EP2697406B1 - Alliages aluminium cuivre magnesium performants a haute temperature - Google Patents

Alliages aluminium cuivre magnesium performants a haute temperature Download PDF

Info

Publication number
EP2697406B1
EP2697406B1 EP12717140.3A EP12717140A EP2697406B1 EP 2697406 B1 EP2697406 B1 EP 2697406B1 EP 12717140 A EP12717140 A EP 12717140A EP 2697406 B1 EP2697406 B1 EP 2697406B1
Authority
EP
European Patent Office
Prior art keywords
weight
wrt
alloy
product
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12717140.3A
Other languages
German (de)
English (en)
Other versions
EP2697406A1 (fr
Inventor
Gaëlle POUGET
Christophe Sigli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP2697406A1 publication Critical patent/EP2697406A1/fr
Application granted granted Critical
Publication of EP2697406B1 publication Critical patent/EP2697406B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • the invention relates to aluminum-copper-magnesium alloy products, more particularly, such products, their methods of manufacture and use, intended to be implemented at high temperature.
  • Al-Cu-Mg alloys are also known.
  • the patent US 3,826,688 teaches a composition alloy (in% by weight), Cu: 2.9 - 3.7, Mg: 1.3 - 1.7 and Mn: 0.1 - 0.4.
  • the patent application EP 0 038 605 A1 teaches a composition alloy (in% by weight), Cu: 3.8 - 4.4, Mg: 1.2 - 1.8 and Mn: 0.3 - 0.9, maximum 0.12 Si, 0 , Fe, 0.25 Zn, 0.15 Ti and 0.10 Cr.
  • a first subject of the invention is a wrought product made of aluminum alloy of composition, in% by weight, Cu Corr : 2.6 - 3.7 Mg corr : 1.5 - 2.6 Mn: 0.2 - 0.5 Zr: ⁇ 0.16 Ti: 0.01 - 0.15 Cr ⁇ 0.25 If ⁇ 0.2 Fe ⁇ 0.2 other elements ⁇ 0.05 rest aluminum with Cu corr > - 0.9 ( Corr. Mg) + 4.3 and Corr Cu ⁇ - 0.9 ( Corr.
  • Yet another object of the invention is the use of a wrought product according to the invention in an application in which said product is maintained at temperatures of 100 ° C. to 200 ° C. for a significant period of at least 200 hours. hours.
  • the static mechanical characteristics in tension in other words the tensile strength R m , the conventional yield stress at 0.2% elongation R p0.2 and the elongation at break A%, are determined by a tensile test according to standard NF EN ISO 6892-1, the sampling and the direction of the test being defined by the EN 485-1 standard.
  • the hot tensile tests are carried out according to standard NF EN 10002-5. Creep tests are performed according to ASTM E139-06.
  • EN 12258 Unless otherwise specified, the definitions of EN 12258 apply.
  • the present inventors have found that, surprisingly, there is a compositional range of Al-Cu-Mg alloys containing Mn which makes it possible to obtain particularly high performance wrought products at high temperature.
  • the composition of the wrought products of the invention is defined according to the content of iron, manganese and silicon. Corrected Cu and Mg contents, called Cu Corr and Mg corr corresponding to the contents of these elements which are not trapped by intermetallic compounds containing iron, manganese or silicon, are defined. This correction is important in defining the Cu and Mg composition domain of the invention because the iron and manganese containing intermetallic compounds formed with the copper and the intermetallic compounds formed with the silicon-containing magnesium generally can not be processed. solution.
  • Cu corr and Mg corr thus correspond to the Cu and Mg contents available after solution dissolution for the formation during the recovery of the nanometric phases contributing to hardening.
  • the copper and magnesium contents thus corrected must obey the following inequalities: Cu corr > - 0 , 9 mg corr + 4 , 3 preferably Cu corr > - 0 , 9 mg corr + 4 , 5 Cu corr ⁇ - 0 , 9 mg corr + 5 , 0
  • the magnesium content is such that Mg corr is between 1.5 and 2.6% by weight and preferably between 1.6 and 2.4% by weight. In an advantageous embodiment of the invention, Mg corr is at least 1.8% by weight and preferably at least 1.9% by weight. This embodiment is particularly advantageous for products in the T6 state.
  • the copper content is such that Cu corr is between 2.6 and 3.7% by weight.
  • the maximum magnesium content is 2.86% by weight corresponding to a Mg content corr of 2.6% by weight, obtained for an Si content of 0.2% by weight.
  • the minimum magnesium content is 1.5% by weight, obtained for a Si content of 0% by weight.
  • the maximum copper content is 3.69% by weight, obtained for a manganese content of 0.5% by weight and corresponding to a corrected Cu corr content of 3.29% by weight.
  • an advantageous range of composition of the products according to the invention has a magnesium content of between 1.6 and 2.2% by weight and preferably between 1.8 and 2.1% by weight. and / or a copper content of between 2.8 and 3.7% by weight and preferably between 2.9 and 3.4% by weight.
  • the products according to the invention contain 0.2 to 0.5% by weight of manganese, which contributes in particular to the control of the granular structure.
  • the present inventors have found that the simultaneous addition of manganese and zirconium is advantageous for further improving the control of the granular structure.
  • the Zr content is at least 0.07% by weight and preferably at least 0.08% by weight.
  • the products according to the invention contain 0.09 to 0.15% by weight of zirconium and 0.25 to 0.45% by weight of manganese.
  • the chromium content is at most 0.25% by weight. In one embodiment of the invention, the chromium content is between 0.05 and 0.25% by weight and can contribute in particular to the control of the granular structure.
  • the presence of chromium can cause problems of recycling and sensitivity to quenching, especially for products whose thickness is at least 50 mm.
  • the chromium content is less than 0.05% by weight.
  • the titanium content is between 0.01 and 0.15% by weight.
  • the addition of titanium contributes in particular to the refining of the grains during casting. In one embodiment, it is preferred to limit the addition of titanium to a maximum value of 0.05% by weight. However, a larger ripening may be useful.
  • the titanium content is between 0.07 and 0.14% by weight.
  • the iron and silicon contents are at most 0.2% by weight each.
  • the iron and / or silicon contents are at most 0.1% by weight and preferably 0.08% by weight.
  • the equations for calculating corr Cu and Mg corr take account of variations of Fe and Si and to achieve the same value of Cu corr more copper is added when the iron content increases.
  • the content of the other elements is less than 0.05% by weight.
  • the rest is aluminum.
  • the wrought products according to the invention are typically sheets, profiles, bars or wires, but can also be screws, bolts or rivets.
  • the method of manufacturing the products according to the invention comprises the successive stages of elaboration of the alloy, casting, optionally homogenization, deformation, dissolution, tempering, optionally cold deformation and tempering.
  • a bath of liquid metal is produced so as to obtain an aluminum alloy of composition according to the invention.
  • the liquid metal bath is then typically cast in the form of a rolling plate, spinning billet, bar blank or wire.
  • the product thus cast is then homogenized so as to reach a temperature of between 450 ° C. and 520 ° C. and preferably between 500 ° C. and 510 ° C. for a period of between 5 and 60 hours.
  • the homogenization treatment can be carried out in one or more stages.
  • the product is then typically deformed by rolling, spinning and / or drawing and / or drawing and / or coining.
  • the product thus deformed is then dissolved in a heat treatment to reach a temperature of between 490 and 520 ° C and preferably between 500 and 510 ° C for 15 min to 8 h, and then quenched.
  • the quality of dissolution can be evaluated by calorimetry and / or optical microscopy.
  • the objective being that Cu and Mg are in solid solution with the exception of Cu and bound Mg in the intermetallic compounds containing manganese of iron and / or silicon.
  • the product can then optionally undergo a cold deformation.
  • an income is achieved in which the product reaches a temperature between 160 and 210 ° C and preferably between 175 and 195 ° C for 5 to 100 hours and preferably 10 to 50h.
  • the income can be achieved in one or more levels.
  • the income conditions are determined so that the mechanical resistance Rp 0.2 is maximum ("peak" income).
  • a first embodiment of the method according to the invention allows the manufacture of sheets or profiles.
  • a second embodiment of the method according to the invention allows the manufacture of son or bars, such as in particular blanks for machining, blanks forging, blanks bolts, rivet threads, blanks screws and bolts, screws and rivets.
  • the first embodiment of the process according to the invention comprises the successive stages of elaboration of the alloy, cast in the form of a plate or billet, optionally homogenization, hot deformation, dissolution, tempering, optionally cold deformation and tempering. .
  • the liquid metal bath is cast in the form of a rolling plate or a spinning billet.
  • the optionally homogenized rolling plate or spinning billet is then hot deformed by rolling or spinning.
  • the hot deformation of the first embodiment is performed so as to maintain a temperature of at least 300 ° C.
  • a temperature of at least 350 ° C. and preferably at least 380 ° C. is maintained during the hot deformation.
