EP4162089B1 - Utilisation de produits en alliage aluminium cuivre magnesium performants a haute temperature - Google Patents

Utilisation de produits en alliage aluminium cuivre magnesium performants a haute temperature Download PDF

Info

Publication number
EP4162089B1
EP4162089B1 EP21734420.9A EP21734420A EP4162089B1 EP 4162089 B1 EP4162089 B1 EP 4162089B1 EP 21734420 A EP21734420 A EP 21734420A EP 4162089 B1 EP4162089 B1 EP 4162089B1
Authority
EP
European Patent Office
Prior art keywords
product
use according
alloy
hours
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21734420.9A
Other languages
German (de)
English (en)
Other versions
EP4162089A1 (fr
Inventor
Pablo LORENZINO
Lukasz Dolega
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP4162089A1 publication Critical patent/EP4162089A1/fr
Application granted granted Critical
Publication of EP4162089B1 publication Critical patent/EP4162089B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/173Aluminium alloys, e.g. AlCuMgPb

Definitions

  • the invention relates to the use of products made of aluminum-copper-magnesium alloys, intended to be used at high temperatures.
  • Certain aluminum alloys are commonly used for applications in which they have a high operating temperature, typically between 80 and 250 °C and generally between 100 and 200 °C, for example as a structural part or means of attachment to proximity to motors in the automotive or aerospace industry or as rotors or other air suction pump parts such as vacuum pumps.
  • Good mechanical performance at high temperature means in particular, on the one hand, thermal stability, that is to say that the mechanical properties measured at room temperature are stable after long-term aging at the operating temperature, and on the other hand, on the other hand, hot performance, that is to say that the mechanical properties measured at high temperature (static mechanical properties, creep resistance) are high.
  • the AA2618 alloy which includes (% by weight): Cu:1.9-2.7 Mg:1.3-1.8 Fe:0.9-1.3, Ni:0.9-1.2 Si:0.10-0.25 Ti:0, 04-0.10 which was used for the manufacture of Concorde.
  • the patent FR 2279852 offers an alloy with a reduced iron and nickel content of the following composition (% by weight): Cu:1.8-3 Mg:1.2-2.7 Si ⁇ 0.3 Fe:0.1-0.4 Ni + Co: 0.1 - 0.4 (Ni + Co)/Fe: 0 .9 - 1.3
  • the alloy may also contain Zr, Mn, Cr, V or Mo at contents less than 0.4%, and possibly Cd, In, Sn or Be at less than 0.2% each, Zn at less than 8% or Ag has less than 1%. With this alloy we obtain a significant improvement in the stress concentration factor K1c representative of the resistance to crack propagation.
  • the alloys mentioned in this application are particularly useful for applications in which the products are maintained at temperatures of 100°C to 200°C, typically around 150°C.
  • the products mentioned in this application are useful for fastening parts intended for use in an automobile engine, such as screws or bolts or rivets or for the manufacture of nacelle parts and/or masts. aircraft hooking, the leading edges of aircraft wings and the fuselage of supersonic aircraft.
  • the patent application CN104164635 describes a method for improving the room temperature strength and high temperature performance of an Al-Cu-Mg alloy for an aluminum alloy drill pipe.
  • the process includes the steps that the Al-Cu-Mg alloy is pre-stretched and deformed by 0-8% after solution processing, and then heated to 160°C to 190°C, for four hours to 120 hours , then, the alloy is taken out of a furnace, air cooling is carried out on the alloy and the ratio of copper to magnesium content in the Al-Cu-Mg alloy is less than or equal to five, the composition of the alloy being, in % by weight, Cu: 4.0% ⁇ 4.3%, Mg: 1.5% ⁇ 1.6%, Mn: 0.4% ⁇ 0.6%, Ti: 0.1% ⁇ 0.15%, rest Al.
  • the patent application CN107354413 relates to a technique for preparing high-strength heat-resistant aluminum alloy material for oil exploration, and belongs to the technical field of heat treatment of aluminum alloy.
  • the alloy components are determined as Si ⁇ 0.35, Fe ⁇ 0.45, Cu 4.0-4.5, Mn 0.40-0.80, Mg 1.3-1.7, Zn ⁇ 0.10, Ti 0.08-0.20, Zr0.10-0.15 and other impurities 0.00-0.15.
  • the patent RU2278179 C1 relates to aluminum-copper-magnesium alloys useful as structural materials in airspace technology comprising (mass %) copper 3.8-5.5; magnesium 0.3-1.6; manganese 0.2-0.8; titanium 0.5.10 (-6) -0.07; tellurium 0.5.10 (-5) -0.01, at least one element from the silver-containing group 0.2-1.0; nickel 0.5.10 (-6) -0.05; zinc 0.5.10 (-6) -0.1; zirconium 0.05-0.3; chromium 0.05-0.3; iron 0.5.10 (-6) -0.15; silicon 0.5.10 (-6) -0.1; hydrogen 0.1.10 (-5) -2.7.10 (-5); and balance: aluminum.
  • the patent application WO2020074818 relates to a thin sheet of essentially recrystallized aluminum-based alloy with a thickness of between 0.25 and 12 mm comprising, in % by weight, Cu 3.4 - 4.0; Mg 0.5 - 0.8; Mn 0.1 - 0.7; Fe ⁇ 0.15; If ⁇ 0.15; Zr ⁇ 0.04; Ag ⁇ 0.65; Zn ⁇ 0.5; unavoidable impurities ⁇ 0.05 each and ⁇ 0.15 in total; remains aluminum.
  • the patent application US2004013529 relates to a mechanical vacuum pump comprising a rotor made of a light metal alloy obtained by powder metallurgy. Powder metallurgy increases the rotor's resistance to heat and creep.
  • AA2219 alloy with composition (in % by weight) Cu: 5.8 - 6.8 Mn: 0.20 - 0.40 Ti: 0.02 - 0.10, Zr: 0.10 - 0.25 V : 0.05 - 0.15 Mg ⁇ 0.02 is also known for high temperature applications.
  • the patent application EP 0 038 605 A1 teaches an alloy of composition (in % by weight), Cu: 3.8 - 4.4, Mg: 1.2 - 1.8 and Mn: 0.3 - 0.9, maximum 0.12 Si, 0 .15 Fe, 0.25 Zn, 0.15 Ti and 0.10 Cr.
  • FIG. 1 shows the evolution of the breaking strength with the aging time at 150 °C in hours.
  • the static mechanical characteristics in traction in other words the breaking strength R m , the conventional elastic limit at 0.2% elongation R p0.2 , and the elongation at break A%, are determined by a tensile test according to standard NF EN ISO 6892-1, the sampling and direction of the test being defined by standard EN 485-1. Hot tensile tests are carried out according to standard NF EN 10002-5. Creep tests are carried out according to standard ASTM E139-06. Unless otherwise stated, the definitions of EN 12258 apply.
  • the present inventors have noted that, surprisingly, there is a range of composition of Al-Cu-Mg alloys containing Mn which allows, when used in the T8 state, to obtain wrought products which are particularly efficient at high temperatures.
  • the magnesium content is such that Mg is between 1.2 and 1.4% by weight and preferably between 1.25 and 1.35% by weight.
  • Mg content is not in the range according to the invention, the mechanical properties are not satisfactory.
  • the breaking strength R m may be insufficient at room temperature and/or after aging at 150°C.
  • the copper content is such that Cu is between 3.6 and 4.4% by weight.
  • Advantageously Cu is at least 3.9% by weight and preferably at least 4.0% by weight.
  • Advantageously Cu is at most 4.3% by weight and preferably at most 4.25% by weight.
  • the products intended for use according to the invention contain 0.5 to 0.8% by weight of manganese which contributes in particular to the control of the granular structure.
  • the Mn content is between 0.51 and 0.65% by weight.
  • the present inventors have found that the simultaneous addition of manganese and zirconium can be advantageous in certain cases, in particular to reduce the sensitivity to aging at high temperatures while achieving high mechanical properties.
  • the Zr content is a maximum of 0.15% by weight.
  • the Zr content is at least equal to 0.07% by weight and preferably at least equal to 0.08% by weight.
  • the products intended for use according to the invention contain 0.09 to 0.15% by weight of zirconium and 0.50 to 0.60% by weight of manganese.
  • the titanium content is between 0.01 and 0.05% by weight.
  • the addition of titanium contributes in particular to the refining of grains during casting. However, an addition greater than 0.05% by weight can result in excessively fine grain size which impairs creep resistance at elevated temperatures.
  • the iron and silicon contents are a maximum of 0.20% by weight each.
  • the iron content is a maximum of 0.18% by weight and preferably 0.15% by weight.
  • the silicon content is a maximum of 0.15% by weight and preferably 0.10% by weight.
