintenance unit |
US9574492B2 (en) | 2010-03-15 | 2017-02-21 | HNO Green Fuels, Inc. | Portable hydrogen supplemental system and method for lowering particulate matter and other emissions in diesel engines at idle |
US9399946B2 (en) * | 2010-05-28 | 2016-07-26 | Donald W. Owens | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines |
US9138788B2 (en) * | 2010-03-23 | 2015-09-22 | Ecoservices, Llc | Device and method having a duct for collecting waste water from turbine engine washing |
US8206478B2 (en) | 2010-04-12 | 2012-06-26 | Pratt & Whitney Line Maintenance Services, Inc. | Portable and modular separator/collector device |
DE102010045869A1 (en) | 2010-08-03 | 2012-02-23 | Mtu Aero Engines Gmbh | Cleaning a turbo machine stage |
KR101110193B1 (en) | 2011-02-24 | 2012-02-15 | 주식회사 진우에스엠씨 | Moving Type Aircraft Engine Washing Device |
RU2476713C2 (en) * | 2011-02-25 | 2013-02-27 | Новиков Василий Васильевич | Method of cleaning liquid-propellant rocket engine combustion chamber inner surface |
DE102011015252A1 (en) | 2011-03-28 | 2012-10-04 | Lufthansa Technik Ag | Cleaning lance and method for cleaning engines |
US8786848B2 (en) * | 2011-05-05 | 2014-07-22 | Siemens Energy, Inc. | Inspection system for a combustor of a turbine engine |
FR2975669B1 (en) * | 2011-05-24 | 2013-07-05 | Airbus Operations Sas | METHOD FOR POINTING A PLURALITY OF PREDETERMINAL LOCATIONS WITHIN A STRUCTURE, AND CORRESPONDING SCORING SYSTEM |
GB201113083D0 (en) * | 2011-07-29 | 2011-09-14 | Formatex Offshore S A L | A method for in-situ cleaning of compressor blades in a gas turbine engine on aircraft and compositions |
US20130087175A1 (en) * | 2011-10-05 | 2013-04-11 | Petter Investments, Inc. d/b/a Riveer Co | Aircraft Washing System |
US9206703B2 (en) | 2011-11-01 | 2015-12-08 | Aero Jet Wash Llc | Jet engine cleaning system |
ITFI20110269A1 (en) | 2011-12-12 | 2013-06-13 | Nuovo Pignone Spa | "TURNING GEAR FOR GAS TURBINE ARRANGEMENTS" |
US20130186435A1 (en) * | 2012-01-23 | 2013-07-25 | General Electric Companh | Gas Turbine Compressor Water Wash System |
CH706151A1 (en) * | 2012-02-29 | 2013-08-30 | Alstom Technology Ltd | A method of operating a gas turbine and gas turbine power plant with feeding sauerstoffreduziertem gas, particularly gas. |
JP5106695B1 (en) * | 2012-04-02 | 2012-12-26 | 修 小川 | Internal cleaning agent for diesel engine and cleaning system using the same |
US8998567B2 (en) * | 2012-06-08 | 2015-04-07 | General Electric Company | Method, system and apparatus for enhanced off line compressor and turbine cleaning |
US9821352B2 (en) * | 2012-06-27 | 2017-11-21 | Ecoservices, Llc | Engine wash apparatus and method |
US9631511B2 (en) | 2012-06-27 | 2017-04-25 | Ecoservices, Llc | Engine wash apparatus and method |
US9138782B2 (en) * | 2012-07-31 | 2015-09-22 | Ecoservices, Llc | Engine wash apparatus and method-collector |
US9023155B2 (en) * | 2012-07-31 | 2015-05-05 | Ecoservices, Llc | Engine wash apparatus and method—manifold |
RU2516989C1 (en) * | 2012-10-25 | 2014-05-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) | Method to control valve of periodical blowdown of drum boiler and device for its realisation |
US10020711B2 (en) | 2012-11-16 | 2018-07-10 | U.S. Well Services, LLC | System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources |
US10119381B2 (en) | 2012-11-16 | 2018-11-06 | U.S. Well Services, LLC | System for reducing vibrations in a pressure pumping fleet |
DE102013002636A1 (en) | 2013-02-18 | 2014-08-21 | Jürgen von der Ohe | Device for jet cleaning of unit, particularly of gas turbine jet engines of airplane, has jet nozzle with introduction stop, which limits depth of insertion of jet nozzle into opening, where twist element is arranged to introduction stop |
WO2014124755A1 (en) | 2013-02-18 | 2014-08-21 | Jürgen Von Der Ohe | Method and device for cold jet cleaning |
DE102013002635A1 (en) | 2013-02-18 | 2014-08-21 | Jürgen von der Ohe | Method for cold jet cleaning of turbine components and e.g. gas turbine engine, of aircraft in airport, involves mixing solid body particles comprising water ice particles into pressure medium of gas and/or water in order to form core jet |
US9267393B2 (en) * | 2013-03-04 | 2016-02-23 | General Electric Company | Dry ice cleaning apparatus for gas turbine compressor |
US9234441B2 (en) * | 2013-03-11 | 2016-01-12 | Pratt & Whitney Canada Corp. | Method of immobilizing low pressure spool and locking tool therefore |
US9500098B2 (en) * | 2013-03-13 | 2016-11-22 | Ecoservices, Llc | Rear mounted wash manifold and process |
US9212565B2 (en) | 2013-03-13 | 2015-12-15 | Ecoservices, Llc | Rear mounted wash manifold retention system |
US9757773B2 (en) * | 2013-03-15 | 2017-09-12 | Ecoservices, Llc | Engine wash collector |
US8951358B2 (en) * | 2013-03-15 | 2015-02-10 | Honeywell International Inc. | Cleaning compositions and methods |
JP6180145B2 (en) * | 2013-03-26 | 2017-08-16 | 三菱日立パワーシステムズ株式会社 | Intake air cooling system |
CN103277148A (en) * | 2013-06-05 | 2013-09-04 | 中国南方航空工业(集团)有限公司 | Flushing device and cleaning method of turbine engine |
US9359959B2 (en) * | 2013-07-31 | 2016-06-07 | General Electric Company | Anti-icing system for a gas turbine |
US20150075271A1 (en) * | 2013-09-18 | 2015-03-19 | Tire Profiles, Inc | Modular tire tread analyzing station |
KR102698164B1 (en) | 2013-10-02 | 2024-08-22 | 에어로코어 테크놀로지스 엘엘씨 | Cleaning method for jet engine |
US11643946B2 (en) | 2013-10-02 | 2023-05-09 | Aerocore Technologies Llc | Cleaning method for jet engine |
SG11201602221RA (en) | 2013-10-10 | 2016-04-28 | Ecoservices Llc | Radial passage engine wash manifold |
ITCO20130056A1 (en) * | 2013-11-04 | 2015-05-05 | Nuovo Pignone Srl | INTEGRATED WASHING SYSTEM FOR MOTOR WITH GAS TURBINE. |
US9452848B2 (en) * | 2013-11-07 | 2016-09-27 | Rochem Aviation, Inc. | Method and apparatus for cleaning jet engines |
US9470105B2 (en) * | 2013-11-21 | 2016-10-18 | General Electric Company | Automated water wash system for a gas turbine engine |
DE102013224639A1 (en) | 2013-11-29 | 2015-06-03 | Lufthansa Technik Ag | Method and device for cleaning a jet engine |
DE102013224635A1 (en) | 2013-11-29 | 2015-06-03 | Lufthansa Technik Ag | Method and device for cleaning a jet engine |
WO2015081998A1 (en) * | 2013-12-04 | 2015-06-11 | Kaercher Futuretech Gmbh | Device system for military and/or humanitarian operations, in particular a mobile decontamination system |
US20150159505A1 (en) * | 2013-12-06 | 2015-06-11 | General Electric Company | Gas turbine organic acid based inter-rinse |
