EP3803017B1 - Eckverbinder für isolierverglasungen mit elektrischer zuleitung - Google Patents

Eckverbinder für isolierverglasungen mit elektrischer zuleitung Download PDF

Info

Publication number
EP3803017B1
EP3803017B1 EP19724527.7A EP19724527A EP3803017B1 EP 3803017 B1 EP3803017 B1 EP 3803017B1 EP 19724527 A EP19724527 A EP 19724527A EP 3803017 B1 EP3803017 B1 EP 3803017B1
Authority
EP
European Patent Office
Prior art keywords
supply line
corner
electrical supply
pane
corner connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19724527.7A
Other languages
English (en)
French (fr)
Other versions
EP3803017A1 (de
Inventor
Marcus Neander
Guenael MORVAN
Christopher MARJAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP3803017A1 publication Critical patent/EP3803017A1/de
Application granted granted Critical
Publication of EP3803017B1 publication Critical patent/EP3803017B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/96Corner joints or edge joints for windows, doors, or the like frames or wings
    • E06B3/964Corner joints or edge joints for windows, doors, or the like frames or wings using separate connection pieces, e.g. T-connection pieces
    • E06B3/9641Corner joints or edge joints for windows, doors, or the like frames or wings using separate connection pieces, e.g. T-connection pieces part of which remains visible
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66366Section members positioned at the edges of the glazing unit specially adapted for units comprising more than two panes or for attaching intermediate sheets
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/667Connectors therefor
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • E06B3/6715Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light
    • E06B3/6722Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light with adjustable passage of light
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/96Corner joints or edge joints for windows, doors, or the like frames or wings
    • E06B3/964Corner joints or edge joints for windows, doors, or the like frames or wings using separate connection pieces, e.g. T-connection pieces
    • E06B3/9642Butt type joints with at least one frame member cut off square; T-shape joints
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67326Assembling spacer elements with the panes