  • the zinc content is a maximum of 0.25% by weight. In one embodiment of the invention, the zinc content is between 0.05 and 0.25% by weight and can contribute in particular to the mechanical resistance. However, the presence of zinc can pose recycling problems. In another embodiment, the zinc content is less than 0.20, preferably less than 0.15% by weight.
  • the content of the other elements is less than 0.05% by weight and preferably less than 0.04% by weight. Preferably, the total of the other elements is less than 0.15% by weight.
  • the other elements are unavoidable impurities.
  • the rest is aluminum.
  • the wrought products intended for use according to the invention are preferably sheets, profiles or forged products.
  • the profiles are typically obtained by spinning.
  • Forged products can be obtained by forging cast blocks or extruded products or rolled products.
  • the process for manufacturing the products intended for use according to the invention comprises the successive stages of preparing the alloy, casting, optionally homogenization, hot deformation, solution, quenching, cold deformation and tempering.
  • a bath of liquid metal is produced so as to obtain an aluminum alloy of composition according to the invention.
  • the liquid metal bath is then typically cast in the form of a rolling plate, spinning billet or forging blank.
  • the product thus cast is then homogenized so as to reach a temperature of between 450°C and 520°C and preferably between 495°C and 510°C for a period of between 5 and 60 hours.
  • the homogenization treatment can be carried out in one or more stages.
  • the product is then hot deformed typically by rolling, spinning and/or forging.
  • the hot deformation is carried out so as to preferably maintain a temperature of at least 300°C.
  • a temperature of at least 350°C and preferably at least 380°C is maintained during hot deformation.
  • No significant cold deformation is carried out, in particular by cold rolling, between hot deformation and solution application.
  • Significant cold deformation is typically a deformation of at least about 5%.
  • the product thus deformed is then put into solution by a heat treatment making it possible to reach a temperature between 485 and 520 ° C and preferably between 495 and 510 ° C for 15 min to 8 h, then quenched.
  • the quality of the solution can be evaluated by calorimetry and/or optical microscopy.
  • the wrought product obtained typically a sheet metal, a profile or a forged product, then undergoes cold deformation.
  • the cold deformation is a deformation of 2 to 5% making it possible to improve the mechanical resistance and to obtain a T8 state after tempering.
  • the cold deformation may in particular be a controlled tensile deformation leading to a T851 state or a compression deformation leading to a T852 state.
  • tempering is carried out in which the product reaches a temperature between 160 and 210°C and preferably between 175 and 195°C for 5 to 100 hours and preferably 10 to 50 hours. In an advantageous embodiment, tempering is carried out in which the product reaches a temperature of between 170 and 180°C for 10 to 15 hours.
  • the income can be made in one or more stages.
  • the tempering conditions are determined so that the mechanical resistance Rp 0.2 is maximum (“peak” tempering). Tempering under the conditions according to the invention makes it possible in particular to improve the mechanical properties and their stability during aging at 150°C.
  • the thickness of the products intended for use according to the invention is advantageously between 6 mm and 300 mm, preferably between 10 and 200 mm.
  • a sheet is a rolled product with a rectangular cross section and a uniform thickness.
  • the thickness of the profiles is defined according to standard EN 2066:2001: the cross section is divided into elementary rectangles of dimensions A and B; A always being the largest dimension of the elementary rectangle and B can be considered as the thickness of the elementary rectangle.
  • the wrought products obtained according to the process have the advantage of having high mechanical strength and good performance at high temperatures.
  • the wrought products intended for use according to the invention preferably have in the longitudinal direction a breaking strength R m of at least 490 MPa and preferably at least 495 MPa and having after aging at 150°C for 1000 hours, a breaking strength R m of at least 475 MPa and preferably at least 480 MPa.
  • the wrought products intended for use according to the invention are resistant to creep.
  • the wrought products intended for use according to the invention preferably have a duration necessary to reach a deformation of 0.35% during a creep test according to the ASTM E139-06 standard for a stress of 250 MPa and at a temperature of 150°C for at least 700 hours and preferably at least 800 hours.
  • the products intended for use according to the invention are particularly useful for applications in which the products are maintained at temperatures of 100°C to 250°C and preferably of 100°C to 200°C, typically at about 150°C. °C, for a significant duration of at least 200 hours and preferably at least 2000 hours.
  • the products intended for use according to the invention are useful for applications of structural parts or means of attachment near the engine in the automobile industry or aerospace or preferably for applications of rotors or other parts in particular impellers of air suction pumps such as in particular vacuum pumps, such as in particular turbomolecular pumps or for applications of parts of air blowing devices such as impellers.
  • Alloy B has a composition according to the invention. Alloys C and E are taught by demand WO2012/140337 for their performance in high temperature uses. Alloy F is an AA2618 alloy, known for its performance in high temperature applications.
  • composition of the alloys in % by weight is given in Table 1. ⁇ b>[Table 1] ⁇ /b> Alloy If Fe Cu Mn Mg Neither Zn Ti Zr HAS 0.08 0.14 4.2 0.51 1.35 - 0.20 0.02 0.02 B (Invention) 0.04 0.07 4.0 0.58 1.40 - 0.12 0.02 0.10 C (Reference) 0.04 0.05 3.3 0.34 1.9 - - 0.02 0.11 D (Reference) 0.04 0.05 4.2 0.34 1.3 - - 0.02 0.11 E (Reference) 0.04 0.05 3.7 0.34 1.6 - - 0.02 0.11 F (Reference) 0.22 1.10 2.6 0.05 1.60 1.10 0.08 0.01 0.00
  • the plates were homogenized at a temperature between 490°C and 540°C, adapted depending on the alloy, hot rolled to a thickness of 10 mm (alloy A) and 15 mm (alloys B to E) and 21 mm (alloy F), put in solution at a temperature between 490 °C and 540 °C, adapted depending on the alloy, quenched in water by immersion, tensile from 2 to 4% and returned to 175 °C or 190 °C to reach the peak tensile yield strength in the state T8.
  • the alloy plates A and B were homogenized between 20 and 36 hours at 495°C, the sheets obtained after rolling being put in solution for 2 hours at 498°C and returned for 8 hours at 190°C or 12 hours at 175°C.
  • the alloy C plate was homogenized in two stages of 10 hours at 500 °C then 20 hours at 509 °C, the sheet obtained after rolling being put in solution for 2 hours at 507 °C and returned for 12 hours at 190 °C.
  • the alloy D plate was homogenized in two stages of 10 hours at 500 °C then 20 hours at 503 °C, the sheet obtained after rolling being put in solution for 2 hours at 500 °C and returned for 8 hours at 190 °C.
  • the alloy E plate was homogenized in two stages of 10 hours at 500 °C then 20 hours at 503 °C, the sheet obtained after rolling being put in solution for 2 hours at 504 °C and returned for 12 hours at 190 °C.
  • the evolution of the breaking strength with the aging time at 150 °C is represented on the Figure 1 .
  • the products intended for use according to the invention have a breaking strength R m greater than that of the reference products before aging and greater than most other alloys after 1000 hours at 150°C. After 3000 hours of aging, the products intended for use according to the invention have a mechanical resistance R m greater than that of alloy F, which is an AA2618 alloy known for its high temperature properties.
  • T (in Kelvin) is the instantaneous metal treatment temperature, which changes with time t (in hours)
  • T ref is a reference temperature fixed at 423 K.
  • t i is expressed in hours.
  • aging was estimated for 233 h by linear approximation from the value of 426 MPa obtained after 1000 h.
  • thermal stability of the product in the T851 state is much greater than the thermal stability in the T351 state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Heat Treatment Of Steel (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Forging (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