US9435260B2 (en) | 2013-12-06 | 2016-09-06 | Bha Altair, Llc | Method and system for testing filter element performance |
ITMI20132042A1 (en) | 2013-12-06 | 2015-06-07 | Nuovo Pignone Srl | METHODS FOR WASHING MOTORS WITH GAS TURBINES AND GAS TURBINE ENGINES |
US20150159506A1 (en) * | 2013-12-06 | 2015-06-11 | General Electric Company | Gas turbine peracetic acid solution inter-rinse |
US9932854B1 (en) | 2013-12-09 | 2018-04-03 | General Electric Company | Methods of cleaning a hot gas flowpath component of a turbine engine |
US9926517B2 (en) | 2013-12-09 | 2018-03-27 | General Electric Company | Cleaning solution and methods of cleaning a turbine engine |
FR3014944B1 (en) | 2013-12-16 | 2016-01-22 | Snecma | DEVICE FOR CLEANING A TURBOMACHINE MODULE |
US9644350B2 (en) * | 2014-01-23 | 2017-05-09 | Jack Y. Khalifeh | System for recycling grey water |
US9790834B2 (en) | 2014-03-20 | 2017-10-17 | General Electric Company | Method of monitoring for combustion anomalies in a gas turbomachine and a gas turbomachine including a combustion anomaly detection system |
DE102014206084A1 (en) * | 2014-03-31 | 2015-10-01 | Lufthansa Technik Ag | Apparatus and method for engine cleaning |
US20150354462A1 (en) * | 2014-06-05 | 2015-12-10 | General Electric Company | Off-line wash systems and methods for a gas turbine engine |
US20150354403A1 (en) * | 2014-06-05 | 2015-12-10 | General Electric Company | Off-line wash systems and methods for a gas turbine engine |
US9874108B2 (en) | 2014-07-08 | 2018-01-23 | Rolls-Royce Corporation | Cleaning system for a turbofan gas turbine engine |
US9657590B2 (en) | 2014-08-04 | 2017-05-23 | Rolls-Royce Corporation | Aircraft engine cleaning system |
US9821349B2 (en) | 2014-09-10 | 2017-11-21 | Rolls-Royce Corporation | Wands for gas turbine engine cleaning |
US20160076456A1 (en) * | 2014-09-12 | 2016-03-17 | General Electric Company | System and method for providing a wash treatment to a surface |
US9644484B2 (en) * | 2014-09-12 | 2017-05-09 | General Electric Company | System and method for providing a film treatment to a surface using inlet bleed heat manifold |
US9835048B2 (en) | 2014-12-03 | 2017-12-05 | Rolls-Royce Corporation | Turbine engine fleet wash management system |
US10125782B2 (en) | 2014-12-17 | 2018-11-13 | Envaerospace Inc. | Conditioning method of gas turbine engine components for increasing fuel efficiency |
US20160186602A1 (en) * | 2014-12-31 | 2016-06-30 | Aerocore Technologies Llc | Nozzle for foam washing of jet engine |
US9791351B2 (en) | 2015-02-06 | 2017-10-17 | General Electric Company | Gas turbine combustion profile monitoring |
US10287909B2 (en) * | 2015-05-29 | 2019-05-14 | Pratt & Whitney Canada Corp. | Method and kit for preserving a fuel system of an aircraft engine |
DE102015209994A1 (en) | 2015-05-29 | 2016-12-15 | Lufthansa Technik Ag | Method and device for cleaning a jet engine |
BR102016021259B1 (en) | 2015-10-05 | 2022-06-14 | General Electric Company | METHOD AND SOLUTIONS FOR CLEANING A TURBINE ENGINE AND REAGENT COMPOSITION |
CA2907256C (en) * | 2015-10-05 | 2023-08-15 | Katch Kan Holdings Ltd. | Washing apparatus |
CN105134301B (en) * | 2015-10-08 | 2017-08-25 | 新兴铸管股份有限公司 | A kind of turbine for installing boiling rotor and stator blade cleaning device additional |
US10018113B2 (en) | 2015-11-11 | 2018-07-10 | General Electric Company | Ultrasonic cleaning system and method |
US12078110B2 (en) | 2015-11-20 | 2024-09-03 | Us Well Services, Llc | System for gas compression on electric hydraulic fracturing fleets |
CN105537173B (en) * | 2015-12-10 | 2017-07-14 | 成都发动机(集团)有限公司 | A kind of fixture for being used to clean the complicated cavity of part |
US11415019B2 (en) | 2015-12-11 | 2022-08-16 | General Electric Company | Meta-stable detergent based foam cleaning system and method for gas turbine engines |
US20170204739A1 (en) * | 2016-01-20 | 2017-07-20 | General Electric Company | System and Method for Cleaning a Gas Turbine Engine and Related Wash Stand |
US20170239692A1 (en) * | 2016-02-19 | 2017-08-24 | General Electric Company | Auxiliary Cleaning System for Gas Turbine Engines |
CN108294701B (en) * | 2016-05-17 | 2019-10-01 | 杭州富阳和翔模具有限公司 | A kind of furring tile, furred ceiling, ceiling dust descaling machine |
BE1024315B1 (en) * | 2016-06-28 | 2018-01-30 | Safran Aero Boosters Sa | Propulsion system for aircraft |
CN109661505B (en) * | 2016-06-29 | 2021-10-22 | 通用电气公司 | Method for wastewater-based condition assessment |
US11517948B2 (en) | 2016-07-21 | 2022-12-06 | Siemens Healthcare Diagnostics Inc. | Basin and high speed air solution |
CN106345752B (en) * | 2016-08-22 | 2018-08-07 | 沧州致胜机器人科技有限公司 | A kind of double four-rotor helicopter photovoltaic laser wiping board systems |
RU2639938C1 (en) * | 2016-09-12 | 2017-12-25 | Открытое акционерное общество "Концерн Кизлярский электромеханический завод (КЭМЗ)" | Method for washing and preserving gas-air path of aircraft engine and device for its implementation |
CN109996613A (en) * | 2016-09-30 | 2019-07-09 | 通用电气公司 | Cleaning system for gas-turbine unit |
CN106283473B (en) * | 2016-09-30 | 2018-09-28 | 何平 | A kind of washing machine people |
SG11201902946VA (en) * | 2016-10-04 | 2019-05-30 | Gen Electric | Collection system for a gas turbine engine wash assembly |
KR101893377B1 (en) * | 2016-10-10 | 2018-08-30 | 주식회사 굿에어 | Improved Apparatus for Cleaning Air-Conditioner Embedded in Ceiling |
US10245686B2 (en) | 2016-11-03 | 2019-04-02 | Envaerospace Inc. | Conditioning method of gas turbine engine components for aerodynamic noise reduction |
US11313246B2 (en) * | 2016-11-30 | 2022-04-26 | General Electric Company | Gas turbine engine wash system |
CN106742045B (en) * | 2016-12-07 | 2019-04-12 | 中国民航大学 | A kind of aero-engine cleans spraying system in the wing |
CN106679981B (en) * | 2016-12-07 | 2018-10-26 | 中国民航大学 | A kind of aircraft engine cleans simulated experiment platform in the wing |
RU2656801C1 (en) * | 2016-12-12 | 2018-06-06 | Закрытое акционерное общество "Турботект Санкт-Петербург" | External flushing system of gas air-cooling unit |
US10810805B2 (en) * | 2017-02-24 | 2020-10-20 | Moc Products Company, Inc. | Method for cleaning engine deposits |
US11174751B2 (en) * | 2017-02-27 | 2021-11-16 | General Electric Company | Methods and system for cleaning gas turbine engine |
US10731508B2 (en) | 2017-03-07 | 2020-08-04 | General Electric Company | Method for cleaning components of a turbine engine |
CN106944393B (en) * | 2017-03-23 | 2019-07-12 | 华南理工大学 | A kind of high undersea hydrostatic pressures water is removed contamination spray head 3 D locating device |
