ES2337563T3 - Liposomas no pegilados de circulacion duradera. - Google Patents

Liposomas no pegilados de circulacion duradera. Download PDF

Info

Publication number
ES2337563T3
ES2337563T3 ES03258252T ES03258252T ES2337563T3 ES 2337563 T3 ES2337563 T3 ES 2337563T3 ES 03258252 T ES03258252 T ES 03258252T ES 03258252 T ES03258252 T ES 03258252T ES 2337563 T3 ES2337563 T3 ES 2337563T3
Authority
ES
Spain
Prior art keywords
doxorubicin
liposomes
procedure
hydrochloride
sucrose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
ES03258252T
Other languages
English (en)
Inventor
Gautam Vinod Daftary
Srikanth Annappa Pai
Sangeeta Hanurmesh Rivankar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zydus BSV Pharma Pvt Ltd
Original Assignee
Zydus BSV Pharma Pvt Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zydus BSV Pharma Pvt Ltd filed Critical Zydus BSV Pharma Pvt Ltd
Application granted granted Critical
Publication of ES2337563T3 publication Critical patent/ES2337563T3/es
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • A61K9/1278Post-loading, e.g. by ion or pH gradient

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Un procedimiento para la fabricación de liposomas no pegilados de circulación duradera, que comprende: disolver uno o más fosfolípidos y uno o más esteroles en un disolvente o una mezcla de disolventes; hidratar los lípidos resultantes; y eliminar dicho(s) disolvente(s) antes o después de dicha hidratación, en que dicha hidratación es con un medio de hidratación acuoso en una cantidad en el intervalo de 10 a 35 ml por cada milimol de fosfolípido presente en la disolución lipídica para formar liposomas no pegilados, caracterizado por que el medio de hidratación acuoso comprende sacarosa y no menos de 125 milimoles/litro de sulfato amónico.

