EP3821148B1 - Gleitlagerelement - Google Patents

Gleitlagerelement Download PDF

Info

Publication number
EP3821148B1
EP3821148B1 EP19755267.2A EP19755267A EP3821148B1 EP 3821148 B1 EP3821148 B1 EP 3821148B1 EP 19755267 A EP19755267 A EP 19755267A EP 3821148 B1 EP3821148 B1 EP 3821148B1
Authority
EP
European Patent Office
Prior art keywords
bearing element
sliding
sliding bearing
lubricant
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19755267.2A
Other languages
English (en)
French (fr)
Other versions
EP3821148A1 (de
Inventor
Josef Fuchs
Lukas HÄDICKE
Leopold Harreither
Johannes Humer
Daniel LAHNER
Martin RUMPELMAYR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miba Gleitlager Austria GmbH
Original Assignee
Miba Gleitlager Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miba Gleitlager Austria GmbH filed Critical Miba Gleitlager Austria GmbH
Publication of EP3821148A1 publication Critical patent/EP3821148A1/de
Application granted granted Critical
Publication of EP3821148B1 publication Critical patent/EP3821148B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1065Grooves on a bearing surface for distributing or collecting the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/046Brasses; Bushes; Linings divided or split, e.g. half-bearings or rolled sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/022Sliding-contact bearings for exclusively rotary movement for radial load only with a pair of essentially semicircular bearing sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/44Hole or pocket sizes