  • no significant cold deformation is carried out, in particular by cold rolling, between the hot deformation and the dissolution. Indeed, such a cold deformation step would lead to a recrystallized structure that is undesirable in the context of the invention for wrought products in the form of sheets or profiles.
  • Significant cold deformation is typically a deformation of at least about 5%.
  • the sheet or the profile thus obtained is then put in solution by a heat treatment making it possible to reach a temperature of between 490 and 520 ° C. and preferably between 500 and 510 ° C. for 15 minutes to 8 hours, and then quenched typically with the water.
  • substantially non-recrystallized granular structure means a non-recrystallized granular structure content at mid-thickness greater than 70% and preferably greater than 85%.
  • the sheet or the profile obtained can then optionally undergo a cold deformation.
  • the cold deformation is a controlled traction with a permanent elongation of 2 to 5% to improve the mechanical strength and to obtain a T8 state after income. In the absence of cold deformation or in the presence of a low cold deformation does not improve the mechanical characteristics, after income a product is obtained in the T6 state.
  • the sheets and profiles obtained according to the first embodiment of the method of the invention have the advantage of having a high mechanical strength and good performance at high temperature.
  • the sheets and profiles according to the invention preferably have, in the longitudinal direction T8, a yield strength R p0.2 of at least 440 MPa, preferably at least 450 MPa and, preferably, at least 450 MPa. at least 455 MPa.
  • a yield strength R p0.2 of at least 470 MPa can advantageously be obtained in the longitudinal direction.
  • the reduction of the elastic limit of the sheets and profiles according to the invention in the T8 state in the longitudinal direction is advantageously less than 12%, preferably less than 10% and, preferably, less than 8%.
  • the profiles according to the invention advantageously have, in the T8 state, a yield strength measured at 150 ° C. in the longitudinal direction of at least 370 MPa and preferably at least 380 MPa.
  • the sheets or profiles made in the embodiment in which the Mg content is such that Mg corr is at least 1.8% by weight advantageously have a yield strength measured at 150 ° C. in the longitudinal direction of at least 340 MPa and a decrease in yield strength after 2000h aging at 150 ° C less than 5%.
  • the second embodiment of the method according to the invention comprises the successive stages of elaboration of the alloy, cast in the form of wire blank or bar, optionally homogenization, hot deformation and / or cold by spinning and / or stretching and / or drawing and optionally by subsequent striking of the wire or bar obtained to obtain screws, bolts or rivets, dissolution, quenching and tempering.
  • the liquid metal bath is cast as a blank of wire or bar, preferably on a casting wheel, typically with the continuous casting process known as " Properzi ".
  • the wire blank or bar may also be a spinning billet.
  • the blank wire or bar is then deformed hot and / or cold by spinning and / or drawing and / or drawing.
  • the wire blank or bar is a spinning billet, it will be hot-spun before being cold-formed by drawing and / or drawing, whereas if the wire blank or bar has been obtained by continuous casting and hot deformation at the outlet of the casting wheel, it will only be necessary to deform it cold.
  • the wire or bar obtained can be struck at this point to obtain screws, bolts or rivets.
  • the product thus obtained is then put in solution by a heat treatment making it possible to reach a temperature of between 490 and 520 ° C. and preferably between 500 and 510 ° C. for 15 minutes to 8 hours, and then typically quenched with water. .
  • essentially recrystallized structure is meant a recrystallization rate of at least 80% and preferably a fine grain structure and homogeneous size.
  • the product obtained can then optionally undergo a cold deformation.
  • certain products such as in particular bolts, screws and rivets, it is difficult to perform a cold deformation after dissolution and quenching.
  • the product is not subjected to cold deformation after dissolution and quenching, and after recovery a T6 state is obtained.
  • a particularly alloy advantageous for the T6 state has an Mg content such that Mg corr is at least equal to 1.8% by weight.
  • manufacture of products such as wire, bolt, rivet, screw, in the T8 state and having a substantially recrystallized alloy granular structure according to the invention is advantageous.
  • the products obtained according to the second embodiment of the process of the invention advantageously have in the T8 state in the longitudinal direction a yield strength R p0.2 of at least 460 MPa, preferably at least 480 MPa. and after aging at 150 ° C. for 2000 h, a decrease in the yield strength in the longitudinal direction of less than 10%, preferably less than 8%.
  • the products according to the invention are particularly useful for applications in which the products are maintained at temperatures of 100 ° C to 200 ° C, typically at about 150 ° C, for a significant period of at least 200 hours and preferably at least 2000 hours.
  • the products according to the invention are useful for fasteners intended for use in a motor typically for automobiles, such as screws or bolts or rivets.
  • the products according to the invention are also useful for the manufacture of parts of the nacelle and / or aircraft attachment masts.
  • the nacelle designates all the supports and hoods of an engine of a multi-engine aircraft:
  • the products according to the invention are also useful for the manufacture of aircraft wing leading edges.
  • the products according to the invention are also useful for the manufacture of fuselage of supersonic aircraft.
  • Alloys A-1 and C-1 have a composition according to the invention.
  • composition of the alloys is given in Table 1.
  • the plates were homogenized at a temperature of between 500 ° C. and 540 ° C., adapted according to the alloy, hot-rolled to a thickness of 15 mm, dissolved at a temperature of between 500 ° C. and 540 ° C, adapted according to the alloy, quenched with water by immersion, traced by 3 to 4% and returned to 190 ° C to reach the peak of elastic limit in tension at the T8 state.
  • the alloy plate A-1 was homogenized in two steps of 10h at 500 ° C and 20h at 509 ° C, the sheet obtained after rolling being dissolved for 2h at 507 ° C and returned for 12 hours at 190 ° C.
  • the alloy plate B-1 was homogenized in two steps of 10h at 500 ° C and 20h at 503 ° C, the sheet obtained after rolling being dissolved in 2h at 500 ° C and returned 8h at 190 ° C.
  • the alloy plate C-1 was homogenized in two steps of 10h at 500 ° C and 20h at 503 ° C, the sheet obtained after rolling being dissolved in 2h at 504 ° C and returned for 12 hours at 190 ° C.
  • the alloy plate D-1 was homogenized in two steps of 10h at 500 ° C and 20h at 536 ° C, the sheet obtained after rolling being dissolved for 2h at 535 ° C and returned 8h at 190 ° C.
  • the sheets obtained had a substantially non-recrystallized granular structure.
  • the sheets thus obtained were characterized in the longitudinal direction before and after aging at several temperatures and for several durations.
  • the results are shown in Table 2 Table 2 - Mechanical properties obtained at mid-thickness L-direction before and after aging (MPa) Aging temperature (° C) Aging time (h) A-1 C-1 B-1 D-1 R 0.2 rm R 0.2 rm R 0.2 rm R 0.2 rm R 0.2 rm No aging 456 476 468 485 470 483 385 447 150 500 450 471 471 487 451 488 379 442 150 1000 447 467 462 484 427 472 372 438 150 2000 436 467 440 473 411 463 375 450 150 5000 421 455 424 466 386 449 352 431 200 500 355 398 353 417 312 365 288 375 200 1000 340 405 332 404 295
  • the alloy billet A-2 was homogenized 24h at 508 ° C. and the bars obtained dissolved for 1 hour at 506 ° C.
  • the alloy billet C-2 was homogenized 24h at 508 ° C. and the bars obtained dissolved for 1 hour at 503 ° C. Some bars were trimmed from 3 to 4% of other bars were not pulled, all the bars finally had a peak income to get a T6 state (untracted, 20h at 190 ° C for A-2 and 16h at 190 ° C for C-2) or T8 (tractionné, 12h at 190 ° C for the two alloys).
  • the profiles obtained had a substantially non-recrystallized granular structure.
  • alloy wires 6056 in the T6 state with a diameter of 12 mm and alloy bars 2618 in the T8 state with a diameter of 40 mm were used.
  • the mechanical properties in the longitudinal direction before and after aging at 150 ° C are given in Table 4.
  • the alloy A-2 is particularly thermally stable.
  • the products according to the invention have, in particular, a breaking strength significantly higher than that of conventionally used reference products such as alloy 6056 (T6) or alloy 2618 (T8).
  • Creep tests were carried out according to the ASTM E139-06 standard for a stress of 285 MPa and at a temperature of 150 ° C. In particular, the service life, the deformation after 200h and the stationary creep rate were measured. The results are collated in Table 6.
  • a 13 mm diameter C-2 alloy cylindrical bar was obtained by hot spinning from a billet homogenized 24h at 508 ° C. The bar was then stretched cold to obtain a wire of diameter 10; 55 mm. The yarn thus obtained was dissolved for 1 hour at 503 ° C., fractionated by 3 to 4% and then returned for 12 hours at 190 ° C. to obtain a T8 state.
  • the granular structure of the yarn thus obtained was essentially recrystallized and had a fine and homogeneous grain