Definitions

  • the invention relates to a corner connector with an integrated electrical supply line, insulating glazing comprising such a corner connector and its use.
  • Insulating glazing has become indispensable in building construction, especially in the course of ever stricter environmental protection regulations.
  • These are made from at least two panes, which are connected to one another via at least one circumferential spacer frame.
  • the spacer frame usually consists of a spacer profile that is connected at least in one place. The connection can be made, for example, by welding or using connectors.
  • the space between the two panes referred to as the glazing interior, is filled with air or gas, but in any case is free of moisture.
  • insulating glazing can also contain other elements in the form of built-in components or panes with controllable additional functions.
  • One type of modern, active glazing is glazing with switchable or controllable optical properties. With such glazing, for example, the transmission of light can be actively influenced as a function of an applied electrical voltage. For example, the user can switch the glazing from a transparent to an opaque state in order to prevent a view into a room from the outside. With other types of glazing, the transmission can be infinitely adjusted, for example to regulate the entry of solar energy into a room. This avoids unwanted heating of buildings or vehicle interiors and reduces the energy consumption and CO 2 emissions caused by air conditioning systems. Active glazing is therefore not only used for the visually appealing design of facades and a pleasant lighting design in interior rooms, but is also advantageous from an energetic and ecological point of view.
  • Active glazing contains a functional element, which typically contains an active layer between two surface electrodes.
  • the optical properties of the active layer can be changed by applying a voltage to the surface electrodes.
  • electrochromic functional elements for example from US20120026573A1 and WO 2012007334 A1 are known.
  • SPD (suspended particle device) functional elements which consist of e.g EP 0876608 B1 and WO 2011033313 A1 are known.
  • the applied voltage can be used to control the transmission of visible light through electrochromic or SPD functional elements. Voltage is supplied via so-called bus bars, which are usually applied to the surface electrodes and are connected to a voltage source via suitable connecting cables.
  • the power supply to the active glazing must be designed to be gas and watertight in order to ensure adequate quality and durability of the insulating glazing.
  • the electrical supply line itself is designed in shape and size in such a way that it has a higher tolerance against relative movements with different thermal expansion of the components involved.
  • the supply itself takes place between the spacer and the adjacent pane through the primary sealant used for bonding and sealing.
  • Such a cable duct through the edge bond of the insulating glazing always represents a potential defect.
  • the connecting cable is routed around the spacer frame in the outer space between the panes.
  • the spacer is bonded to the panes of the insulating glazing using a so-called primary sealant, while a secondary sealant is inserted in the outer space between the panes, which fills it and surrounds any electrical connection cables that may be present.
  • the automated filling of the outer space between the panes in the presence of electrical connection cables has proven to be problematic, since these can spatially obstruct a robot arm with an extrusion nozzle, for example.
  • no air bubbles may remain in the outer space between the panes, for example between the connection cable and the spacer.
  • the volume of trapped air varies with changing climatic conditions and permanently leads to leaks in the insulating glazing in the area of the trapped air.
  • WO2013184321A2 discloses a way of routing a cable into the glazing interior without passing the cable through the primary sealant must be passed through.
  • cables are routed through an insulating element, for example in the form of straight connectors, into the interior of the glazing.
  • this approach does not solve the problem that connection cables have to be routed around the insulating glazing in the outer space between the panes, so that different points in the insulating glazing can be contacted.
  • the routing around is particularly critical in corner areas, since automatic sealing is particularly difficult there and the cables are particularly susceptible to mechanical damage.
  • WO2016/098837A1 discloses a double corner connector for connecting two double spacers of triple insulating glazing.
  • the object of the present invention is to provide a double corner connector for triple insulating glazing which enables the production of improved insulating glazing and to provide improved insulating glazing with such a double corner connector.
  • the double corner connector according to the invention comprises two corner connectors described below, which are connected to one another in the corner area via a web.
  • Such a double corner connector is suitable for connecting a double spacer, which consists of two hollow profile strips that are connected to one another via a web.
  • Such double spacers are suitable for the production of triple glazing with two separate glazing interiors.
  • a double corner connector offers the possibility of supplying both or alternatively only one glazing interior with an electrical supply line.
  • the web of the double corner connector is designed in such a way that a groove is formed to accommodate a third pane.
  • a disk with an electrically switchable functional element can be inserted into this groove, for example.
  • the dimensions of this groove must match those of the double spacer used, so that the third pane is positioned all the way around the spacer frame.
  • the first electrical supply line enters the groove through an outlet opening. This means that the first electrical lead protrudes from the groove on the side of the double corner joint, which in the finished insulating glazing points towards the interior of the glazing. In this way, an electrically switchable functional element, which is arranged on the disk inserted in the groove, can be contacted via the electrical supply line.
  • the double corner connector according to the invention comprises two corner connectors described below, which are connected to one another in the corner area via a web and which are each designed as follows:
  • the corner connector for connecting two hollow profile spacers of insulating glazing comprises at least a first leg and a second leg, which are connected via a Corner area are connected.
  • the first leg, the second leg and the corner area are made in one piece, that is to say they are in one piece and are not connected to one another via reversible plug-in connections. This version is particularly stable.
  • the first leg and the second leg enclose an angle ⁇ , with 45° ⁇ 120°.
  • the corner area includes at least one first electrical supply line, ie the first electrical supply line is integrated into the corner area.
  • the first electrical supply line protrudes from the corner area.
  • first electrical supply line protrudes from the area of the corner connector that points in the direction of the interior of the glazing in the finished insulating glazing and/or protrudes from the area that points in the direction of the outer space between the panes.
  • An introduction of the electrical supply line into the glazing interior is thus made much easier and at the same time it is also possible to lead it out.
  • a first electrical supply line is arranged at least in the first leg and in the corner area, which protrudes from the first leg.
  • the electrical supply line is preferably arranged in such a way that it protrudes only from the first leg and from the corner area.
  • the leg is the area of the corner connector which is inserted into a cavity of a hollow profile spacer in the finished insulating glazing.
  • This enables the electrical supply line to be passed on, in particular into the interior of a hollow profile spacer. From there, this can then have openings in the Hollow profile spacers are continued in the glazing interior or in the outer space between the panes.
  • an electrical element that is arranged inside the hollow profile spacer can be contacted.
  • the corner connector thus offers the possibility of simply integrating an electrical supply line into insulating glazing, without damaging the seal of the edge seal in the area of the primary sealant.
  • electrical leads have been routed into the interior of the glazing within the primary sealant that bonds the spacer frame to the outer panes. Any cable penetration represents a potential leak, since cavities can remain in the vicinity of the cable, which can lead to a leak due to thermal expansion of the air contained.
  • the integration in the corner area is particularly advantageous, since the electrical supply line is protected in the corner connector and does not have to be routed around the corner in the outer space between the panes.
  • no shims are installed between the insulating glass unit and the window frame in the corner area of a window.
  • Direct contacting of an electrical functional element via the first electrical supply line in the corner area is just as possible as contacting an electrical element, such as an electrical conductor, inside a hollow profile spacer and/or contacting an external voltage source.
  • a significant advantage of the invention lies in the high degree of prefabrication of the corner connector with an integrated electrical supply line.
  • the lines are already integrated into the corner connector during the manufacturing process, so that manual installation of the supply lines is no longer necessary during the manufacture of the insulating glazing.
  • the supply lines already present in the base body of the corner connector only have to be connected to the intended electrical consumers or a voltage source.
  • the double corner connector according to the invention comprises two corner connectors which are connected to one another in the corner area via a web and which are each designed as follows in preferred embodiments:
  • the first electrical supply line enters the corner area via an entry opening from the side of the corner connector that faces the outer space between the panes in the finished insulating glazing and exits again via an exit opening in the corner area in the direction of the interior of the glazing.
  • an electrical supply line can be introduced directly into the interior of the glazing, whereby the production of the hollow profile spacer can take place as usual.
  • the integration and sealing of the electrical supply in the base body of the corner connector can be done separately. In addition, no additional sealing points are necessary in the spacer frame.
  • the first electrical supply line protrudes from the first leg and from the corner area.
  • the first electrical supply line preferably enters the corner region through an entry opening and exits again in the direction of the hollow space of the hollow profile spacer via an exit opening. It is thus very easy to establish contact between an electrical element in the cavity of the hollow profile spacer and an external voltage source.
  • the first electrical supply line exits through an exit opening from the corner region into the glazing interior and through an exit opening from the first leg in the direction of the hollow profile spacer.
  • an electrically switchable functional element in the glazing interior can easily be contacted with an electrical element in the cavity of the hollow profile spacer.
  • the first electrical supply line protrudes from the first leg and the second leg.
  • the electrical supply line can be routed within the corner connector, so that the electrical supply line does not have to be arranged in the outer intermediate space. This is particularly advantageous if several remote contact points of a functional element have to be contacted, for example on different sides of insulating glazing, and a cable routing around the corner is required. Thanks to the corner connector, the electrical supply line is protected and damage during the automatic filling of the outer space between the panes is prevented.
  • the first electrical supply line protrudes only from the first leg and the second leg. This only allows a cable to be routed around the corner.
  • the corner connector comprises at least one second electrical supply line.
  • different polarities can be introduced at different points in the insulating glazing or several electrically switchable functional elements can be contacted. Corner connectors with two, three or four electrical supply lines are particularly preferred.
  • the corner connector comprises a polymer base body.
  • the thermal conductivity of plastics is significantly lower than the thermal conductivity of metals.
  • the plastic of the polymer base body has a specific resistance of at least 10 8 ⁇ cm and is therefore non-conductive for electricity. This is particularly advantageous since the electrical supply line does not require any further insulation in this case and the polymer base body sufficiently insulates the electrical supply line from other components.
  • the polymer base body also acts as an insulator between the metal, electrically conductive sections of the spacer.
  • the polymer base body can have an electrical supply line with an insulating sheath surrounding the supply line. This is advantageous, for example, in order to insulate several supply lines of different polarities running in the hollow chamber from one another.
  • the polymeric base body preferably contains or consists of polyethylene (PE), polyvinyl chloride (PVC), polycarbonate (PC), polypropylene (PP), polystyrene, polybutadiene, polynitriles, polyesters, polyurethanes, polymethylmetacrylates, polyacrylates, polyamides, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), preferably acrylonitrile butadiene styrene (ABS), acryl ester styrene acrylonitrile (ASA), acrylonitrile butadiene styrene/polycarbonate (ABS/PC), styrene acrylonitrile (SAN), PET/PC, PBT/PC and/or mixtures thereof. Particularly good results are achieved with these materials.
  • the base body is a metallic base body.
  • the metal body is preferably made of aluminum or stainless steel.
  • the electrical supply line is surrounded by an insulating sheathing that prevents a short circuit between the electrical supply line and the electrically conductive metal base body.
  • the insulating sheath has a resistivity greater than or equal to 10 8 ⁇ cm and preferably comprises polyvinyl chloride, polyethylene, rubber and/or polyurethane.
  • At least one leg of the corner connector is connected to the rest of the corner connector via a reversible plug connection.
  • the corner connector is therefore designed in at least two parts. This type of embodiment is particularly flexible and can be combined with all other preferred variants.
  • the corner connector is particularly preferably designed in three parts. In that case are Both legs of the corner connector are connected to the corner area via a reversible plug-in connection.
  • the corner area is then preferably in the form of a bent piece of a hollow profile spacer, which is then provided with two longitudinal connectors.
  • a longitudinal connector comprises two insertion legs, of which the first insertion leg is inserted into the corner area and the second insertion leg forms one leg of the corner connector.
  • the electrical supply line is an electrical conductor, preferably containing copper. Other electrically conductive materials can also be used. Examples are aluminum, gold, silver or tin and alloys thereof.
  • the electrical supply line can be designed both as a flat conductor and as a round conductor, and in both cases as a single-wire or multi-wire conductor (stranded).
  • the electrical supply line preferably has a line cross-section of 0.08 mm 2 to 2.5 mm 2 .
  • Foil conductors can also be used as a supply line. Examples of foil conductors are given in DE 42 35 063 A1 , DE 20 2004 019 286 U1 and DE 93 13 394 U1 described.
  • Flexible foil conductors sometimes also called flat conductors or ribbon conductors, preferably consist of a tinned copper strip with a thickness of 0.03 mm to 0.1 mm and a width of 2 mm to 16 mm. Copper has proven itself for such conductor tracks because it has good electrical conductivity and good processing properties to form foils. At the same time, the material costs are low.
  • the corner connector comprises a polymer base body, into which the electrical supply line is already introduced during the extrusion of the corner connector.
  • the base body is extruded around the electrical supply line.
  • the corner connector is preferably produced using the injection molding process, in which case the electrical supply line can also be introduced into the injection mold during the process.
  • the base body of the corner connector is provided with at least one opening, for example with a drilled hole, through which the supply lines are drawn into the corner connector. Since the manual installation of the supply lines in the production of the insulating glass is omitted, the degree of automation of the insulating glass production can be further increased.
  • the first electrical supply line protrudes from the corner area.
  • the electrical supply line at the point of entry or exit overhangs the main body of the corner connector to such an extent that an electrically conductive contact or connection of an electrical element, an electrically switchable functional element or a voltage source is possible.
  • electrically conductively contacted means, in particular, connected capacitively or preferably galvanically conductively.
  • An electrically conductive connection can be established by plugging into a cavity of a hollow profile spacer, which has a corresponding electrical element, such as a flat conductor, for example.
  • the length of the cable is preferably dimensioned such that the cable is longer than the part that is integrated into the corner connector.
  • the electrical supply line is suitable for being connected to a power supply at one end and for contacting an electrical consumer at the other end.
  • the power supply is preferably outside the interior of the glazing and the electrical consumer is inside the interior of the glazing.
  • the voltage source is preferably located in the interior of the glazing and the electrical consumer is located outside of the interior of the glazing. This embodiment can be realized, for example, with a photovoltaic element integrated in the insulating glass as a voltage source.
  • the electrical supply line can be connected to a consumer or a power supply in various ways known to those skilled in the art. Contacting is possible using detachable electrical connections such as spring contacts, plug connectors, luster terminals, conditionally detachable electrical connections such as soldering or non-detachable electrical connections such as crimped connections, welding, gluing, crimping.
  • the electrical supply line is particularly preferably equipped at least at one end with a plug part for establishing a plug connection. This enables easy connection of an electrical consumer or a power supply equipped with the corresponding counterpart. Magnetic plugs are particularly preferred, since they enable a particularly simple connection.
  • An electrical element within the meaning of the invention refers to an electrical element which is arranged in the finished insulating glazing inside the hollow profile spacer and which can be electrically conductively connected to the electrical supply line of the corner connector.
  • This can be another electrical conductor in the form of a cable or foil conductor or, for example, part of a connector.
  • the insulating glazing comprises at least a first pane, a second pane and a spacer frame arranged between the panes.
  • the spacer frame comprises at least one hollow profile spacer and at least one corner connector.
  • the first pane and the second pane are sealed to the spacer frame with a primary sealant to form a sealed glazing interior.
  • the secondary sealant contributes to the mechanical stability of the insulating glazing.
  • the corner connector includes a first electrical lead that enters the glazing interior through an exit opening in the spacer frame.
  • the first electrical supply line preferably makes electrically conductive contact with an electrically switchable functional element in the interior of the glazing, with the first electrical supply line only protruding through the secondary sealing means. That is, the first electrical lead does not pass through the primary sealant. This means that an electrical connection of an electrically switchable functional element to an external energy source can be provided in this way without the tightness of the edge bond being impaired by the first electrical supply line.
  • the exit opening is located in the corner area of the corner connector.
  • the electrical supply line can be introduced into the insulating glazing via the prefabricated corner connector without great manufacturing effort.
  • the outlet opening is located in a section of the hollow profile spacer.
  • the first electrical lead to a be brought to any location on an electrically switchable functional element. This is particularly advantageous for larger insulating glazing.
  • the first electrical supply line enters the corner connector in the corner area of the corner connector and protrudes through the secondary sealing means only in the area of the corner connector.
  • the electrical supply line preferably does not run over long sections along the spacer in the outer space between the panes, but is routed directly out of the corner connector over the shortest possible route through the secondary sealant from the insulating glazing. This avoids the electrical supply line being located in the outer space between the panes over longer sections and having to be protected when filling with secondary sealant.
  • the first electrical supply line protrudes from the first leg and enters a hollow chamber of the hollow profile spacer.
  • the first electrical supply line can thus be routed through the hollow chamber of the hollow profile spacer to a location at which an electrically switchable functional element is to be contacted without having to be routed through the secondary sealant over long distances.
  • the electrically switchable functional element comprises a first conductor surface and a separate second conductor surface separate therefrom.
  • the first conductor surface is connected to the first electrical lead and the second conductor surface is connected to the second electrical lead.
  • the first electrical supply line protrudes from the first leg and enters a hollow chamber of the hollow profile spacer.
  • the second supply line protrudes from the second leg and also enters a hollow chamber of the hollow profile spacer.
  • Both electrical supply lines preferably enter in the corner area from the same corner connector. This means that it is only necessary to introduce an electrical supply line at one point on the insulating glazing and contact surfaces are made at two different points.
  • the first electrical supply line contains a plurality of wires.
  • a first wire is connected to the first conductor surface and a second wire is connected to the second conductor surface.
  • the first electrical supply line preferably enters in the corner area of the corner connector, branches out there and the first wire protrudes from the first leg and the second wire protrudes from the second leg.
  • the insulating glazing comprises at least a first pane, a second pane and a third pane.
  • a spacer frame is arranged circumferentially between the first pane and the second pane and comprises at least one double spacer and a double corner connector according to the invention.
  • the first pane and the second pane are each connected to the spacer frame via a primary sealant, as a result of which a closed glazing interior is formed.
  • the spacer frame has a circumferential groove into which the third pane is inserted.
  • the third pane divides the closed glazing interior into a first glazing interior between the first and third panes and a second glazing interior between the third and second panes.
  • the circumferential groove of the spacer frame is formed by the groove in the double spacer and the groove in the double corner connector.
  • the third pane includes an electrically switchable functional element that is electrically conductively contacted via the electrical supply line. Contacting preferably takes place within the groove. This improves the visual appearance of the insulating glazing, since the contact is not visible from the outside.
  • the first electrical supply line preferably protrudes exclusively through the secondary sealing means. That is, the first electrical lead does not pass through the primary sealant. This means that an electrical connection of an electrically switchable functional element to an external energy source can be provided in this way without the tightness of the edge bond being impaired by the first electrical supply line.
  • outlet opening for the electrical supply line.
  • the outlet opening can be inside the groove.
  • the outlet opening, through which the first electrical supply line enters the interior of the glazing, is preferably located in the groove of the double corner connector.
  • a double spacer that can be used for the insulating glazing according to the invention is, for example, in WO 2014198431 A1 disclosed.
  • the double spacer comprises a base body with a first pane contact surface and a second pane contact surface running parallel thereto, a glazing interior surface and an outer surface.
  • the glazing interior surface is divided into two parts by the groove.
  • a first hollow chamber and a second hollow chamber, which are separated from one another by the groove, are introduced into the base body.
  • the first cavity abuts a first portion of the interior glazing surface while the second cavity abuts a second portion of the interior glazing surface, the interior glazing surface being above the cavities and the outer surface being below the cavities.
  • above is defined as facing the pane interior of insulating glazing with a spacer and below as facing away from the pane interior.
  • the groove runs between the first interior glazing surface and the second interior glazing surface, it delimits them laterally and separates the first cavity and the second cavity from one another.
  • the side flanks of the groove are formed by the walls of the first hollow chamber and the second hollow chamber.
  • the groove forms a depression that is suitable for receiving the middle pane (third pane) of insulating glazing. This fixes the position of the third disk over two side flanks of the groove and the bottom surface of the groove.
  • a first and second disc can be attached to the first and second disc contacting surfaces of the spacer.
  • a double corner connector with two first legs and two second legs is also advantageous with regard to the fact that electrical leads with different voltage potentials can be routed separately from one another in one of the first or second legs and from there can be routed into two hollow chambers of a double spacer.
  • electrical feed lines of different polarities which are surrounded by an insulating sheath, can also be routed in a hollow chamber.
  • a further aspect of the invention is a triple corner connector comprising three corner connectors according to the invention, as described above, which are connected to one another in the corner area via two webs, which preferably each form a groove for accommodating middle panes.
  • Such a corner connector is suitable for connecting a triple spacer, which consists of three hollow profile strips that are connected to one another via two webs.
  • Such triple spacers are suitable for the production of quadruple glazing with three separate glazing interiors.
  • a triple corner connector offers the possibility of supplying three, two or alternatively only one glazing interior with an electrical supply line.
  • the individual described Embodiments for the single and double corner connector also apply analogously to a triple or quadruple version of a corner connector.
  • the primary sealant preferably contains butyl rubber, polyisobutylene, polyethylene vinyl alcohol, ethylene vinyl acetate, polyolefin rubber, polypropylene, polyethylene, copolymers and/or mixtures thereof.
  • the primary sealant is preferably introduced into the gap between the spacer frame and panes with a thickness of 0.1 mm to 0.8 mm, particularly preferably 0.2 mm to 0.4 mm.
  • the outer space between the panes of the insulating glazing is preferably filled with a secondary sealant.
  • This secondary sealant is primarily used to bond the two panes and thus the mechanical stability of the insulating glazing.
  • the secondary sealant preferably contains polysulfides, silicones, silicone rubber, polyurethanes, polyacrylates, copolymers and/or mixtures thereof. Such substances have very good adhesion to glass, so that the secondary sealant ensures that the panes are securely bonded.
  • the thickness of the secondary sealant is preferably 2 mm to 30 mm, more preferably 5 mm to 10 mm.
  • Insulating glazing can contain a number of electrical supply lines which run through the spacer frame parallel to one another or also in different sections of the spacer frame. All electrical supply lines are preferably introduced at the same point from the outer space between the panes through a corner connector into a hollow chamber of the spacer frame. This is advantageous because there is only one entry opening and the risk of leaks in the edge seal is minimized as a result.
  • the electrically switchable functional element there can be a plurality of electrical supply lines of different polarity, which are contacted with the electrically switchable functional element at different positions of the latter.
  • the actual functional element with electrically switchable optical properties is formed by at least two electrically conductive layers and one active layer.
  • the electrically conductive layers form surface electrodes.
  • the optical properties of the active layer in particular the transmission and/or the scattering of visible light, can be influenced by applying a voltage to the surface electrodes or by changing the voltage present at the surface electrodes.
  • the electrically conductive layers are preferably transparent.
  • the electrically conductive layers preferably contain at least one metal, one metal alloy or one transparent conductive oxide ( transparent conducting oxide, TCO).
  • the electrically conductive layers preferably contain at least one transparent conductive oxide.
  • the electrically conductive layers preferably have a thickness of 10 nm to 2 ⁇ m, particularly preferably from 20 nm to 1 ⁇ m, very particularly preferably from 30 nm to 500 nm and in particular from 50 nm to 200 nm active layer reached.
  • the electrically conductive layers are intended to be electrically conductively connected to at least one external voltage source in order to serve as surface electrodes of the switchable functional element.
  • the actual switchable functional element can be any functional element with electrically switchable optical properties that is known per se to a person skilled in the art.
  • the design of the active layer depends on the type of functional element.
  • an electrochromic functional element is contained in the interior of the glazing.
  • the active layer of the multilayer film is an electrochemically active layer.
  • the transmission of visible light depends on the degree of incorporation of ions in the active layer, with the ions being provided, for example, by an ion storage layer between the active layer and a surface electrode. The transmission can be influenced by the voltage applied to the surface electrodes, which causes the ions to migrate.
  • Suitable active layers contain, for example, at least tungsten oxide or vanadium oxide.
  • Electrochromic functional elements are, for example, from WO 2012007334 A1 , US20120026573A1 , WO 2010147494 A1 and EP 1862849 A1 known.
  • a PDLC functional element (polymer dispersed liquid crystal) is fitted in the interior of the glazing.
  • the active layer liquid crystals, which are embedded in a polymer matrix, for example. If no voltage is applied to the surface electrodes, the liquid crystals are aligned in a disorderly manner, which leads to strong scattering of the light passing through the active layer. If a voltage is applied to the surface electrodes, the liquid crystals align in a common direction and the transmission of light through the active layer is increased.
  • a functional element is, for example, from DE 102008026339 A1 known.
  • the insulating glazing comprises an electroluminescent functional element in the inner space between the panes.
  • the active layer contains electroluminescent materials, which can be inorganic or organic (OLED). The luminescence of the active layer is excited by applying a voltage to the surface electrodes.
  • Such functional elements are, for example, from US2004227462A1 and WO 2010112789 A2 known.
  • the electrically switchable functional element is an SPD (suspended particle device) functional element.
  • the active layer contains suspended particles, which are preferably embedded in a viscous matrix. The absorption of light by the active layer can be changed by applying a voltage to the surface electrodes, which leads to a change in the orientation of the suspended particles.
  • Such functional elements are, for example, from EP 0876608 B1 and WO 2011033313 A1 known.
  • the electrically switchable functional element can of course have other layers known per se, for example barrier layers, blocker layers, antireflection or reflection layers, protective layers and/or smoothing layers.
  • the electrically switchable functional element can also include an electrically heatable coating, a photovoltaic coating integrated in the insulating glazing and/or a thin-film transistor-based liquid crystal display (TFT-based LCD).
  • TFT-based LCD thin-film transistor-based liquid crystal display
  • the electrically switchable functional element can be arranged anywhere within the interior of the glazing.
  • the electrically switchable functional element is preferably located on one of the surfaces of the panes of the insulating glazing located in the interior of the glazing.
  • the electrically switchable functional element is preferably attached to the surface of the first pane and/or the second pane which faces towards the interior of the glazing.
  • the insulating glazing according to the invention is triple or multiple insulating glazing.
  • the electrically switchable functional element is preferably applied to the third pane or further panes that go beyond it and are arranged between the first pane and the second pane.
  • the electrical connection of the supply line and the electrically conductive layers of the functional element is preferably carried out via so-called busbars, for example strips of an electrically conductive material or electrically conductive imprints, with which the electrically conductive layers are connected.
  • the bus bars also known as bus bars, are used to transmit electrical power and enable homogeneous voltage distribution.
  • the busbars are advantageously produced by printing a conductive paste.
  • the conductive paste preferably contains silver particles and glass frits.
  • the layer thickness of the conductive paste is preferably from 5 ⁇ m to 20 ⁇ m.
  • busbars which preferably contain copper and/or aluminum; in particular, copper foil strips with a thickness of, for example, approximately 50 ⁇ m are used.
  • the width of the copper foil strips is preferably 1 mm to 10 mm.
  • a third pane with an electrically switchable functional element is inserted into the groove of a spacer frame with double spacer and double corner connector, with a busbar being printed along the pane edge of the third pane.
  • the bus bar is dimensioned in such a way that it is completely covered by the groove after the pane has been inserted into the groove of the spacer frame. Accordingly, the height of the bus bar, measured perpendicularly to the nearest edge of the pane, results from the height of the groove in the spacer frame minus the distance between the bus bar and the nearest edge of the pane.
  • the groove preferably has a height of 3 mm to 10 mm, particularly preferably 3 mm to 6 mm, for example 5 mm, and the height of the bus bar is 2 mm to 9 mm, preferably 2 mm to 5 mm.
  • the distance from the bus bar to the nearest pane edge is 1 mm, for example.
  • busbar can still be in the visible area of the pane and be as far away from the nearest pane edge as you like.
  • the busbar can be covered by decorative elements, such as a screen print.
  • the electrical contacting between the electrical supply line and the busbar can take place both indirectly via contact elements and directly.
  • Contact elements are used to achieve the best possible connection to the bus bar in terms of mechanical stability of the connection and minimization of an undesirable voltage drop.
  • suitable means for fixing the contact element in an electrically conductive manner on the busbar for example by soldering or gluing using a conductive adhesive.
  • the contact element is preferably designed as a spring contact. This is particularly advantageous because in this way there is a reversible connection between the contact element and the busbar and the electrical contact between the contact element and the busbar is established directly by inserting the disk carrying the busbar into the groove of the spacer frame.
  • the first pane, the second pane and/or the third pane of the insulating glazing preferably contain glass, particularly preferably quartz glass, borosilicate glass, soda-lime glass and/or mixtures thereof.
  • the first and/or second pane of the insulating glazing can also comprise thermoplastic polymeric panes.
  • Thermoplastic polymeric discs preferably comprise polycarbonate, polymethyl methacrylate and/or copolymers and/or mixtures thereof. Additional panes of the insulating glazing can have the same composition as mentioned for the first, second and third pane.
  • the first pane and the second pane have a thickness of 2 mm to 50 mm, preferably 2 mm to 10 mm, particularly preferably 4 mm to 6 mm, with the two panes also being able to have different thicknesses.
  • the first pane, the second pane and other panes can be made of toughened safety glass, thermally or chemically toughened glass, float glass, extra-clear low-iron float glass, colored glass, or laminated safety glass containing one or more of these components.
  • the panes can have any other components or coatings, for example low-E layers or other sun protection coatings.
  • the outer space between the panes, delimited by the first pane, the second pane and the outer surface of the spacer frame, is at least partially, preferably completely, filled with a secondary sealant. This achieves very good mechanical stabilization of the edge seal.
  • the insulating glazing is optionally filled with a protective gas, preferably with an inert gas, preferably argon or krypton, which reduces the heat transfer value in the interior of the glazing.
  • a protective gas preferably with an inert gas, preferably argon or krypton, which reduces the heat transfer value in the interior of the glazing.
  • the most diverse geometries of the insulating glazing are possible, for example rectangular, trapezoidal and rounded shapes.
  • the electrical supply line is electrically conductively contacted with the electrically switchable functional element.
  • a section of the electrical supply line is led out of the corner connector or the hollow profile spacer via an outlet opening.
  • the outlet opening can be produced during step b) or before step b). If the opening is arranged in the hollow profile spacer, it is preferably made in the form of a bore in the base body of the spacer.
  • the outlet opening is preferably located in the corner connector according to the invention and is already integrated into it during its manufacture.
  • the electrically switchable functional element is introduced into the interior of the glazing simultaneously with the attachment of the panes in step c), since this is generally attached to one of the surfaces of the panes lying in the interior of the insulating glazing after assembly.
  • the panes can be bonded according to step c) in any order.
  • the two panes can also be glued together at the pane contact surfaces at the same time.
  • the outer space between the panes is at least partially, preferably completely, filled with a secondary sealant.
  • the secondary sealant is preferably extruded directly into the outer space between the panes, for example in the form of a plastic sealant.
  • the glazing interior between the panes is preferably filled with an inert gas before the arrangement is pressed (step d)).
  • a desiccant is preferably filled into the hollow chamber via the open cross section of the spacer.
  • the glazing to be produced is multiple glazing with a double spacer comprising at least one groove, then at least a third pane is inserted into the groove of the spacer frame before step c).
  • the invention also includes the use of a double corner connector according to the invention in insulating glazing comprising electrically switchable functional elements, particularly preferably in triple insulating glazing, in particular in triple insulating glazing comprising an SPD, a PDLC, an electrochromic, an electroluminescent functional element.
  • a power supply is required in the glazing interior, so that an electrical supply line must be routed from the outer space between the panes into the glazing interior, which is significantly improved by using the double corner connector according to the invention.
  • the invention includes the use of a double corner connector according to the invention with a photovoltaic element. The power supply is provided by the photovoltaic element provided and an electrical load is contacted outside the glazing interior via an electrical supply line.
  • FIG. 1a and 1b show the same corner connector in different views. The representation is greatly simplified. Slats or retaining elements, such as are used in the prior art to fix the corner connector in a hollow profile bar, are not shown, for example. These can be added by a professional as needed.
  • the corner connector I has a first leg 2.1 and a second leg 2.2, which are connected to one another via a corner region 3.
  • the first leg 2.1 and the second leg 2.2 enclose an angle ⁇ of 90°.
  • the two legs 2.1 and 2.2 and the corner area 3 form the base body 6 and are made in one piece from a polyamide in an injection molding process.
  • a first electrical supply line 4.1 is integrated in the corner area 3 and in the first leg 2.1.
  • the base body 6 consists of an electrically insulating polymer, there is no need to provide the electrical feed line 4.1 with a sheath. In the example, it is a simple copper conductor.
  • the first electrical supply line 4.1 protrudes from the corner area 3.
  • the first electrical supply line 4.1 occurs in the corner area 3 of the Corner connector I enters the corner connector, runs along the first leg 2.1, is angled in the corner area 3 and exits again at the end face 5.1 of the first leg 2.1.
  • the first electrical supply line 4.1 enters the area of the corner region 3, which points in the direction of the outer space between the panes in the finished insulating glazing, so that the first electrical supply line 4.1 is in contact with the secondary sealant there, but does not come into contact with the primary sealant .
  • the dimensions of the corner connector I depend on the hollow profile spacers 1 used.
  • the length L of a leg is 3.0 cm in the example, and the length E of the corner area is approximately 0.7 cm.
  • Both legs 2.1 and 2.2 are of equal length.
  • the corner area 3 protrudes in comparison to the legs 2.1 and 2.2, so that a hollow profile spacer 1, which is pushed onto a leg 2.1 or 2.2 and rests against the corner area 3, ends flush with the corner area 3.
  • Figure 1c shows another corner connector I, which is constructed essentially like the one shown above. It differs in the structure of the corner area 3, which has a length E of 2.3 cm with a length L of the legs of 1.5 cm.
  • An advantage of this enlarged corner area 3 is that the area for the entry opening on the side facing the outer space between the panes and a possible exit opening on the side facing the glazing interior (not shown here) are larger. For example, an outlet opening with the possibility of making contact can also be arranged in such an enlarged corner area.
  • Figure 2a shows another corner connector in cross section.
  • the structure is essentially the same as in Figure 1a , b. It differs in the way the first electrical supply line 4.1 is routed.
  • the first electrical supply line 4.1 is a conductor with a plurality of wires.
  • the first electrical supply line 4.1 enters an inlet opening in the corner area 3 and then branches out in the corner area 3 and runs through the first leg 2.1, where it emerges again in an end face 5.1.
  • the first electrical supply line also runs through the second leg 2.2 and emerges there again in an end face 5.2. Since it is a conductor with several wires, branching in the corner area 3 is possible.
  • the individual wires are insulated from each other and surrounded by a sheath. With the help of the corner connector I, electrically switchable functional elements can be contacted at two different points on the insulating glazing, whereby only a single electrical supply line is required, which is already integrated in a prefabricated corner connector.
  • FIG. 2b shows another corner connector I.
  • the corner connector has a polymer base body 6 made of polyamide.
  • the corner connector I contains a first electrical supply line 4.1, the like for Figure 1a described.
  • the corner connector contains a second electrical supply line 4.2, which protrudes from the corner area in the direction of the interior of the glazing and in the direction of the outer space between the panes.
  • contact can be made via the second electrical supply line 4.2 of an electrically switchable functional element in the area of the corner of the insulating glazing.
  • a further electrical functional element or the same electrical functional element can be contacted at a more remote location using the first electrical supply line 4.1.
  • Figure 2c shows another corner connector, which is constructed essentially sc, like the one in Figure 1a,b shown.
  • the corner connector contains a first electrical supply line 4.1, which protrudes from the first leg 5.1, is angled in the corner region 3 and also protrudes from the second leg 5.2.
  • the corner connector thus enables an electrical supply line to be routed around a corner, thus avoiding a conductor having to first be routed around the corner and then having to be routed back into the interior of the glazing through the sealing of the edge seal.
  • Figure 3a shows a double corner connector III, which comprises two simple corner connectors I, which are connected to one another in the corner region 3 via a web 7.
  • the web forms a groove 8 for receiving a pane.
  • Such a corner connector is suitable for connecting two double spacers, each of which has two hollow chambers into which the legs 2.1 and 2.2 of the double corner connector III are inserted.
  • the two first legs 2.1 and the two second legs 2.2 each contain a flat conductor as the first electrical supply line 4.1.
  • the flat conductors protrude from the legs 2.1 and 2.2, i.e.
  • an electrical supply line can be routed around the corner of insulating glazing without having to subsequently route complex cabling through the outer space between the panes.
  • a particular advantage of the double corner connector with two first electrical leads that open into separate hollow chambers is that different electrically switchable functional elements can be contacted in different glazing interiors or different polarities can be routed separately from one another into the hollow chambers of a double spacer.
  • Figure 3b shows another double corner connector III comprising two single corner connectors connected to each other by a web 7, the web being designed to form a groove 8.
  • the two first legs 2.1 each comprise a first supply line 4.1 and a second supply line 4.2, which are each incorporated by a metallic conductor in the form of a copper wire into the base body of the double corner connector during production.
  • the supply lines protrude from the legs and protrude about 1 to 2 cm over the base body of the double corner connector (not shown here) in order to realize a connection with an electrical element in the hollow chambers of a double spacer.
  • figure 4 shows part of a further embodiment of a double corner connector III.
  • a two-part embodiment is provided here.
  • longitudinal connectors are inserted into the hollow chambers, so that the legs 2.1 and 2.2 (not shown) are part of a second component.
  • the corner areas 3 of the individual corner connectors are connected via a web 7 which forms a groove 8 .
  • a recess 9 is arranged in a side flank of the groove 8 , through which an electrical supply line can be routed from a hollow chamber of the corner area into the groove 8 .
  • the electrical supply line can enter the hollow chamber via an entry opening in the wall of the hollow chamber, which points in the direction of the outer space between the panes.
  • the routing of the electrical supply line in the groove 8 has the advantage that direct contacting of an electrically switchable functional element in the groove 8 is possible.
  • FIG 5 shows an overall view of an insulating glazing II.
  • the insulating glazing II comprises a spacer frame 14 comprising two hollow profile spacers 1 and two corner connectors I.
  • a first hollow profile spacer 1 is bent twice and runs along three sides of the insulating glazing.
  • a second hollow profile spacer 1 runs along the fourth side of the insulating glazing.
  • the two hollow profile spacers are connected at two corners of the insulating glazing II using corner connectors.
  • the spacer frame 14 is between a first disk 11 and a second disk 12 are arranged.
  • An electrically switchable functional element 19, which is provided with two busbars 21.1 and 21.2, is arranged in the glazing interior 18.
  • the first busbar 21.1 is connected to a first electrical supply line, which is arranged in a corner connector I.
  • the first electrical supply line 4.1 emerges from the corner connector and enters the interior of the glazing. There it is electrically conductively contacted with the first busbar 21.1.
  • the first electrical supply line 4.1 protrudes from the first leg 2.1 of the corner connector and enters a hollow chamber of the hollow profile spacer 1. There, the first electrical supply line contacts an electrical conductor 26 within the hollow chamber of the hollow profile spacer 1.
  • the electrical conductor 26 runs along the entire fourth hollow profile spacer to a second corner connector I, and makes contact there with a second electrical supply line 4.2.
  • the second electrical supply line 4.2 protrudes from the second leg 2.2 of the corner connector and is connected to a voltage source 20 which is arranged outside the insulating glazing.
  • the second electrical supply line 4.2 runs through the secondary sealant 16 in the outer space 17 between the panes and enters the corner connector I in the corner area.
  • the second busbar 21.2 is contacted by a first electrical supply line 4.1, which is also connected to the voltage source 20 and which enters the corner connector in the corner area and also exits the corner connector in the corner area into the interior of the glazing.
  • the first electrical supply line makes contact with the second busbar 21.2.
  • the voltage source here is a DC voltage source for operating an electrochromic functional element.
  • the supply lines 4.1 and 4.2 are connected to different poles of the voltage source, so that a potential difference arises between the two opposing busbars 21.1 and 21.2.
  • the voltage applied to the busbars 21.1 and 21.2 causes ions to migrate within the active layer of the electrochromic functional element, as a result of which its transmission is influenced.
  • FIG 6 shows a schematic representation of a hollow profile spacer 1 suitable for double insulating glazing in cross section.
  • the hollow profile spacer 1 comprises a polymer base body 25 and an electrical element 26 in the form of a ribbon conductor on the base body 25.
  • the polymer base body 25 is a hollow body profile comprising two pane contact surfaces 27.1 and 27.2, a glazing interior surface 28, an outer surface 29 and a hollow chamber 30.
  • the polymer base body 25 contains styrene acrylic nitrile (SAN) and about 35% by weight glass fiber.
  • SAN styrene acrylic nitrile
  • the hollow body 30 is usually filled with a desiccant (not shown).
  • the glazing interior surface 28 of the spacer 1 has openings 32 which are mounted at regular intervals circumferentially along the glazing interior surface 28 to allow gas exchange between the To allow interior of the insulating glazing and the hollow chamber 30. Any humidity that may be present in the interior is thus absorbed by the desiccant.
  • a barrier film (not shown) is applied to the outer surface 29 of the spacer 1, which reduces the ingress of moisture through the polymer base body 25 into the interior of the glazing.
  • the barrier film usually comprises a film of polymeric and metallic layers.
  • the polymer base body 25 is non-conductive for the electric current, so that the ribbon conductor 26 does not necessarily have electrical insulation. However, the ribbon conductor 26 is preferably surrounded by an insulating sheathing or covered by a barrier film with polymer layers.
  • the ribbon conductor protrudes from the base body 25 of the spacer at the open cross sections.
  • the electrical supply line 4.1 in the form of a cable must be brought into contact with the ribbon conductor 26.
  • the ribbon conductor 26 is preferably laid around the outer wall 29 for a piece, for example 1 cm long, so that it is guided there for this piece in the hollow chamber 30 of the spacer. If the ribbon conductor 26 is located within the hollow chamber, it is obviously not necessary to bend the ribbon conductor.
  • FIG. 3a a corner connector with a flat conductor 4.1 is shown in the design of a double corner connector III, which can be electrically connected to a flat conductor 26 folded into the hollow chamber 30 of the hollow profile at the end of the hollow profile spacer by simply inserting it into a spacer 1 shown.
  • FIG figure 7 shows a cross section through double insulating glazing II with a hollow profile spacer 1 according to FIG figure 6 with an additional barrier film 24.
  • a spacer frame 14 comprising the hollow profile spacer 1 is attached circumferentially via a primary sealant 15.
  • the primary sealant 15 connects the pane contact surfaces 27.1 and 27.2 of the hollow profile spacer 1 with the panes 11 and 12.
  • the glazing interior 18 adjoining the glazing interior surface 28 of the spacer 1 is defined as the space bounded by the panes 11, 12 and the spacer 1.
  • the outer surface adjacent to the outer surface 29 of the spacer 1 Intermediate space 17 is a strip-shaped peripheral section of the glazing, which is delimited on one side by the two panes 11, 12 and on another side by the spacer frame 14 and the fourth side of which is open.
  • the glazing interior 18 is filled with argon, for example.
  • a primary sealant 15 is introduced between a respective pane contact surface 27.1 or 27.2 and the adjacent pane 11 or 12, which seals the gap between pane 11, 12 and spacer 1.
  • the primary sealant 15 is polyisobutylene.
  • a secondary sealant 16 is applied to the outer surface 29 in the outer space 17 between the panes, which serves to bond the first pane 11 and the second pane 12 .
  • the secondary sealant 16 is made of silicone.
  • the secondary sealant 16 ends flush with the pane edges of the first pane 11 and the second pane 12 .
  • the second pane 12 has an electrically switchable functional element 19 on the pane surface facing the glazing interior 18, which is equipped with a first bus bar 21.1 for electrically contacting the functional element 19.
  • the electrically switchable functional element 19 is an electrochromic layer.