Definitions

  • the invention relates to a plain bearing element comprising a support layer and a sliding layer, at least one lubricant groove being formed in the sliding layer.
  • the DE 10 2008 046 543 A1 describes another way to improve the cavitation resistance of a bearing.
  • the bearing itself is not changed, but an ionic liquid is used as a lubricant.
  • a bearing is known from JPH 11-270556 A in which a plurality of inclined surfaces are formed to provide a gradual transition to avoid an abrupt change in shape of the bearing surface.
  • JP 2007-225079 A describes a generic sliding element.
  • the object of the present invention is to improve the resistance of a plain bearing to cavitation erosion.
  • a bottom surface of the lubricant groove has a surface with a surface structure, the surface structure having a plurality of depressions.
  • the formation of the plurality of indentations makes it easier to avoid spontaneously occurring changes in the flow of the lubricant in the lubricating gap due to the presence of the lubricant groove, in that strongly fluctuating pressure differences with the indentations can be avoided.
  • vacuum peaks that occur can be distributed over a larger area, which reduces the effect of these vacuum peaks.
  • the surface structure can therefore significantly reduce the cavitation erosion of sliding surfaces of plain bearings.
  • the formation of the surface structure has the advantage that it is relatively easy to produce and is therefore at least approximately cost-neutral with regard to the production costs of the plain bearing element.
  • a relatively dense arrangement of the depressions on the surface is thus provided.
  • the depressions have a circular or an oval or a drop-shaped cross-sectional shape when viewed from above. Due to the rounded cross-sectional shape more favorable flow conditions of the coolant, in particular the lubricant, created which counteract cavitation erosion.
  • the depressions are designed in the shape of a spherical cap, whereby the mentioned effect of the more favorable flow conditions can be intensified.
  • the plurality of indentations are arranged one behind the other in the circumferential direction of the sliding layer, so that a wavy surface structure is formed, and that optionally at least one radial bore for the inlet of the lubricant is arranged in this surface structure.
  • the radial bore can be arranged on a wave crest of the wave-shaped surface structure. It is thus achieved that the inflowing lubricant has reservoirs available in the circumferential direction before and after the radial bore, into which it can flow, so that in turn the formation of pressure differences can be better avoided.
  • an edge area of the depressions is convexly rounded, whereby the transition between the depressions and the sliding surface can be made smoother and the flow conditions of the lubricant could thus also be positively influenced.
  • the lubricant groove at least partially has a depth that corresponds at least to a thickness of the sliding layer in the radial direction. It can thus be achieved that the cavitation is shifted in a controlled manner into an area in which a more cavitation-resistant material is present, for example the steel of the supporting layer.
  • the plain bearing element 1 shows a plain bearing element 1 in an oblique view.
  • the plain bearing element 1 comprises a support layer 2 and a sliding layer 3 arranged thereon and connected thereto, or consists of these two layers.
  • the plain bearing element 1 is designed as a half-shell.
  • the sliding element can also be designed differently, for example as a bearing bush, as is shown in 1 is indicated by dashed lines.
  • the support layer 2 usually consists of a hard material. Bronze, brass, etc. can be used as materials for the supporting layer 2, also called the supporting shell. In the preferred embodiment of the invention, the supporting layer 2 consists of steel.
  • the component to be supported for example a shaft, runs on the sliding layer 3 .
  • the plain bearing element 1 in addition to the two-layer design, there is also the possibility of constructing the plain bearing element 1 from more than two layers.
  • a bearing metal layer can be arranged between the sliding layer 3 and the supporting layer 2 .
  • at least one intermediate layer 4 for example a diffusion barrier layer and/or a binding layer, is arranged between this bearing metal layer and the sliding layer 3 or between the supporting layer 2 and the sliding layer 3 or the bearing metal layer.
  • At least one lubricant groove 5 is formed in the radially inner surface of the sliding layer 3, via which the lubricant, e.g. a lubricating oil, is supplied to the bearing gap between the sliding layer 3 and the mounted component.
  • the lubricant e.g. a lubricating oil
  • a bottom surface 19 is completely provided with a surface structure, the surface structure being formed by a plurality of depressions 7 in the bottom surface 19 .
  • the surface structure being formed by a plurality of depressions 7 in the bottom surface 19 .
  • only part of the bottom surface 19 is provided with this surface structure, for example only the area of a groove outlet 8 of the lubricant groove 5.
  • the side walls of the lubricant groove 5 are at least partially provided with such a surface structure .
  • the depressions 7 are in particular arranged in rows and columns. in the in 2 illustrated embodiment variant of the plain bearing element 1, every second row is arranged offset, so that the depressions 7 are arranged in a "staggered" manner. However, it is also possible for each column to have a depression 7 in each row, ie the rows of depressions 7 are not offset.
  • the illustrated and described pattern of the arrangement or formation of the depressions 7 is only of an exemplary nature. Other patterns of arrangement of the depressions 7 in the slide bearing element 1 are also possible.
  • the indentations 7 have a maximum diameter 9 (viewed in plan view), which is selected from a range from 0.1 mm to 60 mm, in particular from a range from 5 mm to 60 mm.
  • the maximum diameter 9 is the diameter of the circle that just encloses the respective depression 7 on the surface of the overlay 3 .
  • the circle diameter thus coincides with the maximum diameter.
  • the enveloping circle is the circle that encloses the cross-sectional shape of the depression 7 on the surface of the sliding layer 3, as is shown in 3 is shown in dashed lines based on the upper left depression 7 .
  • a maximum distance 10 between adjacent depressions 7 in the plane of the sliding surface i.e. the surface of the sliding layer 3 is selected from a range of 0.1 mm to 60 mm, in particular from a range from 10mm to 50mm. In this case, no distance between adjacent depressions is greater than the maximum distance.
  • the distance between the depressions can be selected from a range of 10 mm to 40 mm, in particular from a range of 10 mm to 30 mm.
  • the plurality of indentations 7 can mean that between 1 and 10 indentations 7 are arranged or formed per cm 2 of area.
  • the depressions 7 have a maximum depth in the direction perpendicular to the sliding surface, i.e. to the surface of the sliding layer 3, between 0.1 mm and 20 mm, in particular between 5 mm and 20 mm. exhibit.
  • the depressions 7 can all be equally spaced and/or have the same diameter 9 in the sense of the above description of the diameter 9 and/or the same depth in the radial direction.
  • the maximum spacing 10 of the depressions 7 can vary.
  • the maximum distance 10 between adjacent depressions 7 in a circumferential direction 11 of the plain bearing element 1 gets smaller.
  • the maximum distance 10 between adjacent depressions 7 becomes smaller in the region of the groove end 8, that is to say that the depressions 7 are arranged “closer” here.
  • the size of the cross section of the depressions 7 on the sliding surface can change, in particular to become smaller or larger in the circumferential direction 11, in which case depressions 7 with a larger diameter 9 can preferably be arranged in the region of the groove end 8 .
  • the maximum depth of the depressions 7 changes in the radial direction, for example depressions 7 with a greater radial depth are arranged in the groove end 8 compared to depressions 7 which adjoin an end face 12 of the plain bearing element 1 in the Lubricant groove 5 are arranged.
  • the recesses 7 on the sliding surface of the sliding layer 3 have a different shape.
  • the recesses 7 can be formed, for example, with a circular cross-section, this is the 2 indicates.
  • the indentations can also have a different cross-sectional shape on the sliding surface of the sliding layer 3, for example an oval or a drop-shaped one, as shown in FIG 3 indicates.
  • these can also have another cross-sectional shape, for example a sickle-shaped one, as will be explained below, although cross-sectional shapes with curves are preferred.
  • indentations 7 with different cross-sectional shapes are arranged or formed in the lubricant groove 5, for example indentations 7 with a circular and drop-shaped and/or oval and/or crescent-shaped cross section on the sliding surface of the sliding layer 3.
  • the depressions 7 have an elongated cross-sectional shape on the sliding surface of the sliding layer 3, for example, a drop-shaped or oval
  • the depressions 7 are preferably oriented so that the longest dimension of the cross section of the depressions 7 at of the sliding surface of the sliding layer 3 runs in the direction of the circumferential direction 11 of the plain bearing element 1 . In principle, however, it is possible to orient the longest dimension of the depressions in the axial direction.
  • the depressions 7 preferably taper in the radial direction. According to a preferred variant of this, the depressions 7 can be designed in the shape of a spherical cap.
  • At least one radial bore 13 for the inlet of the lubricant is arranged in this wave-shaped surface structure.
  • this is arranged on a wave crest of the wavy surface structure, as is also the case 4 and 5 demonstrate.
  • More than one radial bore 13 can also be arranged or formed, for example two or three, etc., it being possible for all of them to be arranged in wave crests.
  • the radial bores 13 can also be placed at least partially or at least one of the plurality of radial bores 13 at a different location.
  • the number of wave crests can generally be between 1 and 40, in particular between 2 and 10.
  • the wave preferably runs over an entire width 14 of the lubricant groove 5, as is the 4 indicates.
  • several wavy structures can be formed next to one another, each of which only extends over a partial area of the width 14 of the lubricant groove 5 , but together they preferably cover the entire width 14 of the lubricant groove 5 .
  • the wave crests and the wave troughs can be offset in the circumferential direction 11 of the plain bearing element, ie not aligned in the direction of the width 14 .
  • the wave structures can be made to have wave troughs of different sizes and/or wave crests of different sizes.
  • an edge region 15 of the depressions 7 is convexly rounded.
  • This edge region 15 can be designed to extend around the entire depression 7 in question.
  • the convex curves of the two end areas 15 have a different radius.
  • the more rounded edge area 15 is preferably arranged or formed in advance in the direction of flow of the lubricant compared to the other edge area 15 of the depression 7 with the lesser rounding.
  • the lubricant groove 5 runs flat into the sliding surface of the sliding layer 3 in the groove outlet 8 . That is, a depth of the lubricant groove 5 becomes smaller in the direction of the groove outlet 8 and preferably becomes zero at the transition to the sliding surface.
  • the lubricant groove 5 can be formed exclusively in the sliding layer 3 . According to a further embodiment variant of the plain bearing element 1, however, it can also be provided that the lubricant groove 5 at least partially has a depth which corresponds to at least one thickness of the sliding layer 3 in the radial direction. The lubricant groove 5 can therefore extend at least partially through the entire sliding layer 3 in the radial direction, in particular at least in the area adjoining the end face 12 of the plain bearing element 1.
  • the depressions 7 can also have a shape that differs from the shapes described above.
  • the teardrop shape can be formed on both sides, as is shown in 3 is indicated in dashed lines in the middle depression 7 on the left.
  • the indentations 7 can therefore be designed to taper at least approximately to a point on both sides.
  • the depressions 7 can also be crescent-shaped.
  • the lubricant groove 5 can have an at least approximately rectangular shape starting from an end face 12, which runs in the axial direction of the plain bearing element 1, and then be provided with a cross-sectional enlargement 17 in the direction of the outlet to the sliding surface 16 of the sliding layer 3 (in each case in a top view of considering the sliding surface 3).
  • the cross-sectional widening 17 can be circular, for example, so that the lubricant groove 5 runs out into the sliding surface 16 of the sliding layer 3 in the form of a segment of a circle.
  • this basic form can also be configured differently. It is thus possible for the first part of the lubricant groove 5 not to be rectangular in shape, but to taper in the direction of an outlet 18 of the lubricant groove 5 into the sliding surface 16 of the sliding layer 3, for example tapering approximately to a point, as is shown in 8 is indicated by dashed lines.
  • the lubricant groove 5 can in turn be formed with the cross-sectional enlargement 17 .
  • the lubricant groove 5 can also be used be provided with a cross-sectional reduction, which is followed by a cross-sectional enlargement 17 (each viewed in plan view of the sliding surface 3).
  • the cross-sectional enlargement 17 can also be circular, as is the case 7 was described, but it can also be approximately drop-shaped or approximately oval, etc., whereby the geometric shapes can merge into one another or intersect (as is the case, for example, 8 shows) can be arranged.
  • the lubricant groove 5 can have at least approximately the shape of half an ellipse. If necessary, this first area can be adjoined by a second area, which can be designed, for example, approximately circular or approximately oval or approximately drop-shaped, etc., as is shown in 9 is indicated by dashed lines.
  • a bottom surface of the lubricant groove 9 may be flat.
  • the bottom surface 19 of the lubricant groove 9 can also be provided with a rounding, at least in certain areas.
  • the bottom surface 19 can at least partially have a radius of curvature that is selected from a range of 5 mm to 200 mm, wherein the curvature can also be designed with different radii.
  • side surfaces 20, 21 of the lubricant groove are arranged at right angles to the bottom surface 19.
  • at least one of these side surfaces 20, 21 is arranged at an angle 22, 23 to the bottom surface 19 which is not equal to 90°, as is shown in 11 is shown, which shows a section through the lubricant groove 5 in the axial direction through the slide bearing element 1 .
  • the angle 22, 23 can be selected, for example, from a range of 91° to 170°, in particular from a range of 130° to 165°.
  • the sliding bearing element 1 which is shown in 12 is shown, it can be provided that in the circumferential direction of the plain bearing element 1 in turn a plurality of depressions 7 are arranged in the lubricant groove 5, which is a different Have depth, the depth starting from the end face 12 in the direction of the outlet 18 of the lubricant groove 5 in the sliding surface 16 of the sliding layer 3 is smaller.
  • the individual indentations 7 directly adjoin one another in the circumferential direction, so that the distance between the indentations 7 is zero. So there are no crests between the depressions 7 arranged.
  • a transition 24 from one depression 7 into the next depression 7 is not arranged at right angles to the sliding surface 16 but is beveled in the circumferential direction of the plain bearing element 1 . If necessary, edges and/or corners of the transitions 24 can be rounded.
  • the lubricant groove 5 in the axial direction of the plain bearing element 1 has several wave-shaped (as in figure 5 shown) or several stair-like (as in 12 shown) may have surface structures that are optionally shifted in the circumferential direction over the course, so that, for example, viewed in the axial direction of the plain bearing element 1, a wave trough is arranged next to a wave crest.
  • the lubricant groove 5 is combined with depressions 7 .
  • a wave structure ( figure 5 ) or a stair structure ( 12 ) additionally have in one of the surfaces of the lubricant groove 5, for example the bottom surface 19, depressions 7, for example those in the 2 and 3 are shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)