Description

Liposomas no pegilados de circulación duradera.
Campo del invento
El presente invento se refiere a liposomas, que pueden ser utilizados para contener y distribuir agentes diagnósticos o terapéuticos, y a la fabricación de los mismos.
Fundamento del invento
Los liposomas están comúnmente compuestos de fosfolípidos y/o esteroles y consisten en una estructura vesicular basada en bicapas lipídicas que rodean compartimentos acuosos. Varían ampliamente en cuanto a sus propiedades físicoquímicas, tales como el tamaño, la carga superficial y la composición fosfolipídica.
Los liposomas han recibido una atención creciente como posibles vehículos para agentes diagnósticos o terapéuticos. Por ejemplo, se han usado liposomas para distribuir agentes diagnósticos tales como agentes de contraste para la formación magnética de imágenes, tal como el quelato Gd:ácido dietilentriaminopentaacético (Gd-DTPA) (véase, por ejemplo, la Patente de EE.UU. nº 6.132.763), y agentes terapéuticos tales como agentes antraciclínicos, de los que se ha mostrado que presentan una acusada actividad frente a una gran variedad de neoplasias (véase, por ejemplo, la Patente de EE.UU. nº 4.769.250).
Sin embargo, los liposomas causan agregación en la sangre por su reacción mutua con diversas proteínas del plasma sanguíneo y son capturados por el sistema reticuloendotelial (RES; del inglés, reticuloendothelial system). Por ejemplo, las células de Kupffer del hígado o los macrófagos fijos del bazo atrapan los liposomas antes de que puedan alcanzar su prevista diana. La captura por el RES ha hecho que la distribución selectiva de los liposomas a tejidos o células diana sea muy difícil.
Además de la captura por el RES, los liposomas están sujetos a interacciones electrostáticas, hidrófobas y de Van der Waals con proteínas plasmáticas. Estas interacciones dan lugar a una desestabilización de los liposomas que conduce a que las vesículas sean rápidamente aclaradas de la circulación, a menudo antes de que alcancen su diana.
Además de las interacciones celulares y proteicas con los liposomas, también han surgido dificultades a la hora de producir liposomas que encapsulen ciertos fármacos a causa de las interacciones de los fármacos con los fosfolípidos de los liposomas. Por ejemplo, las antraciclinas han presentado un efecto de tipo tensioactivo o detergente sobre la bicapa fosfolipídica de las vesículas, que causa pérdidas y crea inestabilidad en las vesículas liposómicas. De esta manera, los liposomas inestables frente al ambiente de la circulación y/o frente a su contenido dejarán escapar prematuramente el agente antineoplásico antes de que alcancen el sitio tumoral. Como resultado de los liposomas "que hacen aguas" y de las devastadoras toxicidades resultantes, los científicos han intentado desarrollar liposomas de circulación duradera que sean capaces de extravasarse hacia sitios tumorales, los cuales son de naturaleza muy vascular.
Puesto que los fármacos anticancerosos más comúnmente utilizados no son específicamente tóxicos para células tumorales y son tóxicos para todos los tejidos con los que entran en contacto, crean efectos secundarios indeseables como resultado de sus interacciones con tejidos normales. Por ejemplo, el hidrocloruro de doxorrubicina es uno de los antibióticos antraciclínicos citotóxicos más comúnmente utilizados en la quimioterapia para el cáncer, y se ha mostrado que posee actividad contra una gran variedad de neoplasias. El hidrocloruro de doxorrubicina es eficaz en el tratamiento de muchos tumores sólidos y muchas leucemias. Es particularmente eficaz en el tratamiento de cánceres de mama que implican politerapias. El hidrocloruro de doxorrubicina representa un protocolo terapéutico para el sarcoma de Kaposi relacionado con el sida. El hidrocloruro de doxorrubicina también posee una notable actividad contra tumores de los ovarios, el pulmón, los testículos, la próstata, el cuello uterino, y la cabeza y el cuello, los sarcomas estrogénicos y el sarcoma de Ewing.
Las composiciones convencionales de hidrocloruro de doxorrubicina para inyección son asequibles como un producto liofilizado o como una disolución de hidrocloruro de doxorrubicina en agua. Es necesario que el producto liofilizado sea reconstituido con "agua para inyección" antes de su administración. Estos dos productos comercializados han sido asociados con diversas toxicidades cuando son administrados intravenosamente. La mielosupresión grave es normalmente limitante de la dosis. Otras toxicidades incluyen náuseas y vómitos, alopecia, mucositis (incluyendo estomatitis y esofagitis) y cardiotoxicidad, las cuales pueden limitar el uso del hidrocloruro de doxorrubicina. El hidrocloruro de doxorrubicina es un potente vesicante que puede causar extravasación y necrosis en el lugar de la inyección o en cualquier lugar en que la piel resulte expuesta. La "erupción doxorrubicínica" no es infrecuente y se caracteriza por la formación de estrías eritematosas en el lugar de la inyección. La "erupción doxorrubicínica" remite normalmente en aproximadamente media hora.
No se conoce exactamente el mecanismo de acción del hidrocloruro de doxorrubicina, pero se han estudiado y descrito muchas posibilidades. El mecanismo primario atañe a la capacidad del hidrocloruro de doxorrubicina para intercalarse en el ADN. La integridad del ADN queda significativamente comprometida, lo que da comúnmente lugar a funciones alteradas del ADN. También son comunes las roturas de cadenas sencillas y dobles a causa de la intercalación del hidrocloruro de doxorrubicina en el ADN. Otro mecanismo del hidrocloruro de doxorrubicina atañe a su capacidad para generar radicales libres que provocan daño en el ADN y la membrana celular. Además, el hidrocloruro de doxorrubicina inhibe la topoisomerasa II, lo que hace que la reproducción del ADN sea ineficaz.
Algunos de los efectos tóxicos resultantes del hidrocloruro de doxorrubicina incluyen toxicidad cardiaca, reacción anafiláctica, emetogenicidad, mielosupresión, mucositis, toxicidad cutánea, alopecia, y toxicidad en el sitio de inyección [Cancer Investigation 19 (4): 424-436 (2001)]. En teoría, los sistemas con circulación prolongada (liberación lenta) que distribuyen y liberan eficazmente un fármaco a tumores y en las inmediaciones de las células tumorales son más ventajosos. Por lo tanto, es deseable tener un liposoma estable capaz de encapsular agentes, tal como el hidrocloruro de doxorrubicina, que no libere prematuramente su contenido en tejidos sanos o no cancerosos.
Los diversos planteamientos realizados en un intento para aumentar el tiempo de circulación de los liposomas y asegurar por ello la distribución del contenido de los liposomas en el tejido diana incluyen los siguientes: enmascaramiento de los liposomas frente al reconocimiento del sistema reticuloendotelial, usando un revestimiento de restos de ácido siálico (Patente de EE.UU. nº 4.501.728); aumento de la rigidez de la membrana liposómica con esfingomielina o fosfolípido neutro con cadenas acílicas predominantemente saturadas que contienen de 5 a 20% de glicolípido (Patente de EE.UU. nº 4.920.016); formación de liposomas con una relación de fármaco a lípido 3-80 veces mayor que la de las preparaciones liposómicas tradicionales en un sistema de 3 compartimentos del agente, las bicapas, y un tampón inhibidor de la liberación que contiene ácido cítrico (Patente de EE.UU. nº 6.083.530); incorporación de colesterol al liposoma [Alberto A. Gabizon, Cancer Investigation 19 (4): 424-436 (2001)]; y derivatización del fosfolípido con polietilenglicol (liposomas "pegilados") (Patentes de EE.UU. números 5.013.556 y 6.132.763).
Desafortunadamente, los planteamientos anteriores sólo han mostrado un potencial limitado para prolongar el tiempo de circulación de los liposomas in vivo. Por ejemplo, se ha determinado que el enmascaramiento del liposoma con ácido siálico sólo tiene una capacidad limitada para prolongar las semividas in vivo de los liposomas en circulación (Patente de EE.UU. nº 4.920.016). Para solventar estos problemas, los científicos han revestido la superficie del liposoma con un polímero hidrófilo, tal como polietilenglicol (PEG), para evitar la adsorción de diversas proteínas del plasma sanguíneo por la superficie del liposoma; véanse, por ejemplo, la Patente de EE.UU. nº 5.013.556 y la Patente de EE.UU. nº 5.676.971. Estos liposomas pegilados han sido llamados "liposomas estéricamente estabilizados" o "liposomas sigilosos". Parecía que los liposomas pegilados reducían algunos de los efectos tóxicos causados por la liberación de sus contenidos pero, desafortunadamente, aparecieron nuevos efectos tóxicos a causa de la presencia del polietilenglicol. Por ejemplo, las preparaciones liposómicas que contienen fosfolípidos pegilados han conducido a una toxicidad cutánea generalmente conocida como "síndrome de manos y pies", que da lugar a erupciones/úlceras cutáneas en las palmas de las manos y las plantas de los pies (Kenneth B. Gordon, Cancer, volumen 75 (8), 2169-2173, 1995).
Otra desventaja de los liposomas pegilados es que la presencia de moléculas grandes (PEG) en la superficie liposómica puede reducir las interacciones de los liposomas con las células y dificultar la entrada de liposomas en el tejido tumoral, reduciéndose posiblemente por ello la acumulación de fármaco liposómico en el tejido tumoral (Clinical Cancer Research (5), 3645-3652, 1999).
Por lo tanto, queda la necesidad de liposomas estables de circulación duradera que no causen efectos deletéreos tales como el "síndrome de manos y pies", así como de métodos para fabricar dichos liposomas y de composiciones basadas en ellos. El presente invento satisface esta necesidad.
Zhigaltsev et al. [J. Liposome Res. 11 (1): 55-71] informa sobre un estudio de la carga activa de liposomas con dopamina en respuesta a un gradiente de sulfato amónico. La fase inicial de la preparación de los liposomas implicaba la hidratación de una película lipídica seca formada por evaporación de una disolución de fosfatidilcolina (ePC, hsPC o DMPC) y colesterol en cloroformo. La hidratación fue llevada a cabo con una disolución 120 mM de sulfato amónico para obtener una concentración lipídica final de 20, 50 ó 100 mg/ml. Se hace referencia al establecimiento de un gradiente transmembranal de sulfato amónico mediante intercambio por diálisis frente a sacarosa, pero no a la descripción del uso de sacarosa en la disolución de sulfato amónico para hidratación.
El Documento WO-A-8806442 se refiere a la encapsulación de doxorrubicina u otros agentes antineoplásicos en un liposoma utilizando un gradiente iónico transmembranal para cargar el agente. Se hace referencia a la hidratación de películas lipídicas de fosfolípido/colesterol pero no al uso de una disolución hidratante que comprenda sulfato amónico o sacarosa.
El Documento WO-A-8500968 se refiere a la reducción de la toxicidad de la adriamicina (4'-O-tetrahidropiranil-doxorrubicina) u otros fármacos por encapsulación en un liposoma que contiene \alpha-tocoferol u otro compuesto protector de fármacos. Se hace referencia a la evaporación de una disolución de fosfolípidos, colesterol, adriamicina y \alpha-tocoferol en cloroformo/metanol y a la hidratación de la película resultante con una disolución salina tamponada con fosfato. La cantidad de la disolución hidratante utilizada es 1 ml/60 micromoles de lípido. No se hace referencia al uso de una disolución hidratante que comprenda sulfato amónico o sacarosa.
En el Documento US-A-5316771 se describe la carga transmembranal de fármacos anfipáticos en liposomas utilizando un gradiente transmembranal de amonio. En los procedimientos ejemplificados, se hidrata una película lipídica con sulfato amónico acuoso que contiene desferal (mesilato de desferoxamina). En cada caso, se añadieron 5 ml de la disolución a una película formada a partir de 100 mg de fosfatidilcolina de huevo. No se describe el uso de sacarosa en la disolución de sulfato amónico para hidratación.
El Documento US-A-4235871 se refiere a la preparación de liposomas cargados al emulsionar una mezcla de una disolución orgánica de un lípido con una disolución acuosa del agente activo, separar el disolvente orgánico para obtener un gel, y suspender luego el gel en agua. En procedimientos ejemplificados, se disuelve en un disolvente orgánico un lípido formado a partir de 50 micromoles de fosfolípido y 50 micromoles de esterol y se mezcla la disolución con 10,5 ml de una disolución acuosa del agente activo, y, después del emulsionamiento, se añaden 5 ml de otra disolución acuosa al gel resultante. Se hace referencia a la presencia de sacarosa, pero no como un componente de un medio acuoso para hidratación, y no se hace referencia al sulfato amónico.
El Documento EP-A-0561424 se refiere al uso de sacarosa como azúcar protector durante la deshidratación de liposomas. Se hace referencia a la adición de un tampón acuoso a una disolución de un lípido formado a partir de fosfatidilcolina de huevo, pero no se hace referencia al sulfato amónico.
El objeto principal del presente invento es desarrollar una composición liposómica de doxorrubicina que tenga un tiempo de circulación prolongado y que no dé lugar al síndrome de manos y pies. Otro objeto del presente invento es disminuir la toxicidad y otros efectos negativos asociados con la administración de doxorrubicina, tales como náuseas, vómitos y alopecia. Aún otro objeto del presente invento es desarrollar liposomas para sostener composiciones de agentes antineoplásicos tales como las de doxorrubicina.
Sumario del invento
De acuerdo con un aspecto, el presente invento proporciona un procedimiento para la fabricación de liposomas no pegilados de circulación duradera, que comprende disolver uno o más fosfolípidos y uno o más esteroles en un disolvente o una mezcla de disolventes y eliminar dicho(s) disolvente(s), en que, antes o después de la eliminación
del(de los) disolvente(s), los lípidos resultantes son hidratados con un medio acuoso para hidratación en una cantidad en el intervalo de 10 a 35 ml por cada milimol de fosfolípido presente en la disolución lipídica, y en que el medio acuoso para hidratación comprende sacarosa y no menos de 125 milimoles/litro de sulfato amónico.
Preferiblemente, la cantidad del medio acuoso para hidratación utilizado es aproximadamente 30 ml por cada milimol de fosfolípido en la disolución lipídica.
Además, el procedimiento comprende normalmente ajustar el tamaño de los liposomas de la composición liposómica a un valor de 0,06 \mum a 0,16 \mum y/o separar la sal extraliposómica de hidratación de la composición liposómica utilizando una disolución tampón para diálisis, para formar liposomas no pegilados y con tamaño ajustado.
El procedimiento para la fabricación de los liposomas no pegilados puede comprender además cargar los liposomas con un agente terapéutico o diagnóstico. Preferiblemente, el agente terapéutico es un agente antineoplásico tal como hidrocloruro de daunorrubicina, hidrocloruro de epirrubicina o, especialmente, hidrocloruro de doxorrubicina.
Preferiblemente, la relación molar de fosfolípido a esterol es de 1:0,1 a 1:2 y, más preferiblemente, es aproximadamente 1:0,7.
Los fosfolípidos preferidos tienen una temperatura de transición de fase de 40ºC a 60ºC, tienen una cadena de ácido graso con un mínimo de dieciséis carbonos y son seleccionados entre diestearoil-fosfatidilcolina (DSPC; del inglés, distearoyl phosphatidylcholine), dipalmitoil-fosfatidilcolina (DPPC; del inglés, dipalmitoyl phosphatidylcholine), fosfatidilcolina hidrogenada de soja (HSPC; del inglés, hidrogenated soya phosphatidylcholine) y derivados de dichos fosfolípidos. Preferiblemente, el fosfolípido es diestearoil-fosfatidilcolina (DSPC) y el esterol es colesterol.
El procedimiento puede implicar también ajustar el tamaño de los liposomas no pegilados. Dicho tamaño es preferiblemente ajustado por extrusión a través de un filtro que tiene un tamaño de poro de 0,4 a 0,05 \mum.
Otra realización del presente invento proporciona liposomas fabricados mediante el procedimiento aquí descrito y reivindicado. Los liposomas comprenden los ingredientes en las proporciones descritas en el procedimiento para su fabricación, y, preferiblemente, el tamaño medio de los liposomas así obtenidos es de 0,06 \mum a 0,16 \mum.
El presente invento también proporciona una composición liposómica, no pegilada y de circulación duradera de doxorrubicina para administración parenteral, que comprende liposomas de doxorrubicina no pegilados, hidrocloruro de histidina y sacarosa; en que los liposomas de doxorrubicina no pegilados son obtenibles mediante el procedimiento del invento y comprenden un fosfolípido, especialmente diestearoil-fosfatidilcolina; un esterol, especialmente colesterol; y sacarosa; en que los liposomas tienen preferiblemente un tamaño medio de partícula de 0,06 a 0,16 \mum. Dichos liposomas de doxorrubicina no pegilados tienen típicamente un tiempo de circulación en sangre al menos 25 veces mayor que el que se obtiene con Adriamycin® cuando se ensaya en ratones albinos suizos con dosis equivalentes.
Preferiblemente, la concentración de doxorrubicina (calculada como hidrocloruro) es de 1 a 10 mM, más preferiblemente de 3 nM a 7 nM, y muy preferiblemente es aproximadamente 3,45 mM.
La relación molar de diestearoil-fosfatidilcolina a colesterol es preferiblemente de 1:0,6 a 1: 0,8, y más preferiblemente es aproximadamente 1:0,7.
La relación molar de doxorrubicina (como hidrocloruro) a diestearoil-fosfatidilcolina es preferiblemente de 1:2 a 1:15, más preferiblemente de 1:2 a 8, y muy preferiblemente es aproximadamente 1:3,5.
La concentración de sacarosa es preferiblemente de 0,1 M a 0,5 M, más preferiblemente de 0,25 M a 0,3 M, y especialmente es aproximadamente 0,27 M.
La concentración de hidrocloruro de histidina es preferiblemente de 1 mM a 100 mM, más preferiblemente de 8 a 12 mM, y muy preferiblemente es aproximadamente 10 mM.
El tamaño medio preferido de los liposomas es de 0,08 \mum a 0,12 \mum.
En una composición ejemplar, la doxorrubicina (como hidrocloruro) está presente en una cantidad de aproximadamente 2 mg/ml, la relación molar de doxorrubicina a fosfolípido es aproximadamente 1:3,5, y la relación de fosfolípido a colesterol es aproximadamente 1:0,7.
En otra composición ejemplar, la doxorrubicina (como hidrocloruro) está presente en la cantidad de aproximadamente 4 mg/ml, la relación molar de doxorrubicina a fosfolípido es aproximadamente 1:3,5, y la relación de fosfolípido a colesterol es aproximadamente 1:0,7. El tiempo de circulación (t½) de la composición en la sangre es preferiblemente más de 40 veces mayor que el que se obtiene con Adriamycin® cuando se ensaya en ratones albinos suizos con dosis equivalentes.
Descripción detallada del invento