    DOMAINE TECHNIQUE
  • L'invention concerne l'utilisation de produits en alliages aluminium-cuivre-magnésium, destinés à être mis en oeuvre à haute température.
  • ART ANTERIEUR
  • Certains alliages d'aluminium sont couramment utilisés pour des applications dans lesquelles ils ont une haute température d'emploi, typiquement entre 80 et 250 °C et généralement entre 100 et 200 °C, par exemple comme pièce de structure ou moyen d'attache à proximité de moteur dans l'industrie automobile ou aérospatiale ou comme rotors ou autres pièces de pompe d'aspiration d'air telles que notamment les pompes à vide.
  • Ces alliages nécessitent de bonnes performances mécaniques à haute température. Les bonnes performances mécaniques à haute température signifient notamment d'une part la stabilité thermique, c'est-à-dire que les propriétés mécaniques mesurées à température ambiante sont stables après un vieillissement de longue durée à la température d'emploi, et d'autre part la performance à chaud c'est-à-dire que les propriétés mécaniques mesurées à haute température (propriétés mécaniques statiques, résistance au fluage) sont élevées.
  • Parmi les alliages connus pour ce type d'application on peut citer l'alliage AA2618 qui comprend (% en poids) :
    Cu:1,9-2,7 Mg:1,3-1,8 Fe:0,9-1,3, Ni:0,9-1,2 Si:0,10-0,25 Ti:0,04-0,10 qui a été utilisé pour la fabrication du Concorde.
  • Le brevet FR 2279852 propose un alliage à teneur réduite en fer et nickel de composition suivante (% en poids) :
    Cu:1,8-3 Mg:1,2-2,7 Si<0,3 Fe:0,1-0,4 Ni + Co: 0,1 - 0,4 (Ni + Co)/Fe: 0,9 - 1,3
  • L'alliage peut contenir également Zr, Mn, Cr, V ou Mo à des teneurs inferieures a 0,4%, et éventuellement Cd, In, Sn ou Be a moins de 0,2% chacun, Zn a moins de 8% ou Ag a moins de 1 %. On obtient avec cet alliage une amélioration sensible du facteur de concentration de contraintes K1c représentatif de la résistance à la propagation de criques.
  • La demande de brevet EP 0 756 017 A1 a pour objet un alliage d'aluminium à haute résistance au fluage de composition (% en poids) :
    • Cu: 2,0 - 3,0 Mg: 1,5 - 2,1 Mn: 0,3 - 0,7
    • Fe<0,3 Ni<0,3 Ag<1,0 Zr<0,15 Ti<0,15
    • avec Si tel que: 0,3 < Si + 0,4Ag < 0,6
    • autres éléments < 0,05 chacun et < 0,15 au total.
  • Le brevet RU2210614C1 décrit un alliage de composition (en % en poids) :
    • Cu: 3,0 - 4,2 Mg: 1,0 - 2,2 Mn: 0,1 - 0,8 Zr : 0,03 - 0,2 Ti : 0,012 - 0,1, V : 0,001 - 0,15
    • au moins un élément parmi Ni : 0,001 - 0,25 et Co : 0,001 - 0,25, reste aluminium.
  • La demande de brevet WO2012/140337 concerne des produits corroyés en alliage d'aluminium Al-Cu-Mg de composition, en % en poids, Cu : 2,6 - 3,7 ; Mg : 1,5 - 2,6; Mn : 0,2 - 0,5; Zr : ≤ 0,16; Ti : 0,01 - 0,15; Cr ≤ 0,25; Si ≤ 0,2; Fe ≤ 0,2; autres éléments < 0,05 et reste aluminium; avec Cu > - 0,9(Mg) + 4,3 et Cu < - 0,9 (Mg) + 5,0 ; où Cu = Cu - 0,74 (Mn - 0,2) - 2,28 Fe et Mg = Mg - 1,73 (Si - 0,05) pour Si ≥ 0,05 et Mg = Mg pour Si<0,05 et leur procédé de fabrication. Les alliages mentionnés dans cette demande sont particulièrement utiles pour des applications dans lesquelles les produits sont maintenus à des températures de 100 °C à 200 °C, typiquement à environ 150 °C. Les produits mentionnés dans cette demande sont utiles pour les pièces d'attache destinées à être utilisées dans un moteur pour automobile, telles que des vis ou des boulons ou des rivets ou pour la fabrication de pièces de la nacelle et/ou de mats d'accrochage des avions, les bords d'attaque d'aile d'avion et le fuselage d'avions supersoniques.
  • La demande de brevet CN104164635 décrit un procédé pour améliorer la résistance à température ambiante et les performances à haute température d'un alliage AI-Cu-Mg pour une tige de forage en alliage d'aluminium. Le procédé comprend les étapes selon lesquelles l'alliage Al-Cu-Mg est pré-étiré et déformé de 0 à 8% après le traitement en solution, puis est chauffé à 160 °C à 190 °C, pendant quatre heures à 120 heures, puis, l'alliage est sorti d'un four, un refroidissement à l'air est effectué sur l'alliage et le rapport de teneur en cuivre au magnésium dans l'alliage Al-Cu-Mg est inférieur ou égal à cinq, la composition de l'alliage étant, en % en poids, Cu: 4.0% ~ 4.3%, Mg: 1.5% ~ 1.6%, Mn: 0.4% ~ 0.6%, Ti: 0.1% ~ 0.15%, reste Al.
  • La demande de brevet CN107354413 concerne une technique de préparation d'un matériau d'alliage d'aluminium résistant à la chaleur à haute résistance pour l'exploration pétrolière, et appartient au domaine technique du traitement thermique de l'alliage d'aluminium. Les composants de l'alliage sont déterminés comme Si <0,35, Fe <0,45, Cu 4,0-4,5, Mn 0,40-0,80, Mg 1,3-1,7, Zn <0,10, Ti 0,08-0,20, Zr0,10-0,15 et d'autres impuretés 0,00-0,15.
  • Le brevet RU2278179 C1 concerne des alliages aluminium-cuivre-magnésium utiles comme matériaux de structure dans la technique de l'espace aérien comprenant (% en masse) cuivre 3,8-5,5; magnésium 0,3-1,6; manganèse 0,2-0,8; titane 0,5,10 (-6) -0,07; tellure 0,5,10 (-5) -0,01, au moins un élément du groupe contenant de l'argent 0,2-1,0; nickel 0,5,10 (-6) -0,05; zinc 0,5,10 (-6) -0,1; zirconium 0,05-0,3; chrome 0,05-0,3; fer 0,5,10 (-6) -0,15; silicium 0,5,10 (-6) -0,1; hydrogène 0,1,10 (-5) -2,7,10 (-5); et équilibre: aluminium.
  • La demande de brevet WO2020074818 est relative à une tôle mince en alliage à base d'aluminium essentiellement recristallisée et d'épaisseur comprise entre 0,25 et 12 mm comprenant, en % en poids, Cu 3,4 - 4,0 ; Mg 0,5 - 0,8 ; Mn 0,1 - 0,7 ; Fe ≤ 0,15 ; Si ≤ 0,15 ; Zr ≤ 0,04 ; Ag ≤ 0,65; Zn ≤ 0,5 ; impuretés inévitables ≤ 0,05 chacune et ≤ 0,15 au total ; reste aluminium.
  • Le demande de brevet US2004013529 concerne une pompe à vide mécanique comprenant un rotor en alliage de métal léger obtenu par métallurgie des poudres. La métallurgie des poudres augmente la résistance du rotor à la chaleur et au fluage.