Description

  • Die Erfindung betrifft ein Gleitlagerelement umfassend eine Stützschicht und eine Gleitschicht, wobei in der Gleitschicht zumindest eine Schmiermittelnut ausgebildet ist.
  • Es ist bekannt, dass bei nasslaufenden Gleitlagern an der Gleitfläche schmiermittelbdingte Probleme mit der Kavitation auftreten. Die Folge davon ist ein Wirkungsgradverlust und insbesondere eine Schädigung der Gleitfläche des Gleitlagers.
  • Um dem Problem der Kavitation zu begegnen wurden im Stand der Technik bereits unterschiedlichste Lösungen vorgeschlagen. So beschreibt beispielsweise die WO 1999/045285 A1 ein Gleitlager umfassend einen metallischen Träger, eine mit dem Träger verbundene gesinterte poröse Metallschicht und eine in die Poren der porösen Metallschicht infiltrierte und die gesinterte Metallschicht überlagernde Auskleidungsschicht, die PTFE enthält, das bis 10-30 Vol.-% eines teilchenförmigen verschleißfesten Füllstoff, 2-10 Vol.-% fibrillierte Aramidfasern und 2-10 Vol.-% eines schmelzverarbeitbaren Fluorpolymers enthält. Es wird damit die Kavitationserosionsbeständigkeit des Lagers verbessert.
  • Die DE 10 2008 046 543 A1 beschreibt einen anderen Weg zur Verbesserung der Kavitationsbeständigkeit eines Lagers. Es wird nicht das Lager an sich verändert, sondern wird als Schmiermittel eine ionische Flüssigkeit eingesetzt.
  • Daneben sind auch noch diverse geometrische Veränderungen von Gleitlagern zur Verbesserung der Kavitationsbeständigkeit beschrieben worden. Z.B. ist aus der JPH 11-270556 A ein Lager bekannt, bei dem eine Mehrzahl von geneigten Flächen ausgebildet wird, um einen gradierten Übergang zu schaffen und so eine abrupte Formänderung der Lagerfläche zu vermeiden.
  • Andere Beispiele für Versuche die Kavitationsprobleme über geometrische Veränderungen von Gleitlagern in den Griff zu bekommen sind aus der JP 2001-050252 A oder der JP 2003-222119 A bekannt. JP 2007-225079 A beschreibt ein gattungsgemäßes Gleitelement.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die Beständigkeit eines Gleitlagers gegen Kavitationserosion zu verbessern.
  • Diese Aufgabe der Erfindung wird bei dem eingangs genannten Gleitlager dadurch gelöst, dass eine Bodenfläche der Schmiermittelnut eine Oberfläche mit einer Oberflächenstruktur aufweist, wobei die Oberflächenstruktur eine Mehrzahl von Vertiefungen aufweist.
  • Durch die Ausbildung der Mehrzahl an Vertiefungen können spontan auftretende Strömungsänderungen des Schmiermittels im Schmierspalt aufgrund des Vorhandenseins der Schmiermittelnut besser vermieden werden, indem stark schwankende Druckunterschiede mit den Vertiefungen vermieden werden können. Mit Hilfe der Vertiefungen können auftretende Unterdruckspitzen auf ein größeres Areal verteilt werden, wodurch der Effekt diese Unterdruckspitzen reduziert wird. Es kann also mit der Oberflächenstruktur die Kavitationserosion von Gleitflächen von Gleitlagern deutlich reduziert werden. Zudem hat die Ausbildung der Oberflächenstruktur den Vorteil, dass sie relativ einfach herstellbar und damit zumindest annähernd kostenneutral in Hinblick auf die Herstellkosten des Gleitlagerelementes ist.
  • Zur Verstärkung dieses Effektes kann nach Ausführungsvarianten vorgesehen sein, dass
    • die Vertiefungen einen maximalen Durchmesser in Draufsicht betrachtet aufweisen, der ausgewählt ist aus einem Bereich von 0,1 mm bis 60 mm und/oder
    • die Vertiefungen eine maximale Tiefe zwischen 0,1 mm und 20 mm aufweisen, und/oder
    • ein Maximalabstand zwischen benachbarten Vertiefungen ausgewählt ist aus einem Bereich von 0,1 mm bis 60 mm.
  • Es wird damit eine relativ dichte Anordnung der Vertiefungen auf der Oberfläche vorgesehen.
  • Gemäß einer anderen Ausführungsvariante des Gleitlagerelementes kann vorgesehen sein, dass die Vertiefungen in Draufsicht betrachtet eine kreisförmige oder eine ovale oder eine tropfenförmige Querschnittsform aufweisen. Durch die gerundete Querschnittform werden günstigere Strömungsverhältnisse des Kühlmittels, insbesondere des Schmiermittels, geschaffen, die der Kavitationserosion entgegenwirken.
  • Gemäß einer speziellen Ausführungsvariante des Gleitlagerelementes dazu kann vorgesehen sein, dass die Vertiefungen kugelkalottenförmig ausgebildet sind, wodurch der genannte Effekt der günstigeren Strömungsverhältnisse verstärkt werden kann.
  • Nach einer anderen Ausführungsvariante des Gleitlagerelementes kann vorgesehen sein, dass die mehreren Vertiefungen in Umfangsrichtung der Gleitschicht hintereinander angeordnet sind, sodass eine wellenförmige Oberflächenstruktur ausgebildet ist, und dass gegebenenfalls in dieser Oberflächenstruktur zumindest eine Radialbohrung für den Einlass des Schmiermittels angeordnet ist. Durch die Anordnung des Schmiermitteleinlasses im Bereich der wellenförmigen Oberflächenstruktur kann ebenfalls die Entstehung von größeren Druckunterschieden aufgrund des Einströmens des Schmiermittels in den Schmierspalt besser vermieden werden.
  • Gemäß einer Ausführungsvariante des Gleitlagerelementes dazu kann vorgesehen sein, dass die Radialbohrung auf einem Wellenberg der wellenförmigen Oberflächenstruktur angeordnet ist. Es wird damit erreicht, dass dem einströmenden Schmiermittel in Umfangsrichtung vor und nach der Radialbohrung Reservoirs zur Verfügung stehen, in die es einströmen kann, sodass wiederum die Ausbildung von Druckunterschiede besser vermieden werden kann.
  • Nach einer weiteren Ausführungsvariante des Gleitlagerelementes kann vorgesehen sein, dass ein Randbereich der Vertiefungen konvex abgerundet ist, wodurch der Übergang zwischen den Vertiefungen und der Gleitfläche sanfter ausgestaltet werden kann und damit auch die Strömungsverhältnisse des Schmiermittels positiv beeinflusst werden könnte.
  • Es kann gemäß einer anderen Ausführungsvariante kann vorgesehen sein, dass die Schmiermittelnut zumindest teilweise eine Tiefe aufweist, die zumindest einer Dicke der Gleitschicht in radialer Richtung entspricht. Es kann damit erreicht werden, dass die Kavitation kontrolliert in einen Bereich verschoben wird, in dem ein kavitationsresistenterer Werkstoff vorhanden ist, beispielsweise der Stahl der Stützschicht.
  • Zum besseren Verständnis der Erfindung wird diese anhand der nachfolgenden Figuren näher erläutert.
  • Es zeigen jeweils in stark vereinfachter, schematischer Darstellung:
  • Fig. 1
    ein Gleitlagerelement in Schrägansicht;
    Fig. 2
    ein Detail einer ersten Ausführungsvariante des Gleitlagerelementes in Draufsicht;
    Fig. 3
    ein Detail von weiteren Ausführungsvarianten des Gleitlagerelementes in Draufsicht;
    Fig. 4
    ein Detail einer anderen Ausführungsvariante des Gleitlagerelementes in Schrägansicht;
    Fig. 5
    ein Detail der Ausführungsvariante des Gleitlagerelementes nach Fig. 4 im Querschnitt;