El presente invento proporciona liposomas no pegilados estables de circulación duradera, así como un método para su fabricación. Los liposomas pegilados son liposomas revestidos con polietilenglicol (PEG). La superficie del liposoma es decorada con varios miles de hebras de PEG, un procedimiento llamado "pegilación". Las hebras de PEG hacen que la superficie del liposoma sea "peluda", y esto evita la rápida absorción de proteínas sanguíneas por la superficie de los liposomas. La rápida absorción acelera la rápida eliminación de los liposomas de la sangre. Por contraste, los liposomas pegilados están protegidos y son eliminados de la sangre a una velocidad mucho más baja. En comparación con los liposomas preparados sin PEG, los liposomas pegilados son más estables y son menos incorporados por células del sistema reticuloendotelial (RES), y todo agente o fármaco encapsulado presenta una tendencia reducida a salir de ellos mientras están en circulación. Por ejemplo, la farmacocinética de los PEG-liposomas que encapsulan doxorrubicina se caracteriza por una prolongada semivida en circulación, un lento aclaramiento plasmático y un reducido volumen de distribución en comparación con la doxorrubicina liposómica no pegilada o la doxorrubicina libre. La circulación prolongada y la capacidad de los liposomas pegilados para extravasarse a través de la vasculatura tumoral da lugar a la localización de doxorrubicina en el tejido tumoral con la posibilidad aumentada de una respuesta tumoral aumentada a causa de una acumulación potenciada de fármaco, especialmente en tumores muy angiogénicos. Además, la estabilidad aumentada de los liposomas pegilados con respecto a los liposomas convencionales da lugar a una disminución de la disponibilidad del fármaco en el tejido de órganos sensibles y, por lo tanto, a una disminución de la toxicidad y de otros efectos negativos tales como náuseas, vómitos y alopecia. Sin embargo, como resultado de los usos clínicos de los liposomas pegilados, se ha comunicado un importante efecto secundario conocido como "síndrome de manos y pies", en el que se observan úlceras o erupciones cutáneas en las palmas de las manos y las plantas de los pies (Kenneth B. Gordon, Cancer, volumen 75 (8), 2169-2173, 1995). Otra desventaja de los liposomas pegilados es que la presencia de moléculas grandes (PEG) en la superficie liposómica puede reducir las interacciones de los liposomas con las células y dificultar la entrada de liposomas en el tejido tumoral, reduciéndose posiblemente por ello la acumulación de fármaco liposómico en el tejido tumoral.
El procedimiento del presente invento proporciona liposomas no pegilados estables, de baja toxicidad y circulación duradera, que presentan la estabilidad de los liposomas pegilados con la duradera semivida en circulación y la reducida toxicidad anteriormente descritas. Sin embargo, puesto que los liposomas del presente invento no requieren el uso de PEG para alcanzar los resultados anteriores, no causan el "síndrome de manos y pies".
En el procedimiento del presente invento, la hidratación de los lípidos se lleva a cabo utilizando un medio de hidratación acuoso, que comprende sulfato amónico y sacarosa, antes o después de la evaporación del disolvente utilizado para disolver los lípidos. Los disolventes adecuados para el invento son disolventes orgánicos en que se puede disolver el fosfolípido. Un experto en la técnica apreciará los disolventes comúnmente utilizados y adecuados en la fabricación de liposomas. Los disolventes adecuados ejemplares incluyen, pero no se limitan a, cloroformo, cloruro de metileno, etanol, metanol y acetona.
Cuando la hidratación de los lípidos se lleva a cabo después de la evaporación del disolvente, se prefieren disolventes tales como cloroformo y cloruro de metileno.
Cuando la hidratación de los lípidos se lleva a cabo antes de la evaporación del disolvente, se prefieren disolventes miscibles con agua tales como etanol, metanol y acetona.
Cuando la hidratación se lleva a cabo después de la evaporación del disolvente, el procedimiento comprende formar una película lipídica por evaporación del disolvente de una disolución lipídica que comprende uno o más fosfolípidos, uno o más esteroles, y un disolvente o una mezcla de disolventes.
La evaporación de un disolvente puede ser llevada a cabo mediante cualquier técnica de evaporación, tal como, pero sin limitarse a, evaporación al hacer pasar una corriente de gas inerte por encima de la disolución, mediante calentamiento, mediante vacío, o mediante calentamiento bajo vacío. Se emplean comúnmente matraces para rotavapor.
Cuando la hidratación se lleva a cabo antes de la evaporación del disolvente, el procedimiento comprende la evaporación del disolvente de la suspensión liposómica acuosa que contiene el disolvente. La evaporación de un disolvente puede ser llevada a cabo mediante cualquier técnica de evaporación, tal como, pero sin limitarse a, evaporación al hacer pasar una corriente de gas inerte por encima de la disolución, mediante calentamiento, mediante vacío, o mediante calentamiento bajo vacío. Se emplean comúnmente matraces para rotavapor.
Una vez que se ha evaporado un disolvente o una mezcla de disolventes, sólo quedan los liposomas en forma de suspensión acuosa.
En el presente invento se puede utilizar cualquier fosfolípido adecuado para preparar liposomas. Los fosfolípidos adecuados incluyen aquellos que tienden a disminuir la permeabilidad de la membrana liposómica. Los liposomas que contienen fosfolípidos con cadenas de ácido graso largas son más estables y dan lugar a una liberación más lenta del agente que los liposomas compuestos por fosfolípidos que tienen cadenas de ácido graso más cortas. Conforme aumenta la longitud de la cadena carbonada del ácido graso, también aumenta la temperatura de transición de fase. Los liposomas compuestos por fosfolípidos con mayor temperatura de transición de fase liberan su contenido más lentamente que los liposomas compuestos por fosfolípidos con menor temperatura de transición de fase. Una mayor temperatura de transición de fase permite una lenta liberación del contenido desde el interior de los liposomas a la corriente sanguínea ya que las membranas fosfolipídicas son semipermeables. Otras características del fosfolípido que afectan a la estabilidad y la permeabilidad de la membrana incluyen el grado de saturación y la carga.
Preferiblemente, los liposomas del presente invento contienen lípidos neutros. Se prefiere que los lípidos neutros tengan una temperatura de transición de fase de 40ºC a 65ºC, y más preferiblemente de 50ºC a 54ºC. Los fosfolípidos preferibles tienen una cadena de ácido graso de al menos dieciséis carbonos.
Los fosfolípidos adecuados empleados en el procedimiento del presente invento incluyen, pero no se limitan a, diestearoil-fosfatidilcolina (DSPC), dipalmitoil-fosfatidilcolina (DPPC), fosfatidilcolina hidrogenada de soja (HSPC) y derivados de dichos fosfolípidos. Las fosfatidilcolinas son lípidos neutros preferidos. Un fosfolípido preferido es el 1,2-diestearoil-sn-glicerol-3-fosfocolina, que es comúnmente conocido como diestearoil-fosfatidilcolina (DSPC). El peso molecular de la DSPC es 790 y su fórmula molecular es C_{44}H_{88}NO_{8}P.
Se incorporan esteroles a los liposomas junto con fosfolípidos para alterar la rigidez y la permeabilidad de las membranas de los liposomas. Un esterol ejemplar es el colesterol y los derivados o compuestos análogos del mismo. El colesterol tiende a aumentar la rigidez y a disminuir la permeabilidad de las membranas liposómicas. El colesterol es una molécula anfipática y se inserta en la membrana fosfolipídica con sus grupos hidroxilo orientados hacia la superficie acuosa. El colesterol se incorpora en una concentración que proporciona una permeabilidad óptima a la membrana del liposoma pero también mantiene la rigidez de la membrana. La selección de la relación de fosfolípido a colesterol define la velocidad de disolución del contenido de los liposomas. Los liposomas del presente invento tienen normalmente una relación molar de fosfolípidos a esterol que varía de 1:0,1 a 1:2. Preferiblemente, el intervalo es de 1:0,5 a 1:1,5. Una relación molar preferible de fosfolípidos a esterol cuando el fosfolípido es diestearoil-fosfatidilcolina (DSPC) y el esterol es colesterol es de 1:0,6 a 1:0,8. Una relación molar preferida es aproximadamente 1:0,7.
El disolvente o las mezclas de disolventes se evaporan bajo vacío. Cuando la hidratación se lleva a cabo después de la eliminación del disolvente, la película lipídica formada es hidratada con un medio de hidratación acuoso para formar los liposomas. El medio de hidratación acuoso se añade a la película con agitación o bajo mezclamiento para hidratar la película lipídica y formar los liposomas. Un experto en la técnica apreciará los medios de hidratación acuosos adecuados que hay que emplear. Los medios de hidratación acuosos preferibles contienen tampones/sales con el fin de que estén disponibles para establecer más tarde un gradiente químico en el procedimiento, para facilitar la carga de diversos agentes en los liposomas.
El volumen del medio de hidratación acuoso está controlado/reducido en comparación con la cantidad del medio de hidratación utilizado en la fabricación de liposomas convencionales y liposomas pegilados. Al reducir el volumen del medio de hidratación acuoso, los fosfolípidos se pueden empaquetar más juntos para dar lugar a un "caparazón" o membrana liposómica más gruesa. El "caparazón" más grueso proporciona una liberación lenta y estable de circulación duradera y una toxicidad disminuida del contenido de los liposomas sin necesidad de PEG. Cuanto menor sea el volumen del medio de hidratación utilizado, más juntos se empaquetarán los fosfolípidos y más grueso llegará a ser el caparazón. Por "controlado/reducido" se quiere significar que el volumen del medio de hidratación acuoso utilizado en el presente invento es más pequeño que la cantidad previamente conocida o aceptada del medio de hidratación acuoso. Utilizando un volumen reducido preferido de medio de hidratación (por ejemplo, 30 ml por cada milimol de fosfolípido) y una concentración preferida de colesterol, la composición liposómica resultante tendrá una bicapa fosfolipídica rígida.
Esta reducción del volumen del medio de hidratación puede ser también visualizada en términos de la relación del volumen de medio utilizado por moles de fosfolípido presentes en la disolución lipídica. En el presente invento, la cantidad del medio de hidratación acuoso utilizado está en el intervalo de 10 a 35 ml por cada milimol de fosfolípido presente en la disolución lipídica. Preferiblemente, el volumen del medio de hidratación acuoso está entre 20 y 35 ml, y es especialmente de 20 a 30 ml, por cada milimol de fosfolípido presente en la disolución lipídica. Más preferiblemente, el volumen del medio de hidratación acuoso es aproximadamente 30 ml por cada milimol de fosfolípido usado en la disolución lipídica.
El tamaño de los liposomas es apropiadamente ajustado. Un experto en la técnica apreciará los métodos conocidos para ajustar el tamaño de los liposomas. Uno de dichos métodos es la homogeneización bajo presión. Otro método adecuado incluye la extrusión de los liposomas a través de filtros con un tamaño de poro que corresponda al tamaño deseado del liposoma. Puesto que los liposomas del presente invento tienen una membrana más estrechamente empaquetada, el ajuste del tamaño tiende a ser más difícil que con los liposomas convencionales. De esta manera, su tamaño es preferiblemente ajustado por medio de una serie de filtros con un tamaño de poro cada vez más pequeño. Por ejemplo, después de la hidratación, los liposomas son inicialmente hechos pasar a través de un filtro que tiene un tamaño de poro de 0,40 \mum y luego a través de filtros con un tamaño de poro sucesivamente más pequeño, de 0,06 \mum o, preferiblemente, 0,05 \mum. El tamaño de los liposomas resultantes varía de 0,05 ó 0,06 \mum a 0,2 \mum. Un intervalo preferido para el tamaño medio es de 0,08 \mum a 0,12 \mum.
La sal extraliposómica del medio de hidratación es separada por lavado o eliminada de los liposomas. La diálisis utilizando un medio de diálisis es un método ejemplar para eliminar la sal extraliposómica del medio de hidratación. En la diálisis se puede utilizar cualquier disolución tampón adecuada. La eliminación de la sal extraliposómica presente en la composición liposómica crea un gradiente químico a través de la membrana liposómica, de dentro a fuera, al que se recurre más tarde para la carga de los liposomas. Otro medio adecuado para eliminar la sal extraliposómica incluye la ultrafiltración o la cromatografía en columna.
Los liposomas del presente invento proporcionan un mecanismo de distribución de liberación lenta y circulación duradera para agentes terapéuticos o diagnósticos. Para cargar los liposomas con un deseado agente terapéutico o diagnóstico, se puede utilizar cualquier método conocido. Los métodos ejemplares incluyen añadir el agente a la película lipídica antes de la hidratación de la película lipídica, incorporar directamente el agente al medio de hidratación, mediante un gradiente de pH, y mediante un gradiente químico. Un método preferido implica la carga de un agente utilizando un gradiente químico. Cuando los liposomas son cargados mediante un proceso de carga activa, se mezcla la disolución del fármaco con la suspensión liposómica vacía a una temperatura superior o equivalente a la temperatura de transición de fase de los fosfolípidos.
Utilizando un gradiente químico, se puede controlar fácilmente la cantidad de agente, y, una vez que el agente está cargado dentro del liposoma, la fuga al medio extraliposómico es mínima. Además, si se utiliza un medio de hidratación que contiene un tampón/sales en la operación de hidratación, la creación de dicho gradiente resulta muy factible después de la eliminación de la sal extraliposómica del medio de hidratación de la manera anteriormente descrita. Sin embargo, la hidratación con una disolución de sulfato amónico hecha isotónica con cloruro sódico (como se describe en la Patente de EE.UU. nº 5.316.771) da lugar a liposomas que presentan pérdidas durante el almacenamiento. El contenido de fármaco libre en la composición liposómica aumenta durante el almacenamiento, lo que aumenta a su vez la toxicidad. Por lo tanto, se presenta la necesidad de fortalecer la membrana liposómica. De esta manera, el presente invento proporciona el uso concomitante de un agente isoosmótico que no es reactivo con otros ingredientes de la disolución ni con los propios liposomas en el medio de hidratación. Se halló que el uso de sacarosa resulta protector para las membranas liposómicas. La sacarosa ayuda a proteger y hacer más rígida la membrana liposómica y también a mantener la isotonicidad de la composición liposómica. Las membranas liposómicas han sido protegidas de la deshidratación antes de la liofilización mediante el uso de sacáridos tales como trehalosa, sacarosa y maltosa (Patente de EE.UU. nº 4.880.635).
De esta manera, el presente invento proporciona el uso de sacarosa con sulfato amónico como un medio de hidratación para suministrar a los liposomas, que son más rígidos y que, durante el almacenamiento, no dejan salir al agente en ellos encapsulado. Con la adición de sacarosa al medio de hidratación, la sacarosa permanece dentro y fuera de la superficie de la membrana liposómica endureciendo ambas caras de la membrana liposómica, reduciendo por ello la fuga del fármaco. Es preferible que la concentración de sacarosa en el medio de hidratación sea de 0,1 M a 0,5 M. Se prefiere una concentración de 0,25 M a 0,3 M, especialmente de aproximadamente 0,27 M.
La concentración de sulfato amónico en el medio de hidratación desempeña un papel vital en la fuga del fármaco de los liposomas. Cuando se utiliza para la hidratación para formar liposomas, el sulfato amónico en una concentración inferior a 125 mM mostró la fuga del fármaco durante el almacenamiento. De este modo, la concentración de sulfato amónico en la disolución no es inferior a 125 milimoles/litro y el medio de hidratación contiene sacarosa.
Cuando se lleva a cabo una diálisis, ésta permite separar la sal extraliposómica, es decir, el sulfato amónico, pero no separar el sulfato amónico intraliposómico, lo que causa el gradiente químico de dentro a fuera a través de la membrana liposómica.
Hay muchas disoluciones tampón adecuadas que se pueden usar tanto para cargar el agente en los liposomas como para diluir la composición liposómica resultante hasta una concentración deseada del agente. Puesto que los liposomas contienen fundamentalmente fosfolípidos, que son estables en un pH aproximadamente neutro de 6,0 a 8,0, las disoluciones tampón utilizadas para cargar y diluir liposomas deberían tener también un pH neutro. Además, idealmente, la disolución tampón debería ser adecuada para preparaciones parenterales. Algunas de las disoluciones tampón más comunes usadas en preparaciones parenterales, que son adecuadas en el presente invento para cargar el agente en los liposomas y para la dilución de la composición liposómica, son tampones de glicocola, fosfato, citrato, acetato e histidina. Es preferible una disolución tampón de histidina ya que tiene el pH más estable en el intervalo neutro. Preferiblemente, la disolución tampón comprende sacarosa e hidrocloruro de histidina en una relación molar de 29:0,1 a 29:10, más preferiblemente de aproximadamente 29:1. La relación ponderal de hidrocloruro de histidina a sacarosa puede ser aproximadamente 1:50. El uso de sacarosa ayuda a proteger y hacer más rígida la membrana liposómica y también a mantener la isotonicidad de la composición liposómica.
Una vez que los liposomas están cargados, se elimina todo agente no atrapado. Los métodos adecuados incluyen, pero no se limitan a, cromatografía de filtración en gel, diálisis, y tratamiento con una resina microporosa de copolímero de estireno/divinilbenceno, especialmente Dowex®, y una filtración subsiguiente. El tratamiento con Dowex® es un método preferido a causa de la facilidad de su uso. Cuando se usa la diálisis, se lleva preferiblemente a cabo de la misma manera que se describió antes cuando se eliminaban las sales extraliposómicas del medio de hidratación.
Como se discutió anteriormente, al controlar o reducir la cantidad del medio de hidratación acuoso, los liposomas resultantes tienen un contenido aumentado de fosfolípido por unidad de volumen en comparación con los liposomas convencionales o pegilados. Un aumento del contenido de fosfolípido aumenta la estabilidad de los liposomas y disminuye la permeabilidad y, de este modo, lentifica la liberación de cualquier agente atrapado.
Los agentes adecuados para cargar en liposomas del presente invento son compuestos anfipáticos solubles en agua, con grupos ionizables. Los agentes anfipáticos presentan características tanto hidrófilas como lipófilas y pueden ser agentes terapéuticos o diagnósticos, los agentes terapéuticos pueden ser cualquier agente deseado e incluyen agentes antineoplásicos.