  • L'alliage AA2219 de composition (en % en poids) Cu : 5,8 - 6,8 Mn : 0,20 - 0,40 Ti : 0,02 - 0,10, Zr : 0,10 - 0,25 V : 0,05 - 0,15 Mg < 0,02 est également connu pour des applications à haute température.
  • Ces alliages présentent cependant des propriétés mécaniques insuffisantes pour certaines applications et posent également des problèmes de recyclage en raison en particulier de la teneur élevée en fer et/ou silicium et/ou nickel et/ou cobalt et/ou vanadium.
  • On connaît par ailleurs des alliages Al-Cu-Mg, qui sont le plus souvent à l'état T3, un état métallurgique économique qui ne nécessite pas de traitement thermique de revenu.
  • Le brevet US 3,826,688 enseigne un alliage de composition (en % en poids), Cu : 2,9 - 3,7, Mg : 1,3 - 1,7 et Mn : 0,1 - 0,4.
  • Le brevet US 5,593,516 enseigne un alliage de composition (en % en poids) Cu : 2,5 - 5,5, Mg : 0,1 - 2,3 dans la limite de leur solubilité c'est-à-dire tels que Cu est au plus égal à Cumax = -0,91 (Mg) + 5,59.
  • La demande de brevet EP 0 038 605 A1 enseigne un alliage de composition (en % en poids), Cu : 3,8 - 4,4, Mg : 1,2 - 1,8 et Mn : 0,3 - 0,9, au maximum 0,12 Si, 0,15 Fe, 0,25 Zn, 0,15 Ti et 0,10 Cr.
  • Le brevet US 6,444,058 enseigne une composition d'alliage de haute pureté AI-Mg-Cu pour lequel les valeurs efficaces de Cu et de Mg sont définies, notamment par Cutarget = Cueff + 0.74 (Mn - 0.2) + 2,28 (Fe - 0,005), et enseigne un domaine de composition dans le diagramme Cueff : Mgeff dans lequel la valeur maximale de Mgeff est de l'ordre de 1,4 % en poids.
  • Il existe un besoin pour des produits en alliage d'aluminium ayant de bonnes performances mécaniques à haute température, typiquement à 150 °C, et étant faciles à fabriquer et à recycler.
  • EXPOSE DE L'INVENTION
  • L'objet de l'invention est l'utilisation d'un produit corroyé à l'état T8 en alliage d'aluminium de composition, en % en poids,
    • Cu : 3,6 - 4,4
    • Mg: 1,2 - 1,4
    • Mn : 0,5-0,8
    • Zr: 0.07 - 0,15
    • Ti : 0,01 - 0,05
    • Si ≤ 0,20
    • Fe ≤ 0,20
    • Zn ≤ 0,25
    • impuretés inévitables < 0,05
    • reste aluminium,
    • dans une application dans laquelle ledit produit est maintenu à des températures de 100 °C à 250 °C pendant une durée significative d'au moins 200 heures.
    FIGURES
  • [Fig. 1] La Figure 1 montre l'évolution de la résistance à la rupture avec la durée de vieillissement à 150 °C en heures.
  • DESCRIPTION DETAILLEE DE L'INVENTION
  • Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. L'expression 1,4 Cu ou 1,4 (Cu) signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515 - 2017. Cette norme indique notamment qu'un état T8 : est un état mis en solution écroui puis revenu, cette désignation s'appliquant aux produits qui sont soumis à un écrouissage pour améliorer leur résistance mécanique, ou pour lesquels l'effet de l'écrouissage associé au planage ou au dressage se traduit sur les limites de propriétés mécaniques. Par état T8 on entend tous les états métallurgiques pour lesquels le premier chiffre après T est 8. Par exemple les états T851 et T852 sont des états T8.
  • Les caractéristiques mécaniques statiques en traction, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2, et l'allongement à la rupture A%, sont déterminés par un essai de traction selon la norme NF EN ISO 6892-1, le prélèvement et le sens de l'essai étant définis par la norme EN 485-1. Les essais de traction à chaud sont réalisés selon la norme NF EN 10002-5. Les essais de fluage sont réalisés selon la norme ASTM E139-06. Sauf mention contraire, les définitions de la norme EN 12258 s'appliquent.
  • Les présents inventeurs ont constaté que de manière surprenante, il existe un domaine de composition des alliages Al-Cu-Mg contenant du Mn qui permet lorsqu'ils sont utilisés à l'état T8 d'obtenir des produits corroyés particulièrement performants à haute température.
  • La teneur en magnésium est telle que Mg soit compris entre 1,2 et 1,4 % en poids et de préférence entre 1,25 et 1,35 % en poids. Lorsque la teneur en Mg n'est pas dans le domaine selon l'invention, les propriétés mécaniques ne sont pas satisfaisantes. En particulier la résistance à la rupture Rm peut être insuffisante à température ambiante et/ou après vieillissement à 150 °C.
  • La teneur en cuivre est telle que Cu soit compris entre 3,6 et 4,4 % en poids. Avantageusement Cu est au moins 3,9 % en poids et de préférence au moins 4,0 % en poids. Avantageusement Cu est au plus 4,3 % en poids et de préférence au plus 4,25 % en poids.
  • Les produits destinés à l'utilisation selon l'invention contiennent 0,5 à 0,8 % en poids de manganèse ce qui contribue notamment au contrôle de la structure granulaire. Avantageusement la teneur en Mn est comprise entre 0,51 et 0,65 % en poids. Les présents inventeurs ont constaté que l'addition simultanée de manganèse et de zirconium peut être avantageuse dans certains cas, notamment pour diminuer la sensibilité au vieillissement à haute température tout en atteignant des propriétés mécaniques élevées. La teneur en Zr est au maximum de 0,15 % en poids. La teneur en Zr est au moins égale à 0,07 en % en poids et de préférence au moins égale à 0,08 en % en poids. Dans un mode de réalisation avantageux, les produits destinés à l'utilisation selon l'invention contiennent 0,09 à 0,15 % en poids de zirconium et 0,50 à 0,60 % en poids de manganèse.
  • La teneur en titane est comprise entre 0,01 et 0,05 % en poids. L'addition de titane contribue notamment à l'affinage des grains lors de la coulée. Cependant une addition supérieure à 0,05 % en poids peut résulter en une finesse excessive de la taille de grain ce qui nuit à la résistance au fluage à température élevée.
  • Les teneurs en fer et en silicium sont au maximum de 0,20 % en poids chacune. Dans un mode de réalisation avantageux de l'invention, la teneur en fer est au maximum de 0,18% en poids et de préférence 0,15 % en poids. Dans un mode de réalisation avantageux de l'invention, la teneur en silicium est au maximum de 0,15% en poids et de préférence 0,10 % en poids.
