EP3902956B1 - Verfahren und gleisbaumaschine zur bearbeitung eines schottergleises - Google Patents
Verfahren und gleisbaumaschine zur bearbeitung eines schottergleises Download PDFInfo
- Publication number
- EP3902956B1 EP3902956B1 EP19813490.0A EP19813490A EP3902956B1 EP 3902956 B1 EP3902956 B1 EP 3902956B1 EP 19813490 A EP19813490 A EP 19813490A EP 3902956 B1 EP3902956 B1 EP 3902956B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- track
- lifting
- lifting unit
- unit
- vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 58
- 230000000087 stabilizing effect Effects 0.000 claims description 2
- 238000012423 maintenance Methods 0.000 claims 4
- 238000005056 compaction Methods 0.000 description 14
- 230000033001 locomotion Effects 0.000 description 12
- 230000006641 stabilisation Effects 0.000 description 12
- 238000011105 stabilization Methods 0.000 description 12
- 238000010276 construction Methods 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000026058 directional locomotion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B27/00—Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
- E01B27/12—Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
- E01B27/13—Packing sleepers, with or without concurrent work on the track
- E01B27/16—Sleeper-tamping machines
- E01B27/17—Sleeper-tamping machines combined with means for lifting, levelling or slewing the track
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B27/00—Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
- E01B27/02—Placing the ballast; Making ballastway; Redistributing ballasting material; Machines or devices therefor; Levelling means
- E01B27/023—Spreading, levelling or redistributing ballast already placed
- E01B27/026—Spreading, levelling or redistributing ballast already placed by means of driven tools, e.g. rotating brooms or digging devices
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B29/00—Laying, rebuilding, or taking-up tracks; Tools or machines therefor
- E01B29/04—Lifting or levelling of tracks
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B2203/00—Devices for working the railway-superstructure
- E01B2203/10—Track-lifting or-lining devices or methods
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B2203/00—Devices for working the railway-superstructure
- E01B2203/12—Tamping devices
Definitions
- the invention relates to a method for processing a ballast track by means of a track construction machine, which comprises a lifting unit with holding rollers for holding a track grate formed from rails and sleepers and with lifting drives for lifting the track grate and a measuring system for comparing with a target position of the track, wherein the The lifting unit is caused to vibrate by means of a vibration exciter and the vibration is transmitted to the track grate.
- the invention also relates to a corresponding track construction machine.
- a tamping machine which has a lifting and straightening unit that can be set in vibration by means of a vibration exciter.
- the machine is used to carry out a process in which a track is processed in two work passes.
- a first work pass the track is raised to a target level in a conventional manner using the lifting and straightening unit and tamped using tamping units.
- the vibration exciter of the lifting and straightening unit remains switched off.
- the tamping machine travels the same track section a second time.
- the vibration exciter is activated and the lifting and straightening unit is used as a stabilization unit.
- a method for processing a ballast track using a track-laying machine wherein the track-laying machine has a lifting unit with holding rollers for holding a track grate formed from rails and sleepers and with lifting drives for lifting the track grate, a control device and a measuring system for comparing with a target position of the track includes.
- the lifting unit is caused to vibrate by means of a vibration exciter and the vibration is transmitted to the track grate.
- the invention is based on the object of improving track processing by means of a lifting unit of the type mentioned at the beginning.
- a track construction machine optimized for the improved process should be specified.
- the lifting unit is controlled by means of a control device in such a way that during a lifting process, the lifting unit is set into vibration and the track grate is first raised above the target position and then lowered to the target position.
- cavities initially arise under the sleepers when lifting. These are filled with ballast during the lifting process because the vibrations transmitted to the track grate put the ballast in a flow-like state.
- the gravel grains located next to and on the sleepers start to move and migrate downwards into the resulting cavities. This combined lifting and oscillating movement takes place beyond the target position so that enough gravel gets under the sleepers. To reach the target position, the oscillating lifting unit is then pushed down.
- the gravel that gets into the cavities is compacted and forms a stable support for the sleepers.
- Horizontal vibrations in the transverse direction of the track are advantageously transmitted to the track grate in order to achieve effective compaction of the ballast.
- the track grate can be raised in a simple manner while at the same time stabilizing the track position.
- the lifting process is interrupted at least once by lowering the oscillating lifting unit. This leads to a pre-compaction of the ballast that has already been moved under the sleepers. This increases the void volume under the sleepers as the lifting process continues, allowing more gravel to get under the sleepers throughout the entire lifting process.
- the lifting unit includes straightening drives by means of which the track grate is straightened and that the vibration of the lifting unit is reduced during a straightening process.
- the lifting unit fulfills the functions of a lifting and straightening unit.
- disruptive effects of the vibrating unit on a machine frame are negligible because the movably mounted height drives have a vibration-damping effect.
- the situation is different with a directional movement that occurs in the transverse direction of the track.
- the straightening drives are activated, the lifting unit cannot oscillate freely in the cross-track direction because straightening forces act between the lifting unit and the machine frame. Disturbing vibration transmission to the machine frame is prevented by reducing the vibration of the lifting unit. Ideally, vibrations are completely switched off while the straightening drives are activated.
- gravel is applied to the track grate in a previous work process. This is done either with the same track-laying machine or with another machine, for example a ballast plow.
- the ballast placed on the sleepers is set in motion by the transmitted vibrations and fills the depressions and cavities created during the lifting process. In this way, there is enough subsequent gravel available for the filling processes in order to achieve high lifting values with the present method.
- ballast is placed on the track grate.
- the high-quality gravel is initially very mobile and promotes the shifting of the vibrating gravel grains. After compaction, however, there is a very stable structure that is not affected by any contamination or abrasion. This achieves the desired high transverse displacement resistance of the sleepers embedded in the ballast.
- a further improvement provides that in a subsequent operation, sleepers of the track grate are tamped using a tamping unit.
- the ballast pre-compacted by the vibrating lifting unit, is brought under the respective threshold even more efficiently using the tamping unit.
- the lifting unit holds the track grate in the desired position.
- the machine also includes a measuring system for comparing the lifting level during a lifting process with a target position of the track.
- a control device is arranged which is set up to control the lifting unit according to one of the methods described. This new control of the lifting unit enables the gravel to be compacted or pre-compacted during a lifting process.
- the vibration exciter comprises an adjusting device for adjusting an impact force acting on the track grate by the lifting unit.
- the vibration transmitted to the track grate can be adapted to the given requirements. Particularly during a straightening process, it makes sense to reduce the transmitted vibration to reduce the impact force.
- the adjustable impact force can be used to lower the track grate in a controlled manner. With the same load, a stronger impact force leads to a faster sinking of the track grating.
- a tamping unit is arranged on a machine frame or a satellite frame behind the lifting unit with respect to a working direction. This enables multi-stage compaction in one work trip, with the lifting unit causing pre-compression and the tamping unit causing additional compaction.
- a stabilization unit is arranged behind the lifting unit with respect to a working direction.
- Such a combination is beneficial for new track laying or after ballast cleaning.
- the track is raised to a desired target position and pre-compacted using the measuring system and the vibrating lifting unit.