US10227891B2 (en) * | 2017-03-29 | 2019-03-12 | General Electric Company | Gas turbine engine wash system |
US11053813B2 (en) | 2017-04-18 | 2021-07-06 | General Electric Company | Turbine component cleaning system and method having detergent recovery and regeneration |
US20180313225A1 (en) * | 2017-04-26 | 2018-11-01 | General Electric Company | Methods of cleaning a component within a turbine engine |
CN106926256B (en) * | 2017-05-09 | 2018-05-25 | 国网湖南省电力公司带电作业中心 | A kind of transmission system living water washing, deicing implement and its application process |
CN107132487A (en) * | 2017-06-22 | 2017-09-05 | 广州中国科学院工业技术研究院 | Secondary cell thermal runaway propagates test system |
CN107442482B (en) * | 2017-08-01 | 2020-05-26 | 春秋航空技术发展江苏有限公司 | Aero-engine cleaning support and cleaning method of aero-engine |
CN107499531B (en) * | 2017-08-01 | 2019-06-21 | 春秋航空技术发展江苏有限公司 | A kind of aero-engine is in wing cleaning machine |
CN107497743B (en) * | 2017-08-07 | 2020-06-05 | 江苏江海润液设备有限公司 | Control method for gas turbine cleaning system |
SG10201707125YA (en) * | 2017-08-31 | 2019-03-28 | United Technologies Corp | Directional water jet cleaning of engine blades |
JP6950419B2 (en) * | 2017-09-29 | 2021-10-13 | 栗田工業株式会社 | Fin tube cleaning jig and cleaning method |
CN107476831A (en) * | 2017-09-30 | 2017-12-15 | 中国航发沈阳发动机研究所 | Aircraft engine support case with cleaning function |
US11028727B2 (en) | 2017-10-06 | 2021-06-08 | General Electric Company | Foaming nozzle of a cleaning system for turbine engines |
US10871082B2 (en) | 2018-01-02 | 2020-12-22 | General Electric Company | In situ foam generation within a turbine engine |
US20190210698A1 (en) * | 2018-01-11 | 2019-07-11 | Paul K. Sunden | Foot sprayer attached to watercraft |
CN108248842B (en) * | 2018-01-25 | 2021-06-04 | 汕头市创新科技电子有限公司 | High-altitude ultrasonic dust removal cleaning machine system |
US11371385B2 (en) | 2018-04-19 | 2022-06-28 | General Electric Company | Machine foam cleaning system with integrated sensing |
DE102018110802B3 (en) | 2018-05-04 | 2019-10-10 | Lufthansa Technik Ag | Device for positioning a washing system for jet engines in the engine intake |
US10815783B2 (en) | 2018-05-24 | 2020-10-27 | General Electric Company | In situ engine component repair |
PL3578118T3 (en) | 2018-06-05 | 2022-11-21 | Erbe Elektromedizin Gmbh | Surgical instrument |
US10935460B2 (en) * | 2018-07-17 | 2021-03-02 | General Electric Company | Ultrasonic tank for a turbomachine |
DE102018119094A1 (en) * | 2018-08-06 | 2020-02-06 | Lufthansa Technik Ag | Device, method and arrangement for cleaning the core engine of a jet engine |
DE102018119092A1 (en) * | 2018-08-06 | 2020-02-06 | Lufthansa Technik Ag | Device and method for cleaning the core engine of a jet engine |
US12005480B1 (en) * | 2018-09-19 | 2024-06-11 | Innovative Surface Prep Rentals, Llc | Environmentally safe ultra-high pressure surface cleaning system |
US10914155B2 (en) | 2018-10-09 | 2021-02-09 | U.S. Well Services, LLC | Electric powered hydraulic fracturing pump system with single electric powered multi-plunger pump fracturing trailers, filtration units, and slide out platform |
US11707819B2 (en) | 2018-10-15 | 2023-07-25 | General Electric Company | Selectively flexible extension tool |
RU186515U1 (en) * | 2018-10-22 | 2019-01-22 | Общество с ограниченной ответственностью "Искра-Нефтегаз Компрессор" | RINSING RACK FOR CENTRIFUGAL COMPRESSOR FLOWING WASHING DEVICE |
US10939849B2 (en) * | 2018-10-31 | 2021-03-09 | Monitored Therapeutics, Inc | Low flow spirometer turbine |
US10799016B2 (en) * | 2018-11-06 | 2020-10-13 | Thomas DePascale | Auto-adjusting vehicle pressure washer |
RU2702782C1 (en) * | 2018-11-16 | 2019-10-11 | Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") | Gas turbine engine |
KR102139266B1 (en) * | 2018-11-20 | 2020-07-29 | 두산중공업 주식회사 | Gas turbine |
CN109513672A (en) * | 2018-11-28 | 2019-03-26 | 江苏中盈玻璃科技有限公司 | A kind of cleaning device of mould for glass bottle |
EP3667031A1 (en) * | 2018-12-14 | 2020-06-17 | ABB Turbo Systems AG | Gas turbine with a cleaning device having particular injectors |
US11702955B2 (en) | 2019-01-14 | 2023-07-18 | General Electric Company | Component repair system and method |
CN110053785A (en) * | 2019-04-18 | 2019-07-26 | 中国民航大学 | A kind of cleaning of aircraft engine fan blade and spray equipment |
WO2020231483A1 (en) | 2019-05-13 | 2020-11-19 | U.S. Well Services, LLC | Encoderless vector control for vfd in hydraulic fracturing applications |
WO2021022048A1 (en) | 2019-08-01 | 2021-02-04 | U.S. Well Services, LLC | High capacity power storage system for electric hydraulic fracturing |
CN110496238B (en) * | 2019-08-28 | 2020-12-15 | 台州市立医院 | Indoor disinfection cleaning trolley for hospital |
GB201914723D0 (en) | 2019-10-11 | 2019-11-27 | Rolls Royce Plc | Cleaning system and a method of cleaning |
US11446596B2 (en) * | 2019-10-15 | 2022-09-20 | Honeywell International Inc. | Self refreshing particle separator |
US12031501B2 (en) | 2019-11-27 | 2024-07-09 | General Electric Company | Cooling system for an engine assembly |
CN111012256B (en) * | 2019-12-31 | 2021-12-24 | 北京石头世纪科技股份有限公司 | Robot and obstacle detection method |
US11692650B2 (en) | 2020-01-23 | 2023-07-04 | General Electric Company | Selectively flexible extension tool |
US11752622B2 (en) | 2020-01-23 | 2023-09-12 | General Electric Company | Extension tool having a plurality of links |
US11613003B2 (en) | 2020-01-24 | 2023-03-28 | General Electric Company | Line assembly for an extension tool having a plurality of links |
US11371437B2 (en) | 2020-03-10 | 2022-06-28 | Oliver Crispin Robotics Limited | Insertion tool |
DE102020206205A1 (en) | 2020-05-18 | 2021-11-18 | MTU Aero Engines AG | Device and method for cleaning an aircraft engine |
US12091981B2 (en) | 2020-06-11 | 2024-09-17 | General Electric Company | Insertion tool and method |
US11371425B2 (en) | 2020-09-22 | 2022-06-28 | General Electric Company | System and method for cleaning deposit from a component of an assembled, on-wing gas turbine engine |
US11555413B2 (en) | 2020-09-22 | 2023-01-17 | General Electric Company | System and method for treating an installed and assembled gas turbine engine |
US11915531B2 (en) | 2020-10-29 | 2024-02-27 | General Electric Company | Systems and methods of servicing equipment |
US11874653B2 (en) | 2020-10-29 | 2024-01-16 | Oliver Crispin Robotics Limited | Systems and methods of servicing equipment |
US11938907B2 (en) | 2020-10-29 | 2024-03-26 | Oliver Crispin Robotics Limited | Systems and methods of servicing equipment |