  • La teneur en zinc est au maximum de 0,25% en poids. Dans un mode de réalisation de l'invention, la teneur en zinc est comprise entre 0,05 et 0,25 % en poids et peut contribuer notamment à la résistance mécanique. Cependant la présence de zinc peut poser des problèmes de recyclage. Dans un autre mode de réalisation, la teneur en zinc est inférieure à 0,20, de préférée, inférieure à 0,15 % en poids.
  • La teneur des autres éléments est inférieure à 0,05 % en poids et de préférence inférieure à 0,04 % en poids. De préférence, le total des autres éléments est inférieur à 0,15 % en poids. Les autres éléments sont des impuretés inévitables. Le reste est de l'aluminium.
  • Les produits corroyés destinés à l'utilisation selon l'invention sont de préférence des tôles, des profilés ou des produits forgés. Les profilés sont typiquement obtenus par filage. Les produits forgés peuvent être obtenus par forge de blocs coulés ou de produits filés ou de produits laminés.
  • Le procédé de fabrication des produits destinés à l'utilisation selon l'invention comprend les étapes successives d'élaboration de l'alliage, coulée, optionnellement homogénéisation, déformation à chaud, mise en solution, trempe, déformation à froid et revenu.
  • Dans une première étape, on élabore un bain de métal liquide de façon à obtenir un alliage d'aluminium de composition selon l'invention. Le bain de métal liquide est ensuite coulé typiquement sous forme de plaque de laminage, de billette de filage ou d'ébauche de forge.
  • Avantageusement, le produit ainsi coulé est ensuite homogénéisé de façon à atteindre une température comprise entre 450°C et 520° C et de préférence entre 495 °C et 510°C pendant une durée comprise entre 5 et 60 heures. Le traitement d'homogénéisation peut être réalisé en un ou plusieurs paliers.
  • Le produit est ensuite déformé à chaud typiquement par laminage, filage et/ou forgeage. La déformation à chaud est réalisée de façon à maintenir de préférence une température d'au moins 300 °C. Avantageusement, on maintient une température d'au moins 350 °C et de préférence d'au moins 380 °C au cours de la déformation à chaud. On ne réalise pas de déformation à froid significative, notamment par laminage à froid, entre la déformation à chaud et la mise en solution. Une déformation à froid significative est typiquement une déformation d'au moins environ 5%.
  • Le produit ainsi déformé est ensuite mis en solution par un traitement thermique permettant d'atteindre une température comprise entre 485 et 520 °C et de préférence entre 495 et 510 °C pendant 15 min à 8 h, puis trempé.
  • La qualité de la mise en solution peut être évaluée par calorimétrie et/ou microscopie optique.
  • Le produit corroyé obtenu, typiquement une tôle, un profilé ou un produit forgé, subit ensuite une déformation à froid. Avantageusement, la déformation à froid est une déformation de 2 à 5% permettant d'améliorer la résistance mécanique et d'obtenir après revenu un état T8. La déformation à froid peut notamment être une déformation par traction contrôlée conduisant à un état T851 ou une déformation par compression conduisant à un état T852.
  • Finalement, un revenu est réalisé dans lequel le produit atteint une température comprise entre 160 et 210°C et de préférence entre 175 et 195°C pendant 5 à 100 heures et de préférence de 10 à 50h. Dans un mode de réalisation avantageux un revenu est réalisé dans lequel le produit atteint une température comprise entre 170 et 180°C pendant 10 à 15 heures. Le revenu peut être réalisé en un ou plusieurs paliers. De préférence, les conditions de revenu sont déterminées pour que la résistance mécanique Rp0,2 soit maximale (revenu « au pic »). Le revenu dans les conditions selon l'invention permet notamment d'améliorer les propriétés mécaniques et leur stabilité lors d'un vieillissement à 150 °C.
  • L'épaisseur des produits destinés à l'utilisation selon l'invention est avantageusement comprise entre 6 mm et 300 mm, de préférence entre 10 et 200 mm. Une tôle est un produit laminé de section transversale rectangulaire dont l'épaisseur uniforme. L'épaisseur des profilés est définie selon la norme EN 2066 :2001 : la section transversale est divisée en rectangles élémentaires de dimensions A et B ; A étant toujours la plus grande dimension du rectangle élémentaire et B pouvant être considéré comme l'épaisseur du rectangle élémentaire.
  • Les produits corroyés obtenus selon le procédé ont l'avantage de présenter une résistance mécanique élevée et de bonnes performances à haute température. Ainsi les produits corroyés destinés à l'utilisation selon l'invention présentent de préférence dans la direction longitudinale une résistance à la rupture Rm d'au moins 490 MPa et de préférence d'au moins 495 MPa et présentant après vieillissement à 150 °C pendant 1000h, une résistance à la rupture Rm d'au moins 475 MPa et de préférence d'au moins 480 MPa. Les produits corroyés destinés à l'utilisation selon l'invention sont résistants au fluage. Ainsi les produits corroyés destinés à l'utilisation selon l'invention présentent de préférence une durée nécessaire pour atteindre une déformation de 0,35 % lors d'un test de fluage selon la norme ASTM E139-06 pour une contrainte de 250 MPa et à une température de 150 °C d'au moins 700 heures et de manière préférée d'au moins 800h.
  • Les produits destinés à l'utilisation selon l'invention sont particulièrement utiles pour des applications dans lesquelles les produits sont maintenus à des températures de 100°C à 250 °C et de préférence de 100 °C à 200 °C, typiquement à environ 150 °C, pendant une durée significative d'au moins 200 heures et de préférence d'au moins 2000 heures.
  • Ainsi les produits destinés à l'utilisation selon l'invention sont utiles pour des applications de pièce de structure ou moyen d'attache à proximité de moteur dans l'industrie automobile ou aérospatiale ou préférentiellement pour des applications de rotors ou autres pièces notamment des impulseurs de pompe d'aspiration d'air telles que notamment les pompes à vide, telles que en particulier des pompes turbomoléculaires ou pour des applications de pièces de dispositifs de soufflage d'air telles que des impulseurs.