    Fig. 6
    ein Detail einer weiteren Ausführungsvariante des Gleitlagerelementes;
    Fig. 7
    ein Detail einer Ausführungsvarianten des Gleitlagerelementes in Draufsicht;
    Fig. 8
    ein Detail einer weiteren Ausführungsvariante des Gleitlagerelementes in Draufsicht;
    Fig. 9
    ein Detail von anderen Ausführungsvariante des Gleitlagerelementes in Draufsicht;
    Fig. 10
    ein Detail einer Ausführungsvariante des Gleitlagerelementes in Schrägansicht;
    Fig. 11
    ein Detail einer Ausführungsvariante des Gleitlagerelementes im Axialschnitt;
    Fig. 12
    ein Detail einer Ausführungsvariante des Gleitlagerelementes im Querschnitt.
  • Einführend sei festgehalten, dass in den unterschiedlich beschriebenen Ausführungsformen gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen versehen werden, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, unten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind diese Lageangaben bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen.
  • Fig. 1 zeigt ein Gleitlagerelement 1 in Schrägansicht. Das Gleitlagerelement 1 umfasst eine Stützschicht 2 und eine darauf angeordneten und mit dieser verbundenen Gleitschicht 3 bzw. besteht aus diesen beiden Schichten.
  • Das Gleitlagerelement 1 ist als Halbschale ausgeführt. Nicht erfindungsgemäß, kann das Gleitelement auch anders ausgeführt sein, beispielsweise als Lagerbuchse, wie dies in Fig. 1 strichliert angedeutet ist.
  • Die Stützschicht 2 besteht üblicherweise aus einem harten Werkstoff. Als Werkstoffe für die Stützschicht 2, auch Stützschale genannt, können Bronzen, Messing, etc. verwendet werden. In der bevorzugten Ausführungsvariante der Erfindung besteht die Stützschicht 2 aus einem Stahl.
  • Auf der Gleitschicht 3 läuft im Betrieb des Gleitlagerelementes 1 das zu lagernden Bauteil, beispielsweise eine Welle.
  • Es besteht im Rahmen der Erfindung aber neben der zweischichtigen Ausführung auch die Möglichkeit, das Gleitlagerelement 1 aus mehr als zwei Schichten aufzubauen. Beispielsweise kann zwischen der die Gleitschicht 3 und der Stützschicht 2 eine Lagermetallschicht angeordnet sein. Es besteht dabei die Möglichkeit, dass zwischen dieser Lagermetallschicht und der Gleitschicht 3 oder zwischen der Stützschicht 2 und der Gleitschicht 3 bzw. der Lagermetallschicht zumindest eine Zwischenschicht 4 angeordnet wird, beispielsweise eine Diffusionssperrschicht und/oder eine Bindeschicht.
  • Derartige konstruktive Aufbauten von Mehrschichtgleitlagern sind prinzipiell aus dem Stand der Technik bekannt, sodass diesbezüglich auf den einschlägigen Stand der Technik verwiesen sei.
  • In der radial inneren Oberfläche der Gleitschicht 3 ist zumindest eine Schmiermittelnut 5 ausgebildet, über die das Schmiermittel, z.B. ein Schmieröl, dem Lagerspalt zwischen der Gleitschicht 3 und dem gelagerten Bauteil zugeführt wird.
  • In Fig. 2 ist nun ein Detail einer ersten Ausführungsvariante des Gleitlagerelementes 1 dargestellt, wobei im konkreten die Draufsicht auf die Schmiermittelnut 5 in der Gleitschicht 3 dargestellt ist.
  • Wie aus Fig. 2 zu ersehen ist, ist eine Bodenfläche 19 zur Gänze mit einer Oberflächenstruktur versehen, wobei die Oberflächenstruktur durch eine Mehrzahl an Vertiefungen 7 in der Bodenfläche 19 gebildet ist. Es ist aber auch möglich, dass nur ein Teil der Bodenfläche 19 mit dieser Oberflächenstruktur versehen ist, beispielsweise nur der Bereich eines Nutauslaufs 8 der Schmiermittelnut 5. Es ist zudem möglich, dass auch die Seitenwände der Schmiermittelnut 5 mit einer derartigen Oberflächenstruktur zumindest teilweise versehen sind.
  • Die Vertiefungen 7 sind insbesondere in Reihen und Spalten angeordnet. In der in Fig. 2 dargestellten Ausführungsvariante des Gleitlagerelementes 1 ist jede zweite Reihe versetzt angeordnet, sodass die Vertiefungen 7 in Art "auf Lücke" angeordnet sind. Es ist aber auch möglich, dass jede Spalte eine Vertiefung 7 jeder Reihe aufweist, also die Reihen an Vertiefungen 7 nicht versetzt sind.
  • Das dargestellte und beschriebene Muster der Anordnung bzw. Ausbildung der Vertiefungen 7 hat nur beispielhaften Charakter. Es sind auch andere Muster der Anordnung der Vertiefungen 7 im Gleitlagerelement 1 möglich.
  • Gemäß einer bevorzugten Ausführungsvariante des Gleitlagerelementes 1 kann vorgesehen sein, dass die Vertiefungen 7 einen maximalen Durchmesser 9 (in Draufsicht betrachtet) aufweisen, der ausgewählt ist aus einem Bereich von 0,1 mm bis 60 mm, insbesondere aus einem Bereich von 5 mm bis 60 mm.
  • Der maximale Durchmesser 9 ist der Durchmesser des Kreises, der die jeweilige Vertiefung 7 an der Oberfläche der Gleitschicht 3 gerade einhüllt. Im Falle von Vertiefungen 7 mit kreisförmigen Querschnitt an der Oberfläche der Gleitschicht 3, wie dies die Ausführungsvariante des Gleitlagerelementes 1 nach Fig. 2 zeigt, fällt der Kreisdurchmesser somit mit dem maximalen Durchmesser zusammen. Bei nichtkreisförmigen Querschnitten ist der Hüllkreis jener Kreis, der die Querschnittsform der Vertiefung 7 an der Oberfläche der Gleitschicht 3 gerade einschließt, wie dies in Fig. 3 anhand der linken oberen Vertiefung 7 strichliert dargestellt ist.
  • Gemäß einer weiteren Ausführungsvariante des Gleitlagerelementes 1 kann vorgesehen sein, dass ein Maximalabstand 10 zwischen benachbarten Vertiefungen 7 in der Ebene der Gleitfläche, d.h. der Oberfläche der Gleitschicht 3, ausgewählt ist aus einem Bereich von 0,1 mm bis 60 mm, insbesondere aus einem Bereich von 10 mm bis 50 mm. Zwischen benachbarten Vertiefungen ist dabei kein Abstand größer als der Maximalabstand.
  • Der Abstand zwischen den Vertiefungen kann ausgewählt sein aus einem Bereich von 10 mm bis 40 mm, insbesondere aus einem Bereich von 10 mm bis 30 mm.
  • Unter Zugrundelegung dieser geometrischen Abmessungen kann damit die Mehrzahl an Vertiefungen 7 bedeuten, dass zwischen 1 und 10 Vertiefungen 7 pro cm2 Fläche angeordnet bzw. ausgebildet sind.
  • Gemäß einer andern Ausführungsvariante des Gleitlagerelementes 1 kann vorgesehen sein, dass die Vertiefungen 7 eine maximale Tiefe in Richtung senkrecht auf die Gleitfläche, d.h. auf die Oberfläche der Gleitschicht 3, zwischen 0,1 mm und 20 mm, insbesondere zwischen 5 mm und 20 mm, aufweisen.
  • Die Vertiefungen 7 können alle gleich beabstandet und/oder den gleichen Durchmesser 9, im Sinne der voranstehenden Beschreibung des Durchmessers 9 und/oder die gleiche Tiefe in radialer Richtung aufweisen. Es ist aber auch möglich, dass der Maximalabstand 10 der Vertiefungen 7 variiert. Beispielsweise kann vorgesehen sein, dass der Maximalabstand 10 zwischen benachbarten Vertiefungen 7 in einer Umfangsrichtung 11 des Gleitlagerelementes 1 kleiner wird. Insbesondere kann vorgesehen sein, dass der Maximalabstand 10 zwischen benachbarten Vertiefungen 7 im Bereich des Nutauslaufes 8 kleiner wird, dass also hier die Vertiefungen 7 "dichter" angeordnet sind.