Description

  • Die Erfindung betrifft einen Eckverbinder mit integrierter elektrischer Zuleitung, eine Isolierverglasung umfassend einen solchen Eckverbinder und dessen Verwendung. Isolierverglasungen sind vor allem im Zuge immer strengerer Umweltschutzauflagen nicht mehr aus dem Gebäudebau wegzudenken. Diese werden dabei aus mindestens zwei Scheiben gefertigt, die über mindestens einen umlaufenden Abstandshalterrahmen miteinander verbunden sind. Der Abstandshalterrahmen besteht in der Regel aus einem Abstandhalterprofil, das an mindestens einer Stelle verbunden wird. Die Verbindung kann zum Beispiel durch Verschweißen erfolgen oder mithilfe von Steckverbindern. Je nach Ausführungsform ist der als Verglasungsinnenraum bezeichnete Zwischenraum der beiden Scheiben luft- oder gasgefüllt, in jedem Fall jedoch frei von Feuchtigkeit. Ein zu hoher Gehalt an Feuchtigkeit im Verglasungszwischenraum führt besonders bei kalten Außentemperaturen zur Kondensation von Wassertropfen im Scheibenzwischenraum, was unbedingt zu vermeiden ist. Zur Aufnahme der nach der Montage im System verbleibenden Restfeuchtigkeit können beispielsweise mit einem Trockenmittel gefüllte Hohlkörperabstandshalter verwendet werden. Da die Aufnahmekapazität des Trockenmittels jedoch begrenzt ist, ist auch in diesem Fall die Abdichtung des Systems von enormer Wichtigkeit um das Eindringen weiterer Feuchtigkeit zu vermeiden.
  • Isolierverglasungen können über ihre grundsätzliche Funktion hinausgehend auch weitere Elemente in Form von Einbauten oder Scheiben mit steuerbaren Zusatzfunktionen enthalten. Eine Art von modernen, aktiven Verglasungen sind Verglasungen mit schaltbaren oder regelbaren optischen Eigenschaften. Bei solchen Verglasungen kann beispielsweise die Transmission von Licht in Abhängigkeit einer angelegten elektrischen Spannung aktiv beeinflusst werden. Der Benutzer kann beispielsweise von einem transparenten in einen nicht transparenten Zustand der Verglasung schalten, um den Einblick in einen Raum von außen zu verhindern. Bei anderen Verglasungen kann die Transmission stufenlos geregelt werden, beispielsweise um den Eintrag von Sonnenenergie in einem Raum zu regulieren. Dadurch wird eine unerwünschte Erwärmung von Gebäuden oder Fahrzeuginnenräumen vermieden und der durch Klimaanlagen verursachte Energieverbrauch bzw. CO2-Ausstoß reduziert. Aktive Verglasungen dienen folglich nicht nur der optisch ansprechenden Gestaltung von Fassaden und einer angenehmen Lichtgestaltung in Innenräumen, sondern sind auch unter energetischen und ökologischen Gesichtspunkten vorteilhaft.
  • Aktive Verglasungen enthalten ein Funktionselement, welches typischerweise eine aktive Schicht zwischen zwei Flächenelektroden enthält. Die optischen Eigenschaften der aktiven Schicht können durch eine an die Flächenelektroden angelegte Spannung verändert werden. Ein Beispiel hierfür sind elektrochrome Funktionselemente, die beispielsweise aus US 20120026573 A1 und WO 2012007334 A1 bekannt sind. Ein weiteres Beispiel sind SPD-Funktionselemente (suspended particle device), die beispielsweise aus EP 0876608 B1 und WO 2011033313 A1 bekannt sind. Durch die angelegte Spannung lässt sich die Transmission von sichtbarem Licht durch elektrochrome oder SPD-Funktionselemente steuern. Die Spannungszufuhr erfolgt über sogenannte Sammelleiter (bus bars), die in der Regel auf den Flächenelektroden aufgebracht sind und über geeignete Verbindungskabel mit einer Spannungsquelle verbunden sind.
  • Wird eine aktive Verglasung in einer Isolierverglasung integriert, so ist die Spannungszufuhr der aktiven Verglasung gas- und wasserdicht auszugestalten um eine hinreichende Qualität und Lebensdauer der Isolierverglasung zu gewährleisten. In WO 2017/106458 A1 wird die elektrische Zuleitung selbst in Form und Größe so gestaltet, dass diese eine höhere Toleranz gegen Relativbewegungen bei unterschiedlicher thermischer Ausdehnung der beteiligten Komponenten aufweist. Die Zuleitung selbst erfolgt jedoch zwischen Abstandhalter und benachbarter Scheibe durch das zur Verklebung und Abdichtung dienende primäre Dichtmittel. Eine derartige Kabeldurchführung durch den Randverbund der Isolierverglasung stellt immer auch eine potenzielle Fehlstelle dar.
  • Darüber hinaus ist in der Praxis häufig eine elektrische Kontaktierung an mehreren Stellen der Isolierverglasung notwendig. Dabei wird das Anschlusskabel nach dem Stand der Technik im äußeren Scheibenzwischenraum um den Abstandhalterrahmen herumgeführt. Der Abstandhalter ist über ein sogenanntes primäres Dichtmittel mit den Scheiben der Isolierverglasung verklebt, während im äußeren Scheibenzwischenraum ein sekundäres Dichtmittel eingebracht ist, das diesen ausfüllt und eventuell vorhandene elektrische Anschlusskabel umgibt. Das automatisierte Verfüllen des äußeren Scheibenzwischenraums in Gegenwart elektrischer Anschlusskabel erweist sich jedoch als problematisch, da diese beispielsweise einen Roboterarm mit Extrusionsdüse räumlich behindern können. Ferner dürfen keine Luftblasen im äußeren Scheibenzwischenraum verbleiben, beispielsweise zwischen Anschlusskabel und Abstandhalter. Das Volumen der eingeschlossenen Luft variiert mit sich ändernden klimatischen Bedingungen und führt dauerhaft zu Undichtigkeiten der Isolierverglasung im Bereich des Lufteinschlusses.
  • In der WO2013184321A2 ist eine Möglichkeit zur Durchführung eines Kabels in den Verglasungsinnenraum offenbart ohne dass das Kabel durch das primäre Dichtmittel hindurchgeführt werden muss. Hier werden Kabel durch ein isolierendes Element zum Beispiel in Form von Längsverbindern in den Verglasungsinnenraum geführt. Dieser Weg löst jedoch nicht das Problem, dass Anschlusskabel im äußeren Scheibenzwischenraum um die Isolierverglasung herumgeführt werden müssen, damit verschiedene Stellen in der Isolierverglasung kontaktiert werden können. Gerade im Eckbereich ist die Herumführung besonders kritisch, da dort die automatische Versiegelung besonders schwierig ist und die Kabel besonders anfällig für mechanische Beschädigung sind.
  • Dokument US4691486 offenbart eine Glasanordnung für beheizbare Kühlschranktüren, bei der Eckverbinder offenbart werden, die eine elektrische Zuleitung enthalten und so die Notwendigkeit vermeiden, Kabel durch die primäre Versiegelung hindurchführen zu müssen. Es wird auch eine Dreifachverglasung mit zwei einzelnen Abstandhalterprofilen offenbart, bei der die Kontaktierung der heizbaren Beschichtung im sichtbaren Bereich der Isolierverglasung erfolgt.
  • Dokument US3760157 offenbart ein elektrisch heizbares Fenster mit einem Eckstück im elektrischer Zuleitung zur Stromversorgung einer leitfähigen Schicht. Es handelt sich um eine Doppelverglasung mit einem einzelnen Abstandhalterprofil.
  • WO2016/098837A1 offenbart einen doppelten Eckverbinder zur Verbindung von zwei Doppelabstandhaltern von Dreifachisolierverglasungen.
  • Aufgabe der vorliegenden Erfindung ist es, einen doppelten Eckverbinder für eine Dreifachisolierverglasung bereitzustellen, der die Herstellung einer verbesserten Isolierverglasung ermöglicht, sowie eine verbesserte Isolierverglasung mit einem solchen doppelten Eckverbinder bereitzustellen.
  • Die Aufgabe der vorliegenden Erfindung wird erfindungsgemäß durch einen doppelten Eckverbinder gemäß dem unabhängigen Anspruch 1 und die weiteren unabhängigen Ansprüche für eine Isolierverglasung mit Abstandhalter und die Verwendung gelöst. Bevorzugte Ausführungen der Erfindung gehen aus den Unteransprüchen hervor.
  • Der erfindungsgemäße doppelte Eckverbinder umfasst zwei im weiteren beschriebene Eckverbinder, die im Eckbereich über einen Steg miteinander verbunden sind. Ein solcher doppelter Eckverbinder ist für die Verbindung eines Doppelabstandhalters geeignet, der aus zwei Hohlprofilleisten besteht, die über einen Steg miteinander verbunden sind. Derartige Doppelabstandhalter sind geeignet für die Herstellung von Dreifachverglasungen mit zwei getrennten Verglasungsinnenräumen. Ein doppelter Eckverbinder bietet die Möglichkeit beide oder alternativ nur einen Verglasungsinnenraum mit einer elektrischen Zuleitung zu versorgen.
  • Der Steg des doppelten Eckverbinders ist so ausgeführt, dass eine Nut zur Aufnahme einer dritten Scheibe gebildet wird. In diese Nut kann beispielsweise eine Scheibe mit einem elektrisch schaltbaren Funktionselement eingesetzt werden. Diese Nut muss in den Abmessungen zu denen des verwendeten Doppelabstandhalters passen, damit die dritte Scheibe umlaufend entlang des gesamten Abstandhalterrahmens positioniert ist.
  • In einer bevorzugten Ausführungsform tritt die erste elektrische Zuleitung durch eine Austrittsöffnung in die Nut ein. Das bedeutet, die erste elektrische Zuleitung ragt aus der Nut auf der Seite des doppelten Eckverbinders heraus, der in der fertigen Isolierverglasung in Richtung des Verglasungsinnenraums weist. So kann ein elektrisch schaltbares Funktionselement, das auf der in der Nut eingesetzten Scheibe angeordnet ist, über die elektrische Zuleitung kontaktiert werden.
  • Der erfindungsgemäße doppelte Eckverbinder umfasst zwei im weiteren beschriebene Eckverbinder, die im Eckbereich über einen Steg miteinander verbunden sind und die jeweils wie folgt gestaltet sind: Der Eckverbinder zur Verbindung von zwei Hohlprofilabstandhaltern von Isolierverglasungen umfasst mindestens einen ersten Schenkel und einen zweiten Schenkel, die über einen Eckbereich miteinander verbunden sind. Der erste Schenkel, der zweite Schenkel und der Eckbereich sind einteilig ausgeführt, das heißt sie liegen in einem Stück vor und sind nicht über reversible Steckverbindungen miteinander verbunden. Diese Ausführung ist besonders stabil. Der erste Schenkel und der zweite Schenkel schließen einen Winkel α ein, mit 45°<α<120°. Der Eckbereich umfasst mindestens eine erste elektrische Zuleitung, das heißt die erste elektrische Zuleitung ist in den Eckbereich integriert. Die erste elektrische Zuleitung ragt aus dem Eckbereich heraus. Das bedeutet, dass die erste elektrische Zuleitung aus dem Bereich des Eckverbinders herausragt, der in der fertigen Isolierverglasung in Richtung des Verglasungsinnenraums zeigt, und / oder aus dem Bereich herausragt, der in Richtung des äußeren Scheibenzwischenraums weist. Eine Einführung der elektrischen Zuleitung in den Verglasungsinnenraum wird somit wesentlich erleichtert und gleichzeitig auch eine Herausführung ermöglicht. In einer bevorzugten Ausführungsform ist mindestens im ersten Schenkel und im Eckbereich eine erste elektrische Zuleitung angeordnet, die aus dem ersten Schenkel herausragt. Bevorzugt ist die elektrische Zuleitung so angeordnet, dass sie nur aus dem ersten Schenkel und aus dem Eckbereich herausragt. Der Schenkel ist erfindungsgemäß der Bereich des Eckverbinders, der in der fertigen Isolierverglasung in einen Hohlraum eines Hohlprofilabstandhalters eingesteckt ist. Somit wird eine Weiterleitung der elektrischen Zuleitung insbesondere in das Innere eines Hohlprofilabstandhalters ermöglicht. Von dort kann diese dann über Öffnungen im Hohlprofilabstandhalter in den Verglasungsinnenraum oder in den äußeren Scheibenzwischenraum weitergeführt werden. Alternativ kann ein elektrisches Element, das im Inneren des Hohlprofilabstandhalters angeordnet ist, kontaktiert werden.
  • Somit bietet der Eckverbinder die Möglichkeit, einfach eine elektrische Zuleitung in eine Isolierverglasung zu integrieren, wobei die Versiegelung des Randverbundes im Bereich des primären Dichtmittels nicht beschädigt wird. Nach dem Stand der Technik werden elektrische Zuleitungen bisher innerhalb des primären Dichtmittels, das den Abstandhalterrahmen mit den äußeren Scheiben verklebt, in den Verglasungsinnenraum geführt. Jegliche Kabeldurchführung stellt dabei eine potentielle Undichtigkeit dar, da Hohlräume in Nachbarschaft zum Kabel verbleiben können, die durch thermische Ausdehnung der enthaltenen Luft zu einer Undichtigkeit führen. Die Integration im Eckbereich ist besonders vorteilhaft, da somit die elektrische Zuleitung geschützt im Eckverbinder enthalten ist und nicht im äußeren Scheibenzwischenraum um die Ecke geführt werden muss. Zudem werden in einem Fenster im Bereich der Ecke keine Unterlegklötze zwischen Isolierglaseinheit und Fensterrahmen eingebaut. Eine direkte Kontaktierung eines elektrischen Funktionselements über die erste elektrische Zuleitung im Eckbereich ist ebenso möglich wie eine Kontaktierung eines elektrischen Elementes, wie zum Beispiel eines elektrischen Leiters, im Inneren eines Hohlprofilabstandhalters und / oder eine Kontaktierung einer externen Spannungsquelle. Ein wesentlicher Vorteil der Erfindung liegt auch im hohen Vorfertigungsgrad des Eckverbinders mit integrierter elektrischer Zuleitung. Die Leitungen werden dabei bereits im Fertigungsprozess des Eckverbinders in diesem integriert, so dass während der Herstellung der Isolierverglasung keine manuelle Installation der Zuleitungen mehr erforderlich ist. Bei Herstellung der Isolierverglasung sind die bereits im Grundkörper des Eckverbinders vorhandenen Zuleitungen lediglich mit den vorgesehen elektrischen Verbrauchern oder einer Spannungsquelle zu verbinden.
  • Der erfindungsgemäße doppelte Eckverbinder umfasst zwei Eckverbinder, die im Eckbereich über einen Steg miteinander verbunden sind und die in bevorzugten Ausführungsformen jeweils wie folgt gestaltet sind:
    In einer bevorzugten Ausführungsform tritt die erste elektrische Zuleitung über eine Eintrittsöffnung von der Seite des Eckverbinders, die in der fertigen Isolierverglasung dem äußeren Scheibenzwischenraum zugewandt ist, in den Eckbereich ein und über eine Austrittsöffnung im Eckbereich in Richtung des Verglasungsinnenraums wieder aus. So kann eine direkte Einführung einer elektrischen Zuleitung in den Verglasungsinnenraum erfolgen, wobei die Herstellung des Hohlprofilabstandhalters wie gewohnt erfolgen kann. Die Integration und Abdichtung der elektrischen Zuleitung in den Grundkörper des Eckverbinders kann separat erfolgen. Zudem sind keine zusätzlichen abzudichtenden Stellen im Abstandhalterrahmen notwendig.
  • In einer weiteren bevorzugten Ausführungsform ragt die erste elektrische Zuleitung aus dem ersten Schenkel und aus dem Eckbereich heraus. Bevorzugt tritt die erste elektrische Zuleitung durch eine Eintrittsöffnung in den Eckbereich ein und über eine Austrittsöffnung in Richtung des Hohlraums des Hohlprofilabstandhalters wieder aus. So kann sehr leicht eine Kontaktierung eines elektrischen Elementes im Hohlraum des Hohlprofilabstandhalters mit einer externen Spannungsquelle hergestellt werden. Alternativ oder zusätzlich bevorzugt tritt die erste elektrische Zuleitung durch eine Austrittsöffnung aus dem Eckbereich in den Verglasungsinnenraum aus und durch eine Austrittsöffnung aus dem ersten Schenkel in Richtung des Hohlprofilabstandhalters aus. So kann leicht eine Kontaktierung eines elektrisch schaltbaren Funktionselementes im Verglasungsinnenraum mit einem elektrischen Element im Hohlraum des Hohlprofilabstandhalters erfolgen.
  • In einer weiteren bevorzugten Ausführungsform ragt die erste elektrische Zuleitung aus dem ersten Schenkel und dem zweiten Schenkel heraus. In diesem Fall wird eine Führung der elektrischen Zuleitung innerhalb des Eckverbinders ermöglicht, sodass keine Anordnung der elektrischen Zuleitung im äußeren Zwischenraum notwendig ist. Dies ist insbesondere vorteilhaft, wenn mehrere voneinander entfernte Kontaktstellen eines Funktionselements zum Beispiel an verschiedenen Seiten einer Isolierverglasung kontaktiert werden müssen und eine Kabelführung um die Ecke erforderlich ist. Dank des Eckverbinders ist die elektrische Zuleitung geschützt und eine Beschädigung bei der automatischen Verfüllung des äußeren Scheibenzwischenraums wird verhindert. In einer weiteren möglichen Ausführungsform ragt die erste elektrische Zuleitung nur aus dem ersten Schenkel und dem zweiten Schenkel heraus. So wird lediglich die Herumführung eines Kabels um die Ecke ermöglicht.
  • In einer weiteren bevorzugten Ausführungsform umfasst der Eckverbinder mindestens eine zweite elektrische Zuleitung. So können zum Beispiel verschiedene Polaritäten an verschiedenen Stellen in die Isolierverglasung eingebracht werden oder mehrere elektrisch schaltbare Funktionselemente kontaktiert werden. Besonders bevorzugt sind Eckverbinder mit zwei, drei oder vier elektrischen Zuleitungen.
  • In einer weiteren bevorzugten Ausführungsform des Eckverbinders umfasst dieser einen polymeren Grundkörper. Dies ist vorteilhaft, da die Wärmeleitfähigkeit von Kunststoffen wesentlich geringer ist als die Wärmeleitfähigkeit von Metallen. Des Weiteren weist der Kunststoff des polymeren Grundkörpers einen spezifischen Widerstand von mindestens 108 Ω cm auf und ist somit nichtleitend für elektrischen Strom. Dies ist besonders vorteilhaft, da die elektrische Zuleitung in diesem Fall keiner weiteren Isolierung bedarf und der polymere Grundkörper die elektrische Zuleitung ausreichend gegenüber weiteren Bauteilen isoliert. Im Falle einer Isolierverglasung mit metallischen Abstandhaltern wirkt der polymere Grundkörper ebenfalls als Isolator zwischen den metallischen elektrisch leitenden Abschnitten des Abstandhalters.
  • Optional kann der polymere Grundkörper eine elektrische Zuleitung mit einer die Zuleitung umgebenden isolierenden Ummantelung aufweisen. Dies ist beispielsweise vorteilhaft um mehrere in der Hohlkammer verlaufende Zuleitungen unterschiedlicher Polaritäten gegeneinander zu isolieren.
  • Der polymere Grundkörper enthält oder besteht aus bevorzugt Polyethylen (PE), Polyvinylchlorid (PVC), Polycarbonat (PC), Polypropylen (PP), Polystyrol, Polybutadien, Polynitrile, Polyester, Polyurethane, Polymethylmetacrylate, Polyacrylate, Polyamide, Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT), bevorzugt Acrylnitril-Butadien-Styrol (ABS), Acrylester-Styrol-Acrylnitril (ASA), Acrylnitril-Butadien-Styrol/Polycarbonat (ABS/PC), Styrol-Acrylnitril (SAN), PET/PC, PBT/PC und/oder Gemische davon. Mit diesen Materialien werden besonders gute Ergebnisse erzielt.