US11685051B2 (en) | 2020-10-29 | 2023-06-27 | General Electric Company | Systems and methods of servicing equipment |
US11935290B2 (en) | 2020-10-29 | 2024-03-19 | Oliver Crispin Robotics Limited | Systems and methods of servicing equipment |
US11992952B2 (en) * | 2020-10-29 | 2024-05-28 | General Electric Company | Systems and methods of servicing equipment |
CN112845312A (en) * | 2021-01-08 | 2021-05-28 | 抚州元文科技发展有限公司 | Cleaning machine |
CN113042456A (en) * | 2021-03-23 | 2021-06-29 | 朱爱群 | Medical instrument cleaning equipment capable of treating wastewater |
US11654547B2 (en) | 2021-03-31 | 2023-05-23 | General Electric Company | Extension tool |
CN113233524A (en) * | 2021-04-26 | 2021-08-10 | 乌海市中科生态环境技术中心 | Movable sewage purification equipment |
JP7484815B2 (en) * | 2021-05-31 | 2024-05-16 | 株式会社デンソー | Electric aircraft control device |
CN114178232A (en) * | 2021-12-02 | 2022-03-15 | 春秋航空技术发展江苏有限公司 | Waste water collecting device for cleaning liquid of turbine engine |
CN113895651B (en) * | 2021-12-10 | 2022-02-25 | 中国飞机强度研究所 | Method for cooling and discharging high-temperature tail gas of airplane APU (auxiliary Power Unit) in ultralow-temperature environment in laboratory |
CN114483666B (en) * | 2021-12-31 | 2023-08-22 | 成都航利装备科技有限公司 | Cleaning method for airflow channel of turbofan engine |
CN115156153B (en) * | 2022-07-14 | 2023-08-15 | 苏州新佑诚家居科技有限公司 | Wind-electric field cooperative regulation and control spray cleaning device for aero-engine blades and working method thereof |
FR3144112A1 (en) | 2022-12-22 | 2024-06-28 | Safran Aircraft Engines | Improved process for washing a gas turbine engine |
CN117225797B (en) * | 2023-11-14 | 2024-05-28 | 太仓点石航空动力有限公司 | Cleaning system of aeroengine |
CN118577578B (en) * | 2024-08-06 | 2024-10-15 | 哈尔滨工业大学(威海) | Underwater laser cleaning and material-increasing repairing device and method composited by rotary water jet |
Family Cites Families (216)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE341262C (en) | ||||
US11540A (en) * | 1854-08-15 | Improved process for printing long-napped fabrics | ||
US2735464A (en) * | 1956-02-21 | kerven | ||
US1926924A (en) * | 1928-04-30 | 1933-09-12 | American Air Filter Co | Sinuous air filter and medium |
US1834534A (en) * | 1929-06-13 | 1931-12-01 | American Air Filter Co | Plate for air filters |
US1890156A (en) | 1929-07-24 | 1932-12-06 | Konig Wenzel | Shower rose |
US2041826A (en) * | 1933-08-16 | 1936-05-26 | Garnier Fernand | Apparatus for increasing draft in furnaces and for purifying flue gases |
US2385393A (en) * | 1941-03-13 | 1945-09-25 | Florus E Wilson | Crankcase flusher |
US2760597A (en) * | 1953-08-19 | 1956-08-28 | Air Maze Corp | Filter panel with zig-zag corrugations |
US2862222A (en) * | 1953-12-15 | 1958-12-02 | Jesse S Cockrell | Motor vehicle laundry |
US2878892A (en) * | 1954-09-22 | 1959-03-24 | Ozonair Engineering Company Lt | Self-cleaning filters |
CH341262A (en) * | 1955-06-14 | 1959-09-30 | Svenska Turbinfab Ab | Device for cleaning compressors |
US2922173A (en) * | 1956-07-03 | 1960-01-26 | Chain Belt Co | Purification and reclamation of liquid used in vehicle washing |
US2804903A (en) * | 1956-10-11 | 1957-09-03 | George A Davies | Protective cover for a jet engine |
US3074822A (en) * | 1960-04-22 | 1963-01-22 | Dudley Develbiss C | Method for cleaning gas turbines |
US3081953A (en) * | 1961-02-17 | 1963-03-19 | Bammann Heinrich | Spray head for high-pressure fluids |
US3219188A (en) * | 1962-03-08 | 1965-11-23 | Hirs Gene | Traveling screen filter |
US3168247A (en) * | 1962-09-24 | 1965-02-02 | Schild Helmuth Fred | Pressure washing devices |
US3263341A (en) * | 1964-02-28 | 1966-08-02 | Russell B Allen | Car wash system |
GB1023402A (en) | 1964-02-29 | 1966-03-23 | A T Juniper Ltd | Improvements in or relating to apparatus for dispensing liquid under pressure for use for example in the washing of compressor blades of gas turbine engines |
US3308840A (en) * | 1964-07-28 | 1967-03-14 | Archie L Kelley | Engine oil pan and cleaning attachment |
US3384239A (en) * | 1965-12-07 | 1968-05-21 | Martin J. Berardi | Purification and recirculation of liquid |
US3439372A (en) * | 1967-07-10 | 1969-04-22 | Rucker Co | Airplane washing device |
US3527030A (en) * | 1967-09-19 | 1970-09-08 | Ernest C Hungate | Eliminator structure |
US3502215A (en) * | 1967-11-27 | 1970-03-24 | Robo Wash Inc | Water reclamation apparatus |
US3481544A (en) * | 1968-02-01 | 1969-12-02 | Otto V Jackson | Mobile cleaning unit |
US3623668A (en) * | 1968-03-04 | 1971-11-30 | Gen Electric | Wash manifold |
US3533395A (en) * | 1968-08-12 | 1970-10-13 | Stanray Corp | Aircraft deicer system and apparatus |
US3630777A (en) * | 1968-09-24 | 1971-12-28 | Kanegafuchi Spinning Co Ltd | An improved method of cleaning equipment for supplying liquid |
US3572030A (en) | 1968-12-26 | 1971-03-23 | James D Cuff | Rotary engine assembly |
US3612075A (en) * | 1969-01-14 | 1971-10-12 | Vernon H Cook | Aircraft deicing apparatus |
US3564820A (en) * | 1969-04-02 | 1971-02-23 | Henry O Nelson | Gaseous flow separator |
US3550778A (en) * | 1969-04-21 | 1970-12-29 | Gussie Kesselman | Waste water reclamation system |
US3601832A (en) * | 1969-09-10 | 1971-08-31 | Vernon H Cook | Aircraft-washing apparatus |
US3616623A (en) * | 1970-01-19 | 1971-11-02 | Laurance S Reid | Mist eliminator |
US3646980A (en) * | 1970-06-15 | 1972-03-07 | Peterson Products Of San Mateo | Jet engine cowl cover |
US3766719A (en) * | 1971-11-26 | 1973-10-23 | United Aircraft Corp | Particle and moisture separator for engine inlet |
US3774625A (en) * | 1972-02-09 | 1973-11-27 | Ultra Dynamics Corp | Carwash water reclaim system |
CH547721A (en) * | 1972-07-14 | 1974-04-11 | Arato Laszlo | CLEANING SYSTEM FOR VEHICLES. |
JPS5226343B2 (en) * | 1972-09-08 | 1977-07-13 | ||
US3897263A (en) * | 1973-11-02 | 1975-07-29 | Oliver Thurston Davis | Apparatus for washing and disinfecting trailer or van interiors |
US3911938A (en) * | 1973-11-28 | 1975-10-14 | Allen Group | Fully automatic vehicle wash water reclaim system |
US3923658A (en) * | 1973-12-12 | 1975-12-02 | Burdon Eng Ltd E B | Vehicle washing plant |
US3940608A (en) * | 1974-02-04 | 1976-02-24 | Mechanical Technology Incorporated | Fiber optic displacement measuring apparatus |
CH603383A5 (en) | 1976-01-29 | 1978-08-15 | Laszlo Arato | |
US4065322A (en) * | 1976-02-23 | 1977-12-27 | General Electric Company | Contamination removal method |