Un agente antineoplásico es un fármaco que evita, mata, o bloquea el crecimiento y la diseminación de células cancerosas. Hay muchos agentes antineoplásicos adecuados, algunos de los cuales incluyen altretamina; asparaginasa; BCG; sulfato de bleomicina; busulfán; carboplatina; carmustina; clorambucilo; cisplatina-cisplatino, cis-diammino-dicloroplatino; cladribina, 2-clorodesoxiadenosina; ciclofosfamida; citarabina-arabinósido de citosina; dacarbazina/imidazol-carboxamida; dactinomicina; daunorrubicina-daunomicina, hidrocloruro de daunorrubicina; dexametasona; doxorrubicina, hidrocloruro de doxorrubicina; epirrubicina; etopósido-epipodofilotoxina; floxuridina; fluorouracilo; fluoximesterona; flutamida; fludarabina; goserelina; hidroxiurea; idarrubicina\cdotHCl; ifosfamida-isofosfamida; interferón alfa; interferón alfa 2a; interferón alfa 2b; interferón alfa n3; irinotecán; leucovorina cálcica; leuprolida; levamisol; lomustina; megestrol; melfalán-mostaza de L-fenilalanina, L-sarcolisina; hidrocloruro de melfalán; mecloretamina, mostaza nitrogenada; metilprednisolona, metotrexato-ametopterina, mitomicina-mitomicina C; mitoxantrona; mercaptopurina, paclitaxel; plicamicina-mitramicina; prednisona; procarbazina; estreptozocina-estreptozotocina; tamoxifeno; 6-tioguanina; tiotepa-trietilentiofosforamida; vinblastina; vincristina; y tartrato de vinorrelbina. Los agentes antineoplásicos preferidos incluyen hidrocloruro de doxorrubicina, hidrocloruro de daunorrubicina e hidrocloruro de epirrubicina.
El presente invento también proporciona la carga de los liposomas con agentes diagnósticos, incluyendo, pero sin limitarse a, los agentes de contraste (también llamados "agentes paramagnéticos") para formación de imágenes por resonancia magnética (MRI; del inglés, magnetic resonance imaging) usados para ayudar a obtener una foto clara durante la MRI. La MRI es una clase especial de procedimiento diagnóstico en que se emplean imanes y ordenadores para crear imágenes o "fotos" de ciertas zonas del interior del cuerpo. A diferencia de los rayos X, no requiere radiación ionizante. Los agentes diagnósticos para MRI ejemplares incluyen gadodiamida, gadopentetato, gadoteridol, gadoversetamida y el quelato Gd:ácido dietilentriaminopentaacético (GD-DTPA) (Patente de EE.UU. nº 6.132.763).
Una vez que se han cargado los liposomas y se ha eliminado el agente terapéutico/diagnóstico no encapsulado, la composición liposómica puede ser asépticamente filtrada para esterilización, lo que la hace adecuada para administración parenteral. Idealmente, el filtro es un filtro de al menos 0,2 \mum. Luego se filtra la composición liposómica en un recipiente estéril y exento de pirógenos para material fluido o suelto. Posteriormente, se llenan asépticamente recipientes estériles más pequeños, exentos de pirógeno, tales como viales de vidrio, con la composición estéril. Se elimina el aire del espacio superior del recipiente mediante una purga con un gas inerte, tal como nitrógeno, y se sellan los recipientes. Mediante "adecuada para administración parenteral" se quiere significar que la composición es estéril e isotónica y está controlada en cuanto a endotoxinas bacterianas.
El presente invento también proporciona liposomas no pegilados, de baja toxicidad, circulación duradera y estables. Los liposomas son preferiblemente fabricados mediante los métodos aquí descritos. Los liposomas de este invento son liposomas no pegilados de circulación duradera que tienen una semivida en circulación sanguínea al menos 25 veces mayor que la de las formulaciones no liposómicas convencionales (Adriamycin®) cuando se ensaya en ratones albinos suizos con dosis equivalentes. Una semivida en circulación sanguínea preferida es aproximadamente 40 veces mayor que la obtenida con Adriamycin®.
Los liposomas no pegilados del presente invento están compuestos por un fosfolípido y colesterol. Las relaciones aceptables de fosfolípido a colesterol se describieron anteriormente, y la relación molar es preferiblemente de 1:0,1 a 1:2. Una relación molar preferida de fosfolípido a esterol es aproximadamente 1:0,7. Las fosfatidilcolinas son fosfolípidos preferidos, y se prefiere especialmente la diestearoilfosfatidilcolina (DSPC).
Los liposomas no pegilados pueden ser cargados con un agente diagnóstico o terapéutico. Dichos agentes son conocidos y se discutieron anteriormente. Los liposomas no pegilados del presente invento son preferiblemente cargados utilizando un gradiente químico, como se discutió anteriormente.
Un liposoma no pegilado preferido del presente invento es cargado con hidrocloruro de doxorrubicina y es preparado utilizando los métodos anteriormente descritos. En una realización, cuando se carga hidrocloruro de doxorrubicina utilizando el procedimiento de carga activa anteriormente descrito, se disuelve el agente en una disolución tampón adecuada (como se describió anteriormente) antes de la carga para obtener una concentración de al menos 25 mM. Cuando el proceso de carga activa implica un gradiente de sulfato amónico, el sulfato amónico reacciona con el hidrocloruro de doxorrubicina para formar sulfato de doxorrubicina. El sulfato de doxorrubicina es insoluble y permanece dentro de los liposomas después de la carga. Una vez que se ha eliminado todo fármaco no atrapado o libre de los liposomas cargados, los liposomas cargados con el fármaco son diluidos utilizando una disolución tampón acuosa hasta alcanzar la concentración de fármaco requerida. La preferida disolución tampón usada es una disolución tampón de sacarosa-histidina, como se discutió previamente.
Una composición liposómica no pegilada ejemplar de doxorrubicina contiene aproximadamente 2 mg/ml de doxorrubicina (calculada en forma de hidrocloruro). Otra composición liposómica no pegilada ejemplar de doxorrubicina contiene aproximadamente 4 mg/ml de doxorrubicina (calculada en forma de hidrocloruro). Utilizando los métodos del presente invento, la doxorrubicina puede ser cargada en liposomas no pegilados en una concentración el doble de la deseada en la composición deseada final. Los liposomas cargados pueden ser luego diluidos con una disolución tampón adecuada (como se describió anteriormente) hasta alcanzar la concentración deseada de doxorrubicina por ml de composición liposómica. Tras la dilución, el medio externo en que están suspendidos los liposomas resulta diluido, mientras que el agente del interior de los liposomas queda sin diluir.
En una realización preferida, la relación molar de hidrocloruro de doxorrubicina a fosfolípidos es de 1:2 a 1:15. Una relación molar preferida es aproximadamente 1:3,5.
El presente invento también proporciona composiciones liposómicas no pegiladas de doxorrubicina. La composición comprende liposomas no pegilados como los anteriormente descritos, en adecuados vehículos farmacéuticamente aceptables que son conocidos en la técnica. Los liposomas han sido cargados con hidrocloruro de doxorrubicina. Las composiciones son adecuadas para administración parenteral y son de circulación duradera.
Una realización proporciona composiciones liposómicas no pegiladas de doxorrubicina, de circulación duradera, para administración parenteral. La composición liposómica comprende liposomas no pegilados de doxorrubicina en un vehículo farmacéuticamente aceptable. Los vehículos farmacéuticamente aceptables adecuados son conocidos en la técnica. En una composición farmacéutica preferida, la concentración de doxorrubicina varía de 1 mM a 10 mM y más preferiblemente es aproximadamente 6,9 mM, pero muy preferiblemente es aproximadamente 3,45 mM. La concentración molar de fosfolípidos varía de 10 mM a 15 mM en la composición parenteral. Un contenido más preferido es aproximadamente 12,15 mM.
La composición preferida comprende además diestearoilfosfatidilcolina, colesterol, hidrocloruro de histidina y sacarosa. Preferiblemente, los liposomas tienen un tamaño medio de 0,06 \mum a 0,16 \mum.
Preferiblemente, el contenido de hidrocloruro de doxorrubicina es 1-10 mM y, más preferiblemente, el contenido de hidrocloruro de doxorrubicina es aproximadamente 3,45 mM.
En composiciones preferidas del presente invento, la relación molar de diestearoilfosfatidilcolina a colesterol es de 1:0,6 a 1:0,8 y preferiblemente es aproximadamente 1:0,7.
En composiciones preferidas del presente invento, la relación molar de hidrocloruro de doxorrubicina a diestearoilfosfatidilcolina es de 1:2 a 1:10, preferiblemente de 1:2 a 1:8, y más preferiblemente es aproximadamente 1:3,5.
El contenido de sacarosa es preferiblemente de 0,45 M a 0,55 M, más preferiblemente de 0,1 M a 0,5 M, especialmente de 0,25 M a 0,3 M, y, muy preferiblemente, es aproximadamente 0,27 M.
En composiciones preferidas del invento, el contenido de hidrocloruro de histidina es de 1 mM a 100 mM, más preferiblemente de 8 a 12 mM, y, muy preferiblemente, es aproximadamente 10 mM.
En composiciones preferidas del invento, los liposomas tienen un tamaño medio de 0,08 \mum a 0,12 \mum.
En una realización del invento, el hidrocloruro de doxorrubicina está presente en una cantidad de aproximadamente 4 mg/ml, la relación molar de doxorrubicina a DSPC es aproximadamente 1:3,5, y la relación de DSPC a colesterol es aproximadamente 1:0,7.
\newpage
En otra realización del invento, el hidrocloruro de doxorrubicina está presente en una cantidad de aproximadamente 2 mg/ml, la relación molar de doxorrubicina a DSPC es aproximadamente 1:3,5, y la relación de DSPC a colesterol es aproximadamente 1:0,7.
En las composiciones, los liposomas de doxorrubicina tienen preferiblemente una semivida en circulación (t_{1/2}) más de 40 veces mayor que la de Adriamycin® cuando se ensaya en ratones albinos suizos con dosis equivalentes.
Se reduce el crecimiento tumoral al administrar una cantidad terapéuticamente eficaz de una composición liposómica no pegilada de doxorrubicina del presente invento. Puesto que las composiciones liposómicas no pegiladas de doxorrubicina tienen un tiempo de circulación prolongado, muestran una toxicidad disminuida y no presentan los problemas relativos al "síndrome de pies y manos", proporcionan un tratamiento viable para reducir el crecimiento tumoral. Un facultativo experto podría utilizar los datos aquí presentados, así como el conocimiento común relativo a las cantidades de dosificación, los tiempos de dosificación y las vías de administración, para tratar con los liposomas no pegilados de doxorrubicina del presente invento a un individuo que tuviera un tumor susceptible de tratamiento mediante hidrocloruro de doxorrubicina. Las composiciones con hidrocloruro de doxorrubicina en cantidades de 2 mg/ml y 4 mg/ml del presente invento son útiles para un tratamiento para reducir el crecimiento tumoral.
El presente invento también proporciona un procedimiento preferido para preparar las composiciones preferidas del invento. El procedimiento comprende:
\quad
disolver lípidos que comprenden diestearoilfosfatidilcolina (DSPC) y colesterol en un solo disolvente o en una mezcla de disolventes;
\quad
eliminar dicho(s) disolvente(s) antes o después de hidratar los lípidos mediante la adición de un medio de hidratación acuoso para formar liposomas en una composición liposómica, en que dicho medio de hidratación acuoso comprende sulfato amónico y sacarosa y tiene una concentración de sulfato amónico no inferior a 125 mM, y en que el medio de hidratación acuoso se añade en una cantidad en el intervalo de 10 ml a 35 ml por cada milimol de DSPC;
\quad
ajustar el tamaño de los liposomas de la composición liposómica resultante, preferiblemente a un valor de 0,06 \mum - 0,16 \mum;
\quad
eliminar el sulfato amónico extraliposómico de la composición liposómica con tamaño ajustado, utilizando una disolución tampón de sacarosa-histidina que comprende hidrocloruro de histidina y sacarosa;
\quad
disolver hidrocloruro de doxorrubicina en dicha disolución tampón de sacarosa-histidina para obtener una disolución con una concentración de hidrocloruro de doxorrubicina de al menos 25 mM;
\quad
mezclar la disolución de hidrocloruro de doxorrubicina resultante y la composición liposómica exenta de sulfato amónico extraliposómico para obtener una composición liposómica cargada con doxorrubicina;
\quad
eliminar el hidrocloruro de doxorrubicina extraliposómico de dicha composición liposómica cargada con doxorrubicina mediante, por ejemplo, filtración con flujo tangencial, cromatografía en columna o tratamiento con resinas tales como resinas basadas en un copolímero microporoso de estireno/divinilbenceno;
\quad
completar el volumen de la resultante composición liposómica exenta de hidrocloruro de doxorrubicina extraliposómico con una disolución tampón de sacarosa-histidina, para obtener una composición liposómica con la concentración deseada de doxorrubicina; y
\quad
filtrar asépticamente dicha composición liposómica a través de un filtro estéril de 0,2 \mum, de calidad esterilizadora, en un recipiente estéril para obtener dicha composición liposómica de doxorrubicina.
Los liposomas no pegilados que contienen composiciones de doxorrubicina del presente invento han mostrado unos efectos tóxicos disminuidos en comparación con las formulaciones de hidrocloruro de doxorrubicina convencionales (Adriamycin®) y las formulaciones de hidrocloruro de doxorrubicina en liposomas pegilados (Caelix®). Más adelante, en la Tabla 1, se proporcionan los resultados de los estudios farmacocinéticos y de toxicidad aguda en ratones. Se compararon los liposomas de doxorrubicina no pegilados del presente invento, fabricados mediante los parámetros expuestos en el Ejemplo II, con Adriamycin® y Caelix®. La dosis letal mediana (DL_{50}) para los liposomas de doxorrubicina no pegilados del presente invento es mayor que para Adriamycin® y Caelix®, lo que demuestra que los liposomas de doxorrubicina no pegilados del presente invento tienen menor toxicidad.
TABLA 1 Estudios farmacocinéticos y de toxicidad aguada en ratones
1
Se utilizaron los liposomas de doxorrubicina no pegilados del presente invento sobre el tumor de mama humano MCF-7, implantado en ratones. Los resultados se proporcionan más adelante en la Tabla 2. La diferencia en cuanto a peso tumoral y eficacia se mide mediante el porcentaje del ensayo frente al testigo (E/T%). En este estudio (Ejemplo VI), la máxima relación E/T al usar Caelyx® es -78 con 12 mg/kg y -34,7 con 6 mg/kg, mientras que, al usar los liposomas de doxorrubicina no pegilados del presente invento, la máxima relación es -93,4 con 12 mg/kg y -89,43 con 6 mg/kg. Estos resultados demuestran que las composiciones liposómicas de doxorrubicina no pegiladas del presente invento parecen ser más eficaces a la hora de reducir el peso tumoral que la formulación de liposomas pegilados actualmente comercializada, Caelix®.
\vskip1.000000\baselineskip
TABLA 2 Efecto sobre el peso tumoral medio (mg) del tumor de mama humano MCF-7, implantado en ratones desnudos
3
Se ensayó la actividad antitumoral de los liposomas de doxorrubicina no pegilados del presente invento frente a células de leucemia L1210 de ratón. Los resultados se proporcionan más adelante en la Tabla 3. Los resultados de este ensayo (Ejemplo VI) muestran que las composiciones liposómicas de doxorrubicina no pegiladas del presente invento son tan eficaces como los liposomas pegilados (Caelix®).
\vskip1.000000\baselineskip
TABLA 3 Actividad antitumoral frente al modelo de leucemia L1210 de ratón
4
Los anteriores resultados de las Tablas 1-3 demuestran que la composición liposómica de doxorrubicina no pegilada del presente invento tiene un menor perfil de toxicidad y un tiempo de circulación más prolongado que los liposomas pegilados, composición que ha probado su eficacia de actividad antitumoral in vivo frente a los modelos tumorales MCF-7 y L1210.
Para que los expertos en la técnica puedan entender mejor este invento, se exponen los ejemplos siguientes, con los que se describe la preparación, la caracterización y la aplicación quimioterapéutica in vivo en un modelo de formulaciones liposómicas de este invento en un animal. Estos ejemplos se presentan sólo con fines de ilustración, y con ellos no se pretende limitar el presente invento en modo alguno.
El hidrocloruro de doxorrubicina utilizado en estos ejemplos era de calidad parenteral y satisfacía las especificaciones de la Farmacopea de EE.UU. Los fosfolípidos utilizados en estos ejemplos eran de calidad parenteral. El colesterol utilizado en estos ejemplos satisfacía las especificaciones de la Farmacopea de EE.UU. El agua utilizada en estos ejemplos era de calidad parenteral y satisfacía las especificaciones del "agua para inyección". Todos los demás aditivos utilizados en estos ejemplos eran de calidad parenteral. El procesamiento completo se llevó a cabo en una zona con ambiente controlado.
En los estudios con animales para la evaluación comparativa con una composición liposómica no pegilada de doxorrubicina del presente invento, se usaron Caelyx® (formulación liposómica pegilada de doxorrubicina), fabricado por Ben Venue Laboratories, EE.UU., y Adriamycin® (formulación no liposómica convencional de doxorrubicina), fabricado por Pharmacia & Upjohn, EE.UU. Adriamycin® es un polvo liofilizado estéril para inyección en viales, cada uno de los cuales contiene 10 mg de hidrocloruro de doxorrubicina, 50 mg de lactosa y 1 mg de hidroxibenzoato de metilo. Antes de su uso, el polvo liofilizado es reconstituido con 5 ml de "agua para inyección" proporcionada con el conjunto.
Para el ensayo hematológico, se utilizó un contador de células (analizador automatizado para hematología KX-21 de Sysmex^{TM}).
Ejemplos Ejemplo I Procedimiento para preparar una composición liposómica que contiene doxorrubicina Formación de la película lipídica
Se disolvieron DSPC (1,565 g) y colesterol (0,521 g), uno después del otro, en cloroformo (40 ml) en un matraz para rotavapor. Se mezclaron hasta que se formó una disolución clara. Se conectó el matraz a un rotavapor y se ajustó la temperatura del baño de agua a 60ºC. Se evaporó el disolvente bajo vacío para formar una película delgada de lípidos sobre la pared del matraz. Una vez liberado el vacío, se hizo girar el matraz durante aproximadamente 5 minutos mientras se introducía nitrógeno en el matraz para eliminar todo disolvente residual por secado.
Hidratación
La película lipídica del matraz fue luego hidratada con 60 ml de un medio de hidratación acuoso que contenía sulfato amónico. El medio de hidratación consistía en 10,0 g de sacarosa, 2,04 g de sulfato amónico y 100 ml de agua. El matraz que contenía la película lipídica y el medio de hidratación fue hecho girar durante 30 minutos en un baño de agua a una temperatura mantenida en un valor de 65-68ºC, para formar los liposomas.
Reducción del tamaño de los liposomas mediante extrusión
El tamaño de la suspensión liposómica anteriormente obtenida fue ajustado mediante extrusiones sucesivas a través de filtros que tenían un tamaño de poro de 0,4 \mum a 0,05 \mum.
Desarrollo de un gradiente de sulfato amónico