  • In einer weiteren bevorzugten Ausgestaltung der Erfindung ist der Grundkörper ein metallischer Grundkörper. Der metallische Grundkörper besteht bevorzugt aus Aluminium oder Edelstahl. Bei metallischen Grundkörpern ist die elektrische Zuleitung von einer isolierenden Ummantelung umgeben, die einen Kurzschluss zwischen elektrischer Zuleitung und dem elektrisch leitenden metallischen Grundkörper verhindert.
  • Die isolierende Ummantelung hat einen spezifischen Widerstand von größer oder gleich 108 Ω cm und umfasst bevorzugt Polyvinylchlorid, Polyethylen, Gummi und/oder Polyurethan.
  • In einer alternativen Ausführungsform des Eckverbinders ist mindestens ein Schenkel des Eckverbinders über eine reversible Steckverbindung mit dem Rest des Eckverbinders verbunden. Der Eckverbinder ist somit mindestens zweiteilig ausgeführt. Diese Ausführungsart ist besonders flexibel und mit allen anderen bevorzugten Varianten kombinierbar. Besonders bevorzugt ist der Eckverbinder dreiteilig ausgeführt. In dem Fall sind beide Schenkel des Eckverbinders über eine reversible Steckverbindung mit dem Eckbereich verbunden. Der Eckbereich liegt dann bevorzugt als gebogenes Stück eines Hohlprofilabstandhalters vor, das anschließend mit zwei Längsverbindern versehen wird. Ein Längsverbinder umfasst zwei Einsteckschenkel, von denen der erste Einsteckschenkel in den Eckbereich gesteckt ist und der zweite Einsteckschenkel einen Schenkel des Eckverbinders bildet.
  • Die elektrische Zuleitung ist ein elektrischer Leiter, bevorzugt enthaltend Kupfer. Es können auch andere elektrisch leitende Materialien verwendet werden. Beispiele hierfür sind Aluminium, Gold, Silber oder Zinn und Legierungen davon. Die elektrische Zuleitung kann sowohl als Flachleiter als auch als Rundleiter ausgestaltet sein, sowie in beiden Fällen als eindrähtiger oder mehrdrähtiger Leiter (Litze).
  • Die elektrische Zuleitung besitzt bevorzugt einen Leitungsquerschnitt von 0,08 mm2 bis 2,5 mm2.
  • Als Zuleitung können auch Folienleiter verwendet werden. Beispiele für Folienleiter werden in DE 42 35 063 A1 , DE 20 2004 019 286 U1 und DE 93 13 394 U1 beschrieben.
  • Flexible Folienleiter, mitunter auch Flachleiter oder Flachbandleiter genannt, bestehen bevorzugt aus einem verzinnten Kupferband mit einer Dicke von 0,03 mm bis 0,1 mm und einer Breite von 2 mm bis 16 mm. Kupfer hat sich für solche Leiterbahnen bewährt, da es eine gute elektrische Leitfähigkeit sowie eine gute Verarbeitbarkeit zu Folien besitzt. Gleichzeitig sind die Materialkosten niedrig.
  • In einer bevorzugten Ausführungsform umfasst der Eckverbinder einen polymeren Grundkörper, in den die elektrische Zuleitung bereits bei Extrusion des Eckverbinders eingebracht wird. Der Grundkörper wird dabei um die elektrische Zuleitung extrudiert. Dies ist besonders vorteilhaft hinsichtlich einer einfachen und kostengünstigen Herstellung des Eckverbinders und einer automatisierten Integration der Zuleitung in den Grundkörper. Alternativ bevorzugt wird der Eckverbinder im Spritzgussverfahren hergestellt, wobei die elektrische Zuleitung ebenfalls während des Verfahrens in die Spritzgussform eingebracht werden kann.
  • In einer weiteren bevorzugten Ausführungsform ist der Grundkörper des Eckverbinders mit mindestens einer Öffnung, beispielsweise mit einem Bohrloch versehen, durch das die Zuleitungen in den Eckverbinder eingezogen sind. Da die manuelle Installation der Zuleitungen bei der Herstellung der Isolierverglasung entfällt, kann der Automatisierungsgrad der Isolierglasherstellung weiter erhöht werden.
  • Erfindungsgemäß ragt die erste elektrische Zuleitung aus dem Eckbereich heraus. Das bedeutet, dass die elektrische Zuleitung an der Eintritts- oder Austrittsstelle über den Grundkörper des Eckverbinders soweit übersteht, dass eine elektrisch leitfähige Kontaktierung oder Verbindung eines elektrischen Elementes, eines elektrisch schaltbaren Funktionselementes oder einer Spannungsquelle möglich ist. Elektrisch leitfähig kontaktiert bedeutet im Sinne der Erfindung insbesondere kapazitiv oder bevorzugt galvanisch leitend verbunden. Bei Verwendung eines Flachleiters ist es dabei ausreichend, dass der Flachleiter frei an der Oberfläche des Eckverbinders liegt. Durch Einstecken in einen Hohlraum eines Hohlprofilabstandhalters, der über ein entsprechendes elektrisches Element verfügt, wie zum Beispiel ebenfalls einen Flachleiter, kann eine elektrisch leitende Verbindung hergestellt werden. Bei der Verwendung eines Kabels als elektrische Zuleitung ist die Länge des Kabels bevorzugt so bemessen, dass das Kabel länger ist als der Teil der in den Eckverbinder integriert ist.
  • Die elektrische Zuleitung ist geeignet, um an einem Ende mit einer Spannungsversorgung verbunden zu werden und an einem anderen Ende mit einem elektrischen Verbraucher kontaktiert zu werden. Nach Montage des Eckverbinders in einer Isolierverglasung liegt die Spannungsversorgung dabei bevorzugt außerhalb des Verglasungsinnenraums und der elektrische Verbraucher innerhalb des Verglasungsinnenraums. Alternativ bevorzugt befindet sich die Spannungsquelle im Verglasungsinnenraum und der elektrische Verbraucher außerhalb des Verglasungsinnenraums. Diese Ausführungsform kann zum Beispiel bei einem im Isolierglas integrierten Photovoltaikelement als Spannungsquelle realisiert werden.
  • Die Verbindung der elektrischen Zuleitung mit einem Verbraucher oder einer Spannungsversorgung kann auf die verschiedenen dem Fachmann bekannten Arten erfolgen. Möglich ist die Kontaktierung mithilfe von lösbaren elektrischen Verbindungen wie Federkontakten, Steckverbindern, Lüsterklemmen, bedingt lösbaren elektrischen Verbindungen wie Löten oder unlösbaren elektrischen Verbindungen wie Quetschverbindungen, Schweißen, Kleben, Crimpen. Besonders bevorzugt ist die elektrische Zuleitung an mindestens einem Ende mit einem Steckerteil ausgestattet für die Herstellung einer Steckverbindung. Dies ermöglicht einen einfachen Anschluss eines elektrischen Verbrauchers oder einer Spannungsversorgung, die mit dem entsprechenden Gegenstück ausgestattet ist. Besonders bevorzugt sind magnetische Stecker, da diese eine besonders einfache Anbindung ermöglichen.
  • Ein elektrisches Element im Sinne der Erfindung bezeichnet ein elektrisches Element, das in der fertigen Isolierverglasung im Inneren des Hohlprofilabstandhalters angeordnet ist und das mit der elektrischen Zuleitung des Eckverbinders elektrisch leitend verbindbar ist. Das kann ein weiterer elektrischer Leiter in Form eines Kabels oder Folienleiters sein oder zum Beispiel ein Teil eines Steckverbinders.
  • Im Folgenden wird ein Aufbau einer nicht erfindungsgemäßen Isolierverglasung umfassend einen Eckverbinder beschrieben. Die Isolierverglasung umfasst mindestens eine erste Scheibe, eine zweite Scheibe und einen zwischen den Scheiben angeordneten Abstandhalterrahmen. Der Abstandhalterrahmen umfasst mindestens einen Hohlprofilabstandhalter und mindestens einen Eckverbinder. Die erste Scheibe und die zweite Scheibe sind über ein primäres Dichtmittel dicht mit dem Abstandhalterrahmen verbunden, sodass ein abgeschlossener Verglasungsinnenraum entsteht. Zwischen erster Scheibe, zweiter Scheibe und Abstandhalterrahmen befindet sich auf der Seite des Abstandhalterrahmens, der zur äußeren Umgebung weist, ein äußerer Scheibenzwischenraum, in dem ein sekundäres Dichtmittel angeordnet ist. Das sekundäre Dichtmittel trägt zur mechanischen Stabilität der Isolierverglasung bei. Der Eckverbinder umfasst eine erste elektrische Zuleitung, die durch eine Austrittsöffnung im Abstandhalterrahmen in den Verglasungsinnenraum eintritt. Bevorzugt kontaktiert die erste elektrische Zuleitung elektrisch leitend ein elektrisch schaltbares Funktionselement im Verglasungsinnenraum, wobei die erste elektrische Zuleitung ausschließlich das sekundäre Dichtmittel durchragt. Das heißt, die erste elektrische Zuleitung führt nicht durch das primäre Dichtmittel. Das heißt, auf diese Art ist eine elektrische Verbindung eines elektrisch schaltbaren Funktionselements mit einer externen Energiequelle bereitstellbar ohne dass die Dichtigkeit des Randverbunds durch die erste elektrische Zuleitung beeinträchtigt wird.
  • In einer bevorzugten Ausführungsform der Isolierverglasung befindet sich die Austrittsöffnung im Eckbereich des Eckverbinders. Somit ist keine Öffnung in einem Hohlprofilabstandhalter anzubringen und mühevoll abzudichten, sondern die elektrische Zuleitung kann über den vorgefertigten Eckverbinder ohne großen Herstellungsaufwand in die Isolierverglasung eingebracht werden.
  • In einer alternativen bevorzugten Ausführungsform befindet sich die Austrittsöffnung in einem Abschnitt des Hohlprofilabstandhalters. Dabei kann die erste elektrische Zuleitung an einem beliebigen Ort an ein elektrisch schaltbares Funktionselement herangeführt werden. Dies ist insbesondere bei größeren Isolierverglasungen von Vorteil.
  • In einer bevorzugten Ausführungsform tritt die erste elektrische Zuleitung im Eckbereich des Eckverbinders in den Eckverbinder ein und durchragt das sekundäre Dichtmittel nur im Bereich des Eckverbinders. Die elektrische Zuleitung verläuft bevorzugt nicht über längere Abschnitte entlang des Abstandhalters im äußeren Scheibenzwischenraum, sondern wird direkt aus dem Eckverbinder auf kürzester Strecke durch das sekundäre Dichtmittel aus der Isolierverglasung geführt. Damit wird vermieden, dass über längere Abschnitte die elektrische Zuleitung im äußeren Scheibenzwischenraum liegt und bei der Verfüllung mit sekundärem Dichtmittel geschützt werden muss.
  • In einer weiteren bevorzugten Ausführungsform ragt die erste elektrische Zuleitung aus dem ersten Schenkel heraus und tritt in eine Hohlkammer des Hohlprofilabstandhalters ein. Die erste elektrische Zuleitung kann somit durch die Hohlkammer des Hohlprofilabstandhalters geführt werden bis zu einem Ort, an dem ein elektrisch schaltbares Funktionselement kontaktiert werden soll, ohne dass sie über längere Strecken durch das sekundäre Dichtmittel geführt werden muss.
  • In einer weiteren bevorzugten Ausführungsform der Isolierverglasung umfasst das elektrisch schaltbare Funktionselement eine erste Leiterfläche und eine davon getrennte separate zweite Leiterfläche. Die erste Leiterfläche ist mit der ersten elektrischen Zuleitung verbunden und die zweite Leiterfläche ist mit der zweiten elektrischen Zuleitung verbunden. Dabei ragt die erste elektrische Zuleitung aus dem ersten Schenkel heraus und tritt in eine Hohlkammer des Hohlprofilabstandhalters ein. Die zweite Zuleitung ragt aus dem zweiten Schenkel heraus und tritt ebenfalls in eine Hohlkammer des Hohlprofilabstandhalters ein. Bevorzugt treten beide elektrische Zuleitungen im Eckbereich von demselben Eckverbinder ein. Somit ist nur an einer Stelle der Isolierverglasung die Einführung von elektrischen Zuleitung notwendig und an zwei verschiedenen Stellen werden Leiterflächen kontaktiert. In einer weiteren bevorzugten Ausführungsform enthält die erste elektrische Zuleitung mehrere Drähte. Dabei ist ein erster Draht mit der ersten Leiterfläche verbunden und ein zweiter Draht mit der zweiten Leiterfläche verbunden. Die erste elektrische Zuleitung tritt bevorzugt im Eckbereich des Eckverbinders ein, verzweigt sich dort und der erste Draht ragt aus dem ersten Schenkel raus und der zweite Draht ragt aus dem zweiten Schenkel raus.
  • Ein weiterer Aspekt der Erfindung ist eine Isolierverglasung mit einem erfindungsgemäßen doppelten Eckverbinder. Die Isolierverglasung umfasst mindestens eine erste Scheibe, eine zweite Scheibe und eine dritte Scheibe. Zwischen der ersten Scheibe und der zweiten Scheibe ist umlaufend ein Abstandhalterrahmen angeordnet, der mindestens einen Doppelabstandhalter und einen erfindungsgemäßen doppelten Eckverbinder umfasst. Dabei sind die erste Scheibe und die zweite Scheibe jeweils über ein primäres Dichtmittel mit dem Abstandhalterrahmen verbunden, wodurch ein abgeschlossener Verglasungsinnenraum gebildet wird. Der Abstandhalterrahmen hat eine umlaufende Nut, in die die dritte Scheibe eingesetzt ist. Die dritte Scheibe teilt den abgeschlossenen Verglasungsinnenraum in einen ersten Verglasungsinnenraum zwischen erster und dritter Scheibe und einen zweiten Verglasungsinnenraum zwischen dritter und zweiter Scheibe. Die umlaufende Nut des Abstandhalterrahmens wird durch die Nut im Doppelabstandhalter und die Nut des doppelten Eckverbinders gebildet. Die dritte Scheibe umfasst ein elektrisch schaltbares Funktionselement, das über die elektrische Zuleitung elektrisch leitend kontaktiert wird. Bevorzugt erfolgt die Kontaktierung innerhalb der Nut. So wird das optische Erscheinungsbild der Isolierverglasung verbessert, da die Kontaktierung nicht von außen sichtbar ist. Bevorzugt durchragt die erste elektrische Zuleitung ausschließlich das sekundäre Dichtmittel. Das heißt, die erste elektrische Zuleitung führt nicht durch das primäre Dichtmittel. Das heißt, auf diese Art ist eine elektrische Verbindung eines elektrisch schaltbaren Funktionselements mit einer externen Energiequelle bereitstellbar ohne dass die Dichtigkeit des Randverbunds durch die erste elektrische Zuleitung beeinträchtigt wird.
  • Die oben beschriebenen Möglichkeiten für die Führung der elektrischen Zuleitung durch eine Austrittsöffnung in den Verglasungsinnenraum bzw. in den Eckverbinder hinein gelten analog für die Ausführung der Isolierverglasung mit doppeltem Eckverbinder.
  • Im Falle eines Abstandhalterrahmens mit Doppelabstandhalter und doppeltem Eckverbinder besteht eine zusätzliche Möglichkeit zur Positionierung einer Austrittsöffnung der elektrischen Zuleitung. Die Austrittsöffnung kann innerhalb der Nut liegen. Bevorzugt liegt die Austrittsöffnung, durch die die erste elektrische Zuleitung in den Verglasungsinnenraum eintritt, in der Nut des doppelten Eckverbinders.
  • Ein für die erfindungsgemäße Isolierverglasung verwendbarer Doppelabstandhalter ist beispielsweise in der WO 2014198431 A1 offenbart. Der Doppelabstandhalter umfasst einen Grundkörper mit erster Scheibenkontaktfläche und einer parallel dazu verlaufenden zweiten Scheibenkontaktfläche, eine Verglasungsinnenraumfläche und eine Außenfläche. Die Verglasungsinnenraumfläche wird durch die Nut in zwei Teilbereiche unterteilt. In den Grundkörper sind eine erste Hohlkammer und eine zweite Hohlkammer eingebracht, die durch die Nut voneinander getrennt sind. Die erste Hohlkammer grenzt an einen ersten Teilbereich der Verglasungsinnenraumfläche, während die zweite Hohlkammer an einen zweiten Teilbereich der Verglasungsinnenraumfläche angrenzt, wobei die Verglasungsinnenraumfläche sich oberhalb der Hohlkammern befinden und die Außenfläche sich unterhalb der Hohlkammern befindet. Oberhalb ist in diesem Zusammenhang als dem Scheibeninnenraum einer Isolierverglasung mit Abstandshalter zugewandt und unterhalb als dem Scheibeninnenraum abgewandt definiert. Da die Nut zwischen der ersten Verglasungsinnenraumfläche und zweiten Verglasungsinnenraumfläche verläuft, begrenzt sie diese seitlich und trennt die erste Hohlkammer und die zweite Hohlkammer voneinander. Die Seitenflanken der Nut werden dabei von den Wänden der ersten Hohlkammer und der zweiten Hohlkammer gebildet. Die Nut bildet dabei eine Vertiefung, die geeignet ist die mittlere Scheibe (dritte Scheibe) einer Isolierverglasung aufzunehmen. Dadurch wird die Position der dritten Scheibe über zwei Seitenflanken der Nut sowie die Bodenfläche der Nut fixiert. Eine erste und eine zweite Scheibe können an der ersten und zweiten Scheibenkontaktfläche des Abstandhalters angebracht werden.
  • Ein doppelter Eckverbinder mit zwei ersten Schenkeln und zwei zweiten Schenkeln ist auch vorteilhaft im Hinblick darauf, dass elektrische Zuleitungen mit verschiedenen Spannungspotentialen getrennt voneinander in jeweils einem der ersten bzw. zweiten Schenkeln geführt werden können und von dort in zwei Hohlkammern eines Doppelabstandhalters geführt werden können. Alternativ können auch mehrere elektrische Zuleitungen unterschiedlicher Polaritäten, die von einer isolierenden Ummantelung umgeben sind, in einer Hohlkammer geführt werden.
  • Ein weiterer Aspekt der Erfindung ist ein dreifacher Eckverbinder umfassend drei erfindungsgemäße Eckverbinder, wie oben beschrieben, die im Eckbereich über zwei Stege miteinander verbunden sind, die bevorzugt jeweils eine Nut bilden zur Aufnahme mittlerer Scheiben. Ein solcher Eckverbinder ist für die Verbindung eines Dreifachabstandhalters geeignet, der aus drei Hohlprofilleisten besteht, die über zwei Stege miteinander verbunden sind. Derartige Dreifachabstandhalter sind geeignet für die Herstellung von Vierfachverglasungen mit drei getrennten Verglasungsinnenräumen. Ein dreifacher Eckverbinder bietet die Möglichkeit drei, zwei oder alternativ nur einen Verglasungsinnenraum mit einer elektrischen Zuleitung zu versorgen. Die einzelnen beschriebenen Ausführungsformen für den einfachen und doppelten Eckverbinder gelten analog auch für eine dreifache oder auch vierfache Ausführung eines Eckverbinders.
  • Die folgenden Ausführungen beziehen sich auf eine erfindungsgemäße Isolierverglasung mit einfachem oder doppeltem Eckverbinder.
  • Das primäre Dichtmittel enthält bevorzugt Butylkautschuk, Polyisobutylen, Polyethylenvinylalkohol, Ethylenvinylacetat, Polyolefin-Kautschuk, Polypropylen, Polyethylen, Copolymere und/oder Gemische davon.
  • Das primäre Dichtmittel ist bevorzugt in mit einer Dicke von 0,1 mm bis 0,8 mm, besonders bevorzugt 0,2 mm bis 0,4 mm in den Spalt zwischen Abstandhalterrahmen und Scheiben eingebracht.
  • Der äußere Scheibenzwischenraum der Isolierverglasung ist bevorzugt mit einem sekundären Dichtmittel verfüllt. Dieses sekundäre Dichtmittel dient vor allem der Verklebung der beiden Scheiben und somit der mechanischen Stabilität der Isolierverglasung.
