EP3775329A1 - Procédé de fabrication d'une couche monocristalline de matériau diamant ou iridium et substrat pour croissance par épitaxie d'une couche monocristalline de matériau diamant ou iridium - Google Patents
Procédé de fabrication d'une couche monocristalline de matériau diamant ou iridium et substrat pour croissance par épitaxie d'une couche monocristalline de matériau diamant ou iridiumInfo
- Publication number
- EP3775329A1 EP3775329A1 EP19721378.8A EP19721378A EP3775329A1 EP 3775329 A1 EP3775329 A1 EP 3775329A1 EP 19721378 A EP19721378 A EP 19721378A EP 3775329 A1 EP3775329 A1 EP 3775329A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- monocrystalline
- layer
- substrate
- diamond
- support substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 124
- 239000000758 substrate Substances 0.000 title claims abstract description 113
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 62
- 239000010432 diamond Substances 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 30
- 229910052741 iridium Inorganic materials 0.000 title claims abstract description 23
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000002210 silicon-based material Substances 0.000 claims abstract description 32
- 229910002367 SrTiO Inorganic materials 0.000 claims description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 16
- 238000012546 transfer Methods 0.000 claims description 12
- 229910052594 sapphire Inorganic materials 0.000 claims description 10
- 239000010980 sapphire Substances 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 238000002513 implantation Methods 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 5
- 230000010070 molecular adhesion Effects 0.000 claims description 5
- -1 Ce0 2 Substances 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims 1
- 229910002370 SrTiO3 Inorganic materials 0.000 abstract description 2
- 238000000407 epitaxy Methods 0.000 description 7
- 238000003486 chemical etching Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N hydrofluoric acid Substances F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 238000005328 electron beam physical vapour deposition Methods 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 238000001657 homoepitaxy Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02293—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/025—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/183—Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/04—Diamond
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
Definitions
- the present invention relates to a method for manufacturing a monocrystalline layer of diamond or iridium material and a substrate for the epitaxial growth of such a monocrystalline layer of diamond or iridium material.
- Some materials are not currently available as a monocrystalline wafer substrate in large diameter. And some materials are possibly available in large diameter but not according to certain characteristics or specifications in terms of quality, particularly vis-à-vis the density of defects or the electrical or optical properties required.
- the present invention aims to overcome these limitations of the state of the art by proposing a method of manufacturing a monocrystalline layer of diamond material and a substrate for the epitaxial growth of such a monocrystalline layer of diamond material. By this it is possible to overcome the size problem of currently available monocrystalline diamond material substrates.
- the invention relates to a method for manufacturing a monocrystalline layer of diamond material comprising the transfer of a monocrystalline seed layer of SrTiO 3 material to a substrate material support silicon followed by epitaxial growth of the monocrystalline layer of diamond material.
- the monocrystalline seed layer has a thickness of less than 10 ⁇ m, preferably less than 2 ⁇ m, and more preferably less than 0.2 ⁇ m.
- the transfer of the single-crystal seed layer of SrTi0 3 material on the silicon substrate material holder comprises a step of assembling a single crystal substrate of SrTi0 3 material on the carrier substrate followed by a step of thinning said monocrystalline substrate of SrTiO 3 material.
- the thinning step comprises the formation of an embrittlement zone delimiting a portion of the monocrystalline substrate of SrTiO 3 material intended to be transferred onto the support substrate of silicon material.
- the formation of the embrittlement zone is obtained by implantation of atomic and / or ionic species.
- the thinning step comprises a detachment at the zone of weakness so as to transfer said portion of SrTi0 material single crystal substrate 3 of silicon material supporting substrate, in particular the detachment comprises the application of a thermal and / or mechanical stress.
- the assembly step is a molecular adhesion step.
- the monocrystalline seed layer of SrTiO 3 material is in the form of a plurality of blocks each transferred to the silicon material support substrate.
- the silicon material support substrate comprises a removable interface configured to be disassembled by laser peeling and / or chemical etching and / or mechanical biasing.
- the invention also relates to a substrate for epitaxial growth of a monocrystalline layer of diamond material characterized in that it comprises a monocrystalline seed layer material SrTi0 3 on a silicon substrate material holder.
- the monocrystalline seed layer of SrTiO 3 material is in the form of a plurality of blocks.
- the silicon material support substrate comprises a removable interface configured to be disassembled by laser peeling and / or chemical etching and / or mechanical biasing.