US4029114A (en) * | 1976-04-26 | 1977-06-14 | The Allen Group Inc. | Back filter automatic vehicle wash water reclaim system |
US4059123A (en) * | 1976-10-18 | 1977-11-22 | Avco Corporation | Cleaning and preservation unit for turbine engine |
US4158449A (en) * | 1976-12-07 | 1979-06-19 | Pall Corporation | Inlet air cleaner assembly for turbine engines |
SE412353B (en) * | 1977-12-01 | 1980-03-03 | Magnusson Ulla Margareta | DEPLOY DEPARTURE AND CLEANING SYSTEM |
US4191348A (en) * | 1977-11-10 | 1980-03-04 | Holwerda-Huizenga Co. | Deicing system |
US4168232A (en) * | 1977-12-08 | 1979-09-18 | Allen Mark K | Method and apparatus for recycling water in a car wash |
JPS54111097A (en) * | 1978-02-21 | 1979-08-31 | Toshiba Corp | Reactore core spray device |
DE2813236A1 (en) * | 1978-03-28 | 1979-10-11 | Rittershaus & Blecher Gmbh | FILTER PRESS WITH A SPRAY DEVICE |
US4300918A (en) * | 1978-05-08 | 1981-11-17 | Parmatic Filter Corporation | Method for removing moisture particles |
US4234323A (en) * | 1978-09-29 | 1980-11-18 | United Technologies Corporation | Collector for water separator |
US4225188A (en) * | 1978-10-12 | 1980-09-30 | Dresser Industries, Inc. | Apparatus for removing and collecting moisture from a moisture-laden air flow |
US4196020A (en) * | 1978-11-15 | 1980-04-01 | Avco Corporation | Removable wash spray apparatus for gas turbine engine |
GB2040092B (en) * | 1978-11-20 | 1983-01-06 | Reino Int Corp | Automatic alarm system for car backing |
US4530707A (en) * | 1978-11-22 | 1985-07-23 | Ovard John C | Apparatus for removing droplets entrained in a gas stream |
US4241744A (en) * | 1979-07-02 | 1980-12-30 | Jordan Nathaniel Sr | Cleaning system for tanks |
GB2074048B (en) * | 1980-02-29 | 1983-12-07 | Secr Defence | Spray cleaning apparatus |
US4439241A (en) | 1982-03-01 | 1984-03-27 | United Technologies Corporation | Cleaning process for internal passages of superalloy airfoils |
US4462192A (en) * | 1982-06-01 | 1984-07-31 | American Standard, Inc. | Seal assembly |
US4546459A (en) * | 1982-12-02 | 1985-10-08 | Magnavox Government And Industrial Electronics Company | Method and apparatus for a phased array transducer |
US4595419A (en) * | 1982-12-27 | 1986-06-17 | Proto-Power Corporation | Ultrasonic decontamination robot |
JPS6028848A (en) * | 1983-07-26 | 1985-02-14 | Soichi Yamaguchi | Sprayer for preventing dust in natom method |
DE3481481D1 (en) * | 1983-08-24 | 1990-04-12 | Wurz Dieter | DROP SEPARATOR FOR SEPARATING DROPS FROM A GAS FLOW. |
US4511488A (en) | 1983-12-05 | 1985-04-16 | Penetone Corporation | D-Limonene based aqueous cleaning compositions |
US4642192A (en) | 1984-04-30 | 1987-02-10 | Heskett Don E | Method of treating fluids |
US4652368A (en) * | 1984-08-29 | 1987-03-24 | N/S Corporation | Water filtration system |
US4557740A (en) * | 1984-09-10 | 1985-12-10 | Allis-Chalmers Corporation | Weather louver |
DE3538539A1 (en) * | 1985-10-30 | 1987-05-07 | Joachim Dipl Ing Meier | Movable device for cleaning roadways in particular |
US4684379A (en) * | 1985-11-07 | 1987-08-04 | Thermo Kinetics Industries, Inc. | Air cleaner assembly |
US4646875A (en) * | 1985-12-30 | 1987-03-03 | Paxton-Mitchell Company | Articulated boom structure |
US4834912A (en) * | 1986-02-13 | 1989-05-30 | United Technologies Corporation | Composition for cleaning a gas turbine engine |
US4713120A (en) * | 1986-02-13 | 1987-12-15 | United Technologies Corporation | Method for cleaning a gas turbine engine |
DE3627555C1 (en) * | 1986-08-14 | 1987-08-06 | Dieter Prof Dr-Ing Wurz | Liquid separator |
IT1197173B (en) * | 1986-09-05 | 1988-11-30 | Ceccato & Co | AUTOMATIC WASHING SYSTEM PARTICULARLY FOR AIRCRAFT AND THEIR PARTS |
US5273395A (en) * | 1986-12-24 | 1993-12-28 | Rochem Technical Services Holding Ag | Apparatus for cleaning a gas turbine engine |
US5011540A (en) * | 1986-12-24 | 1991-04-30 | Mcdermott Peter | Method and apparatus for cleaning a gas turbine engine |
US4877043A (en) * | 1987-03-20 | 1989-10-31 | Maurice Carmichael | Internal combustion engine scrubber |
USH535H (en) * | 1987-10-21 | 1988-10-04 | The United States Of America As Represented By The Secretary Of The Air Force | Compact device for continuous removal of water from an airstream-cascade screen |
JPH0634836Y2 (en) * | 1988-01-11 | 1994-09-14 | 三井造船株式会社 | Coanda fluid ejector |
NO173262C (en) * | 1988-06-23 | 1993-11-24 | Shell Int Research | Device for separating water from a gas stream |
US4926620A (en) | 1988-07-08 | 1990-05-22 | The Dow Chemical Company | Cleaning gas turbine inlet air |
US4983224A (en) | 1988-10-28 | 1991-01-08 | Rd Chemical Company | Cleaning compositions and methods for removing soldering flux |
US5137555A (en) * | 1988-12-22 | 1992-08-11 | Peerless Manufacturing Company | Frontal drain for a marine mist extractor |
CH681381A5 (en) * | 1990-02-14 | 1993-03-15 | Turbotect Ag | |
SU1755965A1 (en) | 1989-08-07 | 1992-08-23 | Киевский Институт Инженеров Гражданской Авиации Им.60-Летия Ссср | Method of washing flow-through section of gas-turbine engine |
US5018355A (en) * | 1989-08-28 | 1991-05-28 | Foster Charles D | Method and apparatus for periodic chemical cleanings of turbines |
EP0418736A3 (en) * | 1989-09-20 | 1991-09-18 | Putzmeister-Werk Maschinenfabrik Gmbh | Device for treating a surface with a water jet |
US5060887A (en) * | 1989-12-06 | 1991-10-29 | Kean Charles J | Apparatus for deicing an aircraft |
US5045217A (en) | 1990-01-26 | 1991-09-03 | Ronan Charles B | Apparatus for cleaning an oil spill off of a beach |
US5330579A (en) * | 1990-02-26 | 1994-07-19 | Eze Products, Inc. | Apparatus and method for spent solvent collection |
US5018544A (en) * | 1990-03-06 | 1991-05-28 | Ohmstede Mechanical Services, Inc. | Apparatus for cleaning heat exchanger tube bundles |
US5188293A (en) * | 1990-04-25 | 1993-02-23 | P.D.Q. Manufacturing Inc. | Fluid applicating and vehicle washing apparatus |
US5114098A (en) * | 1990-05-11 | 1992-05-19 | Texaco Inc. | Aircraft engine protective cover |
DK169166B1 (en) | 1990-05-14 | 1994-09-05 | Roulunds Fabriker As | Mat of a liquid-tight, flexible material |
US5090588A (en) * | 1990-07-31 | 1992-02-25 | Portable Containment, Inc. | Portable containment for chemicals |
US5093012A (en) * | 1990-09-04 | 1992-03-03 | Dennis Bundy | Water reclamation system and method |
US5112516A (en) | 1991-01-11 | 1992-05-12 | William D. Sheldon, III | High temperature flashpoint, stable cleaning composition |
DE4102797C1 (en) * | 1991-01-31 | 1992-05-27 | Mbb Foerder- Und Hebesysteme Gmbh, 2870 Delmenhorst, De | |