  • Alternativ oder zusätzlich dazu ist es auch möglich, dass sich die Größe des Querschnittes der Vertiefungen 7 an der Gleitfläche ändert, insbesondere in der Umfangsrichtung 11 kleiner oder größer wird, wobei wiederum vorzugsweise Vertiefungen 7 mit größerem Durchmesser 9 im Bereich des Nutauslaufes 8 angeordnet sein können.
  • Alternativ oder zusätzlich dazu ist es auch möglich, dass sich die maximale Tiefe der Vertiefungen 7 in radialer Richtung verändert, beispielsweise Vertiefungen 7 mit größerer radialer Tiefe im Nutauslauf 8 angeordnet sind, verglichen mit Vertiefungen 7 die anschließend an eine Stirnfläche 12 des Gleitlagerelementes 1 in der Schmiermittelnut 5 angeordnet sind.
  • Wie bereits angedeutet besteht nach anderen Ausführungsvarianten des Gleitlagerelementes 1 die Möglichkeit, dass die Vertiefungen 7 an der Gleitfläche der Gleitschicht 3 eine unterschiedliche Form aufweisen. So können die Vertiefungen 7 beispielsweise mit kreisförmigen Querschnitt ausgebildet sein, die dies die Fig. 2 zeigt. Die Vertiefungen können aber auch eine andere Querschnittsform an der Gleitfläche der Gleitschicht 3 aufweisen, beispielsweise eine ovale oder eine tropfenförmige, wie dies die Fig. 3 zeigt. Neben den dargestellten Ausführungsvarianten der Querschnittsform der Vertiefungen an der Gleitfläche der Gleitschicht 3 können diese aber auch noch eine andere Querschnittsform aufweisen, beispielsweise eine sichelförmige, wie dies nachstehend noch dargelegt wird, wobei jedoch Querschnittformen mit Rundungen bevorzugt werden.
  • Es besteht weiter die Möglichkeit, dass Vertiefungen 7 mit unterschiedlichen Querschnittsformen in der Schmiermittelnut 5 angeordnet bzw. ausgebildet sind, beispielsweise Vertiefungen 7 mit kreisförmigem und mit tropfenförmigem und/oder ovalem und/oder sichelförmigem Querschnitt an der Gleitfläche der Gleitschicht 3.
  • Sofern die Vertiefungen 7 eine längliche Querschnittsform an der Gleitfläche der Gleitschicht 3 aufweisen, also beispielsweise eine tropfenförmige oder ovale, sind die Vertiefungen 7 vorzugsweise so orientiert, dass die längste Abmessung des Querschnittes der Vertiefungen 7 an der Gleitfläche der Gleitschicht 3 in Richtung der Umfangsrichtung 11 des Gleitlagerelementes 1 verläuft. Prinzipiell ist aber eine Orientierung der längsten Abmessung der Vertiefungen in Axialrichtung möglich.
  • Vorzugsweise verjüngen sich die Vertiefungen 7 in radialer Richtung. Nach einer bevorzugten Ausführungsvariante dazu können die Vertiefungen 7 kugelkalottenförmig ausgebildet sein.
  • In den Fig. 4 und 5 ist eine andere Ausführungsvariante des Gleitlagerelementes 1 ausschnittsweise dargestellt. Bei dieser Ausführungsvariante sind die Mehrzahl an Vertiefungen 7 in der Umfangsrichtung 11 der Gleitschicht 3 hintereinander angeordnet, sodass der Nutgrund 6 eine wellenförmige Oberflächenstruktur aufweist, wie dies insbesondere aus der Detaildarstellung in Fig. 5 ersichtlich ist. Die Wellen verlaufen insbesondere in der Umfangsrichtung 11.
  • Weiter kann bei dieser Ausführungsvariante vorgesehen sein, dass in dieser wellenförmigen Oberflächenstruktur zumindest eine Radialbohrung 13 für den Einlass des Schmiermittels angeordnet ist. Diese ist gemäß einer Ausführungsvariante dazu auf einem Wellenberg der wellenförmigen Oberflächenstruktur angeordnet, wie dies ebenfalls die Fig. 4 und 5 zeigen. Prinzipiell ist es aber auch möglich, die Radialbohrung im bzw. in einem Wellental oder in einer Flanke der Welle oder an einer anderen Stelle zu positionieren.
  • Es können auch mehr als eine Radialbohrung 13 angeordnet bzw. ausgebildet sein, beispielsweise zwei oder drei, etc., wobei vorzugsweise sämtliche in Wellenbergen angeordnet sein können. Entsprechend den voranstehenden Ausführungen können die Radialbohrungen 13 aber auch zumindest teilweise oder zumindest eine der mehreren Radialbohrungen 13 an einer anderen Stelle platziert sein. Die Anzahl der Wellenberge kann generell zwischen 1 und 40, insbesondere zwischen 2 und 10, betragen.
  • Es ist aber auch möglich, dass derartige Radialbohrungen 13 sowohl in den Wellenbergen als auch in den Wellentälern angeordnet sind.
  • Weiter verläuft die Welle vorzugsweise über eine gesamte Breite 14 der Schmiermittelnut 5, wie dies die Fig. 4 zeigt. Es ist aber auch möglich, dass mehrere wellenförmige Strukturen nebeneinander ausgebildet sind, die sich jeweils nur über einen Teilbereich der Breite 14 der Schmiermittelnut 5 erstrecken, zusammen aber vorzugsweise die gesamte Breite 14 der Schmiermittelnut 5 abdecken. Dabei können gemäß einer Ausführungsvariante dazu die Wellenberge und die Wellentäler in der Umfangsrichtung 11 des Gleitlagerelementes versetzt, also in Richtung der Breite 14 nicht fluchtend, angeordnet sein.
  • Bei Ausbildung von mehreren Wellenformen in der Richtung der Breite 14 der Schmiermittelnut 5 nebeneinander kann vorgesehen sein, dass die Wellenstrukturen unterschiedlich große Wellentäler und/oder unterschiedlich große Wellenberge aufweisen.
  • Wie aus dem Detail der Fig. 6 ersichtlich ist (gezeigt ist ein Schnitt durch eine Vertiefung 7), kann gemäß einer weiteren Ausführungsvariante vorgesehen sein, dass ein Randbereich 15 der Vertiefungen 7 konvex abgerundet ist. Dieser Randbereich 15 kann sich um die gesamte jeweilige Vertiefung 7 erstreckend ausgebildet sein. Es besteht aber auch die Möglichkeit, dass nur die beiden in der Umfangsrichtung 11 des Gleitlagerelementes 1 einander gegenüberliegenden Endbereiche der Vertiefungen 7 als derartig abgerundete Randbereiche 15 ausgebildet sind. Dabei kann vorgesehen sein, dass die konvexen Rundungen der beiden Endbereich 15 einen unterschiedlichen Radius aufweisen. Vorzugsweise ist dabei der stärker gerundete Randbereich 15 in Strömungsrichtung des Schmiermittels gegenüber dem anderen Randbereich 15 der Vertiefung 7 mit der geringer ausgebildeten Rundung voreilend angeordnet bzw. ausgebildet.
  • Die Schmiermittelnut 5 läuft im Nutauslauf 8 flach in die Gleitfläche der Gleitschicht 3 aus. D.h. eine Tiefe der Schmiermittelnut 5 wird in Richtung des Nutauslaufes 8 kleiner und wird vorzugsweise am Übergang in die Gleitfläche Null.
  • Es kann vorgesehen sein, dass die Schmiermittelnut 5 ausschließlich in der Gleitschicht 3 ausgebildet ist. Nach einer weiteren Ausführungsvariante des Gleitlagerelementes 1 kann jedoch auch vorgesehen sein, dass die Schmiermittelnut 5 zumindest teilweise eine Tiefe aufweist, die zumindest einer Dicke der Gleitschicht 3 in radialer Richtung entspricht. Die Schmiermittelnut 5 kann sich also zumindest teilweise durch die gesamte Gleitschicht 3 in radialer Richtung erstrecken, insbesondere zumindest im Bereich anschließend an die Stirnfläche 12 des Gleitlagerelementes 1.