- the invention also relates to a method for manufacturing a monocrystalline layer of iridium material comprising transferring a monocrystalline seed layer of SrTiO 3 material to a support substrate of silicon material followed by epitaxial growth of the monocrystalline material layer. iridium.
- the invention also relates to a substrate for growth by epitaxy of a monocrystalline layer of iridium material, characterized in that it comprises a monocrystalline seed layer of SrTiO 3 material on a support substrate of silicon material.
- the invention also relates to a method for manufacturing a monocrystalline layer of diamond and / or iridium material comprising the transfer of a monocrystalline seed layer of material YSZ, CeO 2 , MgO or Al 2 O 3 on a support substrate of silicon material , sapphire, Ni or Cu, followed by epitaxial growth of the monocrystalline layer of diamond material and / or iridium.
- the invention also relates to a method for manufacturing a monocrystalline layer of diamond and / or iridium material comprising the transfer of a monocrystalline seed layer of SrTiO 3 material to a support substrate of silicon, sapphire, Ni or Cu material, followed by an epitaxial growth of the monocrystalline layer of diamond material and / or iridium.
- FIG. 1 illustrates a method of manufacturing a monocrystalline layer of diamond material according to one embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of diamond material according to this embodiment. of the invention
- FIG. 2 illustrates a method of manufacturing a monocrystalline layer of diamond material according to another embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of diamond material according to this other mode. embodiment of the invention;
- FIG. 3 illustrates a method of manufacturing a monocrystalline layer of diamond material according to yet another embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of diamond material according to this other embodiment of the invention;
- FIG. 4 illustrates a method of manufacturing a monocrystalline layer of diamond material according to yet another embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of diamond material according to this other embodiment of the invention
- ⁇ Figure 5 illustrates a method for producing a monocrystalline layer of diamond material according to still another embodiment of the invention and a substrate for the epitaxial growth of such a monocrystalline layer of diamond material according to this other embodiment of the invention
- FIG. 1 illustrates a support substrate 100 of silicon material onto which a monocrystalline seed layer 200 of SrTiO 3 material is transferred.
- Other materials of the monocrystalline seed layer 200 may be envisaged, such as YSZ, CeO 2 , MgO or Al 2 O 3, the latter having a mesh parameter close to that of the PZT material.
- the support substrate 100 of silicon material may also be replaced by a support substrate 100 of sapphire, Ni or Cu material.
- the use of silicon has the advantage of opening the field of application of diamond material films not only to large 300 mm type equipment but also to make compatible the microelectronics industry for which the requirements in terms of acceptance on the production line of exotic material other than silicon, especially diamond, are high.
- the assembly step 1 'of the monocrystalline seed layer 200 of SrTiO 3 material on the support substrate 100 of silicon material is preferentially done by a molecular adhesion step.
- This molecular adhesion step comprises a bonding step, preferably at ambient temperature, and is followed by a consolidation annealing of the bonding interface which is usually carried out at elevated temperatures up to 900 ° C. or even 1100 ° C. C for a period of minutes to hours.
- the assembly step 1 'of the monocrystalline seed layer on the support substrate is also preferentially by a molecular adhesion step using typical conditions of the same order of magnitude as mentioned. above.
- FIG. 1 schematically represents the assembly step 1 'of a monocrystalline substrate 20 of SrTiO 3 material on the support substrate 100 of silicon material. It follows a thinning step 2 'of the monocrystalline substrate 20 of SrTiO 3 material after being assembled on the support substrate 100 of silicon material.
- FIG. 1 schematically represents the assembly step 1 'of a monocrystalline substrate 20 of SrTiO 3 material on the support substrate 100 of silicon material. It follows a thinning step 2 'of the monocrystalline substrate 20 of SrTiO 3 material after being assembled on the support substrate 100 of silicon material.
- the thinning step 2 ' which can be implemented for example by chemical and / or mechanical etching (polishing, grinding, milling, etc.).
- the seed layer 200 can be obtained monocrystalline material SrTi0 3 which will serve as monocrystalline seed of a growth step 3 'by epitaxy of the monocrystalline layer 300 made of diamond material on the substrate for epitaxial growth of a monocrystalline layer of diamond material 10 shown schematically in FIG.
- Those skilled in the art would be able to adjust the parameters used for epitaxial growth of a monocrystalline layer of diamond material usually used during homoepitaxy or heteroepitaxy on a solid monocrystalline substrate in order to optimize the 3 'growth step by epitaxy.