WO1992014557A1 (en) * | 1991-02-13 | 1992-09-03 | Sermatech, Inc. | Method and apparatus for injecting a surfactant-based cleaning fluid into an operating gas turbine |
RU1776846C (en) | 1991-06-10 | 1992-11-23 | Государственный научно-исследовательский институт гражданской авиации | Method of washing gas-air path in gas-turbine engine |
DE4119216C2 (en) * | 1991-06-11 | 1994-09-22 | Wurz Dieter | Droplet separator |
US5318254A (en) | 1991-06-28 | 1994-06-07 | Conceptual Solutions, Inc. | Aircraft maintenance robot |
US5160430A (en) * | 1991-09-25 | 1992-11-03 | Brite-O-Matic Manufacturing, Inc. | Car wash system using reverse osmosis concentrate for initial rinsing and permeate for final rinsing |
US5281354A (en) | 1991-10-24 | 1994-01-25 | Amway Corporation | Liquid cleanser composition |
US5319893A (en) * | 1992-01-28 | 1994-06-14 | Hockett Wayne B | Recovery system |
US5310022A (en) | 1992-03-20 | 1994-05-10 | Otis Elevator Company | Mechanical overspeed safety device |
DE4214094C1 (en) * | 1992-04-29 | 1993-09-02 | Dieter Prof. Dr.-Ing. 7570 Baden-Baden De Wurz | |
US5423339A (en) * | 1992-07-06 | 1995-06-13 | Latimer; Douglas | Method and apparatus for treating articles with wash water or other fluid |
JPH0658172A (en) * | 1992-08-03 | 1994-03-01 | Kobe Steel Ltd | Gas turbine compressor washing device |
CN1085176A (en) | 1992-10-05 | 1994-04-13 | 成都东方微电子技术应用研究所 | Ground cleaning and testing vehicle for plane hydraulic system |
JP2584397B2 (en) | 1992-12-04 | 1997-02-26 | 川崎重工業株式会社 | How to create cleaning data for aircraft cleaning units |
JP2611108B2 (en) | 1993-01-20 | 1997-05-21 | 川崎重工業株式会社 | Control method of aircraft cleaning device |
US5374352A (en) * | 1993-04-02 | 1994-12-20 | Pattee; Harley J. | Universal recycled wash water system |
CA2120537A1 (en) * | 1993-04-12 | 1994-10-13 | Thomas B. Stanford, Jr. | Megasonic cleaning system using compressed, condensed gases |
US5518553A (en) * | 1993-04-27 | 1996-05-21 | Moulder; Jeffrey E. | Storage tank cleaning and stripping apparatus and method |
US5354014A (en) * | 1993-04-27 | 1994-10-11 | Schwing America, Inc. | System for de-icing airplanes |
US5354384A (en) * | 1993-04-30 | 1994-10-11 | Hughes Aircraft Company | Method for cleaning surface by heating and a stream of snow |
US5306351A (en) | 1993-05-21 | 1994-04-26 | Anderson William J | Waste oil removal composition and method |
US5454533A (en) * | 1993-06-11 | 1995-10-03 | Spar Aerospace Limited | Robot arm and method of its use |
US5401325A (en) | 1993-07-29 | 1995-03-28 | Drew Chemical Corporation | Process for removing carbon deposits using microemulsion cleaners |
US5376298A (en) | 1993-07-29 | 1994-12-27 | The Procter & Gamble Company | Hard surface detergent compositions |
JPH09501373A (en) * | 1993-08-13 | 1997-02-10 | プッツマイスター・ヴェルク マシーネンファブリーク ゲゼルシャフト ミット ベシュレンクテル ハフツング | How to handle objects, especially airplanes |
US5462655A (en) * | 1993-09-20 | 1995-10-31 | Ladd; Michael | Vehicle containment mat with vacuum recovery and recycle means |
NL9301927A (en) * | 1993-11-03 | 1995-06-01 | Micro Tec B V | Method and device for purifying a contaminated liquid. |
US5458299A (en) * | 1993-11-17 | 1995-10-17 | Collins; Kenneth | Aircraft deicing apparatus |
US5507306A (en) * | 1993-12-23 | 1996-04-16 | Howmet Corporation | Cleaning apparatus and method for cleaning internal airfoil cooling passages |
US5621154A (en) * | 1994-04-19 | 1997-04-15 | Betzdearborn Inc. | Methods for reducing fouling deposit formation in jet engines |
US5464459A (en) * | 1994-06-06 | 1995-11-07 | Koch Engineering Company, Inc. | Chevron type mist eliminator and system |
US5498329A (en) * | 1994-09-12 | 1996-03-12 | Interclean Equipment, Inc. | Vehicle wash apparatus using reclaimed water |
DE4444083C1 (en) * | 1994-12-10 | 1996-05-15 | Max Dipl Ing Zimmermann | Separator for removing fluid droplets from gas stream |
DE9420362U1 (en) * | 1994-12-20 | 1995-03-30 | Hanrath, Rita, 52525 Heinsberg | Detergent catcher for compressor cleaning of aircraft engines |
JPH08299930A (en) * | 1995-05-09 | 1996-11-19 | Tokyo Isuzu Jidosha Kk | Underground washing device |
WO1996038522A1 (en) | 1995-06-02 | 1996-12-05 | Ashland Inc. | Stable microemulsion cleaners having low volatile organic content |
SE504323C2 (en) | 1995-06-07 | 1997-01-13 | Gas Turbine Efficiency Ab | Procedures for washing objects such as turbine compressors |
US5597001A (en) * | 1995-06-12 | 1997-01-28 | Royce Industries, L.C. | Portable equipment wash station with retractable flooring system |
US6003434A (en) * | 1995-06-19 | 1999-12-21 | Foerster; Malte E.C. | Process and device for influencing liquid drops in a gas stream |
DE19528857C1 (en) * | 1995-08-05 | 1996-10-17 | Wolfgang Hoermann | Slatted-curtain cleaning equipment |
US5663135A (en) | 1995-08-10 | 1997-09-02 | Corpex Technologies, Inc. | Terpene-based cleaning composition |
TW303480B (en) | 1996-01-24 | 1997-04-21 | Applied Materials Inc | Magnetically confined plasma reactor for processing a semiconductor wafer |
KR19980017193A (en) | 1996-08-30 | 1998-06-05 | 이영리 | The antibacterial water purifier and the metal ion water produced in this water purifier |
US6134734A (en) * | 1997-01-21 | 2000-10-24 | Marrero; Lou | Aircraft maintenance apparatus and method of maintaining aircraft |
US6017377A (en) * | 1997-02-03 | 2000-01-25 | Brown; Keith R | Spray paint booth filter |
US6021792A (en) * | 1997-09-11 | 2000-02-08 | Petter; Matthew J. | Modular cleaning facility |
JP3769114B2 (en) | 1997-11-07 | 2006-04-19 | 九州電力株式会社 | Gas turbine performance deterioration prevention device |
US6120614A (en) * | 1997-11-14 | 2000-09-19 | Ez Environmental Solutions Corporation | Method and apparatus for pressure washing |
GB2333805B (en) * | 1998-01-30 | 2001-09-19 | Speciality Chemical Holdings L | Cleaning method and apparatus |
GB2333695B (en) * | 1998-02-03 | 2001-10-24 | Dennis Roy Yarnold | Cleaning |
US5899217A (en) * | 1998-02-10 | 1999-05-04 | Testman, Jr.; Frank L. | Engine wash recovery system |
KR100331311B1 (en) | 1998-05-13 | 2002-05-09 | 윤종용 | Apparatus for cleaning carrier for liquid printer |
US6062486A (en) * | 1998-07-20 | 2000-05-16 | Hill; Frank | High volume and low pressure water cleaning system |
US6484508B2 (en) * | 1998-07-24 | 2002-11-26 | General Electric Company | Methods for operating gas turbine engines |
US6470667B1 (en) * | 1998-07-24 | 2002-10-29 | General Electric Company | Methods and apparatus for water injection in a turbine engine |
US6263889B1 (en) * | 1998-11-02 | 2001-07-24 | Robert A. Flynn | Engine lubrication cleaning system |