- the gravel is then further compacted using the stabilization unit.
- the track construction machine 1 in Fig. 1 comprises a machine frame 2, which is mounted on rail chassis 3 and can be moved on a track 4.
- the track 4 is a ballast track in which sleepers 6 mounted on ballast 5 and rails 7 connected to them form a track grate 8.
- a tamping unit 11 is arranged behind a lifting unit 10.
- a measuring system 12 includes, for example, three measuring cars 13, which record a track position during processing compared to a reference system 14. Either mechanically tensioned measuring gauges or optical devices are used as the reference system 14.
- a mechanical measuring system 12 includes two leveling chords (one for each rail) and a directional gauge.
- the tendons are stretched between the two outer measuring cars 13 and there is a measuring sensor 15 on the middle measuring car.
- an optical measuring system 12 light sources and optical sensors are arranged on the measuring cars 13, by means of which the positions of the measuring cars 13 relative to one another are recorded.
- the measuring system 12 is used to measure the track grate 8 to be raised to a desired level by means of the vibrating lifting unit 10.
- the lifting unit 10 comprises a vibration exciter 16.
- This is preferably constructed in such a way that the lifting unit 10 is set into a horizontal vibration transversely to the longitudinal direction of the machine when the vibration exciter 16 is activated.
- two rotating unbalances are arranged, the impact forces of which increase in the horizontal direction and cancel out in the vertical direction. It is advantageous if the resulting impact force can be adjusted.
- either at least four unbalances with mutually adjustable phase positions or unbalances with adjustable eccentricity of the center of mass are provided. With the adjustable impact force, the vibration of the lifting unit 10 can be adapted to optimized specifications without delays.
- the lifting unit 10 To lift the track grate 8, the lifting unit 10 includes holding rollers 17, which hold the rail heads in place and can be rolled along the rails 7. Flanged rollers and rollers arranged on rolling tongs are used as holding rollers 17. The wheel flange rollers are pressed against the inner edges of the rails using telescopic axles. The rolling tongs grip the rail heads from the outside.
- the lifting unit 10 includes lifting drives 18, which are connected to the machine frame 2 and can carry out lateral pendulum movements. As a result, the horizontal vibration of the lifting unit 10 is not transmitted to the machine frame 2.
- the lifting unit 10 also fulfills the function of track straightening.
- the track 4 is brought laterally into the desired target position.
- the straightening drives 19 required for this cause the lifting unit 10 to shift laterally relative to the machine frame 2.
- the vibration exciter 16 is deactivated during track straightening. It is also sufficient to reduce the impact force by adjusting the imbalances that cause vibration.
- the lifting unit 10 is controlled with a control device 20.
- a control sequence for the lifting unit 10 is set up in this control device 20.
- the vibrating lifting unit 10 is raised above a target position of the track 4.
- the current position of the track grate 8 during the lifting process is compared with the target position using the measuring system 12.
- FIG. 2 show further advantageous characteristics of a track construction machine 1, by means of which the method according to the invention can be carried out in an optimized manner.
- a stabilization unit 21 is arranged behind the lifting unit 10 in the working direction 9. This ensures continuous track processing. After the track has been raised using the lifting unit 10, the track 4 is stabilized using the stabilization unit 21.
- the track construction machine 1 in Fig. 3 is designed as a continuously working tamping machine.
- the machine 1 moves continuously along the track 4.
- a satellite 22 with the lifting unit 10 and the tamping unit 11 is moved cyclically forwards and backwards relative to the machine frame 2 in order to position the tamping unit 11 above the respective threshold 6 for the tamping process.
- the operation of the lifting unit 10 is based on the further Figures 4-7 explained.
- the track grate 8 is covered with gravel 5 ( Fig. 4 ).
- gravel 5 was moved from the side of an embankment towards the rails 7 using a gravel plow.
- the track grate 8 is lifted by means of the lifting unit 10 which is set in vibration, with the vibrations being transmitted to the ballast 5.
- the vibrating gravel 5 shows a behavior similar to that of a flowing medium. That's why the cavities that appear during during the lifting process under the sleepers 6, immediately filled with moving gravel grains ( Fig. 5 ).
- a lower impact force is sufficient. Smaller imbalances are therefore provided in the vibration exciter 16 than in a stabilization unit 21.
- a vibration frequency in a range of 35 Hz to 50 Hz is optimal both during the lifting process and during the downward movement.
- the invention extends to several working methods with and without a tamping unit 11.
- the lifting unit 10 is lowered onto track 4.
- the wheel flange rollers are pressed apart using telescopic axles and the rolling tongs are pressed onto the rails 7.
- the vibration exciter 16 is then activated and the lifting unit 10 and the held track grate 8 begin to vibrate.
- the lifting unit 10 is initially held in position via the measuring system 12 in order to avoid unintentional lowering of the track 4.
- the lifting unit 10 with the track grate 8 held in place is raised several times and lowered in between.
- This pulsating lifting process is carried out by means of the lifting drives 18, with the measuring system 12 being used to continuously compare the current track position with a predetermined target track position.
- a change in level (solid line c) of the track grate 8 during a lifting process in the vertical direction z is shown over time t.
- the track grate 8 should be lifted from a starting position a with a lifting value h to a predetermined target level b.
- the target level b corresponds to the target position of track 4 in the vertical direction z.
- the lifting unit 10 follows the course of the track grate and, starting from the starting position a, a new lifting process begins.
- the track elevation is divided into three sections. In each section, the track grate 8 is first raised relative to a virtual linear track elevation (dashed line e). For example, a corresponding overlift value is stored in the control device 20.
- the aim of this elevation is to ensure sufficient placement of ballast under the raised sleepers 6. It is advantageous if the extent of the elevation can be adjusted in order to adapt to the condition of the ballast and the desired overall elevation.
- the lifting process is interrupted in each section by lowering the oscillating lifting unit 10.
- it can be planned to fall below the level corresponding to a linear track lifting (dashed line e).
- This increases the intermediate compaction of the ballast 5 and increases the fillable cavities during the subsequent lifting of the track grating.
- a load can be set via the lifting drives 18, with which the lifting unit 10 presses on the track grate 8 during a lowering phase.
- Load, impact force and vibration frequency of the lifting unit 10 as well as the lowering duration determine the compaction of the ballast 5 under the sleepers. Adjusting these parameters leads to an optimization of the respective compaction process depending on the condition of the ballast.
- the track grate 8 is raised above the target level b with a final lowering to the target position. This is done through ongoing adjustment using the measuring system 12.
- a straight line is specified as the target position for each rail in order to compensate for relative track position errors.
- An improved track position correction is achieved by specifying an absolute target position. For this purpose, the actual position is measured with respect to specified fixed points before the track is processed. Based on this, the optimal target position is derived, taking various specifications and framework conditions into account.
- the lifting unit 10 holds the track grate 8 in the position specified by the measuring system 12.
- the already pre-compacted gravel 5 can be brought under the sleepers 6 more efficiently using the tamping unit 11 and further compacted there. Due to the pre-compaction of the gravel 5, fewer tamping cycles are required compared to a conventional tamping process in order to achieve a predetermined degree of compaction. In addition, the combined compaction processes using the lifting unit 10 and the tamping unit 11 lead to improved compaction results.