La suspensión de los liposomas con tamaño ajustado fue dializada frente a una disolución tampón de sacarosa-histidina para eliminar el sulfato amónico extraliposómico, creándose de este modo un gradiente químico. Para la diálisis se utilizó un sistema de filtración con flujo tangencial provisto de un cartucho de 300 kDa. Se ensayó la ausencia de sulfato amónico utilizando un reactivo Nessler.
La disolución tampón de sacarosa-histidina utilizada en la diálisis y en la carga del fármaco (más adelante) era la siguiente: 170,0 g de sacarosa, 3,40 g de histidina\cdotHCl, 1,7 litros de agua, e hidróxido sódico en una cantidad suficiente para ajustar el pH a un valor de 6,0 a 6,5.
Carga del fármaco
En un matraz de fondo redondo, se preparó una disolución de 15 mg/ml de doxorrubicina\cdotHCl en una disolución tampón de sacarosa-histidina (anteriormente descrita) para cargar la preparación liposómica y para conseguir liposomas cargados con fármaco que tuvieran una concentración de 4 mg/ml de doxorrubicina (calculada en forma de hidrocloruro). Se añadieron lentamente los liposomas con tamaño ajustado y dializados de antes al matraz de fondo redondo y se mezclaron durante una hora a 65ºC. Los liposomas cargados con el fármaco fueron mezclados con Dowex® durante 30 minutos para eliminar el fármaco no atrapado. Los liposomas cargados con el fármaco fueron diluidos hasta una concentración de 2 mg/ml utilizando la disolución tampón de sacarosa-histidina y fueron luego asépticamente filtrados utilizando un filtro de membrana estéril de 0,22 \mum. Luego se llenaron asépticamente viales de vidrio estériles y exentos de pirógenos con la composición liposómica filtrada de doxorrubicina y se sellaron los mismos bajo una cubierta de nitrógeno usando tapones de caucho revestido con Teflon®.
Ejemplo II Comparación de las DL_{50} de las formulaciones de doxorrubicina
5
Se preparó la composición mediante un procedimiento igual al del Ejemplo I.
Se disolvió hidrocloruro de doxorrubicina (216 mg) en 14 ml de disolución tampón de sacarosa-histidina, se añadió la disolución a 40 ml de liposomas con tamaño ajustado y se mezcló durante 1 hora. La resultante dispersión de la disolución liposómica cargada con el fármaco fue luego hecha pasar a través de una columna de Dowex® para eliminar el fármaco no atrapado.
El producto obtenido después del paso a través de la columna de Dowex® tenía las características siguientes:
Análisis del producto
6
Se analizó el producto anterior, tras una dilución con un tampón de histidina hasta una concentración de 2 mg/ml, en cuanto a los parámetros siguientes:
7
Se sometió esta composición a estudios de toxicidad aguda en ratones.
8
Se dividieron los animales en 3 grupos, y cada grupo comprendía diez animales. El Grupo 1 recibió una composición del Ejemplo II, el Grupo 2 recibió Caelyx®, y el Grupo 3 recibió Adriamycin®.
Todos los animales recibieron inyecciones por vía intravenosa. Antes de la administración a los animales, las disoluciones de los fármacos fueron adecuadamente diluidas con una disolución de dextrosa (5% en peso/volumen). Luego se observaron los animales durante un periodo de 14 días. Se observaron en cuanto a cualquier toxicidad clínica y a la mortalidad.
En la Tabla 1 se proporcionan los valores de DL_{50} de las diferentes formulaciones de doxorrubicina estudiadas.
Se halló que la dosis DL_{50} era 16,13 mg/kg, mientras que la dosis DL_{50} para la preparación convencional comercializada (Adriamycin®) era 10,29 mg/kg. La DL_{50} para la comercializada preparación liposómica pegilada Caelyx® era 13,5 mg/kg. Estos resultados muestran que los liposomas no pegilados del presente invento presentan una toxicidad reducida en comparación con otras formulaciones de doxorrubicina y con formulaciones liposómicas pegiladas de doxorrubicina, incluyendo formulaciones liposómicas pegiladas de doxorrubicina.
\vskip1.000000\baselineskip
Ejemplo III Comparación de las toxicidades subagudas de las formulaciones de doxorrubicina
9
Se dividieron los animales en 11 grupos, y cada grupo comprendía ocho animales. El Grupo 1 recibió una inyección de dextrosa al 5%, el Grupo 2 recibió liposomas vacíos (antes de la carga del fármaco) del presente invento, el Grupo 3, el Grupo 4 y el Grupo 5 recibieron una composición del Ejemplo II con diferentes dosis, el Grupo 6, el Grupo 7 y el Grupo 8 recibieron Caelyx® con diferentes dosis, y el Grupo 9, el Grupo 10 y el Grupo 11 recibieron Adriamycin® con diferentes dosis. Las dosis se proporcionan en la Tabla 4.
\vskip1.000000\baselineskip
TABLA 4 Dosis de formulaciones de doxorrubicina para estudios de toxicidad por dosis repetidas en ratones
10
Todos los grupos recibieron inyecciones en días alternos durante catorce días, por vía intravenosa. Antes de la administración a los animales, las formulaciones se diluyeron adecuadamente con una inyección de dextrosa al 5%. Se observaron los animales durante el periodo de estudio de 14 días en cuanto a lo siguiente:
\quad
mortalidad;
\quad
signos y síntomas clínicos;
\quad
peso corporal;
\quad
consumo de alimento; y
\quad
pesos de órganos
\vskip1.000000\baselineskip
Resultados Mortalidad
Se registró el porcentaje de mortalidad a lo largo de un periodo de catorce días para todas las formulaciones.
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
TABLA 5 Porcentaje de mortalidad para las diversas dosis de formulaciones de doxorrubicina
11
\vskip1.000000\baselineskip
Signos clínicos
Durante el curso del estudio, se observó desprendimiento de piel de la cola y alopecia en todos los grupos tratados con doxorrubicina. El desprendimiento de piel de la cola se observó en los animales después de cinco inyecciones. Se observó alopecia dependiente de la dosis en todos los animales tratados con doxorrubicina. En la Tabla 6 se detalla la alopecia durante el curso de este estudio.
TABLA 6 Incidencia de alopecia en ratones tratados con varias formulaciones de doxorrubicina
12
\vskip1.000000\baselineskip
Peso corporal
Se registró el peso corporal de los animales el día 1, el día 4, el día 7 y el día 14. Con las dosis de 2 mg/kg y 3 mg/kg, se observó una disminución del peso corporal en todos los grupos tratados con fármaco. La pérdida de peso fue significativamente diferente de la del testigo. El peso corporal de los animales que recibieron liposomas vacíos fue comparable al del grupo de dextrosa.
\vskip1.000000\baselineskip
Consumo de alimento
En el periodo de 4 a 14 días, los animales tratados con doxorrubicina mostraron, en general, una disminución en el consumo de alimento.
\vskip1.000000\baselineskip
Pesos de órganos
Se recogieron y pesaron los órganos de los animales supervivientes. Se halló que los pesos medios de los órganos de todos los animales eran comparables en todos los grupos tratados con fármaco.
Ejemplo IV Evaluación de la farmacocinética de las formulaciones de doxorrubicina
\vskip1.000000\baselineskip
13
\vskip1.000000\baselineskip
Después de la recogida, las muestras de sangre fueron centrifugadas a 4000 rpm durante 20 minutos y el plasma fue separado y fue congelado a -20ºC hasta ser analizado. Se descongeló el plasma congelado y se utilizó para el análisis.
Se añadió 1 ml de acetonitrilo a 100 \mul de plasma, se revolvió durante 10 minutos y se centrifugó a 3250 rpm durante 10 minutos. Se retiró el sobrenadante y se le añadieron 0,5 ml de una disolución saturada de ZnSO_{4}. La disolución resultante fue revuelta durante 5 minutos y fue luego centrifugada a 3250 rpm durante 10 minutos. La capa orgánica superior fue luego retirada y fue secada a 60ºC bajo nitrógeno gaseoso exento de oxígeno. El residuo obtenido fue luego reconstituido con 200 \mul de Disolvente A que contenía ZnSO_{4}. Luego se inyectaron 100 \mul de esta disolución a la columna para cromatografía de alta eficacia en fase líquida.
\vskip1.000000\baselineskip
14
\vskip1.000000\baselineskip
Análisis estadístico
Se usó la prueba t de Student para la comparación entre las tres formulaciones. Los resultados se resumen en la Tabla 1.
Ejemplo V Comparación de las toxicidades subagudas de las formulaciones de doxorrubicina
15
\vskip1.000000\baselineskip
Evaluación farmacológica
\quad
signos clínicos de toxicidad;
\quad
peso corporal;
\quad
parámetros hemodinámicos;
\quad
hematología; y
\quad
parámetros bioquímicos.
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
TABLA 7
16
\vskip1.000000\baselineskip
Peso corporal
El grupo tratado con Adriamycin® mostró una disminución en el peso corporal, mientras que los grupos tratados con el testigo y la composición del Ejemplo II no mostraron cambio alguno en el peso corporal.
TABLA 8
17
Parámetros hematológicos estudiados
\quad
glóbulos rojos;
\quad
glóbulos blancos totales y recuento diferencial de glóbulos blancos;
\quad
hemoglobina;
\quad
hematocrito;
\quad
volumen corpuscular medio; y
\quad
plaquetas.
Todos los anteriores parámetros estudiados estuvieron en los intervalos normales en todos los grupos.
Parámetros bioquímicos
En el grupo tratado con Adriamycin® se hallaron aumentos en los niveles de creatinina fosfocinasa y de lactato deshidrogenasa, mientras que, en los grupos del testigo y de la composición del Ejemplo II, no se observó cambio significativo alguno.
Prueba de la función hepática (LFT; del inglés, liver function test)
En el grupo tratado con Adriamycin® se observaron aumentos en los niveles de aspartato aminotransferasa, alanina aminotransferasa y bilirrubina total, mientras que, en los grupos del testigo y de la composición del Ejemplo II, no se observó cambio significativo alguno.
Prueba de la función renal (KFT; del inglés, kidney function test)
En el grupo tratado con Adriamycin® se observaron aumentos de nitrógeno ureico en sangre (BUN; del inglés, blood urea nitrogen) y de creatinina, mientras que el grupo testigo no mostró aumento alguno. El grupo tratado con la composición del Ejemplo II mostró un aumento en los niveles tanto de BUN como de creatinina que, sin embargo, eran significativamente menores que los del grupo tratado con Adriamycin®.
Ejemplo VI Evaluación de la actividad antitumoral de la formulación liposómica no pegilada de doxorrubicina del presente invento con la formulación liposómica pegilada de doxorrubicina (Caelyx®) frente a la leucemia L1210 de ratón y el tumor de mama humano MCF-7 implantados en ratones desnudos Preparación de la dosis
Se diluyeron las dos formulaciones de doxorrubicina anteriores hasta 1 mg/ml con disolución salina (0,9%) normal estéril. Se administraron volúmenes apropiados de las disoluciones de fármaco a diversos grupos de ensayo basándose en el peso corporal para que los animales recibieran el fármaco del modo indicado en las Tablas 9 y 10.
En ambos modelos se usaron hembras de ratón desnudo NCr (nu/nu) de seis semanas de edad.
Los animales fueron alojados en jaulas con microaislante de policarbonato del modo especificado en la "Guide for Care and Use of Laboratory Animals" (publicación ILAR, 1996, National Academy Press). Se ventilaron bien las habitaciones (más de 10 cambios de aire por hora) con aire fresco a 50%. Se mantuvo un fotoperíodo de 12 horas de luz/12 horas de oscuridad. Se mantuvo la temperatura de la habitación entre 18 y 26ºC.
Antes de la inoculación del tumor, se dejó que los animales del estudio se aclimataran durante al menos 3 días.
Descripción general
Las dos formulaciones liposómicas antes indicadas fueron ensayadas en los modelos de leucemia L1210 de ratón y tumor de mama humano MCF-7 en dos concentraciones, cada una frente a un grupo testigo que recibió disolución salina.
Modelo L1210 Células tumorales
Se obtuvo la línea celular de leucemia L1210 de ratón del ATCC y se propagó usando métodos estándares para proliferación celular in vitro. Se desarrollaron las células en un medio de cultivo con los complementos apropiados y suero bovino fetal (FBS; del inglés, foetal bovine serum) al 10%. Luego se desarrolló el cultivo en 35 matraces T-225 hasta una confluencia de 80-90%. Se recolectaron las células mediante centrifugación y se resuspendieron las células sedimentadas en medio RPMI exento de suero hasta 10^{6} células viables/ml. Utilizando una aguja 25G, se inyectaron 0,1 ml de suspensión celular a los animales.
Grupos y dosificaciones
Cada grupo consistió en 5 animales. Se inocularon intraperitonealmente 10^{6} células tumorales/ratón a los ratones. Se administraron intravenosamente ambas formulaciones liposómicas los días 1, 5 y 9 con las dosis mostradas en la Tabla 9. Se observaron los animales durante 30 días después del tratamiento y se registró la mortalidad.
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
TABLA 9
18
Se examinaron diariamente los animales y se pesaron dos veces a la semana, y se registraron sus pesos. Se registró cualquier mortalidad durante el curso del estudio.
Se evaluaron las actividades antitumorales de las dos formulaciones liposómicas comparando el tiempo de supervivencia medio en cada grupo tratado con el de los testigos que recibieron disolución salina. Los resultados se expresaron en términos de relaciones E/T, que se calcularon del modo siguiente:
19
Se considera que una relación E/T \leq 125% representa una actividad significativa.
\newpage
En la Tabla 3 se proporcionan los resultados de la actividad antitumoral frente al modelo de leucemia L1210 de ratón.
Las mortalidades variaban de 15 a 26 días después de la primera inyección (Día 1). El tiempo medio de supervivencia del grupo testigo, que recibió disolución salina, fue 16,5 días. Se observó un aumento del tiempo de supervivencia en los dos grupos tratados con fármaco. Los dos grupos tratados con fármaco mostraron una diferencia similar en el tiempo medio de supervivencia (E/T%), lo que indica que la composición del Ejemplo II es tan eficaz como Caelyx® frente al modelo del tumor L1210.
Modelo MCF-7 Células tumorales
Se obtuvo la línea celular MCF-7 de tumor de mama humano del ATCC y se propagó usando métodos estándares para proliferación celular in vitro. Se desarrollaron las células en un medio de cultivo con los complementos apropiados y FBS al 10%. Luego se desarrolló el cultivo en 35 matraces T-225 hasta una confluencia de 80-90%. Las células fueron recolectadas por centrifugación y las células sedimentadas fueron tratadas con tripsina y fueron resuspendidas en medio RPMI exento de suero hasta 10^{7} células viables/ml. Utilizando una aguja 25G, se inyectaron 0,1 ml de suspensión celular a los animales.
Grupos y dosificaciones
Cada grupo consistió en 5 animales. 5 días antes de la inoculación, se implantaron glóbulos de estrógeno en los ratones. Se inocularon subcutáneamente 10^{7} células tumorales/ratón a los ratones. Se dejó que creciera el tumor hasta que alcanzara un tamaño de 30-100 mm^{3}. Una vez que el tumor hubo alcanzado el tamaño apropiado (5º día después de la inoculación), se administraron intravenosamente dosis de la formulación de ensayo los días 1, 5 y 9 a los ratones, como se muestra en la Tabla 10. Dos veces a la semana, y hasta 30 días después del inicio del tratamiento, se midió el tamaño del tumor usando un calibrador.
\vskip1.000000\baselineskip
TABLA 10
20
Se examinaron diariamente los animales y se pesaron dos veces a la semana, y se registraron sus pesos. Se midieron la longitud y la anchura de los tumores de los ratones individuales dos veces a la semana usando un calibrador, y se calculó el peso aproximado (mg) de los tumores a partir de sus dimensiones (mm x mm) usando la fórmula para el volumen de un elipsoide alargado:
21
donde L es la más larga de las dos mediciones.
Se evaluaron las actividades antitumorales de las dos formulaciones liposómicas comparando el cambio del peso del tumor en el grupo tratado con el de los testigos, que recibieron disolución salina.
El cambio del peso del tumor fue calculado restando el peso tumoral mediano del grupo el día 5 después de la inoculación de las células tumorales, del peso tumoral mediano del grupo el día de la evaluación final (día 30 después del tratamiento).
22
Para todos los grupos de ensayo, la relación E/T se calculó de la forma siguiente:
23
Se considera necesaria una relación E/T \leq 20% para demostrar una actividad moderada. Se considera que una E/T \leq 10% representa una actividad significativa.
En la Tabla 2 está tabulada la actividad antitumoral frente al modelo de tumor de mama humano MCF-7.
\vskip1.000000\baselineskip
TABLA 11 Muertes precoces en diversos grupos de animales
24
Los tumores del grupo testigo continuaron creciendo durante todo el estudio hasta alcanzar un máximo de 116,4 mg el día 26º, mientras que los tumores de los ratones tratados retrocedieron significativamente durante el curso del estudio. Los tumores desaparecieron completamente en el grupo que recibió 12 mg/kg de la composición de la formulación del Ejemplo II, lo que indica que la composición del Ejemplo II es eficaz frente a tumores de mama humanos MCF-7.
Como se muestra en la Tabla 11, se produjeron varias muertes precoces en diversos grupos. Sin embargo, parecía que la causa de las muertes no estaba relacionada con los tumores. No hubo muertes en el grupo testigo de disolución salina, que tenía los tumores más grandes. Se realizaron las necropsias de algunos de los animales muertos y se halló que todos ellos tenían vejigas hinchadas anormales. A la finalización del estudio, muchos de los animales sacrificados también tenían vejigas hinchadas. El examen histopatológico de una de las vejigas hinchadas no reveló evidencia alguna de metástasis tumoral. La muerte prematura de los ratones desnudos tratados con estrógeno y con tumor implantado se debe a la incidencia de una enfermedad urogenital.
\vskip1.000000\baselineskip
Ejemplo VII Determinación de la dosis máxima tolerada (DMT) y valoración de la eficacia terapéutica de los liposomas de doxorrubicina del presente invento en ratones atímicos desnudos con un tumor ovárico humano A121
Se llevaron a cabo la determinación de la dosis máxima tolerada y la evaluación de la eficacia terapéutica de los liposomas de doxorrubicina del presente invento en ratones atímicos desnudos con un tumor ovárico humano A121, en comparación con una formulación no liposómica convencional (Adriamycin®) y una formulación liposómica pegilada (Caelyx®).
Por medio de un implante con trocar, se implantó subcutáneamente un tumor ovárico A121 humano en ratones atímicos desnudos Ncr-nu/nu [4 ratones/grupo (10 en el grupo testigo)]. Se usó un total de 46 animales en este experimento. Para el experimento, se utilizó un total de 46 animales. Se evaluaron intravenosamente dosis equivalentes de Adriamycin®, Caelyx® y la composición del Ejemplo II. Los fármacos se administraron intravenosamente por la vena de la cola de los ratones los días 5 y 12 después de la implantación del tumor.
Todos los grupos de tratamiento demostraron una buena eficacia antitumoral.
El programa de dosificación se presenta más adelante.
Testigo
Los ratones testigo no recibieron tratamiento alguno.
\vskip1.000000\baselineskip
Adriamycin®
\quad
12 mg/kg (6 mg/kg x 2 inyecciones)
\quad
24 mg/kg (12 mg/kg x 2 inyecciones)
\quad
36 mg/kg (18 mg/kg x 2 inyecciones)
\vskip1.000000\baselineskip