JP2000136702A (en) | 1998-11-04 | 2000-05-16 | Atox Co Ltd | Turbine rotor automatic blast device |
JP2000161081A (en) | 1998-11-25 | 2000-06-13 | Toshiba Corp | Intake device for thermal power plant |
US6155277A (en) * | 1999-03-30 | 2000-12-05 | Ocean Construction Supplies Limited | On-site concrete truck wash-out apparatus |
US6394108B1 (en) * | 1999-06-29 | 2002-05-28 | John Jeffrey Butler | Inside out gas turbine cleaning method |
US6820430B1 (en) * | 1999-07-12 | 2004-11-23 | Bruce A. Tassone | Method and apparatus for providing evaporative cooling and power augmentation in gas turbines |
US6250588B1 (en) * | 1999-07-27 | 2001-06-26 | The United States Of America As Represented By The Secretary Of The Air Force | Forced air de-icing and washing system attached to the distal end of a boom |
GB2352730B (en) | 1999-07-29 | 2003-04-30 | Ivar Rivenaes Ltd | Metal cleaning composition |
EP1252370B1 (en) * | 1999-11-30 | 2006-08-09 | Biogenesis Enterprises, Inc. | Chemical cleaning solution for gas turbine blades |
US6675437B1 (en) | 1999-12-15 | 2004-01-13 | Shawn L. York | Portable high-temperature, high-pressure washing plant |
US6367489B1 (en) * | 2000-03-16 | 2002-04-09 | Soichiro Yamamoto | Brake washer |
US6565758B1 (en) * | 2000-03-21 | 2003-05-20 | The Centech Group, Inc. | Systems and methods for dispensing, collecting and processing wash fluid |
EP1399305A2 (en) | 2000-04-05 | 2004-03-24 | Advanced Concrete Innovations, Inc. | Portable concrete plant |
US6964669B1 (en) | 2000-04-12 | 2005-11-15 | Ams Research Corporation | Linear delivery system for deployment of a detachable balloon at a target site in vivo |
US6491048B1 (en) * | 2000-05-26 | 2002-12-10 | Hydrochem Industrial Services, Inc. | Manifold for use in cleaning combustion turbines |
US6478033B1 (en) * | 2000-05-26 | 2002-11-12 | Hydrochem Industrial Services, Inc. | Methods for foam cleaning combustion turbines |
CA2314542A1 (en) * | 2000-07-05 | 2002-01-05 | Christian Mathieu | Mobile washing and wastewater recovery unit |
US6675548B2 (en) * | 2000-08-31 | 2004-01-13 | Dyk Incorporated | Method and apparatus for texturizing tank walls |
US20020092423A1 (en) * | 2000-09-05 | 2002-07-18 | Gillingham Gary R. | Methods for filtering air for a gas turbine system |
US6553768B1 (en) | 2000-11-01 | 2003-04-29 | General Electric Company | Combined water-wash and wet-compression system for a gas turbine compressor and related method |
US20020088480A1 (en) * | 2001-01-05 | 2002-07-11 | General Electric Company | Misted air cleaning system and related method |
US20030031964A1 (en) | 2001-01-11 | 2003-02-13 | John Hayward | Internal combustion engine cleaning compositions |
US6630198B2 (en) | 2001-01-19 | 2003-10-07 | General Electric Co. | Methods and apparatus for washing gas turbine engines |
US6655396B2 (en) * | 2001-02-23 | 2003-12-02 | Art Krenzel | Closed loop pressure washer system with hydro-dynamic continuous flush washing assembly |
US6503334B2 (en) * | 2001-03-14 | 2003-01-07 | Hydrochem Industrial Services, Inc. | Forced mist cleaning of combustion turbines |
US20020179123A1 (en) * | 2001-05-31 | 2002-12-05 | Charles Toward | Fluidized cleaning and scarification apparatus and method |
CA2356066A1 (en) * | 2001-08-28 | 2003-02-28 | John M. Goston | Arrangements for the de-icing and anti-icing of aircraft |
WO2003048569A2 (en) * | 2001-12-06 | 2003-06-12 | Pp Energy Aps | Method and apparatus for treatment of a rotor blade on a windmill |
FR2837123B1 (en) * | 2002-03-15 | 2005-03-11 | Aero Strip | METHOD FOR REMOVING SURFACES OF METAL OR COMPOSITE MATERIAL COATED WITH A COATING AND SYSTEM FOR IMPLEMENTING THE PROCESS FOR REMOVING TRANSPORT MACHINES |
US20030209256A1 (en) * | 2002-05-13 | 2003-11-13 | Shahin Tadayon | Jet wet suit cover system for gaspath cleaning |
US6964699B1 (en) * | 2002-06-05 | 2005-11-15 | The United States Of America As Represented By The Secretary Of The Navy | Rocket motor exhaust scrubber |
JP3846629B2 (en) * | 2002-07-19 | 2006-11-15 | 株式会社日立プラントテクノロジー | Vehicle underfloor cleaning device |
WO2004009978A2 (en) * | 2002-07-24 | 2004-01-29 | Koch Kenneth W | Methods and compositions for on-line gas turbine cleaning |
US6883527B2 (en) * | 2002-07-24 | 2005-04-26 | General Electric Company | Method for robotically cleaning compressor blading of a turbine |
DE10256193A1 (en) * | 2002-12-02 | 2004-06-09 | Alstom Technology Ltd | Method for controlling the liquid injection into an inflow channel of an engine or machine |
SE522132C2 (en) | 2002-12-13 | 2004-01-13 | Gas Turbine Efficiency Ab | Cleaning method for stationary gas turbine unit in operation, by spraying cleaning fluid into point in air inlet channel where air velocity has specific minimum value |
SE524657C2 (en) | 2003-01-10 | 2004-09-14 | Bengt-Olov Eriksson | Blokeringsanordning |
CN2597335Y (en) | 2003-01-17 | 2004-01-07 | 深圳市达航科技有限公司 | Filter for aircraft clear water car |
US6932093B2 (en) * | 2003-02-24 | 2005-08-23 | General Electric Company | Methods and apparatus for washing gas turbine engine combustors |
US7065955B2 (en) * | 2003-06-18 | 2006-06-27 | General Electric Company | Methods and apparatus for injecting cleaning fluids into combustors |
US8076271B2 (en) | 2004-06-09 | 2011-12-13 | Halliburton Energy Services, Inc. | Aqueous tackifier and methods of controlling particulates |
US7018965B2 (en) * | 2003-09-03 | 2006-03-28 | General Electric Company | Aqueous compositions for cleaning gas turbine compressor blades |
GB2405639A (en) | 2003-09-08 | 2005-03-09 | R Mc Power Recovery Ltd | Metal cleaning compositions |
SE525924C2 (en) * | 2003-09-25 | 2005-05-24 | Gas Turbine Efficiency Ab | Nozzle and method for cleaning gas turbine compressors |
US6938405B2 (en) * | 2003-11-13 | 2005-09-06 | General Electric Company | Spray nozzle grid configuration for gas turbine inlet misting system |
US7150431B2 (en) * | 2004-01-14 | 2006-12-19 | Mjd Innovations, L.L.C. | Electrical generator fluid-flow-coolant filtration |
US7934467B2 (en) * | 2004-02-02 | 2011-05-03 | John Stephen Morton | Cost effective automated preparation and coating methodology for large surfaces |
CN1705524B (en) * | 2004-02-16 | 2010-05-26 | 燃气涡轮效率股份有限公司 | Method and apparatus for cleaning a turbofan gas turbine engine |
US7198052B2 (en) * | 2004-03-12 | 2007-04-03 | General Electric Company | Mobile flushing unit and process |
US7445166B2 (en) * | 2004-05-07 | 2008-11-04 | Jeffrey Marc Williams | Adjustable solid-flow nozzle and method |
DE602004026362D1 (en) | 2004-06-14 | 2010-05-12 | Gas Turbine Efficiency Ab | SYSTEM AND DEVICES FOR COLLECTING AND TREATING WASTEWATER FROM ENGINE CLEANING |