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Forging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Heat Treatment Of Steel (AREA)
  • Extrusion Of Metal (AREA)
  • Connection Of Plates (AREA)

Description

    Domaine de l'invention
  • L'invention concerne les produits en alliages aluminium-cuivre-magnésium, plus particulièrement, de tels produits, leurs procédés de fabrication et d'utilisation, destinés à être mis en oeuvre à haute température.
  • Etat de la technique
  • Certains alliages d'aluminium sont couramment utilisés pour des applications dans lesquelles ils ont une haute température d'emploi, typiquement entre 100 et 200 °C, par exemple comme pièce de structure ou moyen d'attache à proximité de moteur dans l'industrie automobile ou aérospatiale ou comme pièce de structure dans des avions supersoniques.
    Ces alliages nécessitent de bonnes performances mécaniques à haute température. Les bonnes performances mécaniques à haute température signifient notamment d'une part la stabilité thermique, c'est-à-dire que les propriétés mécaniques mesurées à température ambiante sont stables après un vieillissement de longue durée à la température d'emploi, et d'autre part la performance à chaud c'est-à-dire que les propriétés mécaniques mesurées à haute température (propriétés mécaniques statiques, résistance au fluage) sont élevées. Parmi les alliages connus pour ce type d'application on peut citer l'alliage AA2618 qui comprend (% en poids):
    • Cu:1,9-2,7 Mg:1,3-1,8 Fe:0,9-1,3, Ni:0,9-1,2 Si:0,10-0,25 Ti:0,04-0,10 qui a été utilisé pour la fabrication du Concorde.
    Le brevet FR 2279852 de CEGEDUR PECHINEY propose un alliage à teneur réduite en fer et nickel de composition suivante (% en poids):
    • Cu:1,8-3 Mg: 1,2-2,7 Si<0,3 Fe:0,1-0,4 Ni + Co: 0,1 - 0,4 (Ni + Co)/Fe: 0,9 - 1,3
  • L'alliage peut contenir également Zr, Mn, Cr, V ou Mo à des teneurs inferieures a 0,4%, et éventuellement Cd, In, Sn ou Be a moins de 0,2% chacun, Zn a moins de 8% ou Ag a moins de 1 %. On obtient avec cet alliage une amélioration sensible du facteur de concentration de contraintes K1c représentatif de la résistance à la propagation de criques.
    La demande de brevet EP 0 756 017 A1 (Pechiney Rhenalu ) a pour objet un alliage d'aluminium à haute résistance au fluage de composition (% en poids):
    • Cu: 2,0 - 3,0 Mg: 1,5 - 2,1 Mn: 0,3 - 0,7
    • Fe<0,3 Ni<0,3 Ag<1,0 Zr<0,15 Ti<0,15
    • avec Si tel que: 0,3 < Si + 0,4Ag < 0,6
    • autres éléments < 0,05 chacun et < 0,15 au total.
    Le brevet RU2210614C1 décrit un alliage de composition (en % en poids)
    Cu: 3,0 - 4,2 Mg: 1,0 - 2,2 Mn: 0,1 - 0,8 Zr : 0,03 - 0,2 Ti : 0,012 - 0,1, V : 0,001 - 0,15 au moins un élément parmi Ni : 0,001 - 0,25 et Co : 0,001 - 0,25, reste aluminium.
    L'alliage AA2219 de composition (en % en poids) Cu : 5,8 - 6,8 Mn : 0,20 - 0,40 Ti : 0,02 - 0,10, Zr: 0,10 - 0,25 V: 0,05 - 0,15 Mg < 0,02 est également connu pour des applications à haute température.
    Ces alliages présentent cependant des propriétés mécaniques insuffisantes pour certaines applications et posent également des problèmes de recyclage en raison en particulier de la teneur élevée en fer et/ou silicium et/ou nickel et/ou cobalt et/ou vanadium.
  • On connait par ailleurs des alliages Al-Cu-Mg.
    Le brevet US 3,826,688 enseigne un alliage de composition (en % en poids), Cu : 2,9 - 3,7, Mg: 1,3 - 1,7 et Mn: 0,1 - 0,4.
    Le brevet US 5,593,516 enseigne un alliage de composition (en % en poids) Cu : 2,5 - 5,5, Mg : 0,1 - 2,3 dans la limite de leur solubilité c'est-à-dire tels que Cu est au plus égal à Cumax = -0,91 (Mg) + 5,59.
    La demande de brevet EP 0 038 605 A1 enseigne un alliage de composition (en % en poids), Cu : 3,8 - 4,4, Mg : 1,2 - 1,8 et Mn : 0,3 - 0,9, au maximum 0,12 Si, 0,15 Fe, 0,25 Zn, 0,15 Ti et 0,10 Cr.
    Le brevet US 6,444,058 enseigne une composition d'alliage de haute pureté Al-Mg-Cu pour lequel les valeurs efficaces de Cu et de Mg sont définies, notamment par Cutarget = Cueff + 0.74 (Mn - 0.2) + 2,28 (Fe - 0,005), et enseigne un domaine de composition dans le diagramme Cueff: Mgeff dans lequel la valeur maximale de Mgeff est de l'ordre de 1,4 % en poids.
  • Il existe un besoin pour des produits en alliage d'aluminium ayant de bonnes performances mécaniques à haute température, typiquement à 150 °C, et étant faciles à fabriquer et à recycler.
  • Objet de l'invention
  • Un premier objet de l'invention est un produit corroyé en alliage d'aluminium de composition, en % en poids,
    Cucorr: 2,6 - 3,7
    Mgcorr: 1,5 - 2,6
    Mn : 0,2 - 0,5
    Zr : ≤ 0,16
    Ti : 0,01 - 0,15
    Cr ≤ 0,25
    Si ≤ 0,2
    Fe ≤ 0,2
    autres éléments < 0,05
    reste aluminium
    avec Cucorr > - 0,9(Mgcorr) + 4,3 et Cucorr < - 0,9 (Mgcorr) + 5,0
    dans lequel Cucorr = Cu - 0,74 (Mn - 0,2) - 2,28 Fe et
    Mgcorr = Mg - 1,73 (Si - 0,05) pour Si ≥ 0,05 et Mgcorr = Mg pour Si<0,05.
  • Un autre objet de l'invention est un procédé de fabrication d'un produit corroyé selon l'invention comprenant, successivement,
    • l'élaboration d'un bain de métal liquide de façon à obtenir un alliage d'aluminium de composition selon l'invention,
    • la coulée dudit alliage typiquement sous forme de plaque de laminage, de billette de filage, d'ébauche de barre ou fil,
    • optionnellement l'homogénéisation du produit ainsi coulé de façon à atteindre une température comprise entre 450°C et 520° C,
    • la déformation avant mise en solution du produit ainsi obtenu,
    • la mise en solution du produit ainsi déformé par un traitement thermique permettant d'atteindre une température comprise entre 490 et 520 °C et de préférence entre 500 et 510 °C pendant 15 min à 8 h, puis la trempe,
    • optionnellement la déformation à froid du produit ainsi mis en solution et trempé,
    • le revenu dans lequel le produit ainsi obtenu atteint une température comprise entre 160 et 210°C et de préférence entre 175 et 195°C pendant 5 à 100 heures et de préférence de 10 à 50h
  • Encore un autre objet de l'invention est l'utilisation d'un produit corroyé selon l'invention dans une application dans laquelle ledit produit est maintenu à des températures de 100 °C à 200 °C pendant une durée significative d'au moins 200 heures.
  • Description des figures
    • Figure 1 : Représentation du domaine de composition selon l'invention dans le plan Mgcorr :Cucorr.
    • Figure 2 : Evolution de la limite d'élasticité Rp0,2 avec la durée de vieillissement pour les produits laminés de l'exemple 1 ; Fig 2a : vieillissement à 150 °C, Fig 2b : vieillissement à 200 °C, Fig 2c : vieillissement à 250 °C.
    • Figure 3 : Evolution de la limite d'élasticité Rp0,2 avec la durée de vieillissement à 150 °C pour les produits filés de l'exemple 2 ; Fig 3a : état T6, Fig 3b : état T8.
    Description de l'invention
  • Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. L'expression 1,4 Cu ou 1,4 (Cu) signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515.
    Les caractéristiques mécaniques statiques en traction, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2 et l'allongement à la rupture A%, sont déterminés par un essai de traction selon la norme NF EN ISO 6892-1, le prélèvement et le sens de l'essai étant définis par la norme EN 485-1. Les essais de traction à chaud sont réalisés selon la norme NF EN 10002-5. Les essais de fluage sont réalisés selon la norme ASTM E139-06.
  • Sauf mention contraire, les définitions de la norme EN 12258 s'appliquent.
  • Les présents inventeurs ont constaté que de manière surprenante, il existe un domaine de composition des alliages Al-Cu-Mg contenant du Mn qui permet d'obtenir des produits corroyés particulièrement performants à haute température.
    La composition des produits corroyés de l'invention est définie en fonction de la teneur en fer, manganèse et silicium.