  • Wie bereits voranstehend ausgeführt, können die Vertiefungen 7 auch eine von den voranstehend beschriebenen Formen abweichende Form aufweisen. Beispielsweise kann die Tropfenform beidseitig ausgebildet sein, wie dies in Fig. 3 bei der linken mittleren Vertiefung 7 strichliert angedeutet ist. Die Vertiefungen 7 können also beidseitig zumindest annährend spitz zulaufend ausgebildet sein.
  • Die Vertiefungen 7 können auch sichelförmig ausgebildet sein.
  • Die Fig. 7 bis 10 zeigen verschiedene Ausführungsformen der Schmiermittelnut 5 in dem Gleitlagerelement 1.
  • So kann die Schmiermittelnut 5 beispielsweise ausgehend von einer Stirnfläche 12, die in Axialrichtung des Gleitlagerelementes 1 verläuft, einen zumindest annähernd rechteckförmigen Verlauf haben und dann in Richtung auf den Auslauf zur Gleitfläche 16 der Gleitschicht 3 mit einer Querschnittserweiterung 17 versehen sein (jeweils in Draufsicht auf die Gleitfläche 3 betrachtet). Die Querschnittserweiterung 17 kann beispielsweise kreisförmig ausgebildet sein, sodass also die Schmiermittelnut 5 kreisabschnittförmig in die Gleitfläche 16 der Gleitschicht 3 ausläuft.
  • Wie Fig. 8 zeigt, kann diese prinzipielle Form auch anders ausgebildet sein. So ist es möglich, dass der erste Teil der Schmiermittelnut 5 nicht rechteckförmig ausgebildet ist, sondern in Richtung auf einen Auslauf 18 der Schmiermittelnut 5 in die Gleitfläche 16 der Gleitschicht 3 sich verjüngend, beispielsweise annähernd spitz zulaufend, ausgebildet ist, wie dies in Fig. 8 strichliert angedeutet ist.
  • Gemäß einer Ausführungsvariante dazu kann aber wiederum die Schmiermittelnut 5 mit der Querschnittserweiterung 17 ausgebildet sein. Generell kann die Schmiermittelnut 5 also mit einer Querschnittsverjüngung versehen sein an die eine Querschnittserweiterung 17 anschließt (jeweils in Draufsicht auf die Gleitfläche 3 betrachtet).
  • Die Querschnittserweiterung 17 kann ebenfalls kreisförmig ausgebildet sein, wie dies zu Fig. 7 beschrieben wurde, sie kann aber auch annähernd tropfenförmig oder annähernd oval, etc. ausgebildet sein, wobei die geometrischen Formen ineinander übergehen können oder sich schneidend (wie dies z.B. Fig. 8 zeigt) angeordnet sein können.
  • Es können auch zwei runde bzw. gerundete geometrische Formen miteinander kombiniert sein, wie dies aus Fig. 9 ersichtlich ist. Beispielsweise kann die Schmiermittelnut 5 beginnend an der Stirnfläche 12 zumindest annähernd die Form einer halben Ellipse aufweisen. Gegebenenfalls kann sich an diesen ersten Bereich wieder ein zweiter Bereich anschließen, der beispielsweise annähernd kreisförmig oder annähernd oval oder annähernd tropfenförmig, etc. ausgebildet sein kann, wie dies in Fig. 9 strichliert angedeutet ist.
  • Eine Bodenfläche der Schmiermittelnut 9 kann ebenflächig ausgebildet sein. Wie Fig. 10 zeigt, kann die Bodenfläche 19 der Schmiermittelnut 9 zumindest bereichsweise aber auch mit einer Rundung versehen sein. Beispielsweise kann die Bodenfläche 19 zumindest teilweise einen Rundungsradius aufweisen, der ausgewählt ist aus einem Bereich von 5 mm bis 200 mm, wobei die Rundung auch mit unterschiedlichen Radien ausgeführt sein kann.
  • Es ist weiter generell möglich, dass Seitenflächen 20, 21 der Schmiermittelnut im rechten Winkel zur Bodenfläche 19 angeordnet sind. Andererseits kann generell aber auch vorgesehen sein, dass zumindest eine dieser Seitenfläche 20, 21 in einem Winkel 22, 23 zur Bodenfläche 19 angeordnet ist, der ungleich 90 ° ist, wie dies in Fig. 11 dargestellt ist, die einen Schnitt durch die Schmiermittelnut 5 in Axialrichtung durch das Gleitlagerelement 1 zeigt. Der Winkel 22, 23 kann beispielsweise ausgewählt sein aus einem Bereich von 91° bis 170 °, insbesondere aus einem Bereich von 130 ° bis 165 °.
  • Gemäß einer weiteren Ausführungsvariante des Gleitlagerelementes 1, die in Fig. 12 dargestellt ist, kann vorgesehen sein, dass in Umfangsrichtung des Gleitlagerelementes 1 wiederum mehrere Vertiefungen 7 in der Schmiermittelnut 5 angeordnet sind, die eine unterschiedliche Tiefe aufweisen, wobei die Tiefe ausgehend von der Stirnfläche 12 in Richtung auf den Auslauf 18 der Schmiermittelnut 5 in die Gleitfläche 16 der Gleitschicht 3 kleiner wird. Die einzelnen Vertiefungen 7 schließen jedoch bei dieser Ausführungsvariante unmittelbar aneinander in der Umfangsrichtung an, sodass der Abstand zwischen den Vertiefungen 7 Null ist. Es sind also keine Wellenberge zwischen den Vertiefungen 7 angeordnet. Bevorzugt ist dabei, wenn ein Übergang 24 von einer Vertiefung 7 in die nächste Vertiefung 7 nicht rechtwinkelig zur Gleitfläche 16 angeordnet ist, sondern in Umfangsrichtung des Gleitlagerelementes 1 abgeschrägt. Gegebenenfalls könne Kanten und/oder Ecken der Übergänge 24 gerundet ausgebildet sein.
  • Es sei darauf hingewiesen, dass in den Fig. 7 bis 12 nur Beispiele für Ausführungsformen von Schmiermittelnuten 5 dargestellt sind.
  • Es besteht weiter die Möglichkeit, dass die Schmiermittelnut 5 in der Axialrichtung des Gleitlagerelementes 1 nebeneinanderliegend mehrere wellenförmige (wie in fig. 5 dargestellt) oder mehrere treppenartige (wie in Fig. 12 dargestellt) Oberflächenstrukturen aufweisen kann, die im Verlauf gegebenenfalls in Umfangsrichtung verschoben sind, sodass beispielsweis in der Axialrichtung des Gleitlagerelementes 1 betrachtet ein Wellental neben einem Wellenberg angeordnet ist.
  • Weiter besteht die Möglichkeit, dass der Schmiermittelnut 5 Vertiefungen 7 kombiniert werden. Beispielsweise kann eine Wellenstruktur (Fig. 5) oder eine Treppenstruktur (Fig. 12) zusätzlich in einer der Flächen der Schmiermittelnut 5, beispielsweise der Bodenfläche 19, Vertiefungen 7 aufweisen, beispielsweise jene, die in den Fig. 2 und 3 dargestellt sind.
  • Die Ausführungsbeispiele zeigen mögliche Ausführungsvarianten, wobei an dieser Stelle bemerkt sei, dass auch Kombinationen der einzelnen Ausführungsvarianten untereinander möglich sind.
  • Der Ordnung halber sei abschließend darauf hingewiesen, dass zum besseren Verständnis des Aufbaus des Gleitlagerelementes 1 dieses nicht zwingenderweise maßstäblich dargestellt ist.
  • Bezugszeichenaufstellung
  • 1
    Gleitlagerelement
    2
    Stützschicht
    3
    Gleitschicht
    4
    Zwischenschicht
    5
    Schmiermittelnut
    7
    Vertiefung
    8
    Nutauslauf
    9
    Durchmesser
    10
    Maximalabstand
    11
    Umfangsrichtung
    12
    Stirnfläche
    13
    Radialbohrung
    14
    Breite
    15
    Randbereich
    16
    Gleitfläche
    17
    Querschnittserweiterung
    18
    Auslauf
    19
    Bodenfläche
    20
    Seitenfläche
    21
    Seitenfläche
    22
    Winkel
    23
    Winkel
    24
    Übergang