- the lifting unit 10 is lowered onto track 4 at the start of work.
- the lifting unit 10 is connected to the track grate 8 via the holding rollers 17.
- the activated vibration exciter 16 causes the lifting unit 10 and the held track grate 8 to vibrate, with undesirable sinking being avoided via the measuring system 12.
- the lifting unit 10 begins a pulsating lifting and lowering movement.
- the lifting process is interrupted by lowering phases.
- the result is a process in which lifting phases continuously alternate with lowering phases.
- the resulting cavities under the sleepers 6 are filled with gravel 5.
- This causes the track grate 8 to be raised.
- the ballast 5 that has reached under the sleepers 6 is compacted. In this way, the track 4 is raised to the desired position by adjusting using the measuring system 12.
- the pulsating raising and lowering movement can be adjusted to the condition of the gravel and the desired elevation.
- the corresponding parameters such as lifting force, impact force, vibration frequency and load are set by operating personnel. Presets for these parameters can also be stored in the control device 20.
- Track 4 can also be straightened.
- the vibration of the lifting unit 10 is suspended every 1.5 to 2 meters in order to carry out a lateral displacement of the track grate 8 by means of the straightening drives 19.
- a stabilization unit 21 is used.
- several units 10, 21 can be arranged on a machine 1, as in Fig. 2 shown.
- the stabilization unit 21 can be operated with an adjustable impact force.
- the impact force of the stabilization unit 21 is then controlled via the measuring system 12 so that any longitudinal height errors are smoothed out.
- Such longitudinal height errors arise in exceptional cases due to the pulsating raising and lowering movement of the lifting unit 10.
- the ballast 5 is further compacted by means of the stabilization unit 21, which results in an even higher track quality.
- layer-by-layer compaction of the ballast 5 and restoration of the track geometry for driving clearances up to a certain speed can be carried out even without the use of a tamping unit 11. If necessary, the final step is processing using a tamping machine.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Machines For Laying And Maintaining Railways (AREA)
Description
- Die Erfindung betrifft ein Verfahren zur Bearbeitung eines Schottergleises mittels einer Gleisbaumaschine, welche ein Hebeaggregat mit Halterollen zum Festhalten eines aus Schienen und Schwellen gebildeten Gleisrostes und mit Hebeantrieben zum Heben des Gleisrostes und ein Messsystem zum Abgleichen mit einer Soll-Lage des Gleises umfasst, wobei das Hebeaggregat mittels eines Schwingungserregers in Schwingung versetzt und die Schwingung auf den Gleisrost übertragen wird. Zudem betrifft die Erfindung eine entsprechende Gleisbaumaschine.
- Aus der
WO 2017/092840 A1 ist eine Stopfmaschine bekannt, die ein mittels eines Schwingungserregers in Schwingungen versetzbares Hebe-Richtaggregat aufweist. Die Maschine dient zur Durchführung eines Verfahrens, bei dem ein Gleis in zwei Arbeitsdurchgängen bearbeitet wird. In einem ersten Arbeitsdurchgang wird das Gleis mittels des Hebe-Richtaggregats in herkömmlicher Weise auf ein Sollniveau gehoben und mittels Stopfaggregate gestopft. Während dieses Hebe-Richtvorgangs bleibt der Schwingungserreger des Hebe-Richtaggregats abgeschaltet. In einem nachfolgenden Arbeitsdurchgang befährt die Stopfmaschine dieselbe Gleisstrecke ein zweites Mal. Dabei ist der Schwingungserreger aktiviert und das Hebe-Richtaggregat wird als Stabilisierungsaggregat eingesetzt. - Aus
AT 400 862 B - Der Erfindung liegt die Aufgabe zugrunde, eine Gleisbearbeitung mittels eines Hebeaggregats der eingangs genannten Art zu verbessern. Zudem soll eine für das verbesserte Verfahren optimierte Gleisbaumaschine angegeben werden.
- Erfindungsgemäß werden diese Aufgaben gelöst durch die Merkmale der Ansprüche 1 und 7. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
- Dabei wird das Hebeaggregat mittels einer Steuerungseinrichtung in der Weise angesteuert, dass bei einem Hebevorgang das Hebeaggregat in Schwingung versetzt und der Gleisrost zunächst über die Soll-Lage angehoben und anschließend auf die Soll-Lage abgesenkt wird. Im Wirkungsbereich des Hebeaggregates entstehen beim Anheben unter den Schwellen zunächst Hohlräume. Diese werden bereits während des Hebevorgangs mit Schotter gefüllt, weil die auf den Gleisrost übertragenen Schwingungen den Schotter in einen fließähnlichen Zustand versetzen. Insbesondere die neben und auf den Schwellen befindlichen Schotterkörner geraten in Bewegung und wandern nach unten in die entstehenden Hohlräume. Diese kombinierte Hebe- und Schwingungsbewegung erfolgt bis über die Soll-Lage hinaus, damit genügend Schotter unter die Schwellen gelangt. Zur Erreichung der Soll-Lage wird das schwingende Hebeaggregat anschließend nach unten gedrückt. Der in die Hohlräume gelangte Schotter wird dabei verdichtet und bildet eine stabile Auflage für die Schwellen. Günstigerweise werden horizontale Schwingungen in Gleisquerrichtung auf den Gleisrost übertragen, um eine effektive Verdichtung des Schotters zu erzielen. Mit dem erfindungsgemäßen Verfahren ist auf einfache Weise eine Anhebung des Gleisrostes mit gleichzeitiger Stabilisierung der Gleislage durchführbar.
- In einer verbesserten Variante des Verfahrens wird der Hebevorgang zumindest einmal durch ein Absenken des schwingenden Hebeaggregats unterbrochen. Dabei kommt es zu einer Vorverdichtung des bereits unter die Schwellen bewegten Schotters. Das vergrößert das Hohlraumvolumen unter den Schwellen beim Fortsetzen des Hebevorgangs, sodass über den gesamten Hebevorgang hinweg mehr Schotter unter die Schwellen gelangt.
- Eine Weiterbildung des Verfahrens sieht vor, dass das Hebeaggregat Richtantriebe umfasst, mittels derer der Gleisrost gerichtet wird und dass während eines Richtvorgangs die Schwingung des Hebeaggregats reduziert wird. Das Hebeaggregat erfüllt in dieser Ausprägung die Funktionen eines Hebe-Richtaggregats. Bei Hebe- und Senkbewegungen sind störende Rückwirkung des in Schwingung versetzten Aggregats auf einen Maschinenrahmen vernachlässigbar, weil die beweglich gelagerten Höhenantriebe vibrationsdämpfend wirken. Anders sieht es bei einer in Gleisquerrichtung erfolgenden Richtbewegung aus. Bei aktivierten Richtantrieben ist kein freies Pendeln des Hebeaggregats in Gleisquerrichtung möglich, weil zwischen dem Hebeaggregat und dem Maschinenrahmen Richtkräfte wirken. Eine störende Vibrationsübertragung auf den Maschinenrahmen wird verhindert, indem die Schwingung des Hebeaggregats reduziert wird. Idealerweise erfolgt eine gänzliche Schwingungsabschaltung, während die Richtantriebe aktiviert sind.