    On définit des teneurs corrigées en Cu et en Mg, appelées Cucorr et Mgcorr correspondant aux teneurs de ces éléments qui ne sont pas piégées par des composés intermétalliques contenant du fer, du manganèse ou du silicium. Cette correction est importante pour définir le domaine de composition en Cu et Mg de l'invention car les composés intermétalliques contenant du fer et du manganèse formés avec le cuivre et les composés intermétalliques formés avec le magnésium contenant du silicium ne peuvent généralement pas être mis en solution. Cucorr et Mgcorr correspondent donc aux teneurs en Cu et Mg disponibles après mise en solution pour la formation lors du revenu des phases nanométriques contribuant au durcissement.
    Les teneurs corrigées sont obtenues à l'aide des équations suivantes : Cu corr = Cu 0 , 74 Mn 0 , 2 2 , 28 Fe
    Figure imgb0001
    Mg corr = Mg 1 , 73 Si 0 , 05
    Figure imgb0002
    pour Si au moins égal à 0,05% en poids et Mgcorr = Mg pour une teneur en Si inférieure à 0,05 % en poids.
    On peut remarquer que si la teneur en Mn est inférieure à 0,2 % en poids, on calcule Cu corr = Cu 2 , 28 Fe .
    Figure imgb0003
  • Pour obtenir l'effet recherché sur les performances mécaniques à haute température, les teneurs en cuivre et en magnésium ainsi corrigées doivent obéir aux inégalités suivantes : Cu corr > 0 , 9 Mg corr + 4 , 3 de préférence Cu corr > 0 , 9 Mg corr + 4 , 5
    Figure imgb0004
    Cu corr < 0 , 9 Mg corr + 5 , 0
    Figure imgb0005
    La teneur en magnésium est telle que Mgcorr soit compris entre 1,5 et 2,6 % en poids et de préférence entre 1,6 et 2,4 % en poids.
    Dans un mode de réalisation avantageux de l'invention, Mgcorr est au moins égal à 1,8 % en poids et de préférence au moins égal à 1,9 en % en poids. Ce mode de réalisation est particulièrement avantageux pour les produits à l'état T6.
  • La teneur en cuivre est telle que Cucorr soit compris entre 2,6 et 3,7 % en poids. Avantageusement Cucorr est au moins 2,7 % en poids et de préférence au moins 2,8 % en poids.
    A partir des équations indiquées et des conditions requises pour Mgcorr et Cucorr on peut établir que la teneur en cuivre maximale est de 4,33 % en poids, correspondant à une teneur corrigée Cucorr = 3,65 % en poids, obtenue pour une teneur en fer de 0,2 % en poids, une teneur en manganese de 0,5 %en poids et une teneur corrigée Mgcorr de 1,5 % en poids, correspondant par exemple à une teneur en Mg de 1,5 % en poids et une teneur en silicium de 0,05 % en poids. La teneur en cuivre minimale est de 2.6 % en poids, correspondant à une teneur corrigée Cucorr = 2,6 % en poids obtenue pour une teneur en fer de 0 % en poids et une teneur en manganèse de 0,2 % en poids.
    La teneur en magnésium maximale est de 2,86 % en poids correspondant à une teneur en Mgcorr de 2,6 % en poids, obtenue pour une teneur en en Si de 0,2 % en poids. La teneur en magnésium minimale est de 1,5 % en poids, obtenue pour une teneur en Si de 0 % en poids. On peut également noter que pour une teneur Mgcorr au moins égale à 1,9 % en poids, et une teneur maximale en fer et en silicium de 0,08 % en poids, la teneur en cuivre maximale est de 3,69 % en poids, obtenue pour une teneur en manganese de 0,5 % en poids et correspondant à une teneur corrigée Cucorr de 3,29 % en poids.
  • Le domaine correspondant dans le plan Mgcorr:Cucorr est représenté sur la Figure 1.
  • Indépendamment des valeurs Mgcorr et Cucorr un domaine avantageux de composition des produits selon l'invention a une teneur en magnésium comprise entre 1,6 et 2,2 % en poids et de préférence entre 1,8 et 2,1 % en poids et/ou une teneur en cuivre comprise entre 2,8 et 3,7 % en poids et de préférence entre 2,9 et 3,4 % en poids.
  • Les produits selon l'invention contiennent 0,2 à 0,5 % en poids de manganèse ce qui contribue notamment au contrôle de la structure granulaire. Les présents inventeurs ont constaté que l'addition simultanée de manganèse et de zirconium est avantageuse pour améliorer encore le contrôle de la structure granulaire. Avantageusement, la teneur en Zr est au moins égale à 0,07 en % en poids et de préférence au moins égale à 0,08 en % en poids. Dans un mode de réalisation avantageux, les produits selon l'invention contiennent 0,09 à 0,15 % en poids de zirconium et 0,25 à 0,45 % en poids de manganèse.
    La teneur en chrome est au maximum de 0,25% en poids. Dans un mode de réalisation de l'invention, la teneur en chrome est comprise entre 0,05 et 0,25 % en poids et peut contribuer notamment au contrôle de la structure granulaire. Cependant la présence de chrome peut poser des problèmes de recyclage et de sensibilité à la trempe, notamment pour les produits dont l'épaisseur est au moins de 50 mm. Dans un autre mode de réalisation, la teneur en chrome est inférieure à 0,05 % en poids.
    La teneur en titane est comprise entre 0,01 et 0,15 % en poids. L'addition de titane contribue notamment à l'affinage des grains lors de la coulée. Dans un mode de réalisation, on préfère limiter l'addition de titane à une valeur maximale de 0,05 % en poids. Cependant un affinage plus important peut s'avérer utile. Ainsi, dans un autre mode de réalisation de l'invention, la teneur en titane est comprise entre 0,07 et 0,14 % en poids.
    Les teneurs en fer et en silicium sont au maximum de 0,2 % en poids chacune. Dans un mode de réalisation avantageux de l'invention, les teneurs en fer et/ou en silicium sont au maximum de 0,1% en poids et de préférence 0,08 % en poids. Les équations permettant de calculer Cucorr et Mgcorr tiennent compte des variations de Fe et Si, ainsi pour atteindre une valeur identique de Cucorr on ajoute davantage de cuivre quand la teneur en fer augmente.
    La teneur des autres éléments est inférieure à 0,05 % en poids. Le reste est de l'aluminium.
  • Les produits corroyés selon l'invention sont typiquement des tôles, des profilés, des barres ou des fils, mais peuvent également être des vis, boulons ou des rivets.
  • Le procédé de fabrication des produits selon l'invention comprend les étapes successives d'élaboration de l'alliage, coulée, optionnellement homogénéisation, déformation, mise en solution, trempe, optionnellement déformation à froid et revenu.
  • Dans une première étape, on élabore un bain de métal liquide de façon à obtenir un alliage d'aluminium de composition selon l'invention. Le bain de métal liquide est ensuite coulé typiquement sous forme de plaque de laminage, de billette de filage, d'ébauche de barre ou fil.
    Avantageusement, le produit ainsi coulé est ensuite homogénéisé de façon à atteindre une température comprise entre 450°C et 520° C et de préférence entre 500 °C et 510°C pendant une durée comprise entre 5 et 60 heures. Le traitement d'homogénéisation peut être réalisé en un ou plusieurs paliers.
    Le produit est ensuite déformé typiquement par laminage, filage et/ou étirage et/ou tréfilage et/ou frappe.
    Le produit ainsi déformé est ensuite mis en solution par un traitement thermique permettant d'atteindre une température comprise entre 490 et 520 °C et de préférence entre 500 et 510 °C pendant 15 min à 8 h, puis trempé.
    La qualité de la mise en solution peut être évaluée par calorimétrie et/ou microscopie optique. L'objectif étant que le Cu et le Mg soient en solution solide à l'exception du Cu et du Mg lié dans les composés intermétalliques contenant du manganèse du fer et/ou du silicium.
    Le produit peut ensuite optionnellement subir une déformation à froid.
    Finalement, un revenu est réalisé dans lequel le produit atteint une température comprise entre 160 et 210°C et de préférence entre 175 et 195°C pendant 5 à 100 heures et de préférence de 10 à 50h. Le revenu peut-être réalisé en un ou plusieurs paliers. De préférence, les conditions de revenu sont déterminées pour que la résistance mécanique Rp0,2 soit maximale (revenu « au pic »).
  • Il existe deux principaux modes de réalisation du procédé selon l'invention en fonction de la forme des produits corroyés. Un premier mode de réalisation du procédé selon l'invention permet la fabrication de tôles ou de profilés. Un second mode de réalisation du procédé selon l'invention permet la fabrication de fils ou barres, tels que notamment des ébauches pour usinage, des ébauches pour forge, des ébauches boulonnerie, des fils à rivet, des ébauches visserie et aussi des boulons, vis et rivets.