- the epitaxy of the diamond material is therefore carried out by epitaxial growth of a thin layer of approximately 150 nm of iridium via the electron beam physical vapor deposition technique followed by growth by MWCVD under a CH 4 / H 2 atmosphere at temperatures usually about 700 ° C.
- the thermal expansion coefficient of the support substrate 100 predominates the thermal behavior of the substrate for epitaxial growth of a monocrystalline diamond material layer 10 during the 3 'epitaxial growth step of the monocrystalline layer 300. of diamond material. This is due to the thin thickness, preferably less than 1 miti, of the monocrystalline seed layer 200 of SrTiO 3 material with respect to the total thickness of the substrate for epitaxial growth of a monocrystalline layer of diamond material 10 which is of the order of several tens to hundreds of microns.
- the SrTi0 material 3 is moreover selected to provide a seed layer single crystal having a nearest lattice parameter as possible to the lattice parameter chosen for the monocrystalline layer 300 diamond material, preferably in a state lattice parameter to allow epitaxial growth inducing the least possible defects in the monocrystalline layer 300 of diamond material.
- the material of the support substrate 100 advantageously also has a thermal expansion coefficient that is particularly close to the thermal coefficient of expansion of the diamond material for the same reasons of reducing defects in the monocrystalline layer 300 obtained by epitaxy.
- a support substrate 100 of silicon material for the present invention would be used.
- FIG. 2 diagrammatically represents an embodiment of the method for manufacturing a monocrystalline layer of diamond material which differs from the embodiment described with reference to FIG. 1 in that the single-crystal substrate 20 'of material SrTiO 3 undergoes a step 0 "implantation of atomic and / or ionic species in order to form an embrittlement zone delimiting a portion 200 'of the single crystal substrate 20' of material SrTi0 3 intended to be transferred onto the support substrate 100 ' of silicon material, and the thinning step 2 "comprises a detachment at this weakening zone so as to transfer said portion 200 'of the monocrystalline substrate 20' of SrTiO 3 material to the support substrate 100 'of silicon material, in particular this detachment includes the application of thermal and / or mechanical stress.
- the advantage of this embodiment is thus to be able to recover the remaining portion 201 of the monocrystalline substrate 20 'of SrTiO 3 starting material that can be used again to undergo the same process again and thus reduce costs.
- the substrate for epitaxial growth of a monocrystalline layer of diamond material 10 'thus illustrated in FIG. 2 serves for the growth step 3 "of the monocrystalline layer 300' of diamond material as already described during the process described with reference to FIG.
- An interesting alternative well known to those skilled in the art is to replace all or part of the hydrogen ions with helium ions.
- a hydrogen implantation dose will typically be between 6x10 16 cm 2 and 1 x 10 17 cm 2 .
- the implantation energy will typically be between 50 to 170 keV.
- the detachment is typically at temperatures between 300 and 600 ° C. Thicknesses of the monocrystalline seed layer of the order of 200 nm to 1.5 ⁇ m are thus obtained.
- additional technological steps are advantageously added in order either to reinforce the bonding interface, or to recover a good roughness, or to heal the defects possibly generated during the implantation step or else to prepare the seed layer surface for resumption of epitaxy. These steps are, for example, polishing, chemical etching (wet or dry), annealing, chemical cleaning. They can be used alone or in combination that those skilled in the art can adjust.
- FIG. 3 differs from the embodiments described with reference to FIG. 1 and FIG. 2 in that the substrate for epitaxial growth of a monocrystalline layer of diamond material (10, 10 ') comprises a demountable interface 40' configured to to be dismantled.
- a support substrate 100 of silicon material it may be a rough surface, for example silicon material assembled with the monocrystalline seed layer during the assembly step. Or a rough interface may be present within the support substrate 100 of silicon material, the latter for example obtained by assembling two silicon wafers.
- a porous silicon layer capable of fracturing during the application of a mechanical and / or thermal stress, for example by insertion of a blade at the plate edge known by the craftsman or by the application of annealing.
- this interface is chosen so as to withstand the other mechanical and / or thermal stresses undergone during the process of the present invention (eg detachment, growth by epitaxy, etc.).
- a sapphire material support substrate it may be a stack of silicon oxide, silicon nitride and silicon oxide (so-called ONO type structure) made on the face of the sapphire to assemble with the monocrystalline seed layer.
- Such a stack is susceptible to detachment at the level of the silicon nitride layer during a laser application passing through the sapphire support substrate (detachment or detachment type "laser lift off").
- detachment or detachment type "laser lift off” The skilled person will identify other methods of making this removable interface.
