EP3727701B1 - Temperierte zentrifuge - Google Patents

Temperierte zentrifuge Download PDF

Info

Publication number
EP3727701B1
EP3727701B1 EP18815977.6A EP18815977A EP3727701B1 EP 3727701 B1 EP3727701 B1 EP 3727701B1 EP 18815977 A EP18815977 A EP 18815977A EP 3727701 B1 EP3727701 B1 EP 3727701B1
Authority
EP
European Patent Office
Prior art keywords
centrifuge
protective gas
temperature control
line
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18815977.6A
Other languages
English (en)
French (fr)
Other versions
EP3727701A1 (de
Inventor
Heiko Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eppendorf SE
Original Assignee
Eppendorf SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eppendorf SE filed Critical Eppendorf SE
Publication of EP3727701A1 publication Critical patent/EP3727701A1/de
Application granted granted Critical
Publication of EP3727701B1 publication Critical patent/EP3727701B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/02Other accessories for centrifuges for cooling, heating, or heat insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/02Casings; Lids
    • B04B7/06Safety devices ; Regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/02Casings; Lids
    • B04B7/06Safety devices ; Regulating
    • B04B2007/065Devices and measures in the event of rotor fracturing, e.g. lines of weakness, stress regions

Definitions

  • the present invention relates to a centrifuge according to the preamble of claim 1 and a method for preventing ignition of combustible temperature control media according to the preamble of claim 14.
  • Centrifuge rotors are used in centrifuges, in particular laboratory centrifuges, in order to separate the components of samples centrifuged therein using mass inertia. Increasingly higher rotation speeds are used to achieve higher segregation rates.
  • Laboratory centrifuges are centrifuges whose rotors work at preferably at least 3,000, preferably at least 10,000, in particular at least 15,000 revolutions per minute and are usually placed on tables. In order to be able to place them on a work table, they have in particular a form factor of less than 1 m ⁇ 1 m ⁇ 1 m, so their installation space is limited.
  • the device depth is preferably limited to a maximum of 70 cm.
  • centrifuges are used in the fields of medicine, pharmacy, biology and chemistry and the like.
  • Such a device is in JP2001321699A known.
  • the samples to be centrifuged are stored in sample containers and these sample containers are driven in rotation by means of a centrifuge rotor.
  • the centrifuge rotors are usually set in rotation by means of a vertical drive shaft that is driven by an electric motor.
  • the sample containers can contain the samples directly, or separate sample containers containing the sample are inserted into the sample containers, so that a large number of samples can be centrifuged simultaneously in one sample container.
  • centrifuge rotors are known in the form of fixed-angle rotors and swing-bucket rotors.
  • samples are centrifuged at certain temperatures.
  • samples that contain proteins and similar organic substances must not be overheated, so that the upper temperature limit for such samples is usually around +40°C.
  • certain samples are cooled by default in the +4°C range (water anomaly starts at 3.98°C).
  • active and passive systems can be used for temperature control.
  • Passive systems are based on air assisted ventilation. This air is routed directly past the centrifuge rotor, which results in temperature control. The air is sucked into the centrifuge chamber through openings and the warmed-up air is discharged again at another point in the centrifuge chamber through further openings, with the intake and discharge being effected independently by the rotation of the centrifuge rotor.
  • Active cooling systems have a refrigerant circuit that tempers the centrifuge container, which indirectly cools the centrifuge rotor and the sample containers contained therein.
  • Many different media are used as cooling or temperature control media. Since, in principle, not only cooling, ie heat reductions, but also heat increases can be specifically desired during centrifugation, tempering and tempering media are spoken of within the scope of the present invention.
  • tempering media commonly used for centrifuges, such as chlorodifluoromethane, Tetrafluoroethane, pentafluoroethane or difluoromethane and many others, there are also flammable temperature control agents such as butane or propane or a wide variety of synthetic mixtures.
  • these combustible temperature control media have very good heat transfer properties, they are usually not used for safety reasons, since the temperature control medium can escape and ignite if the centrifuge rotor crashes. In such a crash, fragments of the centrifuge rotor can act at high speed and thus very high energy inside the centrifuge and thus also destroy the evaporator and lines that carry the temperature control medium.
  • the outflowing combustible tempering medium can then be easily ignited by the energy released during the crash and by electrical or electronic components inside the centrifuge or in its vicinity, which can result in very serious damage, in particular personal injury.
  • the centrifuge according to the invention in particular a laboratory centrifuge, therefore has a centrifuge container in which a centrifuge rotor can be accommodated, a motor for driving the centrifuge rotor, temperature control means for temperature control of the centrifuge rotor and a housing in which the centrifuge container, the centrifuge rotor, the temperature control means and the motor are accommodated ,
  • the temperature control means have a combustible temperature control medium, which is guided in a temperature control medium line, and are characterized in that the centrifuge has a protective gas and is adapted to release the protective gas in the event of a crash of the centrifuge rotor.
  • the protective gas is an inert gas which preferably comprises at least one gas from the group argon, helium, carbon dioxide, krypton, neon, nitrogen and xenon. Such gases are particularly effective protective gases.
  • the protective gas is conducted in a protective gas line which extends around the centrifuge container with at least one, preferably several, turns. Then the protective gas is fed as close as possible to the centrifuge container, so that the in the centrifuge container In the event of a crash, the centrifuge rotor located immediately destroys the protective gas line and thus automatically releases the protective gas.
  • the protective gas line is connected to a protective gas source, which preferably contains the protective gas under an overpressure.
  • a protective gas source which preferably contains the protective gas under an overpressure.