  • Le premier mode de réalisation du procédé selon l'invention comprend les étapes successives d'élaboration de l'alliage, coulée sous forme de plaque ou billette, optionnellement homogénéisation, déformation à chaud, mise en solution, trempe, optionnellement déformation à froid et revenu.
    Dans le premier mode de réalisation du procédé selon l'invention le bain de métal liquide est coulé sous forme de plaque de laminage ou de billette de filage.
    La plaque de laminage ou la billette de filage optionnellement homogénéisée est ensuite déformée à chaud par laminage ou filage. La déformation à chaud du premier mode de réalisation est réalisée de façon à maintenir une température d'au moins 300 °C. Avantageusement, on maintient une température d'au moins 350 °C et de préférence d'au moins 380 °C au cours de la déformation à chaud.
    Dans le premier mode de réalisation du procédé selon l'invention on ne réalise pas de déformation à froid significative, notamment par laminage à froid, entre la déformation à chaud et la mise en solution. En effet, une telle étape de déformation à froid risquerait de conduire à une structure recristallisée qui est indésirable dans le cadre de l'invention pour les produits corroyés sous forme de tôles ou de profilés. Une déformation à froid significative est typiquement une déformation d'au moins environ 5%.
    La tôle ou le profilé ainsi obtenu est ensuite mis en solution par un traitement thermique permettant d'atteindre une température comprise entre 490 et 520 °C et de préférence entre 500 et 510 °C pendant 15 min à 8 h, puis trempé typiquement avec de l'eau.
  • La combinaison de la composition choisie, en particulier de la teneur en manganèse, et de la gamme de transformation, en particulier la température de déformation à chaud et l'absence de déformation à froid significative avant mise en solution, permet d'obtenir des tôles ou des profilés ayant une structure granulaire essentiellement non-recristallisée. Par structure granulaire essentiellement non-recristallisée, on entend un taux de structure granulaire non-recristallisée à mi-épaisseur supérieur à 70 % et de préférence supérieur à 85%.
  • La tôle ou le profilé obtenu peut ensuite subir optionnellement une déformation à froid. Avantageusement, la déformation à froid est une traction contrôlée avec un allongement permanent de 2 à 5% permettant d'améliorer la résistance mécanique et d'obtenir après revenu un état T8.
    En l'absence de déformation à froid ou en présence d'une faible déformation à froid ne permettant pas d'améliorer les caractéristiques mécaniques, on obtient après revenu un produit à l'état T6.
  • Les tôles et profilés obtenus selon le premier mode de réalisation du procédé de l'invention ont l'avantage de présenter une résistance mécanique élevée et de bonnes performances à haute température. Ainsi les tôles et profilés selon l'invention présentent de préférence à l'état T8 dans la direction longitudinale une limite d'élasticité Rp0,2 d'au moins 440 MPa, préférentiellement d'au moins 450 MPa et de manière préférée d'au moins 455 MPa. Pour les profilés selon l'invention à l'état T8 on peut obtenir avantageusement dans la direction longitudinale une limite d'élasticité Rp0,2 d'au moins 470 MPa. Après vieillissement à 150 °C pendant 2000h, la diminution de la limite d'élasticité des tôles et profilés selon l'invention à l'état T8 dans la direction longitudinale est avantageusement inférieure à 12% de préférence inférieure à 10% et de manière préférée inférieure à 8%.
    Les profilés selon l'invention présentent avantageusement à l'état T8 une limite d'élasticité mesurée à 150 °C dans la direction longitudinale d'au moins 370 MPa et de préférence d'au moins 380 MPa.
    A l'état T6, les tôles ou profilés faits dans le mode de réalisation dans lequel la teneur en Mg est telle que Mgcorr soit au moins égal à 1,8 % en poids présentent avantageusement une limite d'élasticité mesurée à 150 °C dans la direction longitudinale d'au moins 340 MPa et une diminution de limite d'élasticité après 2000h de vieillissement à 150 °C inférieure à 5%.
  • Le second mode de réalisation du procédé selon l'invention comprend les étapes successives d'élaboration de l'alliage, coulée sous forme d'ébauche de fil ou barre, optionnellement homogénéisation, déformation à chaud et/ou à froid par filage et/ou étirage et/ou tréfilage et optionnellement par frappe ultérieure du fil ou de la barre obtenus pour obtenir des vis, boulons ou rivets, mise en solution, trempe et revenu.
    Dans le second mode de réalisation du procédé selon l'invention le bain de métal liquide est coulé sous forme d'ébauche de fil ou barre, de préférence sur une roue de coulée, typiquement avec le procédé de coulée continue connu sous le nom de « Properzi ». L'ébauche de fil ou barre peut également être une billette de filage.
    L'ébauche de fil ou barre est ensuite déformée à chaud et/ou à froid par filage et/ou étirage et/ou tréfilage. En particulier, si l'ébauche de fil ou barre est une billette de filage, elle sera filée à chaud avant d'être déformée à froid par étirage et/ou tréfilage, tandis que si l'ébauche de fil ou barre a été obtenue par coulée continue et déformation à chaud en sortie de roue de coulée, il ne sera nécessaire que de la déformer à froid.
    Optionnellement, le fil ou la barre obtenue peut être à ce stade frappée pour obtenir des vis, boulons ou rivets.
    Le produit ainsi obtenu est ensuite mis en solution par un traitement thermique permettant d'atteindre une température comprise entre 490 et 520 °C et de préférence entre 500 et 510 °C pendant 15 min à 8 h, puis trempé typiquement avec de l'eau.
  • La combinaison de la composition choisie, en particulier de la teneur en manganèse, et de la déformation réalisée permet d'obtenir dans le second mode de réalisation du procédé selon l'invention des produits ayant une structure granulaire essentiellement recristallisée. Par structure essentiellement recristallisée on entend un taux de recristallisation d'au moins 80% et de préférence une structure à grains fins et de taille homogène.
    Le produit obtenu peut ensuite subir optionnellement une déformation à froid.
    Cependant, dans la fabrication de certains produits, tels que notamment les boulons, les vis et les rivets, il est difficile de réaliser une déformation à froid après mise en solution et trempe. Avantageusement, le produit ne subit pas de déformation à froid après mise en solution et trempe et on obtient après revenu un état T6. Un alliage particulièrement avantageux pour l'état T6 a une teneur en Mg telle que Mgcorr soit au moins égal à 1,8 % en poids.
    D'autre part, la fabrication de produits tels que fil, boulon, rivet, vis, à l'état T8 et ayant une structure granulaire essentiellement recristallisée en alliage selon l'invention est avantageuse.
    Les produits obtenus selon le second mode de réalisation du procédé de l'invention présentent avantageusement à l'état T8 dans la direction longitudinale une limite d'élasticité Rp0,2 d'au moins 460 MPa, de préférence d'au moins 480 MPa et après vieillissement à 150 °C pendant 2000h, une diminution de la limite d'élasticité dans la direction longitudinale inférieure à 10% de préférence inférieure à 8% .
    Les produits selon l'invention sont particulièrement utiles pour des applications dans lesquelles les produits sont maintenus à des températures de 100 °C à 200 °C, typiquement à environ 150 °C, pendant une durée significative d'au moins 200 heures et de préférence d'au moins 2000 heures.
    Ainsi les produits selon l'invention sont utiles pour les pièces d'attache destinées à être utilisées dans un moteur typiquement pour automobile, telles que des vis ou des boulons ou des rivets. Les produits selon l'invention sont également utiles pour la fabrication de pièces de la nacelle et/ou de mats d'accrochage des avions. La nacelle désigne l'ensemble des supports et capots d'un moteur d'un avion multi moteurs: Les produits selon l'invention sont utiles aussi pour la fabrication de bords d'attaque d'aile d'avion. Les produits selon l'invention sont également utiles pour la fabrication de fuselage d'avions supersoniques.
  • Ces aspects, ainsi que d'autres de l'invention sont expliqués plus en détail à l'aide des exemples illustratifs et non limitatifs suivants.