- FIG. 4 diagrammatically represents an embodiment of the method for manufacturing a monocrystalline layer of diamond material which differs from the embodiments described with reference to FIG. 1, FIG. 2 and FIG. 3 in that the seed layer monocrystalline 2000 'SrTi0 3 material is in the form of a plurality of blocks (2001', 2002 ', 2003) each transferred to the support substrate 100 "of silicon material.
- the different pavers can be in any form (square, hexagonal, strips, ...) and with different sizes ranging from a few mm 2 to several cm 2 .
- the spacing between the chips can also vary significantly depending on whether a maximum coverage density is sought (in this case a preferential choice will be chosen spacing less than 0.2 mm) or on the contrary a maximum dissemination of the blocks within the substrate (in this case the spacing may be several millimeters and even centimeters).
- a maximum coverage density in this case a preferential choice will be chosen spacing less than 0.2 mm
- a maximum dissemination of the blocks within the substrate in this case the spacing may be several millimeters and even centimeters.
- the skilled person could apply the transfer he wants and is not limited to a particular method. Thus one could consider applying the technical information described in connection with the method illustrated schematically in Figure 1 or the technical information described in connection with the method illustrated schematically in Figure 2, see even a combination of both.
- the different embodiments described with reference to FIGS. 1 to 4 thus open the possibility of co-integration of components made in the monocrystalline layer of diamond material with components made in the support substrate of silicon material. It may simply be a silicon substrate but it may also be a SOI substrate comprising a silicon oxide layer between a silicon substrate with a thin layer of silicon. In the case of the embodiments described with reference to FIGS. 1 to 4, access to the support substrate can be done simply by lithography and etching known to those skilled in the art. In the case of the embodiment described with reference to FIG. 4 one can also simply choose the locations of the blocks as well as their spacing.
- FIG. 5 diagrammatically represents an embodiment that differs from the embodiment described with reference to FIG. 4 in that the substrate substrate 100 "as well as thereafter the substrate for epitaxial growth of a monocrystalline layer of diamond material 10" comprises a removable interface 40 configured to be disassembled, for example by a laser lift off technique ) and / or chemical etching and / or mechanical stressing.
- a support substrate 100 of the SOI type comprising a silicon oxide layer separating a silicon substrate. a thin layer of silicon.
- This oxide layer may be used as removable interface 40 by a selective etching of said oxide layer, for example by immersion in a bath of hydrofluoric acid (HF).
- HF hydrofluoric acid
- This option of dismantling by chemical etching of a buried layer is particularly advantageous when it comes in combination with the treatment of a plurality of small substrates. Indeed, the radius of action of the under-engraving is generally limited to a few centimeters or even a few millimeters if it is desired to maintain conditions and processing times that are industrially reasonable.
- the treatment of a plurality of small substrates allows the start of several chemical etching fronts thanks to possible access of the buried layer between each block, and no longer only on the extreme edges of the substrates which can be up to 300mm in diameter . In the case of an SOI support substrate it is thus possible to partially remove the thin layer of silicon between the blocks to allow the start of several etching fronts.
- the thin silicon layer having a predetermined thickness (which can vary between 5 nm and 600 nm, or even thicker depending on the intended application) could thus be used to form microelectronic components and thus enable the co-integration of components with base of diamond materials in the same substrate.
- a predetermined thickness which can vary between 5 nm and 600 nm, or even thicker depending on the intended application
- the thin silicon layer having a predetermined thickness (which can vary between 5 nm and 600 nm, or even thicker depending on the intended application) could thus be used to form microelectronic components and thus enable the co-integration of components with base of diamond materials in the same substrate.
- the final substrate can thus provide additional functionalities that are, for example, incompatible with growth parameters previously performed (for example, flexible plastic type end substrate or final substrate comprising metal lines).
- the removable interface is not necessarily located inside the support substrate but can also be at the interface with the seed material layer SrTiO3 assembled on this support substrate (for example a stack of a layer of silicon nitride between two layers of silicon oxide allows detachment by laser, particularly suitable for a sapphire substrate media type) as already described in connection with Figure 3.