- In einer vorteilhaften Erweiterung des Verfahrens wird auf den Gleisrost in einem vorhergehenden Arbeitsvorgang Schotter aufgebracht. Das geschieht entweder mit derselben Gleisbaumaschine oder mittels eine andere Maschine, zum Beispiel mittels eines Schotterpfluges. Insbesondere der auf den Schwellen vorgelagerte Schotter wird durch die übertragenen Schwingungen in Bewegung versetzt und füllt die beim Hebevorgang entstehenden Senken und Hohlräume. Auf diese Weise ist für die Füllvorgänge genügend nachkommender Schotter vorhanden, um mit dem vorliegenden Verfahren große Hebewerte zu erzielen.
- Dabei ist es günstig, wenn auf den Gleisrost neuer oder gereinigter Schotter aufgebracht wird. Der qualitativ hochwertige Schotter ist zunächst sehr beweglich und begünstigt das Verlagern der in Schwingung versetzten Schotterkörner. Nach einer Verdichtung liegt jedoch ein sehr stabiles Gefüge vor, das durch keine Verschmutzungen oder Abrieb beeinträchtigt ist. Damit wird ein erwünschter hoher Querverschiebewiderstand der im Schotter eigebetteten Schwellen erreicht.
- Eine weitere Verbesserung sieht vor, dass in einem nachfolgenden Arbeitsvorgang Schwellen des Gleisrostes mittels eines Stopfaggregats unterstopft werden. Der mittels des in Schwingung versetzten Hebeaggregats vorverdichtete Schotter wir mit dem Stopfaggregat noch effizienter unter die jeweilige Schwelle gebracht. Dabei hält das Hebeaggregat den Gleisrost in der Soll-Lage. Durch die Vorverdichtung des Schotters wird gegenüber herkömmlichen Stopfverfahren eine bessere Verdichtung mit weniger Stopfzyklen erzielt.
- Die erfindungsgemäße Gleisbaumaschine zur Bearbeitung eines Schottergleises umfasst ein Hebeaggregat mit Halterollen zum Festhalten eines Gleisrostes sowie mit Hebeantrieben zum Heben des Gleisrostes, wobei das Hebeaggregat mit einem Schwingungserreger gekoppelt ist. Die Maschine umfasst auch ein Messsystem zum Abgleichen des Hebeniveaus während eines Hebevorgangs mit einer Soll-Lage des Gleises. Zudem ist eine Steuerungseinrichtung angeordnet, die zur Ansteuerung des Hebeaggregats gemäß eines der beschriebenen Verfahren eingerichtet ist. Diese neue Ansteuerung des Hebeaggregats ermöglicht eine Verdichtung oder Vorverdichtung des Schotters bereits während eines Hebevorgangs.
- Erfindungsgemäß umfasst der Schwingungserreger eine Stelleinrichtung zum Einstellen einer vom Hebeaggregat auf den Gleisrost wirkenden Schlagkraft. Damit ist die auf den Gleisrost übertragene Schwingung an die gegebenen Anforderungen anpassbar. Insbesondere während eines Richtvorgangs ist es sinnvoll, die übertragene Schwingung zur Herabsetzung der Schlagkraft zu reduzieren. Zudem ist die einstellbare Schlagkraft zur geregelten Absenkung des Gleisrostes nutzbar. Dabei führt bei gleicher Auflast eine stärkere Schlagkraft zu einem schnelleren Absinken des Gleisrostes.
- In einer weiteren vorteilhaften Ausprägung ist an einem Maschinenrahmen oder einem Satellitenrahmen bezüglich einer Arbeitsrichtung hinter dem Hebeaggregat ein Stopfaggregat angeordnet. Damit wird in einer Arbeitsfahrt eine mehrstufige Verdichtung ermöglicht, wobei das Hebeaggregat eine Vorverdichtung und das Stopfaggregat eine zusätzliche Verdichtung bewirken.
- Eine andere vorteilhafte Ausprägung sieht vor, dass bezüglich einer Arbeitsrichtung hinter dem Hebeaggregat ein Stabilisierungsaggregat angeordnet ist. Eine solche Kombination ist für Gleisneulagen oder nach einer Schotterreinigung günstig. Das Gleis wird mittels des Messsystems und des in Schwingung versetzten Hebeaggregats auf eine gewünschte Soll-Lage gehoben und vorverdichtet. Anschließend wird der Schotter mittels des Stabilisierungsaggregats weiter verdichtet. Mit dieser lagenweisen Verdichtung und gleichzeitigen Lagekorrektur sind Fahrfreigaben bis zu einer vorgegeben erlaubten Geschwindigkeit auch ohne den Einsatz eines Stopfaggregats möglich.
- Die Erfindung wird nachfolgend in beispielhafter Weise unter Bezugnahme auf die beigefügten Figuren erläutert. Es zeigen in schematischer Darstellung:
- Fig. 1
- Gleisbaumaschine mit Hebeaggregat und Stopfaggregat
- Fig. 2
- Gleisbaumaschine mit Hebeaggregat und Stabilisationsaggregat
- Fig. 3
- Gleisbaumaschine mit einem Satellitenrahmen
- Fig. 4
- eingeschotterter Gleisrost in einem Längsschnitt
- Fig. 5
- Gleisrost gemäß
Fig. 4 während einer Gleisrostanhebung - Fig. 6
- Gleisrost gemäß
Fig. 4 während einer Gleisrostabsenkung - Fig. 7
- Bewegungsverlauf während eines Hebevorgangs
- Die Gleisbaumaschine 1 in
Fig. 1 umfasst einen Maschinenrahmen 2, der auf Schienenfahrwerken 3 gelagert auf einem Gleis 4 verfahrbar ist. Das Gleis 4 ist ein Schottergleis, bei dem auf Schotter 5 gelagerte Schwellen 6 und damit verbundene Schienen 7 einen Gleisrost 8 bilden. Bezüglich einer Arbeitsrichtung 9 ist hinter einem Hebeaggregat 10 ein Stopfaggregat 11 angeordnet. Ein Messsystem 12 umfasst beispielsweise drei Messwagen 13, die eine Gleislage während der Bearbeitung gegenüber einem Bezugssystem 14 erfassen. Als Bezugssystem 14 kommen entweder mechanisch gespannte Messsehen oder optische Einrichtungen zum Einsatz. - Ein mechanisches Messsystem 12 umfasst zwei Nivelliersehnen (eine für jede Schiene) und eine Richtsehen. Die Sehnen sind zwischen den beiden äußeren Messwagen 13 gespannt und am mittleren Messwagen befindet sich ein Messabnehmer 15. Bei einem optischem Messsystem 12 sind an den Messwagen 13 Lichtquellen und optische Sensoren angeordnet, mittels derer die Positionen der Messwagen 13 zueinander erfasst werden. Bei der vorliegenden Erfindung wird das Messsystem 12 genutzt, um den Gleisrost 8 mittels des in Schwingung versetzten Hebeaggregats 10 auf ein gewünschtes Niveau anzuheben.