  • Exemples Exemple 1.
  • Dans cet exemple 4 alliages ont été coulés sous la forme de plaques de dimension 70x170x27 mm. Les alliages A-1 et C-1 ont une composition selon l'invention.
  • La composition des alliages est donnée dans le tableau 1. Tableau 1 composition (% en poids)
    Alliage Si Fe Cu Mn Mg Ti Zr Cucorr Mgcorr
    A-1 (Inv.) 0,04 0,05 3,3 0,34 1,9 0,02 0,11 3,1 1,9
    C-1 (Inv.) 0,04 0,05 3,7 0,34 1,6 0,02 0,11 3,5 1,6
    B-1 (Réf.) 0,04 0,05 4,2 0,34 1,3 0,02 0,11 4,0 1,3
    D-1 (Réf.) 0,04 0,05 5,4 0,35 0,3 0,02 0,11 5,2 0,3
    Inv. : Inventnion Ref. : Référence
  • Les plaques ont été homogénéisées à une température comprise entre 500 °C et 540 °C, adaptée en fonction de l'alliage, laminées à chaud jusqu'à une épaisseur de 15 mm, mises en solution à une température comprise entre 500 °C et 540 °C, adaptée en fonction de l'alliage, trempées à l'eau par immersion, tractionnées de 3 à 4 % et revenues à 190 °C pour atteindre le pic de limite d'élasticité en traction à l'état T8. Ainsi la plaque en alliage A-1 a été homogénéisée en deux paliers de 10h à 500 °C puis 20h à 509 °C, la tôle obtenue après laminage étant mise en solution 2h à 507 °C et revenue 12h à 190 °C. La plaque en alliage B-1 a été homogénéisée en deux paliers de 10h à 500 °C puis 20h à 503 °C, la tôle obtenue après laminage étant mise en solution 2h à 500 °C et revenue 8h à 190 °C. La plaque en alliage C-1 a été homogénéisée en deux paliers de 10h à 500 °C puis 20h à 503 °C, la tôle obtenue après laminage étant mise en solution 2h à 504 °C et revenue 12h à 190 °C . La plaque en alliage D-1 a été homogénéisée en deux paliers de 10h à 500 °C puis 20h à 536 °C, la tôle obtenue après laminage étant mise en solution 2h à 535 °C et revenue 8h à 190 °C.
  • Les tôles obtenues présentaient une structure granulaire essentiellement non-recristallisée. Les tôles ainsi obtenues ont été caractérisées dans la direction longitudinale avant et après vieillissement à plusieurs températures et pour plusieurs durées. Les résultats sont présentés dans le tableau 2 Tableau 2 - Propriétés mécaniques obtenues à mi-épaisseur sens L avant et après vieillissement (MPa)
    Température de vieillissement (°C) Durée de vieillissement (h) A-1 C-1 B-1 D-1
    R0.2 Rm R0.2 Rm R0.2 Rm R0.2 Rm
    Pas de vieillissement 456 476 468 485 470 483 385 447
    150 500 450 471 471 487 451 488 379 442
    150 1000 447 467 462 484 427 472 372 438
    150 2000 436 467 440 473 411 463 375 450
    150 5000 421 455 424 466 386 449 352 431
    200 500 355 398 353 417 312 365 288 375
    200 1000 340 405 332 404 295 380 273 360
    200 2000 314 380 308 381 264 355 261 352
    200 5000 274 360 269 358 221 316 245 333
    250 200 305 382 301 374 263 354 262 352
    250 400 245 335 235 327 203 300 234 324
    250 600 176 284 163 265 145 252 222 314
    250 800 150 265 136 246 109 222 215 311
  • L'évolution des propriétés mécaniques avec la durée de vieillissement pour les différentes températures étudiées sont représentées sur les Figures 2a à 2c. On constate que pour une température de vieillissement de 200 °C, les tôles selon l'invention (A-1 et C-1) présentent pour 2000h de vieillissement une limite d'élasticité améliorée de plus de 15% par rapport aux tôles de référence (B-1 et D-1).
  • Exemple 2.
  • Dans cet exemple deux alliages ont été coulés sous la forme de billettes de diamètre 200 mm. Ces alliages A-2 et C-2 ont une composition selon l'invention.
    Les compositions sont données dans le tableau 3. Tableau 3 - composition (% en poids)
    Alliage Si Fe Cu Mn Mg Ti Zr Cucorr Mgcorr
    A-2 (Inv.) 0,06 0,04 3,0 0,33 2,0 0,02 0,10 2,8 2,0
    C-2 (Inv.) 0,04 0,04 3,7 0,34 1,6 0,02 0,11 3,5 1,6
    Inv. : Invention
    Les billettes ont été homogénéisées à une température comprise entre 500 °C et 520 °C, adaptée en fonction de l'alliage et filées pour obtenir des barres cylindriques de diamètre 13 mm, mises en solution à une température comprise entre 500 °C et 520 °C, adaptée en fonction de l'alliage, trempées à l'eau. Ainsi la billette en alliage A-2 a été homogénéisée 24h à 508 °C et les barres obtenues mises en solution 1h à 506 °C. La billette en alliage C-2 a été homogénéisée 24h à 508 °C et les barres obtenues mises en solution 1h à 503 °C. Certaines barres ont été tractionnées de 3 à 4 % d'autres barres n'ont pas été tractionnées, toutes les barres ont finalement subit un revenu au pic pour obtenir un état T6 (non tractionné, 20h à 190 °C pour A-2 et 16h à 190 °C pour C-2) ou T8 (tractionné, 12h à 190 °C pour les deux alliages). Les profilés obtenus présentaient une structure granulaire essentiellement non-recristallisée.
  • Pour référence, on a utilisé des fils en alliage 6056 à l'état T6 de diamètre 12 mm et des barres en alliage 2618 à l'état T8 de diamètre 40 mm.
    Les propriétés mécaniques dans la direction longitudinale avant et après vieillissement à 150 °C sont données dans le Tableau 4. Tableau 4 - Propriétés mécaniques sens L à mi-diamètre
    Durée de vieillissement (h) à 150 °C Alliage Etat Métallurgique Rp0,2 (MPa) Rm (MPa) Allongement %
    0 A-2 T8 514 538 10
    0 C-2 T8 476 510 11
    0 2618 T8 434 459 8
    0 A-2 T6 397 478 11
    0 C-2 T6 402 492 12
    0 6056 T6 378 412 15
    1000 A-2 T8 480 515 11
    1000 C-2 T8 467 507 12
    1000 2618 T8 415 447 9
    1000 A-2 T6 393 471 11
    1000 C-2 T6 363 455 13
    1000 6056 T6 375 397 13
    2000 A-2 T8 453 491 4
    2000 C-2 T8 447 491 5
    2000 2618 T8 402 439 4
    2000 A-2 T6 399 468 5
    2000 C-2 T6 332 429 6
    2000 6056 T6 359 384 6
  • Ces résultats sont également présentés dans les Figures 3a et 3b. A l'état T6, l'alliage A-2 est particulièrement stable thermiquement.
  • Des essais de caractérisation en traction à la température de 150 °C ont également été effectués selon la norme NF EN 10002-5.
    Les résultats sont présentés dans le Tableau 5. Tableau 5. Caractérisation des propriétés mécaniques sens L à 150 °C
    Alliage Etat Rp0,2 (MPa) Rm (MPa) Allongement %
    6056 T6 333 343 16
    A-2 T6 349 412 18
    C-2 T6 338 405 18
    2618 T8 357 390 14
    A-2 T8 398 420 17
    C-2 T8 385 413 17
  • On constate que les produits selon l'invention présentent, notamment, une résistance à rupture nettement supérieure à celle des produits de référence classiquement utilisés tels que l'alliage 6056 (T6) ou l'alliage 2618 (T8).
  • Des essais de fluage ont été réalisés selon la norme ASTM E139-06 pour une contrainte de 285 MPa et à une température de 150 °C. On a notamment mesuré la durée de vie, la déformation après 200h et la vitesse de fluage stationnaire. Les résultats sont rassemblés dans le Tableau 6. Tableau 6 Sens L
    Alliage Etat Durée de vie en fluage (h) Déformation après 200h (%) Vitesse de fluage stationnaire (s-1)
    épr. n°1 épr. n°2 épr. n°1 épr. n°2 épr. n°1 épr. n°2
    6056 T6 310 393 0,30 0,30 3,3E-09 3,7E-09
    A-2 T6 377 458 0,47 0,50 6,6E-09 6,7E-09
    C-2 T6 487 730 0,51 0,43 6,5E-09 5,5E-09
    2618 T8 343 283 0,89 1,41 1,1E-08 1,5E-08
    A-2 T8 > 827.9 > 779.9 0,25 0,40 1.9E-09 2,8E-09
    C-2 T8 > 825.2 > 817.8 0,26 0,26 4,1E-09 3,8E-09
    épr. : éprouvette
  • Exemple 3.
  • Dans cet exemple une barre cylindrique en alliage C-2 de diamètre 13mm a été obtenue par filage à chaud à partir d'une billette homogénéisée 24h à 508 °C. La barre a ensuite été étirée à froid pour obtenir un fil de diamètre 10;55 mm. Le fil ainsi obtenu a été mis en solution 1 heure à 503 °C, tractionné de 3 à 4 % puis revenu 12h à 190 °C pour obtenir un état T8.
  • La structure granulaire du fil ainsi obtenu, telle que observée en particulier dans le plan TLxTC a mi épaisseur, était essentiellement recristallisée et présentait un grain fin et homogène
  • Les propriétés mécaniques obtenues dans la direction longitudinale avant et après vieillissement à 150 °C sont données dans le Tableau 7. Tableau 7 - Propriétés mécaniques sens L à mi-diamètre du fil de diamètre 10,55 mm
    Durée de vieillissement (h) à 150°C Alliage Etat Métallurgique Rp0,2 (MPa) Rm (MPa) Allongement %
    0 C-2 T8 503 522 7,8
    1000 C-2 T8 462 494 6,9
    2000 C-2 T8 471 508 7,7
    Mesure à 150 °C C-2 T8 397 428