- the seed material layer SrTiO3 assembled on this support substrate (for example a stack of a layer of silicon nitride between two layers of silicon oxide allows detachment by laser, particularly suitable for a sapphire substrate media type) as already described in connection with Figure 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1800255A FR3079535B1 (fr) | 2018-03-28 | 2018-03-28 | Procede de fabrication d'une couche monocristalline de materiau diamant ou iridium et substrat pour croissance par epitaxie d'une couche monocristalline de materiau diamant ou iridium |
PCT/IB2019/000196 WO2019186262A1 (fr) | 2018-03-28 | 2019-03-26 | Procédé de fabrication d'une couche monocristalline de matériau diamant ou iridium et substrat pour croissance par épitaxie d'une couche monocristalline de matériau diamant ou iridium |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3775329A1 true EP3775329A1 (fr) | 2021-02-17 |
Family
ID=63079954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19721378.8A Pending EP3775329A1 (fr) | 2018-03-28 | 2019-03-26 | Procédé de fabrication d'une couche monocristalline de matériau diamant ou iridium et substrat pour croissance par épitaxie d'une couche monocristalline de matériau diamant ou iridium |
Country Status (8)
Country | Link |
---|---|
US (1) | US11935743B2 (ja) |
EP (1) | EP3775329A1 (ja) |
JP (1) | JP7408893B2 (ja) |
KR (1) | KR102654904B1 (ja) |
CN (1) | CN111936676A (ja) |
FR (1) | FR3079535B1 (ja) |
SG (1) | SG11202009528QA (ja) |
WO (1) | WO2019186262A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3079531B1 (fr) * | 2018-03-28 | 2022-03-18 | Soitec Silicon On Insulator | Procede de fabrication d'une couche monocristalline de materiau pzt et substrat pour croissance par epitaxie d'une couche monocristalline de materiau pzt |
CN113373512B (zh) * | 2021-05-24 | 2022-02-11 | 北京科技大学 | 基于铱-石墨烯结构化缓冲层的单晶金刚石外延生长方法 |
CN113832541B (zh) * | 2021-09-29 | 2024-02-09 | 太原理工大学 | 用于外延生长大尺寸单晶金刚石的复合衬底的制备方法 |
JP2023116122A (ja) * | 2022-02-09 | 2023-08-22 | 信越化学工業株式会社 | 下地基板及び単結晶ダイヤモンド積層基板並びにそれらの製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002124125A (ja) | 2000-10-17 | 2002-04-26 | Masaru Hiyamizu | 照明器具つき屏風と衝立 |
US8507361B2 (en) | 2000-11-27 | 2013-08-13 | Soitec | Fabrication of substrates with a useful layer of monocrystalline semiconductor material |
US6562127B1 (en) * | 2002-01-16 | 2003-05-13 | The United States Of America As Represented By The Secretary Of The Navy | Method of making mosaic array of thin semiconductor material of large substrates |
JP4016102B2 (ja) * | 2003-01-17 | 2007-12-05 | 独立行政法人産業技術総合研究所 | パルスレーザ蒸着によるダイアモンドの結晶薄膜の作製方法及び同方法で作製した薄膜 |
DE10320133B4 (de) | 2003-05-06 | 2011-02-10 | Universität Augsburg | Verfahren zur Herstellung von einkristallinen oder quasi-einkristallinen Diamantschichten und auf einem Körper angeordnete einkristalline oder quasi-einkristalline Diamantschicht |
JP5468528B2 (ja) | 2010-06-28 | 2014-04-09 | 信越化学工業株式会社 | 単結晶ダイヤモンド成長用基材及びその製造方法並びに単結晶ダイヤモンド基板の製造方法 |
US9064789B2 (en) * | 2013-08-12 | 2015-06-23 | International Business Machines Corporation | Bonded epitaxial oxide structures for compound semiconductor on silicon substrates |
US10304739B2 (en) | 2015-01-16 | 2019-05-28 | Sumitomo Electric Industries, Ltd. | Method for manufacturing semiconductor substrate, semiconductor substrate, method for manufacturing combined semiconductor substrate, combined semiconductor substrate, and semiconductor-joined substrate |
JP7017299B2 (ja) * | 2015-07-30 | 2022-02-08 | 信越化学工業株式会社 | ダイヤモンド電子素子及びダイヤモンド電子素子の製造方法 |
CN107268076A (zh) * | 2017-07-28 | 2017-10-20 | 西安交通大学 | 一种基于异质外延生长单晶金刚石的方法 |
-
2018
- 2018-03-28 FR FR1800255A patent/FR3079535B1/fr active Active
-
2019
- 2019-03-26 SG SG11202009528QA patent/SG11202009528QA/en unknown
- 2019-03-26 CN CN201980021528.8A patent/CN111936676A/zh active Pending
- 2019-03-26 WO PCT/IB2019/000196 patent/WO2019186262A1/fr unknown
- 2019-03-26 KR KR1020207030291A patent/KR102654904B1/ko active IP Right Grant