  • Das sekundäre Dichtmittel enthält bevorzugt Polysulfide, Silikone, Silikonkautschuk, Polyurethane, Polyacrylate, Copolymere und/oder Gemische davon. Derartige Stoffe haben eine sehr gute Haftung auf Glas, so dass das sekundäre Dichtmittel eine sichere Verklebung der Scheiben gewährleistet. Die Dicke des sekundären Dichtmittels beträgt bevorzugt 2 mm bis 30 mm, besonders bevorzugt 5 mm bis 10 mm.
  • Eine Isolierverglasung kann mehrere elektrische Zuleitungen enthalten, die den Abstandhalterrahmen parallel zueinander oder auch in unterschiedlichen Abschnitten des Abstandhalterrahmens durchlaufen. Bevorzugt werden alle elektrischen Zuleitungen an der gleichen Stelle vom äußeren Scheibenzwischenraum durch einen Eckverbinder in eine Hohlkammer des Abstandhalterrahmens eingeführt. Dies ist vorteilhaft, da so nur eine einzelne Eintrittsöffnung besteht und die Gefahr von Undichtigkeiten im Randverbund dadurch minimiert wird.
  • Je nach Ausgestaltung des elektrisch schaltbaren Funktionselements können mehrere elektrische Zuleitungen unterschiedlicher Polarität bestehen, die an verschiedenen Positionen des elektrisch schaltbaren Funktionselements mit diesem kontaktiert werden.
  • Das eigentliche Funktionselement mit elektrisch schaltbaren optischen Eigenschaften wird mindestens durch zwei elektrisch leitfähige Schichten und eine aktive Schicht gebildet. Die elektrisch leitfähigen Schichten bilden dabei Flächenelektroden. Durch Anlegen einer Spannung an die Flächenelektroden, beziehungsweise durch Änderung der an den Flächenelektroden anliegenden Spannung können die optischen Eigenschaften der aktiven Schicht, insbesondere die Transmission und/oder die Streuung von sichtbarem Licht beeinflusst werden.
  • Die elektrisch leitfähigen Schichten sind bevorzugt transparent. Die elektrisch leitfähigen Schichten enthalten bevorzugt zumindest ein Metall, eine Metalllegierung oder ein transparentes leitfähiges Oxid (transparent conducting oxide, TCO). Die elektrisch leitfähigen Schichten enthalten bevorzugt zumindest ein transparentes leitfähiges Oxid.
  • Die elektrisch leitfähigen Schichten weisen bevorzugt eine Dicke von 10 nm bis 2 µm auf, besonders bevorzugt von 20 nm bis 1 µm, ganz besonders bevorzugt von 30 nm bis 500 nm und insbesondere von 50 nm bis 200 nm. Damit wird eine vorteilhafte elektrische Kontaktierung der aktiven Schicht erreicht.
  • Die elektrisch leitfähigen Schichten sind dafür vorgesehen, mit zumindest einer externen Spannungsquelle elektrisch leitend verbunden zu werden, um als Flächenelektroden des schaltbaren Funktionselements zu dienen.
  • Das eigentliche schaltbare Funktionselement kann prinzipiell jedes dem Fachmann an sich bekannte Funktionselement mit elektrisch schaltbaren optischen Eigenschaften sein. Die Ausgestaltung der aktiven Schicht richtet sich nach der Art des Funktionselements.
  • In einer vorteilhaften Ausgestaltung der Erfindung ist im Verglasungsinnenraum ein elektrochromes Funktionselement enthalten. Dabei ist die aktive Schicht der Mehrschichtfolie eine elektrochemisch aktive Schicht. Die Transmission von sichtbarem Licht ist vom Einlagerungsgrad von Ionen in die aktive Schicht abhängig, wobei die Ionen beispielsweise durch eine lonenspeicherschicht zwischen aktiver Schicht und einer Flächenelektrode bereitgestellt werden. Die Transmission kann durch die an die Flächenelektroden angelegte Spannung, welche eine Wanderung der Ionen hervorruft, beeinflusst werden. Geeignete aktive Schichten enthalten beispielsweise zumindest Wolframoxid oder Vanadiumoxid. Elektrochrome Funktionselemente sind beispielsweise aus WO 2012007334 A1 , US 20120026573 A1 , WO 2010147494 A1 und EP 1862849 A1 bekannt.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist im Verglasungsinnenraum ein PDLC-Funktionselement (Polymer dispersed liquid crystal) angebracht. Dabei enthält die aktive Schicht Flüssigkristalle, welche beispielsweise in eine Polymermatrix eingelagert sind. Wird an die Flächenelektroden keine Spannung angelegt, so sind die Flüssigkristalle ungeordnet ausgerichtet, was zu einer starken Streuung des durch die aktive Schicht tretenden Lichts führt. Wird an die Flächenelektroden eine Spannung angelegt, so richten sich die Flüssigkristalle in einer gemeinsamen Richtung aus und die Transmission von Licht durch die aktive Schicht wird erhöht. Ein solches Funktionselement ist beispielsweise aus DE 102008026339 A1 bekannt.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung umfasst die Isolierverglasung im inneren Scheibenzwischenraum ein elektrolumineszentes Funktionselement. Dabei enthält die aktive Schicht elektrolumineszente Materialen, welche anorganisch oder organisch (OLED) sein können. Durch Anlegen einer Spannung an die Flächenelektroden wird die Lumineszenz der aktiven Schicht angeregt. Solche Funktionselemente sind beispielsweise aus US 2004227462 A1 und WO 2010112789 A2 bekannt.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist das elektrisch schaltbare Funktionselement ein SPD-Funktionselement (suspended particle device). Dabei enthält die aktive Schicht suspendierte Partikel, welche bevorzugt in eine zähflüssige Matrix eingelagert sind. Die Absorption von Licht durch die aktive Schicht ist durch das Anlegen einer Spannung an die Flächenelektroden veränderbar, welche zu einer Orientierungsänderung der suspendierten Partikel führt. Solche Funktionselemente sind beispielsweise aus EP 0876608 B1 und WO 2011033313 A1 bekannt.
  • Das elektrisch schaltbare Funktionselement kann natürlich außer der aktiven Schicht und den elektrisch leitfähigen Schichten weitere an sich bekannte Schichten aufweisen, beispielsweise Barriereschichten, Blockerschichten, Antireflexions- oder Reflexionsschichten, Schutzschichten und/oder Glättungsschichten.
  • Das elektrisch schaltbare Funktionselement kann alternativ auch eine elektrisch beheizbare Beschichtung, eine in der Isolierverglasung integrierte photovoltaische Beschichtung und/oder ein dünnschichttransistorbasiertes Flüssigkristalldisplay (TFT-basiertes LCD) umfassen.
  • Das elektrisch schaltbare Funktionselement kann an beliebiger Stelle innerhalb des Verglasungsinnenraums angeordnet sein. Bevorzugt befindet sich das elektrisch schaltbare Funktionselement auf einer der im Verglasungsinnenraum befindlichen Oberflächen der Scheiben der Isolierverglasung.
  • Bei einer nicht erfindungsgemäßen Doppelisolierverglasung ist das elektrisch schaltbare Funktionselement bevorzugt auf der zum Verglasungsinnenraum gerichteten Oberfläche der ersten Scheibe und/oder der zweiten Scheibe angebracht.
  • Bei der erfindungsgemäßen Isolierverglasung handelt es sich um eine Dreifach- oder Mehrfachisolierverglasung. In diesem Fall ist das elektrisch schaltbare Funktionselement bevorzugt auf der dritten Scheibe oder darüberhinausgehenden weiteren Scheiben, die zwischen der ersten Scheibe und der zweiten Scheibe angeordnet sind, aufgebracht.
  • Die elektrische Verbindung der Zuleitung und der elektrisch leitfähigen Schichten des Funktionselements erfolgt bevorzugt über sogenannte Sammelleiter, beispielsweise Streifen eines elektrisch leitfähigen Materials oder elektrisch leitfähige Aufdrucke, mit denen die elektrisch leitfähigen Schichten verbunden werden. Die Sammelleiter, auch als bus bars bezeichnet, dienen der Übertragung elektrischer Leistung und ermöglichen eine homogene Spannungsverteilung. Die Sammelleiter werden vorteilhaft durch Aufdrucken einer leitfähigen Paste hergestellt. Die leitfähige Paste enthält bevorzugt Silber-Partikel und Glasfritten. Die Schichtdicke der leitfähigen Paste beträgt bevorzugt von 5 µm bis 20 µm.
  • In einer alternativen Ausgestaltung werden dünne und schmale Metallfolienstreifen oder Metalldrähte als Sammelleiter verwendet, die bevorzugt Kupfer und / oder Aluminium enthalten, insbesondere werden Kupferfolienstreifen mit einer Dicke von beispielsweise etwa 50 µm verwendet. Die Breite der Kupferfolienstreifen beträgt bevorzugt 1 mm bis 10 mm. Der elektrische Kontakt zwischen einer als Flächenelektrode dienenden elektrisch leitfähigen Schicht des Funktionselements und dem Sammelleiter kann beispielsweise durch Auflöten oder Kleben mit einem elektrisch leitfähigen Kleber hergestellt werden.
  • In einer vorteilhaften Ausführungsform der Erfindung ist eine dritte Scheibe mit elektrisch schaltbarem Funktionselement in die Nut eines Abstandhalterrahmens mit Doppelabstandhalter und doppeltem Eckverbinder eingesetzt, wobei ein Sammelleiter entlang der Scheibenkante der dritten Scheibe aufgedruckt ist. Der Sammelleiter ist dabei so bemessen, dass dieser nach Einsetzen der Scheibe in die Nut des Abstandhalterrahmens vollständig von der Nut verdeckt wird. Demnach ergibt sich die Höhe des Sammelleiters, gemessen senkrecht zur nächstliegenden Scheibenkante, aus der Höhe der Nut des Abstandhalterrahmens abzüglich des Abstandes von Sammelleiter und nächstliegender Scheibenkante. Bevorzugt weist die Nut eine Höhe von 3 mm bis 10 mm, besonders bevorzugt 3 mm bis 6 mm, beispielsweise 5 mm auf, und die Höhe des Sammelleiters beträgt 2 mm bis 9 mm, bevorzugt 2 mm bis 5 mm. Der Abstand des Sammelleiters zur nächstliegenden Scheibenkante beträgt beispielsweise 1 mm.
  • Auch unter Verwendung von Sammelleitern ist somit eine für den Betrachter unsichtbare Kontaktierung innerhalb der Nut möglich. Alternativ kann der Sammelleiter weiterhin im sichtbaren Bereich der Scheibe liegen und dabei beliebig weit von der nächstliegenden Scheibenkante entfernt sein. Optional kann der Sammelleiter dabei von dekorativen Elementen, beispielsweise einem Siebdruck verdeckt sein.
  • Die elektrische Kontaktierung zwischen elektrischer Zuleitung und Sammelleiter kann sowohl mittelbar über Kontaktelemente als auch unmittelbar erfolgen. Kontaktelemente werden verwendet um eine möglichst gute Anbindung an den Sammelleiter im Hinblick auf mechanische Stabilität der Verbindung und Minimierung eines unerwünschten Spannungsabfalls zu erzielen. Dem Fachmann sind geeignete Mittel bekannt um das Kontaktelement beispielsweise durch Löten oder Kleben mittels eines leitfähigen Klebstoffs elektrisch leitend am Sammelleiter zu fixieren.
  • Bevorzugt ist das Kontaktelement als Federkontakt ausgeführt. Dies ist besonders vorteilhaft, da auf diese Weise eine reversible Verbindung von Kontaktelement und Sammelleiter besteht und der elektrische Kontakt zwischen Kontaktelement und Sammelleiter bereits unmittelbar durch Einsetzen der den Sammelleiter tragenden Scheibe in die Nut des Abstandhalterrahmens zustande kommt.
  • Die erste Scheibe, die zweite Scheibe und/oder die dritte Scheibe der Isolierverglasung enthalten bevorzugt Glas, besonders bevorzugt Quarzglas, Borosilikatglas, Kalk-Natron-Glas und/oder Gemische davon. Die erste und/oder zweite Scheibe der Isolierverglasung können auch thermoplastische polymere Scheiben umfassen. Thermoplastische polymere Scheiben umfassen bevorzugt Polycarbonat, Polymethylmethacrylat und/oder Copolymere und/oder Gemische davon. Darüberhinausgehende Scheiben der Isolierverglasung können die gleiche Zusammensetzung haben wie für die erste, zweite und dritte Scheibe erwähnt.
  • Die erste Scheibe und die zweite Scheibe verfügen über eine Dicke von 2 mm bis 50 mm, bevorzugt 2 mm bis 10 mm, besonders bevorzugt 4 mm bis 6 mm, wobei beide Scheiben auch unterschiedliche Dicken haben können.
  • Die erste Scheibe, die zweite Scheibe und weitere Scheiben können aus Einscheibensicherheitsglas, aus thermisch oder chemisch vorgespanntem Glas, aus Floatglas, aus extraklarem eisenarmem Floatglas, gefärbtem Glas, oder aus Verbundsicherheitsglas enthaltend eine oder mehrere dieser Komponenten ausgeführt sein.
  • Die Scheiben können beliebige weitere Komponenten oder Beschichtungen, beispielsweise Low-E-Schichten oder anderweitige Sonnenschutzbeschichtungen, aufweisen.
  • Der äußere Scheibenzwischenraum, begrenzt durch erste Scheibe, zweite Scheibe und Außenfläche des Abstandhalterrahmens, ist zumindest teilweise, bevorzugt vollständig, mit einem sekundären Dichtmittel verfüllt. Dadurch wird eine sehr gute mechanische Stabilisierung des Randverbunds erzielt.
  • Die Isolierverglasung ist optional mit einem Schutzgas, bevorzugt mit einem Edelgas, vorzugsweise Argon oder Krypton befüllt, die den Wärmeübergangswert im Verglasungsinnenraum reduzieren.
  • Grundsätzlich sind verschiedenste Geometrien der Isolierverglasung möglich, beispielsweise rechteckige, trapezförmige und abgerundete Formen.
  • Die Erfindung umfasst ferner ein Verfahren zur Herstellung einer erfindungsgemäßen Isolierverglasung umfassend die Schritte:
    1. a) Bereitstellung eines Eckverbinders mit integrierter elektrischer Zuleitung,
    2. b) Zusammensetzen eines Abstandhalterrahmens aus Hohlprofilabstandhalter und Eckverbinder,
    3. c) Anbringen des Abstandhalterrahmens zwischen einer ersten Scheibe und einer zweiten Scheibe mittels eines primären Dichtmittels und Einbringen eines elektrisch schaltbaren Funktionselements in den Verglasungsinnenraum,
    4. d) Verpressen der Scheibenanordnung,
    5. e) Einbringen eines sekundären Dichtmittels in den äußeren Scheibenzwischenraum.
  • Die elektrische Zuleitung wird in Schritt c) elektrisch leitend mit dem elektrisch schaltbaren Funktionselement kontaktiert. Dazu wird ein Abschnitt der elektrischen Zuleitung über eine Austrittsöffnung aus dem Eckverbinder oder dem Hohlprofilabstandhalter herausgeführt. Die Austrittsöffnung kann je nach ihrer Positionierung während Schritt b) oder vor Schritt b) erzeugt werden. Wenn die Öffnung im Hohlprofilabstandhalter angeordnet ist, wird sie bevorzugt in Form einer Bohrung in den Grundkörper des Abstandhalters eingebracht. Bevorzugt befindet sich die Austrittsöffnung im erfindungsgemäßen Eckverbinder und ist bereits in diesen bei seiner Herstellung integriert.
  • Das elektrisch schaltbare Funktionselement wird gleichzeitig mit dem Anbringen der Scheiben in Schritt c) in den Verglasungsinnenraum eingebracht, da dieses in der Regel auf einer der nach Montage im Innenraum der Isolierverglasung liegenden Oberflächen der Scheiben angebracht ist.
  • Die Verklebung der Scheiben gemäß Schritt c) kann in einer beliebigen Reihenfolge durchgeführt werden. Optional kann die Verklebung beider Scheiben an den Scheibenkontaktflächen auch gleichzeitig erfolgen.
  • In Schritt e) wird der äußere Scheibenzwischenraum zumindest teilweise, bevorzugt vollständig, mit einem sekundären Dichtmittel verfüllt. Das sekundäre Dichtmittel wird bevorzugt direkt in den äußeren Scheibenzwischenraum hinein extrudiert, beispielsweise in Form einer plastischen Abdichtmasse.
  • Bevorzugt wird der Verglasungsinnenraum zwischen den Scheiben vor dem Verpressen der Anordnung (Schritt d)) mit einem Schutzgas gefüllt.
  • Bevorzugt wird vor Schritt c) ein Trockenmittel über den offenen Querschnitt des Abstandhalters in die Hohlkammer eingefüllt.
  • Handelt es sich bei der herzustellenden Verglasung um eine Mehrfachverglasung mit Doppelabstandhalter umfassend mindestens eine Nut, so wird mindestens eine dritte Scheibe vor Schritt c) in die Nut des Abstandhalterrahmens eingesetzt.
  • Die Erfindung umfasst des Weiteren die Verwendung eines erfindungsgemäßen Doppeleckverbinders in Isolierverglasungen umfassend elektrisch schaltbare Funktionselemente, besonders bevorzugt in Dreifachisolierverglasungen, insbesondere in Dreifachisolierverglasungen umfassend ein SPD-, ein PDLC-, ein elektrochromes, ein elektrolumineszentes Funktionselement. In sämtlichen dieser Verglasungen mit elektrisch schaltbaren Komponenten wird eine Stromversorgung im Verglasungsinnenraum benötigt, so dass eine elektrische Zuleitung vom äußeren Scheibenzwischenraum in den Verglasungsinnenraum geführt werden muss, was durch die Verwendung des erfindungsgemäßen doppelten Eckverbinders wesentlich verbessert wird. Des Weiteren umfasst die Erfindung die Verwendung eines erfindungsgemäßen Doppeleckverbinders mit einem Photovoltaik-Element. Dabei wird die Stromversorgung durch das Photovoltaik-Element bereitgestellt und über eine elektrische Zuleitung wird ein elektrischer Verbraucher außerhalb des Verglasungsinnenraums kontaktiert.
  • Im Folgenden wird die Erfindung anhand von Zeichnungen näher erläutert. Die Zeichnungen sind rein schematische Darstellungen und nicht maßstabsgetreu. Sie schränken die Erfindung in keiner Weise ein. Es zeigen:
    • Figur 1a eine schematische Darstellung eines Eckverbinders in der Draufsicht,
    • Figur 1b eine schematische Darstellung eines Eckverbinders im Querschnitt,
    • Figur 1c eine schematische Darstellung eines Eckverbinders in der Draufsicht,
    • Figuren 2a, 2b und 2c jeweils eine schematische Darstellung eines Eckverbinders im Querschnitt,
    • Figuren 3a, 3b und 3c jeweils eine schematische Darstellung eines doppelten Eckverbinders in der Draufsicht, wobei der doppelte Eckverbinder der Figuren 3a und 3b in den Patentansprüchen nicht beansprucht ist,
    • Figur 4 eine schematische Darstellung eines Teils eines doppelten Eckverbinders in der Draufsicht, der in den Patentansprüchen nicht beansprucht ist,
    • Figur 5 eine schematische Darstellung einer Isolierverglasung im Querschnitt,
    • Figur 6 eine schematische Darstellung eines Hohlprofilabstandhalters zur Verwendung in einer nicht erfindungsgemäßen Isolierverglasung und
    • Figur 7 eine schematische Darstellung einer nicht erfindungsgemäßen Isolierverglasung im Randbereich im Querschnitt.