Claims (15)

  1. Produit corroyé sélectionné dans le groupe constitué de tôle, profilé, barre, fil, vis, boulon et rivet, obtenu par un procédé comprenant les étapes successives d'élaboration d'un alliage, coulée, optionnellement homogénéisation, déformation, mise en solution, trempe, optionnellement déformation à froid et revenu, ledit alliage étant un alliage d'aluminium de composition, en % en poids,
    CUcorr: 2,6 - 3,7
    Mgcorr : 1,5 - 2,6
    Mn : 0,2 - 0,5
    Zr : ≤ 0,16
    Ti : 0,01 - 0,15
    Cr ≤ 0,25
    Si ≤ 0,2
    Fe ≤ 0,2
    autres éléments < 0,05
    reste aluminium
    avec Cucorr > - 0,9(Mgcorr) + 4,3 et Cucorr < - 0,9 (Mgcorr) + 5,0
    dans lequel Cucorr = Cu - 0,74 (Mn - 0,2) - 2,28 Fe et
    Mgcorr = Mg - 1,73 (Si - 0,05) pour Si ≥ 0,05 et Mgcorr = Mg pour Si<0,05, Cucorr et Mgcorr correspondant aux teneurs de Cu et Mg qui ne sont pas piégées par des composés intermétalliques contenant du fer, du manganèse ou du silicium.
  2. Produit corroyé selon la revendication 1 dans lequel Mgcorr est au moins égal à 1,8 % en poids et de préférence au moins égal à 1,9 en % en poids.
  3. Produit corroyé selon la revendication 1 ou la revendication 2 dans lequel Zr est au moins égal à 0,07 en % en poids et de préférence au moins égal à 0,08 en % en poids.
  4. Produit corroyé selon une quelconque des revendications 1 à 3 caractérisé en ce qu'il s'agit d'une tôle ou d'un profilé dont la structure granulaire est essentiellement non-recristallisée.
  5. Produit corroyé selon la revendication 4 présentant à l'état T8 dans la direction longitudinale une limite d'élasticité Rp0,2 d'au moins 440 MPa et de préférence d'au moins 450 MPa et présentant après vieillissement à 150 °C pendant 2000h, une diminution de la limite d'élasticité dans la direction longitudinale inférieure à 12% et de préférence inférieure à 10%.
  6. Produit corroyé selon la revendication 4 dans lequel Mgcorr est au moins égal à 1,8 % en poids et présentant à l'état T6 une limite d'élasticité mesurée à 150 °C dans la direction longitudinale d'au moins 340 MPa et une diminution de limite d'élasticité après 2000h de vieillissement à 150 °C inférieure à 5%.
  7. Produit corroyé selon une quelconque des revendications 1 à 3 caractérisé en ce qu'il s'agit d'un fil ou d'une barre ou d'un boulon ou d'une vis ou d'un rivet présentant une structure granulaire essentiellement recristallisée.
  8. Produit corroyé selon la revendication 7 présentant à l'état T8 dans la direction longitudinale une limite d'élasticité Rp0,2 d'au moins 460 MPa, de préférence d'au moins 480 MPa et après vieillissement à 150 °C pendant 2000h, une diminution de la limite d'élasticité dans la direction longitudinale inférieure à 10% et de préférence inférieure à 8%.
  9. Procédé de fabrication d'un produit corroyé selon une des revendications 1 à 8 comprenant successivement
    - l'élaboration d'un bain de métal liquide de façon à obtenir un alliage d'aluminium de composition selon une quelconque des revendications 1 à 3,
    - la coulée dudit alliage typiquement sous forme de plaque de laminage, de billette de filage, d'ébauche de barre ou fil,
    - optionnellement l'homogénéisation du produit ainsi coulé de façon à atteindre une température comprise entre 450°C et 520° C,
    - la déformation avant mise en solution du produit ainsi obtenu,
    - la mise en solution du produit ainsi déformé par un traitement thermique permettant d'atteindre une température comprise entre 490 et 520 °C et de préférence entre 500 et 510 °C pendant 15 min à 8 h, puis la trempe,
    - optionnellement la déformation à froid du produit ainsi mis en solution et trempé,
    - le revenu dans lequel le produit ainsi obtenu atteint une température comprise entre 160 et 210°C et de préférence entre 175 et 195°C pendant 5 à 100 heures et de préférence de 10 à 50h.
  10. Procédé selon la revendication 9 dans lequel
    - ladite coulée de l'alliage est faite sous forme de plaque de laminage ou de billette de filage,
    - ladite déformation avant mise en solution est effectuée par laminage ou filage à chaud de façon à maintenir une température d'au moins 300 °C, sans réaliser de déformation à froid significative.
  11. Procédé selon la revendication 10 dans lequel ladite déformation à froid du produit mis en solution et trempé est effectuée par une traction contrôlée avec un allongement permanent de 2 à 5% afin d'obtenir après revenu un état T8.
  12. Procédé selon la revendication 9 dans lequel
    - ladite coulée de l'alliage est faite sous forme d'ébauche de fil ou barre,
    - ladite déformation avant mise en solution est effectuée par filage et/ou étirage et/ou tréfilage à chaud et/ou à froid pour obtenir un fil ou une barre, et optionnellement par frappe ultérieure du fil ou de la barre obtenus pour obtenir des vis, boulons ou rivets,
    - il n'y a pas de déformation à froid du produit mis en solution et trempé
    - l'état métallurgique final après revenu est un état T6.
  13. Utilisation d'un produit corroyé selon une quelconque des revendications 1 à 7 dans une application dans laquelle ledit produit est maintenu à des températures de 100 °C à 200 °C pendant une durée significative d'au moins 200 heures.
  14. Utilisation selon la revendication 13 dans laquelle ledit produit est une pièce d'attache destinées à être utilisées dans un moteur typiquement pour automobile, telles qu'une vis ou un boulon ou un rivet.
  15. Utilisation selon la revendication 13 dans laquelle ledit produit est une pièce de nacelle et/ou de mat d'accrochage d'avion ou de bord d'attaque d'aile d'avion ou de fuselage d'avion supersonique.
EP12717140.3A 2011-04-15 2012-04-06 Alliages aluminium cuivre magnesium performants a haute temperature Active EP2697406B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161475806P 2011-04-15 2011-04-15
FR1101187A FR2974118B1 (fr) 2011-04-15 2011-04-15 Alliages aluminium cuivre magnesium performants a haute temperature
PCT/FR2012/000134 WO2012140337A1 (fr) 2011-04-15 2012-04-06 Alliages aluminium cuivre magnesium performants a haute temperature

Publications (2)

Publication Number Publication Date
EP2697406A1 EP2697406A1 (fr) 2014-02-19
EP2697406B1 true EP2697406B1 (fr) 2017-09-13

Family

ID=44550857

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12717140.3A Active EP2697406B1 (fr) 2011-04-15 2012-04-06 Alliages aluminium cuivre magnesium performants a haute temperature

Country Status (7)