Claims (10)

  1. Gleitlagerelement (1), ausgeführt als Halbschale, umfassend eine Stützschicht (2) und eine Gleitschicht (3), wobei in der Gleitschicht (3) zumindest eine Schmiermittelnut (5) ausgebildet ist, die in einer in Richtung der Axialrichtung sich erstreckenden Stirnfläche (12) des Gleitlagerelementes (1) beginnt, wobei eine Tiefe der Schmiermittelnut (5) in Richtung auf einen Nutauslauf (8) kleiner wird, sodass die Schmiermittelnut (5) im Nutauslauf (8) flach in die Gleitfläche der Gleitschicht (3) ausläuft, dadurch gekennzeichnet, dass eine Bodenfläche (19) der Schmiermittelnut (5) eine Oberfläche mit einer Oberflächenstruktur aufweist, wobei die Oberflächenstruktur eine Mehrzahl von Vertiefungen (7) aufweist.
  2. Gleitlagerelement (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Vertiefungen (7) einen maximalen Durchmesser (9) in Draufsicht betrachtet aufweisen, der ausgewählt ist aus einem Bereich von 0,1 mm bis 60 mm.
  3. Gleitlagerelement (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Vertiefungen (7) eine maximale Tiefe zwischen 0,1 mm und 20 mm aufweisen.
  4. Gleitlagerelement (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Vertiefungen (7) in Draufsicht betrachtet eine kreisförmige oder eine ovale oder eine tropfenförmige Querschnittsform aufweisen.
  5. Gleitlagerelement (1) nach Anspruch 4, dadurch gekennzeichnet, dass die Vertiefungen (7) kugelkalottenförmig ausgebildet sind.
  6. Gleitlagerelement (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die mehreren Vertiefungen (7) in Umfangsrichtung (11) der Gleitschicht (3) hintereinander angeordnet sind, sodass eine wellenförmige Oberflächenstruktur ausgebildet ist, und dass gegebenenfalls in dieser Oberflächenstruktur zumindest eine Radialbohrung (13) für den Einlass des Schmiermittels angeordnet ist.
  7. Gleitlagerelement (1) nach Anspruch 6, dadurch gekennzeichnet, dass die Radialbohrung (13) auf einem Wellenberg der wellenförmigen Oberflächenstruktur angeordnet ist.
  8. Gleitlagerelement (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ein Randbereich (15) der Vertiefungen (7) konvex abgerundet ist.
  9. Gleitlagerelement (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Schmiermittelnut (5) zumindest teilweise eine Tiefe aufweist, die zumindest einer Dicke der Gleitschicht (3) in radialer Richtung entspricht.
  10. Gleitlagerelement (1) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ein Maximalabstand (10) zwischen benachbarten Vertiefungen (7) ausgewählt ist aus einem Bereich von 0,1 mm bis 60 mm.
EP19755267.2A 2018-07-10 2019-07-05 Gleitlagerelement Active EP3821148B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50591/2018A AT521246B1 (de) 2018-07-10 2018-07-10 Gleitlagerelement
PCT/AT2019/060224 WO2020010375A1 (de) 2018-07-10 2019-07-05 Gleitlagerelement