  • Figur 1a und 1b zeigen den gleichen Eckverbinder in verschiedenen Ansichten. Die Darstellung ist stark vereinfacht. Lamellen oder Rückhalteelemente, wie sie nach dem Stand der Technik genutzt werden, um die Eckverbinder in einer Hohlprofilleiste zu fixieren, sind zum Beispiel nicht dargestellt. Diese können vom Fachmann nach Bedarf hinzugefügt werden. Der Eckverbinder I hat einen ersten Schenkel 2.1 und einen zweiten Schenkel 2.2, die über einen Eckbereich 3 miteinander verbunden sind. Der erste Schenkel 2.1 und der zweite Schenkel 2.2 schließen einen Winkel α von 90° ein. Die beiden Schenkel 2.1 und 2.2 und der Eckbereich 3 bilden den Grundkörper 6 und sind in einem Stück in einem Spritzgussverfahren aus einem Polyamid hergestellt. Im Eckbereich 3 und im ersten Schenkel 2.1 ist eine erste elektrische Zuleitung 4.1 integriert. Diese ist bereits bei der Herstellung des Eckverbinders I dort integriert worden. Da der Grundkörper 6 aus einem elektrisch isolierenden Polymer besteht, besteht keine Notwendigkeit, die elektrische Zuleitung 4.1 mit einer Ummantelung zu versehen. Es handelt sich im Beispiel um einen einfachen Kupferleiter. Die erste elektrische Zuleitung 4.1 ragt aus dem Eckbereich 3 heraus. Die erste elektrische Zuleitung 4.1 tritt im Eckbereich 3 des Eckverbinders I in den Eckverbinder ein, verläuft entlang des ersten Schenkels 2.1, ist im Eckbereich 3 abgewinkelt und tritt an der Stirnseite 5.1 des ersten Schenkels 2.1 wieder aus. Die erste elektrische Zuleitung 4.1 tritt in dem Bereich des Eckbereichs 3 ein, der in der fertigen Isolierverglasung in Richtung des äußeren Scheibenzwischenraums weist, sodass die erste elektrische Zuleitung 4.1 dort in Kontakt mit dem sekundären Dichtmittel steht, aber nicht in Kontakt kommt mit dem primären Dichtmittel. Die Abmessungen des Eckverbinders I hängen ab von den verwendeten Hohlprofilabstandhaltern 1. Die Länge L eines Schenkels ist im Beispiel 3,0 cm, und die Länge E des Eckbereichs etwa 0,7 cm. Beide Schenkel 2.1 und 2.2 sind gleich lang. Der Eckbereich 3 steht im Vergleich zu den Schenkeln 2.1 und 2.2 hervor, sodass ein Hohlprofilabstandhalter 1, der auf einen Schenkel 2.1 oder 2.2 geschoben wird und am Eckbereich 3 anliegt, bündig mit dem Eckbereich 3 abschließt.
  • Figur 1c zeigt einen weiteren Eckverbinder I, der im Wesentlichen so aufgebaut ist wie der zuvor gezeigte. Er unterscheidet sich im Aufbau des Eckbereichs 3, der eine Länge E von 2,3 cm hat bei einer Länge L der Schenkel von 1,5 cm. Ein Vorteil dieses vergrößerten Eckbereichs 3 ist, dass der Bereich für die Eintrittsöffnung auf der zum äußeren Scheibenzwischenraum weisenden Seite und eine mögliche Austrittsöffnung auf der zum Verglasungsinnenraum weisenden Seite (hier nicht gezeigt) größer sind. So kann zum Beispiel auch eine Austrittsöffnung mit Möglichkeit zur Kontaktierung in einem solchen vergrößerten Eckbereich angeordnet sein.
  • Figur 2a zeigt einen weiteren Eckverbinder im Querschnitt. Der Aufbau ist im Wesentlichen der gleiche wie in Figur 1a,b. Er unterscheidet sich durch die Führung der ersten elektrischen Zuleitung 4.1. Die erste elektrische Zuleitung 4.1 ist in diesem Fall ein Leiter mit mehreren Drähten. Die erste elektrische Zuleitung 4.1 tritt im Eckbereich 3 in einer Eintrittsöffnung ein und verzweigt sich dann im Eckbereich 3 und verläuft durch den ersten Schenkel 2.1 und tritt dort in einer Stirnseite 5.1 wieder aus. Die erste elektrische Zuleitung verläuft zudem durch den zweiten Schenkel 2.2 und tritt dort in einer Stirnseite 5.2 wieder aus. Da es sich um einen Leiter mit mehreren Drähten handelt, ist eine Verzweigung im Eckbereich 3 möglich. Die einzelnen Drähte sind voneinander isoliert und von einer Ummantelung umgeben. Mithilfe des Eckverbinders I können an zwei verschiedenen Stellen der Isolierverglasung elektrisch schaltbare Funktionselemente kontaktiert werden, wobei nur eine einzige elektrische Zuleitung benötigt wird, die bereits in einem vorgefertigten Eckverbinder integriert ist.
  • Figur 2b zeigt einen weiteren Eckverbinder I. Der Eckverbinder hat einen polymeren Grundkörper 6 aus Polyamid. Der Eckverbinder I enthält eine erste elektrische Zuleitung 4.1, die wie für Figur 1a beschrieben verläuft. Zusätzlich enthält der Eckverbinder eine zweite elektrische Zuleitung 4.2, die aus dem Eckbereich herausragt jeweils in Richtung des Verglasungsinnenraums und in Richtung des äußeren Scheibenzwischenraums. So kann mithilfe des Eckverbinders I eine Kontaktierung über die zweite elektrische Zuleitung 4.2 eines elektrisch schaltbaren Funktionselements im Bereich der Ecke der Isolierverglasung erfolgen. Außerdem kann ein weiteres elektrisches Funktionselement oder dasselbe elektrische Funktionselement an weiter entfernter Stelle mithilfe der ersten elektrischen Zuleitung 4.1 kontaktiert werden.
  • Figur 2c zeigt einen weiteren Eckverbinder, der im Wesentlichen sc aufgebaut ist, wie der in Figur 1a,b gezeigte. Der Eckverbinder enthält eine erste elektrische Zuleitung 4.1, die aus dem ersten Schenkel 5.1 herausragt, im Eckbereich 3 abgewinkelt ist und auch aus dem zweiten Schenkel 5.2 herausragt. Der Eckverbinder ermöglicht so die Herumführung einer elektrischen Zuleitung um eine Ecke, und vermeidet so, dass ein Leiter erst um die Ecke herumgeführt werden muss und anschließend wieder in den Verglasungsinnenraum durch die Versiegelung des Randverbunds geführt werden muss.
  • Figur 3a zeigt einen doppelten Eckverbinder III, der zwei einfache Eckverbinder I umfasst, die im Eckbereich 3 miteinander verbunden sind über einen Steg 7. Der Steg bildet eine Nut 8 zur Aufnahme einer Scheibe. Ein solcher Eckverbinder ist geeignet zur Verbindung von zwei Doppelabstandhaltern, die jeweils über zwei Hohlkammern verfügen, in die die Schenkel 2.1 und 2.2 des doppelten Eckverbinders III eingeschoben werden. Die beiden ersten Schenkel 2.1 und die beiden zweiten Schenkel 2.2 enthalten jeweils einen Flachleiter als erste elektrische Zuleitung 4.1. Die Flachleiter ragen aus den Schenkeln 2.1 und 2.2 heraus, das heißt sie liegen frei zugänglich an der Außenseite der Schenkel, sodass sie bei Einschieben in einen passenden Hohlprofilabstandhalter, der zum Beispiel ebenfalls mit einem Flachleiter ausgestattet ist, eine elektrisch leitende Verbindung zu diesem Flachleiter herstellen können. Mithilfe des gezeigten Eckverbinders III kann eine elektrische Zuleitung um die Ecke einer Isolierverglasung geführt werden ohne dass aufwändige Verkabelungen nachträglich durch den äußeren Scheibenzwischenraum geführt werden müssen. Ein besonderer Vorteil des doppelten Eckverbinders mit zwei ersten elektrischen Zuleitungen, die in getrennte Hohlkammern münden, können unterschiedliche elektrische schaltbaren Funktionselemente in verschiedenen Verglasungsinnenräumen kontaktiert werden oder verschiedene Polaritäten getrennt voneinander in die Hohlkammern eines Doppelabstandhalters geführt werden.
  • Figur 3b zeigt einen weiteren doppelten Eckverbinder III, der zwei einzelne Eckverbinder umfasst, die über einen Steg 7 miteinander verbunden sind, wobei der Steg so ausgeführt ist, dass er eine Nut 8 bildet. Die beiden ersten Schenkel 2.1 umfassen jeweils eine erste Zuleitung 4.1 und eine zweite Zuleitung 4.2, die jeweils durch einen metallischen Leiter in Form eines Kupferdrahtes in den Grundkörper des doppelten Eckverbinders bei der Herstellung eingearbeitet sind. Die Zuleitungen ragen aus den Schenkeln heraus und stehen über den Grundkörper des doppelten Eckverbinders etwa 1 bis 2 cm über (hier nicht gezeigt), um eine Verbindung mit einem elektrischen Element in den Hohlkammern eines Doppelabstandhalters zu realisieren.
  • In den Figuren 3a und 3b sind jeweils symmetrische Ausführungen eines doppelten Eckverbinders gezeigt. Dies ist nur eine Auswahl. Es können auch zwei unterschiedliche Eckverbinder I zu einem doppelten Eckverbinder zusammengefügt werden. Alternativ ist auch die Verbindung eines Eckverbinder I mit einem herkömmlichen Eckverbinder ohne elektrische Zuleitung zu einem doppelten Eckverbinder möglich.
  • Figur 4 zeigt einen Teil einer weiteren Ausführungsform eines doppelten Eckverbinders III. Im Gegensatz zu den in den Figuren 1 bis 3 gezeigten einteiligen Ausführungen von Schenkeln 2.1, 2.2 und Eckbereich 3 ist hier eine zweiteilige Ausführungsform vorgesehen. In den abgebildeten Eckbereich werden jeweils in die Hohlkammern Längsverbinder gesteckt, sodass die Schenkel 2.1 und 2.2 (nicht gezeigt) Teil eines zweiten Bauteils sind. Die Eckbereiche 3 der einzelnen Eckverbinder sind über einen Steg 7, der eine Nut 8 bildet, verbunden. In einer Seitenflanke der Nut 8 ist eine Ausnehmung 9 angeordnet, durch die eine elektrische Zuleitung von einer Hohlkammer des Eckbereichs in die Nut 8 geführt werden kann. Über eine Eintrittsöffnung in der Wand der Hohlkammer, die in Richtung des äußeren Scheibenzwischenraums weist, kann die elektrische Zuleitung in die Hohlkammer eintreten. Es ist alternativ möglich, eine elektrische Zuleitung direkt über die Bodenfläche der Nut, das heißt durch den Steg 7 in die Nut 8 zu führen. Die Führung der elektrischen Zuleitung in die Nut 8 hat den Vorteil, dass eine direkte Kontaktierung eines elektrisch schaltbaren Funktionselementes in der Nut 8 möglich ist.
  • Figur 5 zeigt eine Gesamtansicht einer Isolierverglasung II. Die Isolierverglasung II umfasst einen Abstandhalterrahmen 14, der zwei Hohlprofilabstandhalter 1 umfasst und zwei Eckverbinder I. Ein erster Hohlprofilabstandhalter 1 ist zweimal gebogen und läuft entlang von drei Seiten der Isolierverglasung. Ein zweiter Hohlprofilabstandhalter 1 läuft entlang der vierten Seite der Isolierverglasung. Die beiden Hohlprofilabstandhalter sind an zwei Ecken der Isolierverglasung II über Eckverbinder verbunden. Der Abstandhalterrahmen 14 ist zwischen einer ersten Scheibe 11 und einer zweiten Scheibe 12 angeordnet. Im Verglasungsinnenraum 18 ist ein elektrisch schaltbares Funktionselement 19 angeordnet, das mit zwei Busbars 21.1 und 21.2 versehen ist. Die erste Busbar 21.1 ist mit einer ersten elektrischen Zuleitung verbunden, die in einem Eckverbinder I angeordnet ist. Die erste elektrische Zuleitung 4.1 tritt aus dem Eckverbinder aus und in den Verglasungsinnenraum ein. Dort wird sie elektrisch leitend mit der ersten Busbar 21.1 kontaktiert. Die erste elektrische Zuleitung 4.1 ragt aus dem ersten Schenkel 2.1 des Eckverbinders heraus und tritt in eine Hohlkammer des Hohlprofilabstandhalters 1 ein. Dort kontaktiert die erste elektrische Zuleitung einen elektrischen Leiter 26 innerhalb der Hohlkammmer des Hohlprofilabstandhalters 1. Der elektrische Leiter 26 läuft entlang des gesamten vierten Hohlprofilabstandhalters bis zu einem zweiten Eckverbinder I, und kontaktiert dort eine zweite elektrische Zuleitung 4.2. Die zweite elektrische Zuleitung 4.2 ragt aus dem zweiten Schenkel 2.2 des Eckverbinders heraus und ist mit einer Spannungsquelle 20 verbunden, die außerhalb der Isolierverglasung angeordnet ist. Die zweite elektrische Zuleitung 4.2 verläuft durch das sekundäre Dichtmittel 16 im äußeren Scheibenzwischenraum 17 und tritt im Eckbereich in den Eckverbinder I ein. Die zweite Busbar 21.2 wird von einer ersten elektrischen Zuleitung 4.1 kontaktiert, die ebenfalls mit der Spannungsquelle 20 verbunden ist und die im Eckbereich in den Eckverbinder eintritt und auch im Eckbereich aus dem Eckverbinder austritt in den Verglasungsinnenraum. Dort kontaktiert die erste elektrische Zuleitung die zweite Busbar 21.2. Die Spannungsquelle ist hier eine Gleichspannungsquelle zum Betreib eines elektrochromen Funktionselements. Die Zuleitungen 4.1 und 4.2 sind mit unterschiedlichen Polen der Spannungsquelle verbunden, so dass zwischen den beiden gegenüberliegenden Sammelleitern 21.1 und 21.2 eine Potentialdifferenz entsteht. Die an den Sammelleitern 21.1 und 21.2 anliegende Spannung ruft eine lonenwanderung innerhalb der aktiven Schicht des elektrochromen Funktionselements hervor, wodurch dessen Transmission beeinflusst wird.
  • Figur 6 zeigt eine schematische Darstellung eines Hohlprofilabstandhalters 1 geeignet für eine Doppelisolierverglasung im Querschnitt. Der Hohlprofilabstandhalter 1 umfasst einen polymeren Grundkörper 25 und ein elektrisches Element 26 in Form eines Flachbandleiters am Grundkörper 25. Der polymere Grundkörper 25 ist ein Hohlkörperprofil umfassend zwei Scheibenkontaktflächen 27.1 und 27.2, eine Verglasungsinnenraumfläche 28, eine Außenfläche 29 und eine Hohlkammer 30. Der polymere Grundkörper 25 enthält Styrol-Acryl-Nitryl (SAN) und etwa 35 Gew.-% Glasfaser. Der Hohlkörper 30 ist üblicherweise mit einem Trockenmittel gefüllt (nicht gezeigt). Die Verglasungsinnenraumfläche 28 des Abstandhalters 1 weist Öffnungen 32 auf, die in regelmäßigen Abständen umlaufend entlang der Verglasungsinnenraumfläche 28 angebracht sind um einen Gasaustausch zwischen dem Innenraum der Isolierverglasung und der Hohlkammer 30 zu ermöglichen. Somit wird eventuell vorhandene Luftfeuchtigkeit im Innenraum vom Trockenmittel aufgenommen. Auf der Außenfläche 29 des Abstandhalters 1 ist eine Barrierefolie (nicht gezeigt) aufgebracht, die das Eindringen von Feuchtigkeit durch den polymeren Grundkörper 25 in den Verglasungsinnenraum vermindert. Die Barrierefolie umfasst üblicherweise eine Folie aus polymeren und metallischen Schichten. Der polymere Grundkörper 25 ist nichtleitend für den elektrischen Strom, so dass der Flachbandleiter 26 nicht zwingend über eine elektrische Isolierung verfügt. Bevorzugt ist über der Flachbandleiter 26 jedoch von einer isolierenden Ummantelung umgeben oder von einer Barrierefolie mit polymeren Schichten abgedeckt. Der Flachbandleiter ragt an den offenen Querschnitten aus dem Grundkörper 25 des Abstandhalters hinaus. Um mit einem Eckverbinder I elektrisch leitend verbunden zu werden, gibt es verschiedene Möglichkeiten. Bei den in Figur 1 gezeigten Varianten, die jeweils eine erste elektrische Zuleitung besitzen, die aus einem Schenkel herausragt und übersteht, muss die elektrische Zuleitung 4.1 in Form eines Kabels mit dem Flachbandleiter 26 in Kontakt gebracht werden. Bevorzugt wird der Flachbandleiter 26 dazu ein Stück, zum Beispiel 1cm lang, um die Außenwand 29 gelegt, sodass er dort für dieses Stück in der Hohlkammer 30 des Abstandhalters geführt wird. Befindet sich der Flachbandleiter 26 innerhalb der Hohlkammer, ist ein umlegen des Flachbandleiters offensichtlich nicht notwendig. Eine eventuell vorhandene isolierende Ummantelung der ersten elektrischen Zuleitung 4.1 und des Flachbandleiters 26 sollten entfernt werden. Dann kann durch einfaches Einstecken des Eckverbinders I in die Hohlkammer 30 des Abstandhalters 1 ein Kontakt zwischen elektrischem Element 26 und erster elektrischer Zuleitung 4.1 hergestellt werden. In Figur 3a ist in der Ausführung eines doppelten Eckverbinders III ein Eckverbinder mit Flachleiter 4.1 gezeigt, der durch einfaches Einstecken in einen gezeigten Abstandhalter 1 mit einem am Ende des Hohlprofilabstandhalters in die Hohlkammer 30 des Hohlprofils geklappten Flachleiters 26 elektrisch leitend verbunden werden kann.
  • Figur 7 zeigt einen Querschnitt durch eine Doppelisolierverglasung II mit einem Hohlprofilabstandhalter 1 gemäß Figur 6 mit einer zusätzlichen Barrierefolie 24. Zwischen einer ersten Scheibe 11 und einer zweiten Scheibe 12 ist über ein primäres Dichtmittel 15 umlaufend ein Abstandhalterrahmen 14 umfassend den Hohlprofilabstandhalter 1 angebracht. Das primäre Dichtmittel 15 verbindet dabei die Scheibenkontaktflächen 27.1 und 27.2 des Hohlprofilabstandhalters 1 mit den Scheiben 11 und 12. Der an die Verglasungsinnenraumfläche 28 des Abstandshalters 1 angrenzende Verglasungsinnenraum 18 wird als der von den Scheiben 11,12 und dem Abstandhalter 1 begrenzte Raum definiert. Der an die Außenfläche 29 des Abstandhalters 1 angrenzende äußere Scheibenzwischenraum 17 ist ein streifenförmiger umlaufender Abschnitt der Verglasung, der von je einer Seite von den beiden Scheiben 11, 12 und auf einer weiteren Seite von dem Abstandhalterrahmen 14 begrenzt wird und dessen vierte Seite offen ist. Der Verglasungsinnenraum 18 ist zum Beispiel mit Argon gefüllt. Zwischen jeweils einer Scheibenkontaktfläche 27.1 bzw. 27.2 und der benachbarten Scheibe 11 bzw. 12 ist ein primäres Dichtmittel 15 eingebracht, das den Spalt zwischen Scheibe 11, 12 und Abstandhalter 1 abdichtet. Das primäre Dichtmittel 15 ist Polyisobutylen. Auf der Außenfläche 29 ist ein sekundäres Dichtmittel 16 im äußeren Scheibenzwischenraum 17 angebracht, das der Verklebung der ersten Scheibe 11 und der zweiten Scheibe 12 dient. Das sekundäre Dichtmittel 16 besteht aus Silikon. Das sekundäre Dichtmittel 16 schließt bündig mit den Scheibenkanten der ersten Scheibe 11 und der zweiten Scheibe 12 ab. Die zweite Scheibe 12 weist an der zum Verglasungsinnenraum 18 gerichteten Scheibenoberfläche ein elektrisch schaltbares Funktionselement 19 auf, das mit einem ersten Sammelleiter 21.1 zur elektrischen Kontaktierung des Funktionselements 19 ausgestattet ist. Bei dem elektrisch schaltbaren Funktionselement 19 handelt es sich um eine elektrochrome Schicht.
  • Bezugszeichenliste
  • I
    Eckverbinder
    II
    Isolierverglasung
    III
    Doppelter Eckverbinder
    1
    Hohlprofilabstandhalter
    2.1
    erster Schenkel; erster Einsteckschenkel
    2.2
    zweiter Schenkel; erster Einsteckschenkel
    3
    Eckbereich
    4.1
    erste elektrische Zuleitung
    4.2
    zweite elektrische Zuleitung
    5.1
    Stirnfläche des ersten Schenkels
    5.2
    Stirnfläche des zweiten Schenkels
    6
    Grundkörper des Eckverbinders
    7
    Steg
    8
    Nut
    9
    Austrittsöffnung
    11
    erste Scheibe
    12
    zweite Scheibe
    13
    dritte Scheibe
    14
    Abstandhalterrahmen
    15
    primäres Dichtmittel
    16
    sekundäres Dichtmittel
    17
    äußerer Scheibenzwischenraum
    18
    Verglasungsinnenraum
    19
    elektrisch schaltbares Funktionselement
    20
    externe Energiequelle, Spannungsquelle
    21.1
    erste Leiterfläche / Sammelleiter / Busbar
    21.2
    zweite Leiterfläche / Sammelleiter / Busbar
    25
    Grundkörper des Hohlprofilabstandhalters
    26
    elektrisches Element im / am Hohlprofilabstandhalter
    27.1, 27.2
    Scheibenkontaktflächen des Hohlprofilabstandhalters
    28
    Verglasungsinnenraumfläche des Abstandhalters
    29
    Außenfläche des Abstandhalters
    30
    Hohlkammer des Abstandhalters
    32
    Öffnungen in der Verglasungsinnenraumfläche des Abstandhalters
    L
    Länge eines Schenkels
    E
    Höhe/Länge des Eckbereichs