Country Link
US (1) US9869008B2 (fr)
EP (1) EP2697406B1 (fr)
CN (1) CN103608478B (fr)
BR (1) BR112013026381B1 (fr)
CA (1) CA2832085C (fr)
FR (1) FR2974118B1 (fr)
WO (1) WO2012140337A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104164635A (zh) * 2013-05-17 2014-11-26 中国石油天然气集团公司 一种提高铝合金钻杆用Al-Cu-Mg合金室温强度和高温性能的方法
FR3040711B1 (fr) * 2015-09-03 2017-08-11 Constellium Issoire Produit extrude en alliage al-cu-mg a compromis ameliore entre resistance mecanique et tenacite
CN105112748A (zh) * 2015-09-08 2015-12-02 苏州慧驰轻合金精密成型科技有限公司 一种高强度铸造铝合金及其制备方法
CN105170765A (zh) * 2015-10-29 2015-12-23 无锡桥阳机械制造有限公司 一种镁合金加工工艺
MX2019001802A (es) 2016-08-26 2019-07-04 Shape Corp Proceso de modelacion en caliente y aparato para flexion transversal de una viga de aluminio extrudida para modelar en caliente un componente estructural del vehiculo.
EP3529394A4 (fr) 2016-10-24 2020-06-24 Shape Corp. Procédé de formage et de traitement thermique d'un alliage d'aluminium en plusieurs étapes pour la production de composants pour véhicules
SI3363924T1 (sl) * 2017-02-17 2019-07-31 Drahtwerk Elisental W. Erdmann Gmbh & Co. Aluminijeva zlitina
CN106929721A (zh) * 2017-03-29 2017-07-07 沈阳工业大学 一种低热裂倾向的高强度Al‑Cu合金及其制备方法
CN107514414A (zh) * 2017-10-17 2017-12-26 苏州华丰不锈钢紧固件有限公司 一种吊环自攻螺钉
US20200407828A1 (en) * 2018-03-13 2020-12-31 The Penn State Research Foundation Aluminum alloys for additive manufacturing
CN109055838A (zh) * 2018-09-11 2018-12-21 湖南工业大学 一种高强韧的铝合金材料及其在制备弹壳方面的应用
CN109158604A (zh) * 2018-09-11 2019-01-08 湖南工业大学 一种铝合金弹壳制造方法及弹壳
CN110484792B (zh) * 2019-09-27 2021-02-26 福建省闽发铝业股份有限公司 一种提高铝型材抗压强度的熔铸生产工艺
US11009074B1 (en) * 2019-11-11 2021-05-18 Aktiebolaget Skf Lightweight bearing cage for turbine engines and method of forming a lightweight bearing cage
CN110724866A (zh) * 2019-11-28 2020-01-24 西南铝业(集团)有限责任公司 一种2014铝合金航空精密轮毂模锻件的无锆毛坯
CN111235443A (zh) * 2020-03-30 2020-06-05 天津忠旺铝业有限公司 一种低加工变形2系铝合金板材的制备方法
FR3111143B1 (fr) 2020-06-04 2022-11-18 Constellium Issoire Produits en alliage aluminium cuivre magnésium performants à haute température
CN112143988A (zh) * 2020-10-14 2020-12-29 北京科技大学 一种通过长期低温时效处理提高Al-Cu-Li合金力学性能的方法
CN112342442A (zh) * 2020-11-23 2021-02-09 超捷紧固系统(上海)股份有限公司 一种用铝制功能连接件与紧固件制造及材料配制方法
CN113584362A (zh) * 2021-07-29 2021-11-02 山东创新金属科技有限公司 一种汽车发动机用耐高温抗腐蚀的铝合金及其制备方法
CN114686787B (zh) * 2022-03-29 2023-02-03 宁波江丰电子材料股份有限公司 含颗粒状富铁相的6061铝合金及其制备方法和气体分配盘
CN115449678B (zh) * 2022-10-20 2023-06-09 佛山市南海俊隆包装材料有限公司 一种防锈铝合金钉线及其生产工艺
CN116804261B (zh) * 2023-08-21 2023-12-01 成都先进金属材料产业技术研究院股份有限公司 一种gh738合金棒材及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826688A (en) 1971-01-08 1974-07-30 Reynolds Metals Co Aluminum alloy system
FR2279852B1 (fr) 1974-07-23 1977-01-07 Cegedur Transf Aumin Pechiney Alliage d'aluminium de bonne tenue au fluage et de resistance a la propagation des criques amelioree
US4294625A (en) * 1978-12-29 1981-10-13 The Boeing Company Aluminum alloy products and methods
US4845543A (en) * 1983-09-28 1989-07-04 Hitachi, Ltd. Semiconductor device and method of manufacturing the same
US5213639A (en) * 1990-08-27 1993-05-25 Aluminum Company Of America Damage tolerant aluminum alloy products useful for aircraft applications such as skin
US5376192A (en) * 1992-08-28 1994-12-27 Reynolds Metals Company High strength, high toughness aluminum-copper-magnesium-type aluminum alloy
EP0817870A4 (fr) * 1995-03-21 1998-08-05 Kaiser Aluminium Chem Corp Procede de fabrication de toles d'aluminium pour l'aeronautique
FR2737225B1 (fr) 1995-07-28 1997-09-05 Pechiney Rhenalu Alliage al-cu-mg a resistance elevee au fluage
DE69823387T2 (de) * 1997-12-12 2005-02-24 Aluminum Company Of America Aluminium legierung mit hoher zähigkeit für die verwendung in der luftfahrt
FR2792001B1 (fr) * 1999-04-12 2001-05-18 Pechiney Rhenalu Procede de fabrication de pieces de forme en alliage d'aluminium type 2024
RU2210614C1 (ru) 2001-12-21 2003-08-20 Региональный общественный фонд содействия защите интеллектуальной собственности Сплав на основе алюминия, изделие из этого сплава и способ его изготовления
US7604704B2 (en) * 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
FR2925523B1 (fr) * 2007-12-21 2010-05-21 Alcan Rhenalu Produit lamine ameliore en alliage aluminium-lithium pour applications aeronautiques
EP2473643B1 (fr) * 2009-09-04 2021-05-05 Arconic Technologies LLC Procédé de vieillissement d'alliages d'aluminium permettant d'obtenir une performance de protection améliorée contre les balles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2974118A1 (fr) 2012-10-19
US9869008B2 (en) 2018-01-16
BR112013026381B1 (pt) 2019-06-25
CN103608478A (zh) 2014-02-26
BR112013026381A2 (pt) 2016-12-27
CA2832085C (fr) 2019-02-26
CA2832085A1 (fr) 2012-10-18
FR2974118B1 (fr) 2013-04-26
CN103608478B (zh) 2015-11-25
US20120261036A1 (en) 2012-10-18
WO2012140337A1 (fr) 2012-10-18
EP2697406A1 (fr) 2014-02-19

Similar Documents

Publication Publication Date Title
EP2697406B1 (fr) Alliages aluminium cuivre magnesium performants a haute temperature
EP1966402B1 (fr) Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d&#39;avion
EP2766503B1 (fr) Procédé de transformation amélioré de tôles en alliage al-cu-li
EP2449142B1 (fr) Alliage aluminium cuivre lithium a resistance mecanique et tenacite ameliorees
EP3201372B1 (fr) Tôles isotropes en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion et procédé de fabrication de celle-ci
EP4162089B1 (fr) Utilisation de produits en alliage aluminium cuivre magnesium performants a haute temperature
EP2981631B1 (fr) Tôles en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
JP5204793B2 (ja) 耐応力腐食割れ性に優れた高強度アルミニウム合金押出材
US20130146183A1 (en) High strength aluminum alloy extruded material excellent in stress corrosion cracking resistance
FR3007423A1 (fr) Element de structure extrados en alliage aluminium cuivre lithium
EP3526358B1 (fr) Toles minces en alliage aluminium-magnesium-scandium pour applications aerospatiales
EP3362282A1 (fr) Composant de structure de caisse automobile presentant un excellent compromis entre resistance mecanique et comportement au crash
EP3728667A1 (fr) Procede de fabrication ameliore de toles en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselage d&#39;avion
WO2018185425A1 (fr) Procede ameliore de fabrication de composant de structure de caisse automobile
EP4355923A1 (fr) Bande en alliage 6xxx et procede de fabrication
EP4437153A1 (fr) Bande en alliage 6xxx et procédé de fabrication
FR3132306A1 (fr) Tôle mince améliorée en alliage d’aluminium-cuivre-lithium
WO2003074747A1 (fr) Tole ou ba 0nde en alliage al-mg pour la fabrication de pieces pliees a faible rayon de pliage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150116

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM ISSOIRE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170412

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 928204

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012037266

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170913

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 928204

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012037266

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

26N No opposition filed

Effective date: 20180614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180406

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240429

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240425

Year of fee payment: 13