  • Ces aspects, ainsi que d'autres de l'invention sont expliqués plus en détail à l'aide des exemples illustratifs et non limitatifs suivants.
  • EXEMPLES Exemple 1
  • Dans cet exemple 6 alliages ont été coulés sous forme de plaques de laminage. L'alliage B a une composition selon l'invention. Les alliages C et E sont enseignés par la demande WO2012/140337 pour leurs performances dans les utilisations à haute température. L'alliage F est un alliage AA2618, connu pour ses performances dans les utilisations à haute température.
  • La composition des alliages en % en poids est donnée dans le tableau 1. [Tableau 1]
    Alliage Si Fe Cu Mn Mg Ni Zn Ti Zr
    A 0,08 0,14 4,2 0,51 1,35 - 0,20 0,02 0,02
    B (Invention) 0,04 0,07 4,0 0,58 1,40 - 0,12 0,02 0,10
    C (Référence) 0,04 0,05 3,3 0,34 1,9 - - 0,02 0,11
    D (Référence) 0,04 0,05 4,2 0,34 1,3 - - 0,02 0,11
    E (Référence) 0,04 0,05 3,7 0,34 1,6 - - 0,02 0,11
    F (Référence) 0,22 1,10 2,6 0,05 1,60 1,10 0,08 0,01 0,00
  • Les plaques ont été homogénéisées à une température comprise entre 490 °C et 540 °C, adaptée en fonction de l'alliage, laminées à chaud jusqu'à une épaisseur de 10 mm (alliage A) et 15 mm (alliages B à E) et 21 mm (alliage F), mises en solution à une température comprise entre 490 °C et 540 °C, adaptée en fonction de l'alliage, trempées à l'eau par immersion, tractionnées de 2 à 4 % et revenues à 175°C ou 190 °C pour atteindre le pic de limite d'élasticité en traction à l'état T8. Ainsi les plaques en alliage A et B ont été homogénéisée entre 20 et 36 h à 495 °C, les tôles obtenues après laminage étant mises en solution 2h à 498°C et revenue 8h 190°C ou 12h à 175 °C. La plaque en alliage C a été homogénéisée en deux paliers de 10h à 500 °C puis 20h à 509 °C, la tôle obtenue après laminage étant mise en solution 2h à 507 °C et revenue 12h à 190 °C. La plaque en alliage D a été homogénéisée en deux paliers de 10h à 500 °C puis 20h à 503 °C, la tôle obtenue après laminage étant mise en solution 2h à 500 °C et revenue 8h à 190 °C. La plaque en alliage E a été homogénéisée en deux paliers de 10h à 500 °C puis 20h à 503 °C, la tôle obtenue après laminage étant mise en solution 2h à 504 °C et revenue 12h à 190 °C.
  • Les propriétés mécaniques obtenues à mi-épaisseur à 25°C dans la direction longitudinale avant et après vieillissement sont données dans le Tableau 2 en MPa. [Tableau 2]
    Alliage Revenu Propriété (MPa) Durée de vieillissement (h)
    0 1000 2000 3000 5000 10000
    A 8h 190°C R0.2 483 431 362 334
    Rm 511 480 440 417
    B 8h 190°C R0.2 459 421 394 351
    Rm 500 483 460 432
    A 12h 175 °C R0.2 448 413 378
    Rm 490 474 452
    B 12h 175 °C R0.2 416 394 353
    Rm 474 465 435
    C 12h 190 °C R0.2 456 447 436 421
    Rm 476 467 467 455
    D 8h 190°C R0.2 470 427 411 386
    Rm 483 472 463 449
    E 12h 190 °C R0.2 468 462 440 424
    Rm 485 484 473 466
    F R0.2 420 406 387 355
    Rm 445 435 420 406
  • L'évolution de la résistance à la rupture avec la durée de vieillissement à 150 °C est représentée sur la Figure 1. Les produits destinés à l'utilisation selon l'invention présentent une résistance à la rupture Rm supérieure à celle des produits de référence avant vieillissement et supérieure à la plupart des autres alliages après 1000 heures à 150 °C. Après 3000 heures de vieillissement les produits destinés à l'utilisation selon l'invention ont une résistance mécanique Rm supérieure à celle de l'alliage F, qui est un alliage AA2618 connu pour ses propriétés à haute température.
  • Des essais de fluage ont été réalisés selon la norme ASTM E139-06 pour une contrainte de 285 MPa et à une température de 150 °C (alliages C, E et F) et pour une contrainte de 250 MPa et à une température de 150 °C (alliages A, B et F) On a notamment mesuré la durée nécessaire pour atteindre une déformation de 0,35%. Les résultats sont rassemblés dans le Tableau 3. [Tableau 3]
    Alliage Contrainte (MPa) Sens L Durée nécessaire pour atteindre une déformation de 0,35% (h) Facteur d'amélioration par rapport à l'alliage F
    A 250 815 5,5
    B 250 2100 14,1
    F 250 149 -
    C 285 221 3,6
    E 285 267 4,4
    F 285 61 -
  • La performance des produits destinés à l'utilisation selon l'invention au test de fluage est largement supérieure à celle d'un produit de référence pour les utilisations à hautes température (produit F) et supérieure également à celle des produits C et E.
  • Exemple 2
  • Dans cet exemple, on a comparé l'évolution avec la durée de vieillissement à 150 °C de la limite d'élasticité Rp0,2 pour un produit laminé en alliage B d'épaisseur 10 mm obtenu par le procédé tel que décrit dans l'exemple 1, avec un produit laminé en alliage B d'épaisseur 10 mm à l'état T351. Pour le produit à l'état T351 un vieillissement de 233 h à 150 °C est estimé grâce aux données obtenues après un traitement de 8h à 190 °C.
  • Le temps équivalent t i à 150 °C est défini par la formule 1 : t i = exp 16400 / T dt exp 16400 / T ref .
    Figure imgb0001
    où T (en Kelvin) est la température instantanée de traitement du métal , qui évolue avec le temps t (en heures), et Tref est une température de référence fixée à 423 K. ti est exprimé en heures. La constante Q/R = 16400 K est dérivée de l'énergie d'activation pour la diffusion du Cu, pour laquelle la valeur Q = 136100 J/mol a été utilisée. Pour le produit à l'état T851, le vieillissement a été estimé pour 233 h par approximation linéaire à partir de la valeur de 426 MPa obtenue après 1000h.
  • Les résultats sont présentés dans le tableau 4. [Tableau 4]
    Rp0,2 (TL) [MPa] Rp0,2 (TL) [MPa] après vieillissement à 150 °C Δ Rp0,2 [%]
    T351 349 459 32%
    T851 459 451 -2%
  • On constate que la stabilité thermique du produit à l'état T851 est largement supérieure que la stabilité thermique à l'état T351.