Caelyx®
\quad
12 mg/kg (6 mg/kg x 2 inyecciones)
\quad
24 mg/kg (12 mg/kg x 2 inyecciones)
\quad
36 mg/kg (18 mg/kg x 2 inyecciones)
\vskip1.000000\baselineskip
Composición del Ejemplo II
\quad
12 mg/kg (6 mg/kg x 2 inyecciones)
\quad
24 mg/kg (12 mg/kg x 2 inyecciones)
\quad
36 mg/kg (18 mg/kg x 2 inyecciones)
\vskip1.000000\baselineskip
Todos los ratones recibieron la máxima dosis del fármaco libre, 36 mg/kg (18 mg/kg x 2 de Adriamycin®), y 3 de los 4 ratones que recibieron la dosis intermedia de 24 mg/kg murieron como resultado de la toxicidad del fármaco. Por lo tanto, la dosis máxima tolerada (DMT) de Adriamycin® es inferior a 24 mg/kg.
Los ratones toleraron tanto Caelyx® como la composición del Ejemplo II. Ambas formulaciones fueron bien toleradas en una dosis de 36 mg/kg. Sin embargo, parecía que Caelyx® causaba más toxicidad que la composición del Ejemplo II y producía mayor pérdida de peso en los ratones que recibían la dosis mayor (36 mg/kg).
Este estudio demuestra que la composición del Ejemplo II es mejor tolerada que la preparación liposómica pegilada comercialmente asequible (Caelyx®) y la formulación no liposómica convencional (Adriamycin®).
\vskip1.000000\baselineskip
Ejemplo VIII Evaluación de la eficacia de la composición liposómica de doxorrubicina del presente invento en ratones atímicos desnudos a los que se han implantado xenoinjertos de tumor DLD1 de colon humano, positivo para Pgp y resistente a múltiples fármacos
Se sometió la composición del Ejemplo II, junto con Caelyx® y Adriamycin®, a estudios de eficacia en ratones atímicos desnudos a los que se había implantado subcutáneamente el tumor de colon humano DLD-1 (Pgp+), resistente a fármacos.
Por medio de implantación con trocar, se implantó subcutáneamente un tumor de colon DLD-1 humano a animales, ratones atímicos desnudos (4 ratones/grupo; 10 en el grupo testigo).
\vskip1.000000\baselineskip
Testigo
Los ratones testigo no recibieron tratamiento alguno.
\vskip1.000000\baselineskip
Adriamycin®
\quad
12 mg/kg (6 mg/kg x 2 inyecciones)
\quad
24 mg/kg (12 mg/kg x 2 inyecciones)
\vskip1.000000\baselineskip
Caelyx®
\quad
24 mg/kg (12 mg/kg x 2 inyecciones)
\quad
36 mg/kg (18 mg/kg x 2 inyecciones)
\quad
48 mg/kg (24 mg/kg x 2 inyecciones)
\vskip1.000000\baselineskip
Composición del Ejemplo II
\quad
24 mg/kg (12 mg/kg x 2 inyecciones)
\quad
36 mg/kg (18 mg/kg x 2 inyecciones)
\quad
48 mg/kg (24 mg/kg x 2 inyecciones)
Se utilizó un total de 42 animales para el experimento.
\vskip1.000000\baselineskip
Resultados
Las dosis de Adriamycin® se redujeron a 12 y 24 mg/kg en este estudio basándose en la toxicidad observada en el Ejemplo VII después de la administración de 36 mg/kg de fármaco libre. Por contraste, las dosis de Caelix® y de la composición del Ejemplo II se aumentaron a 48 mg/kg para comparar sus eficacias y toxicidades con las del fármaco libre en sus respectivas DMTs. Todos los agentes fueron administrados a ratones atímicos desnudos por medio de inyección intravenosa en la vena de la cola los días 5 y 12 después de la implantación tumoral subcutánea del xenoinjerto de tumor de colon humano, positivo para Pgp y resistente a múltiples fármacos.
Todos los grupos de los tratamientos demostraron eficacia antitumoral. Sin embargo, los ratones que recibieron cualquiera de las preparaciones liposómicas demostraron una eficacia antitumoral significativamente mayor. Para dosis equivalentes de fármaco libre (24 mg/kg), se observó un retraso mediano de 10 días en el crecimiento tumoral con el fármaco libre, mientras que todos los ratones que habían recibido preparaciones liposómicas presentaban tumores que tenían menos de 600 nm^{3} el día 40. No fue evidente toxicidad alguna con una dosis de 36 mg/kg de Caelix® o de la composición del Ejemplo II.
Con las mayores dosis (48 mg/kg) de ambas formulaciones liposómicas de fármaco (24 mg/kg x 2; Caelix® o la composición del Ejemplo II), los ratones presentaron una pérdida de peso > 15%, y 1 de 4 animales de cada uno de esos grupos murió pronto (días 17, 19) como resultado de la toxicidad del fármaco. Por lo tanto, las DMTs de ambas formulaciones liposómicas eran similares y parecían ser inferiores a 48 mg/kg.
Por contraste con Adriamycin®, las dos formulaciones liposómicas [Caelix® (doxorrubicina pegilada) y la composición del Ejemplo II (doxorrubicina no pegilada)] presentaban una significativa eficacia antitumoral frente a tumores de colon DLD1 humanos, resistentes a múltiples fármacos y positivos para Pgp, subcutáneamente implantados en ratones atímicos desnudos. Para dosis equivalentes de 24 mg/kg, ambas formulaciones liposómicas presentaban una eficacia aumentada en comparación con el fármaco libre. Además, ambas formulaciones liposómicas presentaban unas toxicidades menores en comparación con el fármaco libre, lo que permite que se administre más fármaco. Parece que la DMT para Adriamycin® es aproximadamente la mitad de las DMTs para las formulaciones liposómicas. Las dosis de fármaco liposómico de 36 mg/kg fueron bien toleradas.
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
(Tabla pasa a página siguiente)
\newpage
Ejemplos IX a XIII
En la Tabla 12 se proporcionan las composiciones y procedimientos de los Ejemplos IX a XIII.
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
TABLA 12
33
\vskip1.000000\baselineskip
Procedimiento
En los Ejemplos X, XI y XII, se siguió el procedimiento del Ejemplo I. En el Ejemplo IX, se siguió el procedimiento del Ejemplo I salvo por la reducción del tamaño de los liposomas, que se llevó a cabo por extrusión a través de membranas de 0,4 \mum a 0,2 \mum para conseguir un tamaño medio en el intervalo de 0,15 \mum a 0,25 \mum. En el Ejemplo XIII, se siguió el procedimiento del Ejemplo II salvo por el volumen de hidratación, que fue duplicado.
\newpage
Los resultados del examen toxicológico se proporcionan en la Tabla 13.
TABLA 13
34
Ejemplo XIV (Comparativo)
Composición liposómica de doxorrubicina sin sacarosa Formación de la película lipídica
Se disolvieron diestearoilfosfatidilcolina (1,565 g) y colesterol (0,521 g), uno después del otro, en cloroformo (40 ml) en un matraz para rotavapor. Se mezclaron hasta que se formó una disolución clara. Se conectó el matraz a un rotavapor y se ajustó la temperatura del baño de agua a 60ºC. Se evaporó el disolvente bajo vacío para formar una película delgada de lípidos sobre la pared del matraz. Una vez liberado el vacío, se hizo girar el matraz durante aproximadamente 5 minutos mientras se introducía nitrógeno en el matraz para eliminar todo disolvente residual.
Hidratación
La película lipídica fue hidratada con 60 ml de un medio de hidratación acuoso. El medio de hidratación acuoso era sulfato amónico al 2,04% (peso/volumen) en agua. El matraz que contenía la película lipídica y el medio de hidratación fue hecho girar durante 30 minutos en un baño de agua mantenida a 65-68ºC, para formar liposomas vacíos.
Reducción del tamaño de los liposomas vacíos mediante extrusión
El tamaño de la suspensión liposómica anteriormente obtenida fue ajustado mediante extrusiones sucesivas a través de filtros que tenían un tamaño de poro de 0,4 \mum a 0,05 \mum.
Diálisis
La suspensión de los liposomas con tamaño ajustado fue dializada frente a una disolución de hidrocloruro de histidina al 0,2% (peso/volumen) con un pH de 6,5. Para la diálisis se utilizó un sistema de filtración con flujo tangencial. Se continuó la diálisis hasta que se eliminó el sulfato amónico extraliposómico. Se confirmó la ausencia de sulfato amónico en los medios extraliposómicos usando un reactivo Nessler.
Carga del fármaco
En un matraz de fondo redondo, se preparó una disolución de 15 mg/ml de doxorrubicina\cdotHCl disolviendo 216 mg de hidrocloruro de doxorrubicina en 14 ml de la disolución de hidrocloruro de histidina (anteriormente descrita). Se añadió lentamente el volumen medido (40 ml) de los liposomas con tamaño ajustado y dializados de antes al matraz de fondo redondo y se mezcló durante una hora a 65ºC.
Los liposomas cargados con el fármaco fueron tratados con Dowex® para eliminar el fármaco no atrapado.
Las muestras de la composición obtenida antes y después del tratamiento con Dowex® fueron analizadas en cuanto al contenido de doxorrubicina mediante cromatografía en fase líquida a alta presión (HPLC; del inglés, high pressure liquid chromatography). Los resultados fueron los siguientes:
Contenido total de doxorrubicina (como HCl) (antes del tratamiento con Dowex®)
4,02 mg/ml
Contenido de doxorrubicina atrapada (como HCl) (después del tratamiento con Dowex®)
4 mg/ml
\vskip1.000000\baselineskip
Después de la eliminación del fármaco libre, los liposomas cargados con doxorrubicina fueron diluidos hasta una concentración de 2 mg/ml de doxorrubicina (como hidrocloruro) utilizando una disolución de hidrocloruro de histidina y sacarosa (anteriormente descrita). La composición liposómica así obtenida fue luego asépticamente filtrada, utilizando un filtro de membrana estéril de 0,22 \mum, en un recipiente estéril y exento de pirógenos y fue analizada en cuanto a los parámetros siguientes:
\vskip1.000000\baselineskip
35
\vskip1.000000\baselineskip
Se llevaron a cabo estudios de estabilidad sobre la composición obtenida en este ejemplo, y las observaciones se indican en la Tabla 14.
Ejemplo XV Procedimiento para preparar una composición liposómica de doxorrubicina con una disolución 120 mM de sulfato amónico (Comparativo) Formación de la película lipídica
Se disolvieron diestearoilfosfatidilcolina (1,565 g) y colesterol (0,521 g), uno después del otro, en cloroformo (40 ml) en un matraz para rotavapor. Se mezclaron hasta que se formó una disolución clara. Se conectó el matraz a un rotavapor y se ajustó la temperatura del baño de agua a 60ºC. Se evaporó el disolvente bajo presión reducida para formar una película delgada de lípidos sobre la pared del matraz. Una vez liberado el vacío, se hizo girar el matraz durante aproximadamente 5 minutos mientras se introducía nitrógeno en el matraz para eliminar todo disolvente residual.
Hidratación
La película lipídica fue hidratada con 60 ml de un medio de hidratación acuoso. El medio de hidratación acuoso consistía en sacarosa al 10% (peso/volumen) y sulfato amónico al 1,58% (peso/volumen) en agua. El matraz que contenía la película lipídica y el medio de hidratación fue hecho girar durante 30 minutos en un baño de agua mantenida a 65-68ºC, para formar liposomas vacíos.
Reducción del tamaño de los liposomas vacíos mediante extrusión
El tamaño de la suspensión liposómica anteriormente obtenida fue ajustado mediante extrusiones sucesivas a través de filtros que tenían un tamaño de poro de 0,4 \mum a 0,05 \mum.
Diálisis
La suspensión de los liposomas con tamaño ajustado fue dializada frente a un tampón de histidina. Para la diálisis se utilizó un sistema de filtración con flujo tangencial. Se continuó la diálisis hasta que se eliminó el sulfato amónico extraliposómico. Se confirmó la ausencia de sulfato amónico en los medios extraliposómicos usando un reactivo Nessler. La disolución de hidrocloruro de histidina usada en la diálisis y la carga del fármaco (más adelante) fue la siguiente: 170,0 g de sacarosa, 3,40 g de histidina\cdotHCl, 1,7 litros de agua, e hidróxido sódico en una cantidad suficiente para ajustar el pH en un valor de 6,0 a 6,5.
Carga del fármaco
En un matraz de fondo redondo, se preparó una disolución de 15 mg/ml de doxorrubicina\cdotHCl disolviendo 216 mg de hidrocloruro de doxorrubicina en 14 ml de la disolución de hidrocloruro de histidina (anteriormente descrita). Se añadió lentamente el volumen medido (40 ml) de los liposomas con tamaño ajustado y dializados de antes al matraz de fondo redondo y se mezcló durante una hora a 65ºC.
Los liposomas cargados con el fármaco fueron tratados con Dowex® para eliminar el fármaco no atrapado.
Las muestras de la composición obtenida antes y después del tratamiento con Dowex® fueron analizadas en cuanto al contenido de doxorrubicina mediante cromatografía en fase líquida a alta presión (HPLC). Los resultados fueron los siguientes:
Contenido total de doxorrubicina (como HCl) (antes del tratamiento con Dowex®)
4,11 mg/ml
Contenido de doxorrubicina atrapada (como HCl) (después del tratamiento con Dowex®)
4,10 mg/ml
\vskip1.000000\baselineskip
Después de la eliminación del fármaco libre, los liposomas cargados con doxorrubicina fueron diluidos hasta una concentración de 2 mg/ml de doxorrubicina (como hidrocloruro) utilizando una disolución de hidrocloruro de histidina y sacarosa (anteriormente descrita). La composición liposómica así obtenida fue luego asépticamente filtrada, utilizando un filtro de membrana estéril de 0,22 \mum, en un recipiente estéril y exento de pirógenos y fue analizada en cuanto a los parámetros siguientes:
36
\vskip1.000000\baselineskip
Se llevaron a cabo estudios de estabilidad sobre la composición obtenida en este ejemplo, y las observaciones se indican en la Tabla 14.
\newpage
Ejemplo XVI Se sometieron las Composiciones del Ejemplo XIV (Comparativo) y el Ejemplo XV, junto con la Composición del presente invento (Ejemplo II), a estudios de estabilidad de corta duración a temperatura acelerada (25ºC)
En la Tabla 14 se indican los resultados del contenido de doxorrubicina.
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
TABLA 14
37
\vskip1.000000\baselineskip
Este ejemplo muestra que la presencia de sacarosa es esencial para reducir las pérdidas de la doxorrubicina encapsulada y que la concentración de sulfato amónico en el medio de hidratación es importante. Una concentración de 120 mM conduce a pérdidas de la doxorrubicina encapsulada y, por lo tanto, no es satisfactoria. Sin embargo, la composición del Ejemplo II, que contiene sacarosa y sulfato amónico en una concentración de 155 mM, no dejó escapar la doxorrubicina encapsulada durante el estudio.
Ejemplo XVII Preparación de una composición liposómica de doxorrubicina mediante el procedimiento de eliminación del disolvente después de la hidratación
Se disolvieron diestearoilfosfatidilcolina (1,565 g) y colesterol (0,521 g), uno después del otro, en etanol (20 ml) y se bombeó lentamente la disolución bajo presión en el medio de hidratación acuoso, que fue constantemente agitado. El medio de hidratación acuoso consistía en sacarosa al 10% (peso/volumen) y sulfato amónico al 2,04% (peso/volumen) en agua. Esta disolución lipídica que contenía etanol como disolvente fue transferida a un matraz para rotavapor. Se conectó el matraz a un rotavapor y se ajustó la temperatura del baño de agua a 60ºC. Se eliminó el etanol bajo vacío.
Reducción del tamaño de los liposomas vacíos mediante extrusión
El tamaño de la suspensión liposómica anteriormente obtenida fue ajustado mediante extrusiones sucesivas a través de filtros que tenían un tamaño de poro de 0,4 \mum a 0,05 \mum.
Diálisis
La suspensión de los liposomas con tamaño ajustado fue dializada frente a un tampón de histidina. Para la diálisis se utilizó un sistema de filtración con flujo tangencial. Se continuó la diálisis hasta que se eliminó el sulfato amónico extraliposómico. Se confirmó la ausencia de sulfato amónico en los medios extraliposómicos usando un reactivo Nessler. La disolución de hidrocloruro de histidina usada en la diálisis y la carga del fármaco (más adelante) fue la siguiente: 170,0 g de sacarosa, 3,40 g de histidina\cdotHCl, 1,7 litros de agua, e hidróxido sódico en una cantidad suficiente para ajustar el pH a un valor de 6,0 a 6,5.
Carga del fármaco
En un matraz de fondo redondo, se preparó una disolución de 15 mg/ml de doxorrubicina\cdotHCl disolviendo 216 mg de hidrocloruro de doxorrubicina en 14 ml de una disolución de hidrocloruro de histidina (anteriormente descrita). Se añadió lentamente el volumen medido (40 ml) de los liposomas con tamaño ajustado y dializados de antes al matraz de fondo redondo y se mezcló durante una hora a 65ºC.
Los liposomas cargados con el fármaco fueron tratados con Dowex® para eliminar el fármaco no atrapado.
Después de la eliminación del fármaco libre, los liposomas cargados con doxorrubicina fueron diluidos hasta una concentración de 2 mg/ml de doxorrubicina (como hidrocloruro) utilizando una disolución de hidrocloruro de histidina y sacarosa (anteriormente descrita). La composición liposómica así obtenida fue luego asépticamente filtrada, utilizando un filtro de membrana estéril de 0,22 \mum, en un recipiente estéril y exento de pirógenos.
A continuación se proporciona un sumario de los estudios toxicológicos y de eficacia llevados a cabo.
Ejemplo II - Los liposomas no pegilados de circulación duradera que contienen doxorrubicina del presente invento han mostrado unos efectos tóxicos disminuidos en comparación con las formulaciones no liposómicas de hidrocloruro de doxorrubicina (Adriamycin®) y con las formulaciones liposómicas pegiladas de hidrocloruro de doxorrubicina (Caelix®). La DL_{50} para los liposomas de doxorrubicina no pegilados del presente invento es mayor que para Caelix® y Adriamycin®, lo que demuestra que los liposomas no pegilados de doxorrubicina del presente invento tienen una toxicidad menor.
Ejemplo III - En el estudio de toxicidad subaguda, se observó un patrón similar de toxicidad en los grupos de Caelix® y de la composición del Ejemplo II, mientras que Adriamycin® mostró toxicidad.
Ejemplo IV - En el estudio farmacocinético, la composición del Ejemplo II y Caelix® mostraron semividas plasmáticas comparables. El volumen aparente de distribución era aproximadamente igual al volumen de sangre total, lo que indicaba una baja incorporación liposómica por los tejidos normales, y era similar al de Caelix®. Adriamycin® mostró una mayor velocidad de aclaramiento y un elevado volumen de distribución, lo que indica la incorporación de doxorrubicina libre por tejidos normales.
Ejemplo V - En el estudio de toxicidad en perros, se halló que la composición del Ejemplo II era mejor tolerada que Adriamycin®.
Ejemplo VI - En los modelos tumorales de leucemia L1210 de ratón y tumor de mama humano MCF-7, se halló que la composición del Ejemplo II era eficaz.
Ejemplo VII - Se halló que la dosis máxima tolerada de la composición del Ejemplo II era mucho mayor que la de Adriamycin® en los ratones que habían recibido un implante tumoral.
Ejemplo VIII - Se halló que la composición del Ejemplo II era eficaz en ratones atímicos desnudos a los que se habían implantado xenoinjertos de tumor DLD1 de colon humano, positivo para Pgp y resistente a múltiples fármacos.
Los ejemplos anteriores demuestran claramente que las composiciones del presente invento son muy útiles para reducir el crecimiento tumoral. Esto implica administrar parenteralmente una cantidad terapéuticamente eficaz de liposomas no pegilados de doxorrubicina del presente invento. Los liposomas no pegilados de doxorrubicina tienen un tiempo de circulación prolongado, presentan una toxicidad disminuida y no presentan problemas con el "síndrome de manos y pies", y, por lo tanto, son útiles para reducir el crecimiento tumoral.