- Erfindungsgemäß umfasst das Hebeaggregat 10 einen Schwingungserreger 16. Dieser ist vorzugsweise so aufgebaut, dass das Hebeaggregat 10 bei aktiviertem Schwingungserreger 16 in eine horizontale Schwingung quer zur Maschinenlängsrichtung versetzt wird. Beispielsweise sind zwei rotierende Unwuchten angeordnet, deren Schlagkräfte sich in horizontaler Richtung verstärken und in vertikaler Richtung aufheben. Dabei ist es günstig, wenn die resultierende Schlagkraft einstellbar ist. Dazu sind entweder mindestens vier Unwuchten mit zueinander einstellbaren Phasenlagen oder Unwuchten mit jeweils einstellbarer Exzentrizität des Massenschwerpunkts vorgesehen. Mit der einstellbaren Schlagkraft ist die Schwingung des Hebeaggregats 10 ohne Verzögerungen an optimierte Vorgaben anpassbar.
- Zum Anheben des Gleisrostes 8 umfasst das Hebeaggregat 10 Halterollen 17, die im Einsatz die Schienenköpfe festhalten und entlang der Schienen 7 abrollbar sind. Als Halterollen 17 kommen Spurkranzrollen und an Rollzangen angeordnete Rollen zum Einsatz. Die Spurkranzrollen werden mittels Teleskopachsen gegen die Schieneninnenkanten gepresst. Die Rollzangen umfassen die Schienenköpfe von außen.
- Mittels der Halterollen 17 übertragen sich alle Bewegungen des Hebeaggregats 10 auf den festgehaltenen Gleisrost 8. Zum Anheben und Absenken des Gleisrostes 8 umfasst das Hebeaggregat 10 Hebeantriebe 18, die an den Maschinenrahmen 2 angeschlossen sind und seitliche Pendelbewegungen ausführen können. Dadurch wird die horizontale Schwingung des Hebeaggregats 10 nicht auf den Maschinenrahmen 2 übertragen.
- Sinnvollerweise erfüllt das Hebeaggregat 10 auch die Funktion des Gleisrichtens. Dabei wird das Gleis 4 seitlich in die gewünschte Soll-Lage gebracht. Die dafür erforderlichen Richtantriebe 19 bewirken bei Betätigung eine seitliche Verschiebung des Hebeaggregats 10 gegenüber dem Maschinenrahmen 2. Bei einem Richtvorgang besteht somit eine seitliche Kraftübertragung zwischen Hebeaggregat 10 und Maschinenrahmen 2. Um dabei eine störende Schwingungsübertragung auf den Maschinenrahmen 2 zu vermeiden, wird der Schwingungserreger 16 während des Gleisrichtens deaktiviert. Ausreichend ist auch eine Reduzierung der Schlagkraft durch Verstellung der schwingungserzeugenden Unwuchten.
- Angesteuert wird das Hebeaggregat 10 mit einer Steuerungseinrichtung 20. In dieser Steuerungseinrichtung 20 ist ein Ansteuerungsablauf für das Hebeaggregat 10 eingerichtet. Bei Aktivierung des Ablaufs erfolgt zumindest in einer Ablaufphase ein Anheben des in Schwingung versetzten Hebeaggregats 10 über eine Soll-Lage des Gleises 4. Ein Abgleichen der momentanen Lage des Gleisrostes 8 während des Hebevorgangs mit der Soll-Lage geschieht mittels des Messsystems 12.
- Die
Figuren 2 und 3 zeigen weitere vorteilhafte Ausprägungen einer Gleisbaumaschine 1, mittels derer das erfindungsgemäße Verfahren in optimierter Weise durchführbar ist. InFig. 2 ist in Arbeitsrichtung 9 hinter dem Hebeaggregat 10 ein Stabilisationsaggregat 21 angeordnet. Damit erfolgt eine kontinuierliche Gleisbearbeitung. Nach der Gleisanhebung mittels des Hebeaggregats 10 wird das Gleis 4 mittels des Stabilisationsaggregats 21 stabilisiert. - Die Gleisbaumaschine 1 in
Fig. 3 ist als kontinuierlich arbeitende Stopfmaschine ausgebildet. Dabei bewegt sich die Maschine 1 kontinuierlich entlang des Gleises 4. Ein Satellit 22 mit dem Hebeaggregat 10 und dem Stopfaggregat 11 wird gegenüber dem Maschinenrahmen 2 zyklisch vorwärts und rückwärts bewegt, um das Stopfaggregat 11 für den Stopfvorgang über der jeweiligen Schwelle 6 zu positionieren. - Die Arbeitsweise des Hebeaggregates 10 wird anhand der weiteren
Figuren 4-7 erläutert. Zu Beginn ist der Gleisrost 8 mit Schotter 5 abgedeckt (Fig. 4 ). Beispielsweise wurde mit einem Schotterpflug Schotter 5 von einer Böschungsflanke in Richtung der Schienen 7 verlagert. Während einer Maschinenvorfahrt wird der Gleisrost 8 mittels des in Schwingung versetzten Hebeaggregats 10 angehoben, wobei es zu einer Übertragung der Schwingungen auf den Schotter 5 kommt. Ab einer Schwingungsfrequenz von ca. 30 Hz zeigt der in Vibration versetzte Schotter 5 ein ähnliches Verhalten wie ein fließendes Medium. Deshalb werden die Hohlräume, die sich während des Hebevorgangs unter den Schwellen 6 bilden, sogleich mit in Bewegung befindlichen Schotterkörnern aufgefüllt (Fig. 5 ). - Eine anschließende Abwärtsbewegung des weiterhin in Schwingung versetzten Hebeaggregats 10 bewirkt ein Verdichten des unter die Schwellen 6 bewegten Schotters 5 (
Fig. 6 ). Gegenüber einem herkömmlichen Stabilisationsaggregat 21 ist eine geringere Schlagkraft ausreichend. Im Schwingungserreger 16 sind demnach kleinere Unwuchten vorgesehen als bei einem Stabilisationsaggregat 21. Sowohl beim Hebevorgang als auch bei der Abwärtsbewegung ist eine Schwingungsfrequenz in einem Bereich von 35 Hz bis 50 Hz optimal. - Die Erfindung erstreckt sich auf mehrere Arbeitsmethoden mit und ohne Stopfaggregat 11. Beim Einsatz des Hebeaggregats 10 als Hebe-Richtaggregat während eines Stopfvorgangs kommen folgende Verfahrensschritte zur Anwendung. Zu Arbeitsbeginn wird das Hebeaggregat 10 auf das Gleis 4 abgesenkt. Mittels Teleskopachsen werden die Spurkranzrollen auseinandergepresst und die Rollzangen an die Schienen 7 angedrückt. Danach wird der Schwingungserreger 16 aktiviert und das Hebeaggregat 10 sowie der festgehaltene Gleisrost 8 beginnen zu vibrieren. Dabei wird das Hebeaggregat 10 über das Messsystem 12 zunächst in Position gehalten, um ein ungewolltes Absenken des Gleises 4 zu vermeiden.