Claims (12)

  1. Utilisation d'un produit corroyé à l'état T8 en alliage d'aluminium de composition, en % en poids,
    Cu : 3,6 - 4,4
    Mg: 1,2 - 1,4
    Mn : 0,5-0,8
    Zr: 0.07 - 0,15
    Ti : 0,01 - 0,05
    Si ≤ 0,20
    Fe ≤ 0,20
    Zn ≤ 0,25
    impuretés inévitables < 0,05
    reste aluminium,
    dans une application dans laquelle ledit produit est maintenu à des températures de 100 °C à 250 °C pendant une durée significative d'au moins 200 heures.
  2. Utilisation selon la revendication 1 dans laquelle Cu est au moins égal à 3,9 % en poids et de préférence au moins égal à 4,0 en % en poids et/ou Cu est au plus 4,3 % en poids et de préférence au plus 4,25 % en poids.
  3. Utilisation selon la revendication 1 ou la revendication 2 dans laquelle la teneur en Mn est comprise entre 0,51 et 0,65 % en poids.
  4. Utilisation selon une quelconque des revendications 1 à 3 dans laquelle Zr est au moins égal à 0,08 en % en poids.
  5. Utilisation selon une quelconque des revendications 1 à 4 caractérisée en ce que l'épaisseur dudit produit corroyé est comprise entre 6 mm et 300 mm et de préférence entre 10 et 200 mm, étant donné que si le produit corroyé est un profilé l'épaisseur est définie selon la norme EN 2066 :2001.
  6. Utilisation selon une quelconque des revendications 1 à 5 dans laquelle ledit produit corroyé présente dans la direction longitudinale une résistance à la rupture Rm d'au moins 490 MPa et de préférence d'au moins 495 MPa et présente après vieillissement à 150 °C pendant 1000h, une résistance à la rupture Rm d'au moins 475 MPa et de préférence d'au moins 480 MPa, la résistance à la rupture Rm, étant déterminée par un essai de traction selon la norme NF EN ISO 6892-1, le prélèvement et le sens de l'essai étant définis par la norme EN 485-1.
  7. Utilisation selon une quelconque des revendications 1 à 6 dans laquelle ledit produit corroyé présente une durée nécessaire pour atteindre une déformation de 0,35 % lors d'un test de fluage selon la norme ASTM E139-06 pour une contrainte de 250 MPa et à une température de 150 °C d'au moins 700 heures et de manière préférée d'au moins 800h.
  8. Utilisation selon une quelconque des revendications 1 à 7 dans laquelle le procédé de fabrication dudit produit corroyé comprend, successivement,
    - l'élaboration d'un bain de métal liquide de façon à obtenir un alliage d'aluminium de composition une quelconque des revendications 1 à 4,
    - la coulée dudit alliage typiquement sous forme de plaque de laminage, de billette de filage ou d'ébauche de forge,
    - optionnellement l'homogénéisation du produit ainsi coulé de façon à atteindre une température comprise entre 450°C et 520° C,
    - la déformation à chaud du produit ainsi obtenu,
    - la mise en solution du produit ainsi déformé à chaud par un traitement thermique permettant d'atteindre une température comprise entre 485 et 520 °C et de préférence entre 495 et 510 °C pendant 15 min à 8 h, puis la trempe,
    - la déformation à froid du produit ainsi mis en solution et trempé,
    - le revenu dans lequel le produit ainsi obtenu atteint une température comprise entre 160 et 210°C et de préférence entre 175 et 195°C pendant 5 à 100 heures et de préférence de 8 à 50h pour obtenir un état T8.
  9. Utilisation selon une quelconque des revendications 1 à 8 dans laquelle le produit est maintenu à des températures de 100 °C à 200 °C.
  10. Utilisation selon une quelconque des revendications 1 à 9 dans laquelle l'application est une de pièce de structure ou moyen d'attache à proximité de moteur dans l'industrie automobile ou aérospatiale.
  11. Utilisation selon une quelconque des revendications 1 à 9 dans laquelle l'application est un rotor ou une autre pièce de pompe d'aspiration d'air telle qu'une pompe à vide, de préférence une pompe turbomoléculaire.
  12. Utilisation selon une quelconque des revendications 1 à 9 dans laquelle l'application est une pièce de dispositif de soufflage d'air telle qu'un impulseur.
EP21734420.9A 2020-06-04 2021-05-31 Utilisation de produits en alliage aluminium cuivre magnesium performants a haute temperature Active EP4162089B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2005856A FR3111143B1 (fr) 2020-06-04 2020-06-04 Produits en alliage aluminium cuivre magnésium performants à haute température
PCT/FR2021/050981 WO2021245345A1 (fr) 2020-06-04 2021-05-31 Utilisation de produits en alliage aluminium cuivre magnesium performants a haute temperature