Claims (36)

1. Un procedimiento para la fabricación de liposomas no pegilados de circulación duradera, que comprende:
\quad
disolver uno o más fosfolípidos y uno o más esteroles en un disolvente o una mezcla de disolventes;
\quad
hidratar los lípidos resultantes; y
\quad
eliminar dicho(s) disolvente(s) antes o después de dicha hidratación,
en que dicha hidratación es con un medio de hidratación acuoso en una cantidad en el intervalo de 10 a 35 ml por cada milimol de fosfolípido presente en la disolución lipídica para formar liposomas no pegilados, caracterizado por que el medio de hidratación acuoso comprende sacarosa y no menos de 125 milimoles/litro de sulfato amónico.
2. Un procedimiento de acuerdo con la Reivindicación 1, en que la concentración de sacarosa en el medio de hidratación acuoso es de 0,1 M a 0,5 M.
3. Un procedimiento de acuerdo con la Reivindicación 2, en que la concentración de sacarosa es de 0,25 M a 0,3 M.
4. Un procedimiento de acuerdo con la Reivindicación 3, en que la concentración de sacarosa es aproximadamente 0,27 M.
5. Un procedimiento de acuerdo con cualquiera de las reivindicaciones precedentes, en que el tamaño de los liposomas de la composición liposómica es ajustado a un valor de 0,06 \mum a 0,16 \mum.
6. Un procedimiento de acuerdo con cualquiera de las reivindicaciones precedentes, en que la sal de hidratación extraliposómica es eliminada de la composición liposómica utilizando una disolución tampón para diálisis.
7. Un procedimiento de acuerdo con cualquiera de las reivindicaciones precedentes, en que la cantidad del medio de hidratación acuoso utilizado es de 20 a 35 ml por cada milimol de fosfolípido en la disolución lipídica.
8. Un procedimiento de acuerdo con la Reivindicación 7, en que la cantidad del medio de hidratación acuoso utilizado es aproximadamente 30 ml por cada milimol de fosfolípido en la disolución lipídica.
9. Un procedimiento de acuerdo con cualquiera de las reivindicaciones precedentes, en que la relación molar de fosfolípido a esterol es de 1:0,1 a 1:2.
10. Un procedimiento de acuerdo con la Reivindicación 9, en que la relación molar de fosfolípido a esterol es aproximadamente 1:0,7.
11. Un procedimiento de acuerdo con cualquiera de las reivindicaciones precedentes, en que el fosfolípido es seleccionado entre diestearoil-fosfatidilcolina (DSPC), dipalmitoil-fosfatidilcolina (DPPC), fosfatidilcolina hidrogenada de soja (HSPC), y derivados de dichos fosfolípidos.
12. Un procedimiento de acuerdo con cualquiera de las reivindicaciones precedentes, en que el fosfolípido es diestearoil-fosfatidilcolina (DSPC).
13. Un procedimiento de acuerdo con cualquiera de las reivindicaciones precedentes, en que el esterol es colesterol.
14. Un procedimiento de acuerdo con cualquiera de las reivindicaciones precedentes, que comprende además cargar los liposomas con un agente terapéutico o diagnóstico.
15. Un procedimiento de acuerdo con la Reivindicación 14, en que el agente terapéutico es un agente antineoplásico.
16. Un procedimiento de acuerdo con la Reivindicación 14, en que el agente antineoplásico es seleccionado entre hidrocloruro de doxorrubicina, hidrocloruro de daunorrubicina e hidrocloruro de epirrubicina.
17. Un procedimiento de acuerdo con la Reivindicación 16, en que el agente antineoplásico es hidrocloruro de doxorrubicina.
18. Un procedimiento de acuerdo con la Reivindicación 17, en que el fosfolípido es diestearoilfosfatidilcolina y el esterol es colesterol.
19. Un procedimiento de acuerdo con la Reivindicación 18, en que la concentración de doxorrubicina encapsulada en los liposomas, expresada como hidrocloruro de doxorrubicina, es de 1 mM a 10 mM.
20. Un procedimiento de acuerdo con la Reivindicación 19, en que dicha concentración de doxorrubicina es 3 mM - 7 mM.
21. Un procedimiento de acuerdo con la Reivindicación 20, en que dicha concentración de doxorrubicina es aproximadamente 3,45 mM.
22. Un procedimiento de acuerdo con la Reivindicación 20, en que dicha concentración de doxorrubicina es aproximadamente 6,9 mM.
23. Un procedimiento de acuerdo con cualquiera de las Reivindicaciones 18 a 22, en que la relación molar de diestearoilfosfatidilcolina a colesterol es de 1:0,6 a 1:0,8.
24. Un procedimiento de acuerdo con cualquiera de las Reivindicaciones 18 a 23, en que la relación molar de doxorrubicina encapsulada (como hidrocloruro) a diestearoilfosfatidilcolina es de 1:2 a 1:15.
25. Un procedimiento de acuerdo con la Reivindicación 24, en que la relación molar de doxorrubicina encapsulada (como hidrocloruro) a diestearoilfosfatidilcolina es aproximadamente 1:3,5.
26. Un procedimiento de acuerdo con cualquiera de las Reivindicaciones 18 a 25, en que
\quad
se ajusta el tamaño de los liposomas de la composición liposómica hidratada;
\quad
se elimina el sulfato amónico extraliposómico de la composición liposómica con tamaño ajustado, utilizando una disolución tampón de sacarosa-histidina que comprende hidrocloruro de histidina y sacarosa;
\quad
se mezcla la composición liposómica exenta de sulfato amónico extraliposómico con una disolución al menos 25 mM de hidrocloruro de doxorrubicina disuelto en una disolución tampón de sacarosa-histidina que comprende hidrocloruro de histidina y sacarosa, para obtener una composición liposómica cargada con doxorrubicina; y
\quad
se elimina el hidrocloruro de doxorrubicina extraliposómico de la composición liposómica.
27. Un procedimiento de acuerdo con la Reivindicación 26, en que la relación molar de sacarosa a hidrocloruro de histidina en el tampón isotónico utilizado para eliminar el sulfato amónico extraliposómico es de 29:0,1 a 29:10.
28. Un procedimiento de acuerdo con la Reivindicación 24 o la Reivindicación 25, en que la concentración de sacarosa es de 0,1 M a 0,5 M.
29. Un procedimiento de acuerdo con cualquiera de las Reivindicaciones 26 a 28, en que la concentración de hidrocloruro de histidina es de 8 a 12 mM.
30. Un liposoma obtenible mediante un procedimiento de acuerdo con la Reivindicación 2.
31. Un liposoma de acuerdo con la Reivindicación 30, en que el procedimiento es como se define en cualquiera de las Reivindicaciones 4 a 30 cuando dependen directa o indirectamente de la Reivindicación 3.
32. Una composición liposómica no pegilada de doxorrubicina, de circulación duradera, para administración parenteral, que comprende los liposomas de doxorrubicina no pegilados de la Reivindicación 30 o la Reivindicación 31, hidrocloruro de histidina, y sacarosa.
33. Una composición liposómica no pegilada de doxorrubicina, de circulación duradera, para administración parenteral, que comprende los liposomas no pegilados de doxorrubicina de la Reivindicación 30 o la Reivindicación 31, hidrocloruro de histidina, y sacarosa, en que los liposomas no pegilados de doxorrubicina comprenden un fosfolípido, colesterol y sacarosa.
34. Una composición de acuerdo con la Reivindicación 33, en que el tamaño liposómico y/o los componentes son como se definieron en cualquiera de las Reivindicaciones 5, 9, 10, 11, 12, 13, 18 a 25, 28 y 29.
35. Una composición de acuerdo con cualquiera de las Reivindicaciones 31 a 34, en que la doxorrubicina (como hidrocloruro) está presente en una cantidad de aproximadamente 2 mg/ml, la relación molar de doxorrubicina a fosfolípido es aproximadamente 1:3,5, y la relación de fosfolípido a colesterol es aproximadamente 1:0,7.
36. Una composición de acuerdo con cualquiera de las Reivindicaciones 31 a 34, en que la doxorrubicina (como hidrocloruro) está presente en una cantidad de aproximadamente 4 mg/ml, la relación molar de doxorrubicina a fosfolípido es aproximadamente 1:3,5, y la relación de fosfolípido a colesterol es aproximadamente 1:0,7.
ES03258252T 2002-12-31 2003-12-31 Liposomas no pegilados de circulacion duradera. Expired - Lifetime ES2337563T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
INMU1101/02 2002-12-31
IN1101MU2002 2002-12-31