Claims (10)

  1. Doppelter Eckverbinder (III) zur Verbindung von zwei Doppelabstandhaltern von Dreifachisolierverglasungen, umfassend
    - zwei Eckverbinder (I) jeweils mindestens umfassend einen ersten Schenkel (2.1) und einen zweiten Schenkel (2.2), die über einen Eckbereich (3) miteinander verbunden sind, und eine erste elektrische Zuleitung (4.1), wobei
    - jeweils der erste Schenkel (2.1) und der zweite Schenkel (2.2) einen Winkel α einschließen, mit 45°<α<120°,
    - jeweils der erste Schenkel (2.1), der zweite Schenkel (2.2) und der Eckbereich (3) einteilig ausgeführt sind,
    - jeweils mindestens der Eckbereich (3) die erste elektrische Zuleitung (4.1) umfasst und
    - jeweils die erste elektrische Zuleitung (4.1) aus dem Eckbereich (3) herausragt, wobei die beiden Eckverbinder (I) im Eckbereich (3) über einen Steg (7) verbunden sind,
    wobei der Steg (7) so ausgeführt ist, dass eine Nut (8) zur Aufnahme einer Scheibe gebildet wird.
  2. Doppelter Eckverbinder (III) nach Anspruch 1, wobei bei den beiden Eckverbindern (I) jeweils
    - mindestens der Eckbereich (3) und der erste Schenkel (2.1) die erste elektrische Zuleitung (4.1) umfassen und
    - die erste elektrische Zuleitung (4.1) aus dem ersten Schenkel (2.1) herausragt.
  3. Doppelter Eckverbinder (III) nach einem der Ansprüche 1 oder 2, wobei bei den beiden Eckverbindern (I) jeweils die erste elektrische Zuleitung (4.1) nur aus dem ersten Schenkel (2.1) und aus dem Eckbereich (3) herausragt.
  4. Doppelter Eckverbinder (III) nach einem der Ansprüche 1 bis 3, wobei bei den beiden Eckverbindern (I) die erste elektrische Zuleitung (4.1) aus dem ersten Schenkel (2.1) und dem zweiten Schenkel (2.2) herausragt.
  5. Doppelter Eckverbinder (III) nach einem der Ansprüche 1 bis 4, wobei beide Eckverbinder (I) mindestens eine zweite elektrische Zuleitung (4.2) umfassen.
  6. Doppelter Eckverbinder (III) nach einem der Ansprüche 1 bis 5 umfassend einen polymeren Grundkörper (6).
  7. Doppelter Eckverbinder (III) nach einem der Ansprüche 1 bis 6, wobei die erste elektrische Zuleitung (4.1) durch eine Austrittsöffnung (9) in die Nut (8) eintritt.
  8. Isolierverglasung (II) mindestens umfassend eine erste Scheibe (11), eine zweite Scheibe (12) und eine dritte Scheibe (13), einen zwischen der ersten Scheibe (11) und der zweiten Scheibe (12) umlaufend angeordneten Abstandhalterrahmen (14) mindestens umfassend einen Doppelabstandhalter mit Nut und einen doppelten Eckverbinder (III) nach einem der Ansprüche 1 bis 7, wobei
    - die erste Scheibe (11) und die zweite Scheibe (12) über ein primäres Dichtmittel (15) dicht mit dem Abstandhalterrahmen (14) verbunden sind,
    - im äußeren Scheibenzwischenraum (17) zwischen erster Scheibe (11), zweiter Scheibe (12) und Abstandhalterrahmen (14) ein sekundäres Dichtmittel (16) angeordnet ist,
    - die Nut des Doppelabstandhalters und die Nut (8) des doppelten Eckverbinders (III) eine umlaufende Nut bilden, in die die dritte Scheibe (13) eingesetzt ist,
    - die dritte Scheibe (13) ein elektrisch schaltbares Funktionselement (19) umfasst und die erste elektrische Zuleitung (4.1) das elektrisch schaltbare Funktionselement (19) elektrisch leitend kontaktiert und
    - die erste elektrische Zuleitung (4.1) ausschließlich das sekundäre Dichtmittel (16) durchragt.
  9. Isolierverglasung nach Anspruch 8, wobei die erste elektrische Zuleitung (4.1) jeweils das elektrisch schaltbare Funktionselement (19) elektrisch leitend in der Nut kontaktiert.
  10. Verwendung eines doppelten Eckverbinders (III) nach einem der Ansprüche 1 bis 7 in Isolierverglasungen (II) umfassend elektrisch schaltbare Funktionselemente (19), bevorzugt in Isolierverglasungen umfassend ein SPD-, ein PDLC-, ein elektrochromes oder ein elektrolumineszentes Funktionselement.
EP19724527.7A 2018-06-07 2019-05-21 Eckverbinder für isolierverglasungen mit elektrischer zuleitung Active EP3803017B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18176419 2018-06-07
PCT/EP2019/063083 WO2019233761A1 (de) 2018-06-07 2019-05-21 Eckverbinder für isolierverglasungen mit elektrischer zuleitung