Publications (2)

Publication Number Publication Date
EP4162089A1 EP4162089A1 (fr) 2023-04-12
EP4162089B1 true EP4162089B1 (fr) 2024-03-20

Family

ID=73013516

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21734420.9A Active EP4162089B1 (fr) 2020-06-04 2021-05-31 Utilisation de produits en alliage aluminium cuivre magnesium performants a haute temperature

Country Status (9)

Country Link
US (1) US20230220530A1 (fr)
EP (1) EP4162089B1 (fr)
JP (1) JP2023533152A (fr)
KR (1) KR20230019884A (fr)
CN (1) CN115698356A (fr)
BR (1) BR112022023160A2 (fr)
CA (1) CA3184620A1 (fr)
FR (1) FR3111143B1 (fr)
WO (1) WO2021245345A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115323294B (zh) * 2022-06-30 2023-07-14 广西科技大学 一种Al-Cu-Mg合金的强塑性变形方法
CN115466889B (zh) * 2022-09-02 2023-05-23 中国航发北京航空材料研究院 一种高强韧、高抗疲劳铝合金及其制备方法
EP4390145A2 (fr) * 2022-12-22 2024-06-26 Pfeiffer Vacuum Technology AG Pompe à vide

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826688A (en) 1971-01-08 1974-07-30 Reynolds Metals Co Aluminum alloy system
FR2279852B1 (fr) 1974-07-23 1977-01-07 Cegedur Transf Aumin Pechiney Alliage d'aluminium de bonne tenue au fluage et de resistance a la propagation des criques amelioree
US4294625A (en) 1978-12-29 1981-10-13 The Boeing Company Aluminum alloy products and methods
US5376192A (en) 1992-08-28 1994-12-27 Reynolds Metals Company High strength, high toughness aluminum-copper-magnesium-type aluminum alloy
FR2737225B1 (fr) 1995-07-28 1997-09-05 Pechiney Rhenalu Alliage al-cu-mg a resistance elevee au fluage
ES2219932T3 (es) 1997-12-12 2004-12-01 Aluminium Company Of America Aleacion de aluminio con alta tenacidad para usar como placa en aplicaciones aeroespaciales.
DE10053664A1 (de) * 2000-10-28 2002-05-08 Leybold Vakuum Gmbh Mechanische kinetische Vakuumpumpe
RU2210614C1 (ru) 2001-12-21 2003-08-20 Региональный общественный фонд содействия защите интеллектуальной собственности Сплав на основе алюминия, изделие из этого сплава и способ его изготовления
RU2278179C1 (ru) * 2004-12-21 2006-06-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Сплав на основе алюминия и изделие, выполненное из него
FR2974118B1 (fr) 2011-04-15 2013-04-26 Alcan Rhenalu Alliages aluminium cuivre magnesium performants a haute temperature
CN104164635A (zh) 2013-05-17 2014-11-26 中国石油天然气集团公司 一种提高铝合金钻杆用Al-Cu-Mg合金室温强度和高温性能的方法
CN107881444B (zh) * 2016-09-29 2019-04-23 北京有色金属研究总院 一种超大规格铝合金板材的制造方法
CN107354413A (zh) * 2017-07-07 2017-11-17 哈尔滨中飞新技术股份有限公司 一种石油勘探用高强耐热铝合金材料的制备工艺
FR3087206B1 (fr) * 2018-10-10 2022-02-11 Constellium Issoire Tôle en alliage 2XXX à haute performance pour fuselage d’avion

Also Published As

Publication number Publication date
EP4162089A1 (fr) 2023-04-12
JP2023533152A (ja) 2023-08-02
FR3111143A1 (fr) 2021-12-10
BR112022023160A2 (pt) 2022-12-20
US20230220530A1 (en) 2023-07-13
CA3184620A1 (fr) 2021-12-09
KR20230019884A (ko) 2023-02-09
FR3111143B1 (fr) 2022-11-18
CN115698356A (zh) 2023-02-03
WO2021245345A1 (fr) 2021-12-09

Similar Documents

Publication Publication Date Title
EP4162089B1 (fr) Utilisation de produits en alliage aluminium cuivre magnesium performants a haute temperature
EP2697406B1 (fr) Alliages aluminium cuivre magnesium performants a haute temperature
EP2449142B1 (fr) Alliage aluminium cuivre lithium a resistance mecanique et tenacite ameliorees
EP2655680B1 (fr) Alliage aluminium cuivre lithium à résistance en compression et ténacité améliorées
EP3201372B1 (fr) Tôles isotropes en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion et procédé de fabrication de celle-ci
RU2406773C2 (ru) Деформированный алюминиевый сплав системы алюминий-цинк-магний-скандий и способ его получения
FR2838135A1 (fr) PRODUITS CORROYES EN ALLIAGES A1-Zn-Mg-Cu A TRES HAUTES CARACTERISTIQUES MECANIQUES, ET ELEMENTS DE STRUCTURE D&#39;AERONEF
JP6057855B2 (ja) 切削用アルミニウム合金押出材
CN1531602A (zh) 可焊高强度Al-Mg-Si合金
EP3526358B1 (fr) Toles minces en alliage aluminium-magnesium-scandium pour applications aerospatiales
EP1382698B2 (fr) Produit corroyé en alliage Al-Cu-Mg pour élément de structure d&#39;avion
EP3384060B1 (fr) Tole mince a haute rigidite pour carrosserie automobile
EP2981631B1 (fr) Tôles en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
FR3007423A1 (fr) Element de structure extrados en alliage aluminium cuivre lithium
EP3728667B1 (fr) Procede de fabrication ameliore de tôles en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselage d&#39;avion et tôle correspondante
EP3411508B1 (fr) Tôles épaisses en alliage al cu li à propriétés en fatigue améliorées
US20230357902A1 (en) Method For Manufacturing Aluminum Alloy Extruded Material With High Strength And Excellent In SCC Resistance And Hardenability
EP3788178B1 (fr) Alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
EP1483422B1 (fr) Utilisation de bandes minces en alliage aluminium-fer
JP2001240930A (ja) ドアビーム用Al−Mg−Si系アルミニウム合金押出材及びドアビーム
JPH10259464A (ja) 成形加工用アルミニウム合金板の製造方法
JP4281609B2 (ja) 成形性に優れたアルミニウム合金押出材およびその製造方法
EP3802897B1 (fr) Toles minces en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
WO2023094773A1 (fr) Bande en alliage 6xxx et procédé de fabrication
FR3132306A1 (fr) Tôle mince améliorée en alliage d’aluminium-cuivre-lithium

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20240129

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021010727

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240315