- 2019-03-26 EP EP19721378.8A patent/EP3775329A1/fr active Pending
- 2019-03-26 US US17/042,728 patent/US11935743B2/en active Active
- 2019-03-26 JP JP2020549793A patent/JP7408893B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2021518322A (ja) | 2021-08-02 |
US11935743B2 (en) | 2024-03-19 |
WO2019186262A1 (fr) | 2019-10-03 |
SG11202009528QA (en) | 2020-10-29 |
FR3079535A1 (fr) | 2019-10-04 |
KR20200136437A (ko) | 2020-12-07 |
KR102654904B1 (ko) | 2024-04-04 |
US20210020434A1 (en) | 2021-01-21 |
FR3079535B1 (fr) | 2022-03-18 |
JP7408893B2 (ja) | 2024-01-09 |
CN111936676A (zh) | 2020-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3775329A1 (fr) | Procédé de fabrication d'une couche monocristalline de matériau diamant ou iridium et substrat pour croissance par épitaxie d'une couche monocristalline de matériau diamant ou iridium | |
EP1324385B1 (fr) | Procédé de report de couches minces semi-conductrices à partir d'une plaquette donneuse. | |
FR2857983A1 (fr) | Procede de fabrication d'une couche epitaxiee | |
FR2857982A1 (fr) | Procede de fabrication d'une couche epitaxiee | |
FR2817394A1 (fr) | Procede de fabrication d'un substrat notamment pour l'optique, l'electronique ou l'optoelectronique et substrat obtenu par ce procede | |
WO2002037556A1 (fr) | Procede de fabrication d'une structure empilee comprenant une couche mince adherant a un substrat cible | |
FR2840731A1 (fr) | Procede de fabrication d'un substrat comportant une couche utile en materiau semi-conducteur monocristallin de proprietes ameliorees | |
EP2342744A1 (fr) | Procede de formation d'une couche monocristalline dans le domaine micro-electronique | |
FR2907966A1 (fr) | Procede de fabrication d'un substrat. | |
EP1631982B1 (fr) | Procede d'obtention d'une couche tres mince par amincissement par auto-portage provoque | |
EP3775333A2 (fr) | Procédé de fabrication d'une couche monocristalline de matériau ain et substrat pour croissance par épitaxie d'une couche monocristalline de matériau ain | |
EP3775331A1 (fr) | Procédé de fabrication d'une couche monocristalline de matériau lno et substrat pour croissance par épitaxie d'une couche monocristalline de matériau lno | |
WO2019186268A1 (fr) | Procédé de fabrication d'une couche monocristalline de matériau gaas et substrat pour croissance par épitaxie d'une couche monocristalline de matériau gaas | |
WO2020128245A1 (fr) | Procede de fabrication d'un dispositif comprenant une membrane surplombant une cavite | |
EP3775332A1 (fr) | Procede de fabrication d'une couche cristalline de materiau pzt et substrat pour croissance par epitaxie d'une couche cristalline de materiau pzt | |
WO2006100301A1 (fr) | Procede de fabrication d'une hetero-structure comportant au moins une couche epaisse de materiau semi-conducteur | |
FR2866982A1 (fr) | Procede de fabrication de composants electroniques | |
FR2849714A1 (fr) | Recyclage par des moyens mecaniques d'une plaquette comprenant une structure multicouches apres prelevement d'une couche mince | |
WO2024134078A1 (fr) | Procédé de fabrication de deux substrats dits pseudo-substrats donneurs comprenant chacun au moins deux pavés sur un substrat support | |
WO2024074797A1 (fr) | Procede de fabrication d'une structure composite comprenant des paves | |
EP4315396A1 (fr) | Procede de fabrication d'une structure composite comprenant une couche mince en semi-conducteur monocristallin sur un substrat support | |
EP4226409A1 (fr) | Procédé de fabrication d'un substrat pour la croissance épitaxiale d'une couche d'un alliage iii-n à base de gallium | |
WO2024134102A1 (fr) | Procede de fabrication d'une structure comprenant au moins deux paves sur un substrat | |
WO2024200627A1 (fr) | Procede de fabrication d'un substrat en carbure de silicium | |
WO2023194679A1 (fr) | Procede de fabrication d'une structure comprenant au moins deux puces sur un substrat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200810 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20240319 |