US20060060218A1 (en) * | 2004-09-17 | 2006-03-23 | Ness Lakdawala | Method and a washing system for washing |
US8764910B2 (en) * | 2004-09-17 | 2014-07-01 | Ness Lakdawala | Method and a washing system for washing turbines |
US9790808B2 (en) * | 2005-04-04 | 2017-10-17 | Ecoservices, Llc | Mobile on-wing engine washing and water reclamation system |
US7326031B2 (en) * | 2005-08-29 | 2008-02-05 | United Technologies Corporation | Access port for dirt removal for gas turbine engine |
US7428818B2 (en) * | 2005-09-13 | 2008-09-30 | Gas Turbine Efficiency Ab | System and method for augmenting power output from a gas turbine engine |
US8197609B2 (en) | 2006-11-28 | 2012-06-12 | Pratt & Whitney Line Maintenance Services, Inc. | Automated detection and control system and method for high pressure water wash application and collection applied to aero compressor washing |
US20090050183A1 (en) | 2007-08-22 | 2009-02-26 | Rice Robert M | Integrated wash unit for a turbine engine |
WO2014132680A1 (en) | 2013-02-28 | 2014-09-04 | アイシン精機株式会社 | Program and device for controlling vehicle |
-
2004
- 2004-06-14 DE DE602004026362T patent/DE602004026362D1/en not_active Expired - Lifetime
- 2004-06-14 CA CA2506174A patent/CA2506174C/en not_active Expired - Fee Related
- 2004-06-14 JP JP2007510647A patent/JP4249243B2/en not_active Expired - Fee Related
- 2004-06-14 AU AU2004320619A patent/AU2004320619B2/en not_active Ceased
- 2004-06-14 US US10/536,002 patent/US7297260B2/en not_active Expired - Lifetime
- 2004-06-14 EP EP10153454A patent/EP2196394B1/en not_active Expired - Lifetime
- 2004-06-14 DE DE202004021368U patent/DE202004021368U1/en not_active Expired - Lifetime
- 2004-06-14 WO PCT/SE2004/000922 patent/WO2005121509A1/en active Application Filing
- 2004-06-14 MX MX2010001917A patent/MX344139B/en unknown
- 2004-06-14 MX MXPA06014149A patent/MXPA06014149A/en active IP Right Grant
- 2004-06-14 AT AT04736825T patent/ATE462870T1/en active
- 2004-06-14 DK DK04736825.3T patent/DK1756399T3/en active
- 2004-06-14 PL PL04736825T patent/PL1756399T3/en unknown
- 2004-06-14 BR BRPI0418904-3A patent/BRPI0418904A/en not_active Application Discontinuation
- 2004-06-14 CN CN2004800012889A patent/CN1788143B/en not_active Expired - Fee Related
- 2004-06-14 DK DK10153454.3T patent/DK2196394T3/en active
- 2004-06-14 EP EP04736825A patent/EP1756399B1/en not_active Expired - Lifetime
- 2004-06-14 ES ES04736825T patent/ES2343409T3/en not_active Expired - Lifetime
- 2004-06-14 KR KR1020117009410A patent/KR101214321B1/en not_active IP Right Cessation
-
2005
- 2005-05-13 MY MYPI20052167A patent/MY139149A/en unknown
- 2005-05-19 AR ARP050102060A patent/AR049106A1/en active IP Right Grant
- 2005-05-20 NO NO20052431A patent/NO20052431L/en unknown
- 2005-05-20 TW TW099107498A patent/TWI419744B/en active
- 2005-05-20 TW TW094116530A patent/TWI328474B/en not_active IP Right Cessation
- 2005-06-08 RU RU2007101311/11A patent/RU2412086C2/en not_active IP Right Cessation
- 2005-06-08 MX MXPA06014006A patent/MXPA06014006A/en active IP Right Grant
- 2005-06-08 DE DE602005003944T patent/DE602005003944T2/en active Active
- 2005-06-08 AT AT05753939T patent/ATE381482T1/en not_active IP Right Cessation
- 2005-06-08 US US11/629,509 patent/US8479754B2/en not_active Expired - Fee Related
- 2005-06-08 DE DE202005021819U patent/DE202005021819U1/en not_active Expired - Lifetime
- 2005-06-08 ES ES05753939T patent/ES2297725T3/en active Active
- 2005-06-08 BR BRPI0512030-6A patent/BRPI0512030A/en not_active IP Right Cessation
- 2005-06-08 EP EP05753939A patent/EP1755952B1/en not_active Not-in-force
- 2005-06-08 CN CNA2005800195371A patent/CN1976843A/en active Pending
- 2005-06-08 DE DE202005021369U patent/DE202005021369U1/en not_active Expired - Lifetime
- 2005-06-08 WO PCT/EP2005/052643 patent/WO2005120953A1/en active Application Filing
- 2005-06-08 JP JP2007515936A patent/JP4785842B2/en not_active Expired - Fee Related
- 2005-06-08 ES ES07024134.4T patent/ES2454740T3/en active Active
- 2005-06-08 CA CA2714809A patent/CA2714809C/en not_active Expired - Fee Related
- 2005-06-08 AU AU2005251945A patent/AU2005251945A1/en not_active Abandoned
- 2005-06-08 EP EP07024134.4A patent/EP1897806B1/en active Active
- 2005-06-08 EP EP10169653A patent/EP2263809A3/en not_active Withdrawn
- 2005-06-08 KR KR1020077000860A patent/KR101152056B1/en not_active IP Right Cessation
- 2005-06-08 RU RU2010136741/11A patent/RU2554188C2/en not_active IP Right Cessation
- 2005-06-08 CA CA2570243A patent/CA2570243C/en not_active Expired - Fee Related
- 2005-06-08 DK DK07024134.4T patent/DK1897806T3/en active
- 2005-06-08 CN CN201010273154.XA patent/CN101972749B/en not_active Expired - Fee Related
-
2006
- 2006-12-05 HK HK06113339.7A patent/HK1092854A1/en not_active IP Right Cessation
- 2006-12-22 US US11/644,784 patent/US8628627B2/en active Active
-
2007
- 2007-01-15 NO NO20070239A patent/NO329501B1/en not_active IP Right Cessation
- 2007-10-23 US US11/877,173 patent/US20080216873A1/en not_active Abandoned
-
2009
- 2009-10-13 US US12/578,268 patent/US9316115B2/en active Active
-
2010
- 2010-07-27 NO NO20101068A patent/NO20101068L/en unknown
- 2010-07-30 AU AU2010206085A patent/AU2010206085A1/en not_active Abandoned
- 2010-09-14 JP JP2010205931A patent/JP2011007196A/en active Pending
-
2011
- 2011-03-08 AU AU2011201020A patent/AU2011201020B2/en not_active Ceased
- 2011-05-17 JP JP2011110337A patent/JP5183768B2/en not_active Expired - Fee Related
- 2011-07-22 HK HK11107637.1A patent/HK1153427A1/en unknown
-
2012
- 2012-04-27 JP JP2012102912A patent/JP5280563B2/en not_active Expired - Fee Related
-
2013
- 2013-05-06 US US13/887,575 patent/US10041372B2/en active Active
- 2013-12-04 US US14/096,528 patent/US9376932B2/en not_active Expired - Fee Related
-
2014
- 2014-12-05 US US14/562,114 patent/US9657589B2/en active Active
-
2016
- 2016-05-11 US US15/152,082 patent/US9708928B2/en not_active Expired - Lifetime
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2454740T3 (en) | System for washing a gas turbine aeromotor | |
ES2350832T3 (en) | METHOD AND APPLIANCE FOR CLEANING A TURBOVENTILATOR GAS TURBINE ENGINE. | |
US20200355092A1 (en) | Nozzle for foam washing of jet engine | |
ES2338951T3 (en) | DEVICE AND PROCEDURE FOR CLEANING THE MOTOR NUCLEUS OF A REACTION MOTOR. | |
TWI324537B (en) | Method and apparatus for cleaning a turbofan gas turbine engine | |
AU2013205492A1 (en) | System for washing an aero gas turbine engine | |
KR20100093114A (en) | System for washing an aero gas turbine engine |