Publications (2)

Publication Number Publication Date
EP3821148A1 EP3821148A1 (de) 2021-05-19
EP3821148B1 true EP3821148B1 (de) 2022-10-05

Family

ID=67660040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19755267.2A Active EP3821148B1 (de) 2018-07-10 2019-07-05 Gleitlagerelement

Country Status (6)

Country Link
EP (1) EP3821148B1 (de)
JP (1) JP2021530653A (de)
KR (1) KR20210031702A (de)
CN (1) CN112384709B (de)
AT (1) AT521246B1 (de)
WO (1) WO2020010375A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050252A (ja) * 1999-08-02 2001-02-23 Daido Metal Co Ltd すべり軸受
JP2007225079A (ja) * 2006-02-27 2007-09-06 Daido Metal Co Ltd 斜め割りコンロッド用のすべり軸受

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2852322A (en) * 1953-07-29 1958-09-16 Fisher W Reuen Bronze and steel coiled bearing
JPH055292Y2 (de) * 1986-10-10 1993-02-12
JPH02117425U (de) * 1989-03-08 1990-09-20
JP3057458B2 (ja) * 1991-07-02 2000-06-26 本田技研工業株式会社 摺動部材
GB9804774D0 (en) 1998-03-07 1998-04-29 Glacier Metal Co Ltd Plain bearing
JPH11270556A (ja) 1998-03-24 1999-10-05 Daido Metal Co Ltd 軸 受
JP2000018252A (ja) * 1998-07-06 2000-01-18 Yokoi Sangyo Kk 摺動面の潤滑構造
JP2003222119A (ja) 2002-01-25 2003-08-08 Mitsubishi Fuso Truck & Bus Corp コンロッドベアリング
JP2007271013A (ja) * 2006-03-31 2007-10-18 Nidec Sankyo Corp 動圧溝、および動圧溝の形成方法
JP5096992B2 (ja) * 2008-04-14 2012-12-12 大同メタル工業株式会社 内燃機関用すべり軸受
DE102008046543A1 (de) 2008-09-10 2010-03-18 Siemens Aktiengesellschaft Gleitlager
JP5107972B2 (ja) * 2009-07-02 2012-12-26 大同メタル工業株式会社 内燃機関のクランク軸を支承する軸受装置
US8381404B2 (en) * 2009-10-02 2013-02-26 Alphana Technology Co., Ltd. Method manufacturing of fluid dynamic bearing using cutting tool that performs micro alternating drive
DE102011005467B4 (de) * 2011-03-11 2016-04-28 Federal-Mogul Wiesbaden Gmbh Gleitlagerschale mit einer Sammelnut
JP5524249B2 (ja) * 2012-01-17 2014-06-18 大同メタル工業株式会社 内燃機関のクランク軸用主軸受
JP5971995B2 (ja) * 2012-03-19 2016-08-17 大同メタル工業株式会社 半割軸受及びすべり軸受
JP5903391B2 (ja) * 2013-02-06 2016-04-13 大豊工業株式会社 摺動部材の製造方法
CN103438101B (zh) * 2013-04-23 2016-04-27 四川大学 水润滑橡胶合金智能轴承
JP6096689B2 (ja) * 2013-04-26 2017-03-15 大豊工業株式会社 すべり軸受
CN203308915U (zh) * 2013-05-10 2013-11-27 上汽通用五菱汽车股份有限公司 一种增压发动机轴瓦
JP6178354B2 (ja) * 2015-02-27 2017-08-09 大豊工業株式会社 すべり軸受
DE102016013451A1 (de) * 2016-11-10 2017-06-14 Daimler Ag Laseranordnung zur Lagerung einer Kurbelwelle
CN108071676B (zh) * 2017-12-22 2024-06-07 江苏大学 一种凹凸间隔分布微织构复合导轨及其制作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050252A (ja) * 1999-08-02 2001-02-23 Daido Metal Co Ltd すべり軸受
JP2007225079A (ja) * 2006-02-27 2007-09-06 Daido Metal Co Ltd 斜め割りコンロッド用のすべり軸受

Also Published As

Publication number Publication date
EP3821148A1 (de) 2021-05-19
CN112384709B (zh) 2023-02-03
CN112384709A (zh) 2021-02-19
JP2021530653A (ja) 2021-11-11
WO2020010375A1 (de) 2020-01-16
KR20210031702A (ko) 2021-03-22
AT521246A4 (de) 2019-12-15
AT521246B1 (de) 2019-12-15

Similar Documents

Publication Publication Date Title
DE2711983C2 (de) Halbzylindrische Lagerschale
EP1290364B1 (de) Flachdichtung
EP2683955B9 (de) Gleitlagerschale
DE102007046010A1 (de) Gleitlager
EP2446175B1 (de) Flachdichtung mit einer vollsicke
EP2547925B1 (de) Gleitlagerschale
EP2232091B1 (de) Käfig für wälzkörper
DE3905450C2 (de) Gleitlager
WO2017186210A1 (de) Käfigsegment eines zylinderrollenlagers
AT409531B (de) Gleitlager für eine verbrennungskraftmaschine
EP3821148B1 (de) Gleitlagerelement
EP3290107A1 (de) Packung, packungsanordnung und kolonne zum stoff- und/ oder energieaustausch zwischen einer flüssigen und einer gasförmigen phase und herstellungsverfahren für eine packung
EP3935287B1 (de) Käfigsegment eines wälzlagers
EP2396574B1 (de) Flachdichtung mit wellenstopper
DE102016103396A1 (de) Bremsbelag einer Scheibenbremse und Bremsbelagsatz
DE102017215192A1 (de) Flachdichtung
EP1738074B1 (de) Radialkolbenpumpe
DE102010034870B4 (de) Kolben-Kolbenringsystem
WO2009086965A2 (de) Käfig für wälzkörper
DE3823655C2 (de)
DE20100572U1 (de) Käfig für ein Wälzlager
WO2013117183A1 (de) Kolbenring für einen verbrennungsmotor
DE3913986A1 (de) Filterelement
DE102016211917A1 (de) Wälzlagerkäfig oder Wälzlagerkäfigsegment
DE102008018380A1 (de) Wälzlagerkäfig zur Führung von Wälzkörpern zwischen zwei Laufbahnen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220607

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1522911

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019005840

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230205

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019005840

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

26N No opposition filed

Effective date: 20230706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230711

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230705

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230705

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230705