Publications (1)

Publication Number Publication Date
ES2337563T3 true ES2337563T3 (es) 2010-04-27

Family

ID=32500467

Family Applications (1)

Application Number Title Priority Date Filing Date
ES03258252T Expired - Lifetime ES2337563T3 (es) 2002-12-31 2003-12-31 Liposomas no pegilados de circulacion duradera.

Country Status (19)

Country Link
EP (1) EP1435231B8 (es)
JP (1) JP5355842B2 (es)
KR (2) KR101171045B1 (es)
CN (1) CN1756533B (es)
AT (1) ATE453381T1 (es)
AU (1) AU2003303368B2 (es)
BR (1) BR0317882A (es)
CA (1) CA2511464C (es)
DE (1) DE60330745D1 (es)
DK (1) DK1435231T3 (es)
EA (1) EA008930B1 (es)
ES (1) ES2337563T3 (es)
HK (1) HK1089946A1 (es)
IL (1) IL169364A (es)
MX (1) MXPA05007102A (es)
NZ (1) NZ540778A (es)
PT (1) PT1435231E (es)
WO (1) WO2004058140A2 (es)
ZA (1) ZA200504850B (es)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008138646A1 (en) * 2007-05-16 2008-11-20 Ktb Tumorforschungsgesellschaft Mbh Low-viscous anthracycline formulation
EP2415464B1 (en) 2009-03-30 2017-05-10 Eisai R&D Management Co., Ltd. Method for producing liposome composition
CN102369008B (zh) 2009-03-30 2014-10-29 卫材R&D管理有限公司 脂质体组合物
EP2680820B1 (en) * 2011-03-01 2022-11-02 2-BBB Medicines B.V. Advanced active liposomal loading of poorly water-soluble substances
SG11201704219UA (en) * 2014-11-25 2017-06-29 Nanobiotix Pharmaceutical composition, preparation and uses thereof
KR20190062485A (ko) * 2016-09-27 2019-06-05 버텍스 파마슈티칼스 인코포레이티드 Dna-손상제 및 dna-pk 저해제의 조합을 사용한 암 치료 방법
US11083705B2 (en) 2019-07-26 2021-08-10 Eisai R&D Management Co., Ltd. Pharmaceutical composition for treating tumor
CN116570775A (zh) * 2023-05-16 2023-08-11 万瑞飞鸿(北京)医疗器材有限公司 一种药物涂层、血管支架及其制备方法和应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235871A (en) * 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
EP0153955A1 (en) * 1983-09-06 1985-09-11 Health Research, Inc. Liposome delivery method for decreasing the toxicity of an antitumor drug
US4880635B1 (en) * 1984-08-08 1996-07-02 Liposome Company Dehydrated liposomes
CA1270198A (en) * 1984-08-08 1990-06-12 Marcel B. Bally Encapsulation of antineoplastic agents in liposomes
US4920016A (en) 1986-12-24 1990-04-24 Linear Technology, Inc. Liposomes with enhanced circulation time
CA1338702C (en) * 1987-03-05 1996-11-12 Lawrence D. Mayer High drug:lipid formulations of liposomal- antineoplastic agents
JPH0720857B2 (ja) 1988-08-11 1995-03-08 テルモ株式会社 リポソームおよびその製法
IL91664A (en) * 1988-09-28 1993-05-13 Yissum Res Dev Co Ammonium transmembrane gradient system for efficient loading of liposomes with amphipathic drugs and their controlled release
US6132763A (en) 1988-10-20 2000-10-17 Polymasc Pharmaceuticals Plc Liposomes
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
ES2208946T3 (es) * 1996-08-23 2004-06-16 Sequus Pharmaceuticals, Inc. Liposomas que contienen un compuesto de cisplatino.
DK1121102T3 (da) * 1998-09-16 2003-08-11 Alza Corp Liposomindesluttede topoisomeraseinhibitorer
KR20000061075A (ko) * 1999-03-23 2000-10-16 린 중친 리포솜의 응집을 방지하기 위한 방법 및 조성물
GB0111279D0 (en) * 2001-05-10 2001-06-27 Nycomed Imaging As Radiolabelled liposomes

Also Published As

Publication number Publication date
NZ540778A (en) 2008-04-30
KR101133084B1 (ko) 2012-04-04
EP1435231A1 (en) 2004-07-07
KR20110075051A (ko) 2011-07-05
EA008930B1 (ru) 2007-08-31
JP5355842B2 (ja) 2013-11-27
WO2004058140A3 (en) 2004-10-28
AU2003303368B2 (en) 2010-06-17
CA2511464C (en) 2011-08-23
CA2511464A1 (en) 2004-07-15
IL169364A (en) 2012-05-31
WO2004058140A2 (en) 2004-07-15
KR101171045B1 (ko) 2012-08-03
DE60330745D1 (de) 2010-02-11
MXPA05007102A (es) 2005-08-26
ATE453381T1 (de) 2010-01-15
KR20050088233A (ko) 2005-09-02
HK1089946A1 (en) 2006-12-15
EA200500850A1 (ru) 2006-02-24
AU2003303368A1 (en) 2004-07-22
JP2006513189A (ja) 2006-04-20
IL169364A0 (en) 2007-07-04
CN1756533A (zh) 2006-04-05
BR0317882A (pt) 2005-12-13
WO2004058140B1 (en) 2004-12-16
CN1756533B (zh) 2010-06-16
ZA200504850B (en) 2006-08-30
DK1435231T3 (da) 2010-04-26
EP1435231B1 (en) 2009-12-30
EP1435231B8 (en) 2010-03-03
PT1435231E (pt) 2010-04-08

Similar Documents

Publication Publication Date Title
US9005655B2 (en) Non-pegylated long-circulating liposomes
ES2401526T3 (es) Formulación de liposomas de mitoxantrona y procedimiento para la preparación de los mismos
CA1339008C (en) Amphotericin b liposome preparation
JP4874548B2 (ja) 勾配によるリポソームへの薬物充填方法
AU2005284909B2 (en) Delivering iron to an animal
JP2008534525A (ja) リン脂質のポリエチレングリコール誘導体に包み込まれたアンスラサイクリン系抗腫瘍抗生物質のナノミセル製剤
PT785773E (pt) Lipossomas de eteres lipidicos e sua utilizacao terapeutica
IL169364A (en) A process for the production of liposomes that have not undergone pegylation involves an aqueous hydration medium with sugar
ES2290333T3 (es) Composiciones de vehiculos lipidicos y metodos para la retencion mejorada de farmacos.
JP2017502985A (ja) 修飾シクロデキストリン複合体をカプセル化するリポソーム組成物およびその使用
WO1994005259A1 (en) Method of encapsulating anthracycline glycosides in liposomes
CN102626390B (zh) 一种天麻素多相脂质体注射液
CN1711074B (zh) 脂质体
CN105616354A (zh) 一种新藤黄酸脂质体注射剂及其制备方法
KR100768265B1 (ko) 혈액내 순환시간을 향상시키기 위한 헤파린이 수식된리포솜 및 이의 제조방법
CN116981441A (zh) 口服脂质体组合物
GS et al. Enhanced Tumor Targeting and Antitumor Activity of Gemcitabine Encapsulated Stealth Liposomes
BRPI0306774B1 (pt) LIPOSSOMAS pH-SENSÍVEIS DE CISPLATINA E OUTROS AGENTES ANTINEOPLÁSICOS E SEU PROCESSO DE OBTENÇÃO
PL197938B1 (pl) Liposomowy preparat zawierający przeciwnowotworową substancję aktywną, sposób jego wytwarzania i zawierająca go kompozycja farmaceutyczna