Publications (2)

Publication Number Publication Date
EP3803017A1 EP3803017A1 (de) 2021-04-14
EP3803017B1 true EP3803017B1 (de) 2023-01-18

Family

ID=62563042

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19724527.7A Active EP3803017B1 (de) 2018-06-07 2019-05-21 Eckverbinder für isolierverglasungen mit elektrischer zuleitung

Country Status (5)

Country Link
US (1) US11713613B2 (de)
EP (1) EP3803017B1 (de)
JP (1) JP7252982B2 (de)
CN (1) CN112219001A (de)
WO (1) WO2019233761A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11314139B2 (en) 2009-12-22 2022-04-26 View, Inc. Self-contained EC IGU
EP3444664A1 (de) 2010-12-08 2019-02-20 View, Inc. Verbesserte abstandhalter für isolierglaseinheiten
WO2016100075A1 (en) 2014-12-15 2016-06-23 View, Inc. Seals for electrochromic windows
US11773646B2 (en) * 2018-12-11 2023-10-03 Arconic Technologies Llc Corner cleats with wiring passageway
US11873676B2 (en) * 2019-01-30 2024-01-16 Glass Technology Pane unit and method used to produce and/or supply such a pane unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098837A1 (ja) * 2014-12-19 2016-06-23 Agc-Lixilウィンドウテクノロジー株式会社 多重ガラス障子

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2173649A (en) * 1937-08-26 1939-09-19 Gen Motors Corp Multiple windowpane construction
US3449551A (en) * 1967-09-05 1969-06-10 Ardco Inc Antishock control devices for electrically heated glass panels or the like
US3655939A (en) * 1970-11-16 1972-04-11 Anthony S Mfg Co Safety device for multi-pane glass refrigerator doors
US3760157A (en) * 1972-07-11 1973-09-18 Thermoseal Glass Corp Electrically heated window with a connector block and a circuit breaker
US3872198A (en) * 1973-01-08 1975-03-18 John C Britton Method of making multiple-glazed units
JPS5615345Y2 (de) * 1975-07-01 1981-04-10
IT1056374B (it) * 1975-10-21 1982-01-30 Colop Plast Spa Guizione d angolo di un telaio d infisso formato da profilati cavi in materia plastica e procedimento per ottenere tale giuzione
CA1142666A (en) * 1978-04-05 1983-03-08 Taieb Marzouki Adhesive for double glazing units
CA1153628A (en) * 1979-07-31 1983-09-13 Indal Limited / Indal Limitee Spacer for double glazed windows incorporating interlock means
US4306140A (en) * 1979-11-14 1981-12-15 Anthony's Manufacturing Company, Inc. Insulative multi-pane heated window structure
EP0057434B1 (de) * 1981-01-29 1984-06-13 Eltreva AG Fenster oder Tür
US4691486A (en) * 1982-04-29 1987-09-08 Frank Niekrasz Glass assembly for refrigerator doors and method of manufacture
JPS5928527U (ja) * 1982-08-19 1984-02-22 セントラル硝子株式会社 防曇複層ガラスの嵌着部材
GB8319264D0 (en) * 1983-07-15 1983-08-17 Omniglass Ltd Corner for spacer strip of sealed window units
SE447503B (sv) * 1983-05-05 1986-11-17 Johansson Gert A Hornstycke for ramar
SE452899B (sv) * 1983-12-05 1987-12-21 Termofrost Sweden Ab Fonster med ett elektriskt ledande skikt
AT388020B (de) * 1986-08-01 1989-04-25 Interprofil Gfk Gmbh Fluegel- oder stockrahmen und verfahren zum herstellen eines solchen
US4702638A (en) * 1986-11-10 1987-10-27 American Toy & Furniture Co., Inc. Inexpensive, knock-down furniture assembled with mating, molded, plastic shells for corners and elbows
US4848875A (en) * 1987-06-25 1989-07-18 Allied-Signal Inc. Dual-pane thermal window with liquid crystal shade
DE4006006C1 (de) * 1990-02-26 1991-09-19 Vegla Vereinigte Glaswerke Gmbh, 5100 Aachen, De
DE4024143A1 (de) * 1990-07-30 1992-02-06 Koester Helmut Beheiztes oder gekuehltes isolierglas
US5197242A (en) * 1992-07-17 1993-03-30 Allied-Signal Inc. Dual-pane thermal window with liquid crystal shade
GB9218150D0 (en) * 1992-08-26 1992-10-14 Pilkington Glass Ltd Insulating units
DE9313394U1 (de) 1992-10-17 1993-10-28 Ver Glaswerke Gmbh Autoglasscheibe aus Verbundglas mit in der Zwischenschicht eingebetteten Drähten und einem Anschlußkabel
DE4235063A1 (de) 1992-10-17 1994-04-21 Ver Glaswerke Gmbh Autoglasscheibe aus Verbundglas mit in der Zwischenschicht eingebetteten Drähten und einem Anschlußkabel
DE19544127C1 (de) 1995-11-27 1997-03-20 Gimsa Jan Dr Verfahren und Vorrichtung zur Erzeugung von Resonanzerscheinungen in Partikelsuspensionen und ihre Verwendung
US5983593A (en) * 1996-07-16 1999-11-16 Dow Corning Corporation Insulating glass units containing intermediate plastic film and method of manufacture
DE19805348A1 (de) * 1998-02-11 1999-08-12 Caprano & Brunnhofer Abstandhalterprofil für Isolierscheibeneinheit
US6266940B1 (en) * 1998-07-31 2001-07-31 Edgetech I.G., Inc. Insert for glazing unit
US6148563A (en) * 1999-03-25 2000-11-21 Hussmann Corporation Reach-in door for refrigerated merchandiser
KR20030037176A (ko) * 2001-11-02 2003-05-12 주식회사 한국하우톤 이중 유리창 장치
EP1608719A2 (de) * 2003-03-05 2005-12-28 Electrochromix, Inc Elektrochrome spiegel und andere elektrooptische vorrichtungen
US7071617B2 (en) 2003-05-16 2006-07-04 Kabushiki Kaisha Toyota Jidoshokki Light-emitting apparatus and method for forming the same
EA008899B1 (ru) * 2004-01-09 2007-08-31 Файберлайн А/С Строительный или оконный элемент и способ сооружения здания
DE202004019286U1 (de) 2004-12-14 2006-04-20 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Flachleiter-Anschlusselement für Fensterscheiben
US20070177391A1 (en) * 2006-01-12 2007-08-02 Odl, Incorporated Lighting for insulated glazing assembly
DE102006017821A1 (de) * 2006-04-13 2007-10-18 S & T Components Gmbh & Co. Kg Eckverbinder für Glasscheiben-Abstandhalter
FR2901891B1 (fr) 2006-05-30 2008-09-26 Schefenacker Vision Systems Fr Cellule electrochrome, son utilisation dans la realisation d'une vitre ou d'un retroviseur et son procede de realisation.
GB0616582D0 (en) * 2006-08-21 2006-09-27 Honey Ian Frame assembly for sheet material
DE102008026339A1 (de) 2008-05-31 2009-12-03 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Elektrisch schaltbares Sichtschutzfenster
FR2944148B1 (fr) 2009-04-02 2012-03-02 Saint Gobain Procede de fabrication d'une structure a surface texturee pour dispositif a diode electroluminescente organique et structure a surface texturee obtenue par ce procede
PT104635A (pt) 2009-06-16 2010-12-16 Univ Nova De Lisboa Dispositivo electrocrómico e método para a sua produção
GB0916379D0 (en) 2009-09-18 2009-10-28 Pilkington Group Ltd Laminated glazing
US10060180B2 (en) * 2010-01-16 2018-08-28 Cardinal Cg Company Flash-treated indium tin oxide coatings, production methods, and insulating glass unit transparent conductive coating technology
US8393130B2 (en) * 2010-06-09 2013-03-12 Hill Phoenix, Inc. Door module for a refrigerated case
FR2962818B1 (fr) 2010-07-13 2013-03-08 Saint Gobain Dispositif electrochimique a proprietes de transmission optique et/ou energetique electrocommandables.
US8164818B2 (en) 2010-11-08 2012-04-24 Soladigm, Inc. Electrochromic window fabrication methods
US10180606B2 (en) * 2010-12-08 2019-01-15 View, Inc. Connectors for smart windows
EP3444664A1 (de) * 2010-12-08 2019-02-20 View, Inc. Verbesserte abstandhalter für isolierglaseinheiten
US8643933B2 (en) * 2011-12-14 2014-02-04 View, Inc. Connectors for smart windows
US20120301642A1 (en) * 2011-05-26 2012-11-29 Sharp Kabushiki Kaisha Smart window
US8588476B1 (en) 2012-06-04 2013-11-19 Clicrweight, LLC Systems for determining animal metrics and related devices and methods
EP3842613A1 (de) 2012-08-23 2021-06-30 View, Inc. Fotonisch betriebene elektrochrome vorrichtungen
EP2764998B1 (de) * 2013-02-06 2019-09-11 ISOCLIMA S.p.A. Fensterkonstruktion
US8736938B1 (en) * 2013-03-14 2014-05-27 New Visual Media Group, L.L.C. Electronically controlled insulated glazing unit providing energy savings and privacy
KR101885418B1 (ko) 2013-06-14 2018-08-03 쌩-고벵 글래스 프랑스 삼중 단열 글레이징용 스페이서
JP6204206B2 (ja) * 2014-01-22 2017-09-27 株式会社アツミテック 自立型調光システム
US10165870B2 (en) * 2014-02-11 2019-01-01 Anthony, Inc. Display case door assembly with vacuum panel
US10125537B2 (en) * 2014-07-18 2018-11-13 Litezone Technologies Inc. Pressure compensated glass unit
WO2016088823A1 (ja) * 2014-12-04 2016-06-09 シャープ株式会社 採光装置
US11307475B2 (en) * 2015-07-10 2022-04-19 View, Inc. Bird friendly electrochromic devices
JP6671478B2 (ja) 2015-12-15 2020-03-25 セイジ・エレクトロクロミクス,インコーポレイテッド 絶縁グレージングユニット及び電気フィードスルー
JP7152407B2 (ja) * 2017-02-08 2022-10-12 カーディナル アイジー カンパニー フィルムからガラスへ切り替え可能なガラス
JP2018159727A (ja) * 2017-03-22 2018-10-11 キヤノン株式会社 エレクトロクロミック装置及びエレクトロクロミック素子の駆動方法
US11015384B2 (en) * 2017-06-08 2021-05-25 Apple Inc. Light transmitting panel with active components
US20190064626A1 (en) * 2017-08-31 2019-02-28 1-Material Inc Fabrication method for light valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098837A1 (ja) * 2014-12-19 2016-06-23 Agc-Lixilウィンドウテクノロジー株式会社 多重ガラス障子

Also Published As

Publication number Publication date
US11713613B2 (en) 2023-08-01
US20210115726A1 (en) 2021-04-22
JP2021525324A (ja) 2021-09-24
CN112219001A (zh) 2021-01-12
EP3803017A1 (de) 2021-04-14
JP7252982B2 (ja) 2023-04-05
WO2019233761A1 (de) 2019-12-12

Similar Documents

Publication Publication Date Title
EP3743584B1 (de) Abstandhalter für isolierverglasungen mit integriertem flachbandkabel
EP3743583B1 (de) Abstandhalter für isolierverglasungen mit in hohlkammer integrierter elektrischer zuleitung
EP3803017B1 (de) Eckverbinder für isolierverglasungen mit elektrischer zuleitung
EP3818232A1 (de) Abdeckelement für sammelschiene
EP2721238B1 (de) Isolierverglasung mit elektrischem anschlusselement
WO2020094380A1 (de) Isolierverglasung mit doppeltem abstandhalter
DE19839748C1 (de) Elektrochrome Verglasung
EP3361036B1 (de) Modul zur energieübertragung
EP3676661A1 (de) Isolierverglasung mit elektrischem anschlusselement
EP3931161A1 (de) Verglasungseinheit und verfahren zu deren herstellung
EP1049958A1 (de) Elektrochrome zelle
DE10146498A1 (de) Photovoltaik-Isolierverglasung
EP3702572A1 (de) Isolierverglasung mit elektrochromem funktionselement und infrarotreflektierender beschichtung
WO2021156485A1 (de) Anschlussanordnung mit einem flexiblen flachkabel
WO2019141532A1 (de) Isolierverglasung und fenster
EP4106992B1 (de) Verbundscheibe mit mehreren funktionselementen und sammelschiene auf sperrfolie
WO2022180032A1 (de) Anschlusselement für isolierverglasungen mit elektrisch leitfähiger beschichtung und/oder elektrisch steuerbarem funktionselement
WO2022063535A1 (de) Isolierverglasung mit elektrisch leitfähiger beschichtung und/oder elektrisch steuerbarem funktionselement
DE10335979A1 (de) Verbund-Plattenelement mit einer Schichtheizung
WO2024017641A1 (de) Anschlussanordnung mit flachleiteranschlusselement sowie eine elektrische leitungsverbindung
WO2024002685A1 (de) Flachbandkabel, eine elektrische leitungsverbindung, ein substrat sowie eine verbundscheibe
DE202006020185U1 (de) Scheibenelement mit einer elektrischen Leitstruktur
EP3702571A1 (de) Isolierverglasung mit elektrisch leitfähiger beschichtung und/oder elektrisch leitfähigem funktionselement
EP4222817A1 (de) Elektrische leitungsverbindung zur elektrischen kontaktierung einer flächenelektrode

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210929

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220728

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019006826

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1544798

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230215

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230417

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230518

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230418

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230411

Year of fee payment: 5

Ref country code: DE

Payment date: 20230331

Year of fee payment: 5

Ref country code: CH

Payment date: 20230602

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230518

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230418

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019006826

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

26N No opposition filed

Effective date: 20231019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502019006826

Country of ref document: DE

Representative=s name: OBERMAIR, CHRISTIAN, DR. RER. NAT., DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230521