- Während einer Vorfahrt mit der Gleisbaumaschine 1 wird das Hebeaggregat 10 mit dem festgehaltenen Gleisrost 8 mehrmals gehoben und dazwischen abgesenkt. Dieser pulsierende Hebevorgang wird mittels der Hebeantriebe 18 durchgeführt, wobei mittels des Messsystems 12 ein laufender Abgleich der momentanen Gleisposition mit einer vorgegebenen Soll-Gleislage durchgeführt wird.
- In
Fig. 7 ist eine Niveauveränderung (durchgezogene Linie c) des Gleisrostes 8 während eines Hebevorgangs in vertikaler Richtung z über der Zeit t dargestellt. Während der Dauer d eines Hebevorgangs soll der Gleisrost 8 von einer Ausgangslage a mit einem Hebewert h auf ein vorgegebenes Soll-Niveau b gehoben werden. Das Soll-Niveau b entspricht der Soll-Lage des Gleises 4 in vertikaler Richtung z. Mit der weiteren Vorwärtsbewegung der Maschine 1 folgt das Hebeaggregat 10 dem Gleisrostverlauf und ausgehend von der Ausgangslage a beginnt ein erneuter Hebevorgang. - Im vorliegenden Beispiel ist die Gleisanhebung in drei Abschnitte unterteilt. In jedem Abschnitt wird der Gleisrost 8 zunächst gegenüber einer virtuellen linearen Gleishebung (gestrichelte Linie e) überhoben. Beispielsweise ist in der Steuerungseinrichtung 20 ein entsprechender Überhebewert hinterlegt. Ziel dieser Überhebung ist eine ausreichende Schottereinbringung unter den angehobenen Schwellen 6. Dabei ist es günstig, wenn das Ausmaß der Überhebung einstellbar ist, um eine Anpassung an die Schotterbeschaffenheit und die gewünschte Gesamthebung vorzunehmen.
- Unterbrochen wird der Hebevorgang in jedem Abschnitt durch ein Absenken des schwingenden Hebeaggregats 10. Dabei kann in den ersten Abschnitten ein Unterschreiten des einer linearen Gleishebung entsprechenden Niveaus (gestrichelte Linie e) vorgesehen sein. Das verstärkt die Zwischenverdichtung des Schotters 5 und vergrößert die füllbaren Hohlräume bei der nachfolgenden Gleisrosthebung. Über die Hebeantriebe 18 ist eine Auflast einstellbar, mit der das Hebeaggregat 10 während einer Absenkphase auf den Gleisrost 8 drückt. Auflast, Schlagkraft und Schwingungsfrequenz des Hebeaggregats 10 sowie die Absenkdauer bestimmen die Verdichtung des Schotters 5 unter den Schwellen. Eine Anpassung dieser Parameter führt zu einer Optimierung des jeweiligen Verdichtungsvorgangs in Abhängigkeit der Schotterbeschaffenheit.
- Zumindest im letzten Abschnitt des Hebevorgangs erfolgt ein Anheben des Gleisrostes 8 über das Soll-Niveau b mit einem abschließenden Absenken auf die Soll-Lage. Das geschieht durch einen laufenden Abgleich mittels des Messsystems 12. Im einfachsten Fall ist als Soll-Lage für jede Schiene eine Gerade vorgegeben, um relative Gleislagefehler auszugleichen. Eine verbesserte Gleislagenkorrektur erfolgt durch Vorgabe einer absoluten Soll-Lage. Dazu erfolgt vor der Gleisbearbeitung eine Vermessung der Ist-Lage bezüglich vorgegebener Festpunkte. Darauf aufbauend wird unter Berücksichtigung diverser Vorgaben und Rahmenbedingungen die optimale Soll-Lage abgeleitet.
- Während des eigentlichen Stopfvorgangs hält das Hebeaggregat 10 den Gleisrost 8 in der durch das Messsystem 12 vorgegebenen Position. Dabei kann der bereist vorverdichtete Schotter 5 mittels des Stopfaggregats 11 effizienter unter die Schwellen 6 gebracht und dort weiter verdichtet werden. Durch die Vorverdichtung des Schotters 5 sind gegenüber einem herkömmlichen Stopfvorgang weniger Stopfzyklen erforderlich, um einen vorgegebenen Verdichtungsgrad zu erreichen. Darüber hinaus führen die kombinierten Verdichtungsvorgänge mittels des Hebeaggregats 10 und des Stopfaggregats 11 zu verbesserten Verdichtungsergebnissen.
- Mit der vorliegenden Erfindung ist insbesondere bei Gleisneulagen oder nach einer Schotterreinigung eine Gleishebung ohne Einsatz eines Stopfaggregats 11 möglich. Diese Verfahrensvariante bietet sich bei Schotterreinigungsmaschinen und Gleisumbaumaschinen an. Ein Abgleich mit der Soll-Lage erfolgt auch hier mittels des Messsystems 12.
- Das Hebeaggregat 10 wird zu Arbeitsbeginn auf das Gleis 4 abgesenkt. Über die Halterollen 17 verbindet sich das Hebeaggregat 10 mit dem Gleisrost 8. Der aktivierte Schwingungserregers 16 versetzt das Hebeaggregat 10 und den gehaltenen Gleisrost 8 in Vibration, wobei über das Messsystem 12 ein unerwünschtes Absinken vermieden wird. Sobald sich die Gleisbaumaschine 1 in Arbeitsrichtung 9 bewegt, beginnt das Hebeaggregat 10 mit einer pulsierenden Hebe-Senkbewegung. Dabei wird wie oben beschrieben der Hebevorgang durch Absenkphasen unterbrochen. Resultat ist ein Vorgang, bei dem sich fortlaufend Hebephasen mit Absenkphasen abwechseln. Während der Hebephasen werden die entstehenden Hohlräume unter den Schwellen 6 mit Schotter 5 aufgefüllt. Dabei kommt es zu einem Überheben des Gleisrostes 8. In den Absenkphasen erfolgt eine Verdichtung des unter die Schwellen 6 gelangten Schotters 5. Auf diese Weise wird das Gleis 4 durch Abgleich mittels des Messsystems 12 in die Soll-Lage gehoben.
- Die pulsierende Hebe-Senkbewegung ist an die Schotterbeschaffenheit und die gewünschte Hebung anpassbar. Dabei werden die entsprechenden Parameter wie Hebekraft, Schlagkraft, Schwingungsfrequenz und Auflast durch ein Bedienpersonal eingestellt. Es können auch Voreinstellungen für diese Parameter in der Steuerungseinrichtung 20 hinterlegt sein.
- Begleitend kann ein Richten des Gleises 4 erfolgen. Dabei wird beispielsweise alle 1,5 bis 2 Meter die Schwingung des Hebeaggregats 10 ausgesetzt, um eine seitliche Verlagerung des Gleisrostes 8 mittels der Richtantriebe 19 durchzuführen.
- In einem nachfolgenden Arbeitsvorgang kommt ein Stabilisationsaggregat 21 zum Einsatz. Dazu können mehrere Aggregate 10, 21 auf einer Maschine 1 angeordnet sein, wie in
Fig. 2 dargestellt. Günstigerweise ist das Stabilisationsaggregat 21 mit einer einstellbaren Schlagkraft betreibbar. Dann wird über das Messsystem 12 die Schlagkraft des Stabilisationsaggregat 21 so gesteuert, dass etwaige Längshöhenfehler geglättet werden. Solche Längshöhenfehler ergeben sich in Ausnahmefällen durch die pulsierende Hebe-Senkbewegung des Hebeaggregats 10. Zudem wird mittels des Stabilisationsaggregats 21 der Schotter 5 weiter verdichtet, woraus eine noch höhere Gleislagequalität resultiert. - Mit dem beschriebenen Verfahren ist auch ohne Einsatz eines Stopfaggregats 11 eine lagenweise Verdichtung des Schotters 5 und eine Wiederherstellung der Gleisgeometrie für Fahrfreigaben bis zu einer gewissen Geschwindigkeit durchführbar. Gegebenenfalls erfolgt als abschließender Arbeitsgang eine Bearbeitung mittels einer Stopfmaschine.
Claims (9)
- Verfahren zur Bearbeitung eines Schottergleises (4) mittels einer Gleisbaumaschine (1), welche ein Hebeaggregat (10) mit Halterollen (17) zum Festhalten eines aus Schienen (7) und Schwellen (6) gebildeten Gleisrostes (8) und mit Hebeantrieben (18) zum Heben des Gleisrostes (8), eine Steuerungseinrichtung (20) zur Ansteuerung des Hebeaggregats (10) und ein Messsystem (12) zum Abgleichen mit einer Soll-Lage des Gleises (4) umfasst, wobei das Hebeaggregat (10) mittels eines Schwingungserregers (16) in Schwingung versetzt und die Schwingung auf den Gleisrost (8) übertragen wird, dadurch gekennzeichnet, dass durch eine Stelleinrichtung des Schwingungserregers (16) ein Einstellen einer vom Hebeaggregat (10) auf den Gleisrost wirkenden Schlagkraft durchgeführt wird und das Hebeaggregat (10) mittels der Steuerungseinrichtung (20) in der Weise angesteuert wird, dass bei einem Hebevorgang das Hebeaggregat (10) in Schwingung versetzt und der Gleisrost (8) zunächst über die Soll-Lage angehoben und anschließend auf die Soll-Lage abgesenkt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Hebevorgang zumindest einmal durch ein Absenken des schwingenden Hebeaggregats (10) unterbrochen wird.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Hebeaggregat (10) Richtantriebe (19) umfasst, mittels derer der Gleisrost (8) gerichtet wird und dass während eines Richtvorgangs die Schwingung des Hebeaggregats (10) reduziert wird.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass auf den Gleisrost (8) in einem vorhergehenden Arbeitsvorgang Schotter (5) aufgebracht wird.
- Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass auf den Gleisrost (8) neuer oder gereinigter Schotter (5) aufgebracht wird.
- Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in einem nachfolgenden Arbeitsvorgang Schwellen (6) des Gleisrostes (8) mittels eines Stopfaggregats (11) unterstopft werden.
- Gleisbaumaschine (1) zur Bearbeitung eines Schottergleises (4) gemäß eines Verfahren nach einem der Ansprüche 1 bis 6, umfassend ein Hebeaggregat (10) mit Halterollen (17) zum Festhalten eines Gleisrostes (8) und mit Hebeantrieben (18) zum Heben des Gleisrostes (8), eine Steuerungseinrichtung (20) zur Ansteuerung des Hebeaggregats (10) und ein Messsystem (12) zum Abgleichen mit einer Soll-Lage des Gleises (4), wobei das Hebeaggregat (10) mit einem Schwingungserreger (16) gekoppelt ist, dadurch gekennzeichnet, dass der Schwingungserreger (16) eine Stelleinrichtung zum Einstellen einer vom Hebeaggregat (10) auf den Gleisrost (8) wirkenden Schlagkraft umfasst.
- Gleisbaumaschine (1) nach Anspruch 7, dadurch gekennzeichnet, dass an einem Maschinenrahmen (2) oder einem Satellitenrahmen bezüglich einer Arbeitsrichtung (9) hinter dem Hebeaggregat (10) ein Stopfaggregat (11) angeordnet ist.
- Gleisbaumaschine (1) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass bezüglich einer Arbeitsrichtung (9) hinter dem Hebeaggregat (10) ein Stabilisierungsaggregat (21) angeordnet ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA390/2018A AT521990B1 (de) | 2018-12-27 | 2018-12-27 | Verfahren und Gleisbaumaschine zur Bearbeitung eines Schottergleises |
PCT/EP2019/083209 WO2020135973A1 (de) | 2018-12-27 | 2019-12-02 | Verfahren und gleisbaumaschine zur bearbeitung eines schottergleises |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3902956A1 EP3902956A1 (de) | 2021-11-03 |
EP3902956B1 true EP3902956B1 (de) | 2023-11-15 |
EP3902956C0 EP3902956C0 (de) | 2023-11-15 |
Family
ID=68766755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19813490.0A Active EP3902956B1 (de) | 2018-12-27 | 2019-12-02 | Verfahren und gleisbaumaschine zur bearbeitung eines schottergleises |
Country Status (7)
Country | Link |
---|---|
US (1) | US12104330B2 (de) |
EP (1) | EP3902956B1 (de) |
JP (1) | JP7453977B2 (de) |
CN (1) | CN113195830A (de) |
AT (1) | AT521990B1 (de) |
EA (1) | EA202100174A1 (de) |
WO (1) | WO2020135973A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT521263B1 (de) | 2018-08-20 | 2019-12-15 | Hp3 Real Gmbh | Verfahren zur Einzelfehlerbehebung |
AT524276A1 (de) * | 2020-09-16 | 2022-04-15 | Plasser & Theurer Export Von Bahnbaumaschinen Gmbh | Verfahren und Gleisstopfmaschine zum Unterstopfen eines Gleises |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT201640B (de) | 1958-10-30 | 1959-01-10 | Plasser Bahnbaumasch Franz | Fahrbare Gleisstopfmaschine |
CA1082521A (en) | 1976-04-14 | 1980-07-29 | Josef Theurer | Method and apparatus for obtaining a controlled degree of ballast compaction in the tamping and leveling of a track |
AT371171B (de) * | 1981-01-28 | 1983-06-10 | Plasser Bahnbaumasch Franz | Gleisnivellierstopf- und richtmaschine mit stabilisationsaggregat |
AT389132B (de) * | 1987-09-04 | 1989-10-25 | Plasser Bahnbaumasch Franz | Kontinuierlich (non-stop) verfahrbare gleisbaumaschine |
US4903609A (en) * | 1988-09-23 | 1990-02-27 | Kennametal Inc. | Tamping blade with improved inserts |
EP0499016B1 (de) * | 1991-02-12 | 1995-01-25 | Franz Plasser Bahnbaumaschinen-Industriegesellschaft m.b.H. | Reinigungsmaschine |
DE59201879D1 (de) * | 1991-06-12 | 1995-05-18 | Plasser Bahnbaumasch Franz | Verfahren und Stopfmaschine zum Verdichten des Schotters eines Gleises. |
AT400862B (de) * | 1992-05-26 | 1996-04-25 | Plasser Bahnbaumasch Franz | Gleisbaumaschine mit höhenverstellbarem gleishebeaggregat |
EP0726360B1 (de) * | 1995-02-09 | 1999-02-24 | Franz Plasser Bahnbaumaschinen-Industriegesellschaft m.b.H. | Verfahren und Maschine zum Unterstopfen und Stabilisieren eines Gleises |
DE59907764D1 (de) * | 1998-03-27 | 2003-12-24 | Plasser Bahnbaumasch Franz | Verfahren zur Gleislagekorrektur |
DE502004008005D1 (de) | 2004-11-22 | 2008-10-16 | Plasser Bahnbaumasch Franz | Verfahren zur korrektur von höhenlagefehlern eines gleises |
EP2957674B1 (de) | 2014-06-18 | 2017-10-11 | HP3 Real GmbH | Verfahren zum Betreiben einer auf einer Gleisanlage verfahrbaren Oberbaumaschine |
AT516873B1 (de) | 2015-03-03 | 2016-12-15 | Plasser & Theurer Export Von Bahnbaumaschinen Gmbh | Maschine zur Stabilisation eines Gleises |
CA2953846C (en) * | 2014-08-13 | 2022-07-26 | Plasser & Theurer Export Von Bahnbaumaschinen Gesellschaft M.B.H. | Machine for stabilizing a track |
AT516590B1 (de) * | 2014-11-28 | 2017-01-15 | System 7 - Railsupport GmbH | Verfahren und Vorrichtung zum Verdichten der Schotterbettung eines Gleises |
AT516547B1 (de) * | 2015-02-27 | 2016-06-15 | Plasser & Theurer Export Von Bahnbaumaschinen Gmbh | Stopfaggregat zum Unterstopfen von Schwellen eines Gleises |
AT517357B1 (de) * | 2015-08-21 | 2017-01-15 | Plasser & Theurer Export Von Bahnbaumaschinen Gmbh | Stopfaggregat |
AT517480B1 (de) * | 2015-11-18 | 2017-02-15 | Plasser & Theurer Export Von Bahnbaumaschinen Gmbh | Stopfaggregat sowie Verfahren zum Unterstopfen eines Gleises |
AT518023B1 (de) * | 2015-12-02 | 2018-04-15 | Plasser & Theurer Export Von Bahnbaumaschinen Gmbh | Stopfmaschine sowie Verfahren zur Durchführung einer Lagekorrektur eines Gleises |
-
2018
- 2018-12-27 AT ATA390/2018A patent/AT521990B1/de active
-
2019
- 2019-12-02 JP JP2021537905A patent/JP7453977B2/ja active Active
- 2019-12-02 US US17/299,547 patent/US12104330B2/en active Active
- 2019-12-02 EP EP19813490.0A patent/EP3902956B1/de active Active
- 2019-12-02 EA EA202100174A patent/EA202100174A1/ru unknown
- 2019-12-02 CN CN201980083775.0A patent/CN113195830A/zh active Pending
- 2019-12-02 WO PCT/EP2019/083209 patent/WO2020135973A1/de unknown
Also Published As
Publication number | Publication date |
---|---|
JP7453977B2 (ja) | 2024-03-21 |
AT521990A1 (de) | 2020-07-15 |
EP3902956A1 (de) | 2021-11-03 |
US12104330B2 (en) | 2024-10-01 |
US20220025585A1 (en) | 2022-01-27 |
EP3902956C0 (de) | 2023-11-15 |
CN113195830A (zh) | 2021-07-30 |
AT521990B1 (de) | 2022-07-15 |
JP2022515845A (ja) | 2022-02-22 |
WO2020135973A1 (de) | 2020-07-02 |
EA202100174A1 (ru) | 2021-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2330102C2 (de) | Verfahren und Maschine zum Verdichten der Schotterbettung eines Gleises, insbesondere unter gleichzeitiger Verbringung dieses Gleises in die Soll-Höhenlage | |
EP3902956B1 (de) | Verfahren und gleisbaumaschine zur bearbeitung eines schottergleises | |
EP3417107B1 (de) | Gleisbaumaschine und verfahren zur verdichtung eines schotterbettes | |
EP3384090A1 (de) | Stopfmaschine sowie verfahren zur durchführung einer lagekorrektur eines gleises | |
DE3132708C2 (de) | Gleisstopf-Nivellier-und Richtmaschine mit Stabilisationsaggregat und Verfahren zum Verdichten der Schotterbettung eines zu korrigierenden Gleises | |
DE2557850A1 (de) | Fahrbare schotterbett-verdichtmaschine zur korrektur der gleislage | |
EP2217761B1 (de) | Verfahren und maschine zur verdichtung von schotter eines gleises | |
EP0497232B1 (de) | Gleisbaumaschine zum kontrollierten Absenken eines Gleises | |
DE2605969A1 (de) | Fahrbare maschine zum verdichten und korrigieren des gleises | |
CH652430A5 (de) | Gleisstopfmaschine. | |
DE3908007A1 (de) | Gleisbaumaschine mit gleis-stabilisator | |
DE3313114C2 (de) | ||
DE2418368B2 (de) | Verfahren und Maschine zum Stopfen und Nivellieren eines Gleises | |
EP3938578B1 (de) | Verfahren zum verdichten eines schotterbettes eines gleises | |
EP4176132B1 (de) | Verfahren und maschine mit einem stopfaggregat | |
DE3132870C2 (de) | Gleisstopf-,Nivellier- und Richtmaschine mit Gleis-Stabilisationsaggregat | |
DE3409853A1 (de) | Kontinuierlich (non-stop) verfahrbare gleisstopf-, nivellier- und richtmaschine | |
WO2022058187A1 (de) | Verfahren und gleisstopfmaschine zum unterstopfen eines gleises | |
DE10358363A1 (de) | Gleitschalungsfertiger zum Fertigen von Oberflächenbelägen | |
EP2857585A1 (de) | Einrichtung zur Fertigung einer ebenen Oberfläche einer Schicht aus schüttfähigen, aushärtenden Baustoffen | |
WO2017083893A1 (de) | Schienenfahrzeug zur schotterverdichtung und zum heben und richten des gleises mit verstellbaren vibrierenden schotterleitblechen | |
EA042198B1 (ru) | Способ и путевая машина для обработки щебня рельсового пути | |
AT372437B (de) | Verfahren zum verdichten der schotterbettung eines zu korrigierenden gleises | |
EP4308761A1 (de) | Verfahren zum reinigen eines schotterbettes eines gleises | |
WO2022218614A1 (de) | Verfahren und maschine zum stopfen eines gleises |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210727 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
INTG | Intention to grant announced |
Effective date: 20230628 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019009945 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20231123 |
|
P04 | Withdrawal of opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231124 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20231129 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231129 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240315 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 5 Effective date: 20240229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240315 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240216 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231115 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240102 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231115 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231115 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240215 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231115 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231115 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231115 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019009945 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231115 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231202 |