  • a throttle element in particular a fixed throttle element, is arranged between the protective gas line and the protective gas source. This prevents sudden expansion and extends the outflow time of the protective gas, so that the ambient air is displaced for a longer period of time and the escaping tempering medium is mixed with the escaping protective gas and scattered.
  • At least two sections, preferably more, in particular each winding of the protective line are connected in parallel to the protective gas source. This allows the shielding gas to be released in sufficient quantity, regardless of which part of the shielding gas line is opened by the crash.
  • the inert gas line is arranged at least in some areas in relation to the centrifuge container next to and/or below the tempering media line. Then the protective gas line is always opened first or at least at the same time as the tempering medium line. In addition, the protective gas line forms an additional crash absorber, so that it may be possible to prevent the tempering media line from opening.
  • the protective gas line and the tempering media line are externally connected to one another, preferably soldered, at least in regions, preferably at least over a quarter, most preferably at least over a third, in particular at least over half of their respective winding length. This favors a particularly good heat transfer. If the soldered connection is preferably designed to be less tear-resistant than the temperature control medium line, it is ensured that the protective gas line is opened before the temperature control medium line.
  • the protective gas line has a smaller wall thickness than the tempering medium line, at least in certain areas. This ensures that the protective gas is released before the tempering medium.
  • the protective gas line and/or the tempering medium line are arranged directly on the centrifuge container or are at least partially part of the wall of the centrifuge container.
  • the heat transfer is also particularly effective and the installation space can be kept smaller if necessary.
  • monitoring means with regard to the state of the protective gas, preferably the pressure and/or the amount of protective gas, which are adapted to the speed of the respectively used
  • the centrifuge rotor to a size that is not critical for a crash of the centrifuge rotor if specified values for the state of the protective gas are not reached, for example specified values for pressure and quantity are not reached. This ensures that risky rotor operation is only possible if sufficient protective gas can be made available.
  • a fan which, when the centrifuge is in operation, constantly directs air from the interior of the housing into the surroundings of the centrifuge. This reduces the concentration of flammable medium inside the centrifuge, reducing the risk of the formation of flammable mixtures.
  • the centrifuge which is designed in particular as a laboratory centrifuge, a centrifuge container in which a centrifuge rotor can be accommodated, a motor for driving the centrifuge rotor , temperature control means for temperature control of the centrifuge rotor and a housing in which the centrifuge container, the centrifuge rotor, the temperature control means and the motor are accommodated, the temperature control means having a combustible temperature control medium that is guided in a temperature control medium line, and which is characterized in that protective gas in the released in the event of a centrifuge rotor crash.
  • the centrifuge according to the invention is used.
  • the centrifuge 10 is designed as a laboratory centrifuge, which has a housing 12 with a cover 14 and an operating front 15 .
  • a centrifuge rotor 20 is arranged in the centrifuge container 16 of the centrifuge 10 on a drive shaft (not shown) of a centrifuge motor 18 and is designed as a swing-out rotor with centrifuge buckets 22 .
  • centrifuge container 16 is surrounded by windings of a tempering medium line 24 and windings of an inert gas line 26 .
  • in 2 centrifuge rotor 20' is shown as a fixed angle rotor to show that the present invention is independent of the precise type of centrifuge rotor 20, 20'.
  • the two ends 28, 30 of the inert gas line 26 are brought together and thereby connected in parallel to the supply line 32 of an inert gas container 34 which contains a large amount (for example 1000 g) of carbon dioxide as an inert gas under overpressure, for example liquefied.
  • the individual windings 36 are connected to one another by a cross connection (not shown).
  • a pressure monitor 38 is arranged on the inert gas container 34 and is connected to the controller (not shown) of the centrifuge 10 via a plug 40 .
  • the tempering medium line 24 is connected in the usual way to a compressor 42 (behind the ventilation slots 43 of the housing 12) and to a filter drier 44.
  • the centrifuge 10 has, in addition to a base plate 46, a protective cover 48 which is intended to prevent parts of the centrifuge rotor 20' from escaping from the centrifuge 10 in the event of a crash.
  • This protective cover 48 is therefore dimensioned and materially designed in such a way that a sufficient amount of crash energy can be absorbed.
  • Thermal insulation 49 is arranged between the protective cover 48 and the centrifuge container 16 .
  • the windings of the tempering medium line 24, specifically the winding parts 50, 52, form the evaporator.
  • the winding part 50 is located on the winding 36 of the protective gas line 26 and the winding part 52 is arranged next to the winding 36 of the protective gas line 26 .
  • the outer surfaces of the windings 36 of the protective gas line 26 are externally connected to the winding parts 50 of the tempering medium line 24 arranged above them by a soldered connection 54 (cf. 4 ) and the protective gas line 26 and the windings 52 of the temperature control medium line 24 arranged next to the protective gas line 26 are soldered to the centrifuge container 16 at points (not shown), as a result of which the temperature control medium line 24 has sufficient heat conduction to the centrifuge container 16 in all areas of its windings 50, 52 and this ensures adequate active indirect temperature control of the centrifuge rotor 20' and the samples (not shown) accommodated therein.
  • the strength of the soldered connection is designed in such a way that the connection to the tempering medium line 24 breaks in the area of the winding parts 50 before the tempering medium line 24 itself breaks here.
  • Pipes in the form of elongate hollow bodies made of any material, preferably copper or aluminum, are used as the temperature control media line 24 and protective gas line 26, the length of which is generally significantly greater than the diameter of their cross section.
  • the protective gas line 26 and the tempering medium line 24 have a different diameter and/or different wall thicknesses.
  • a smaller wall thickness ensures that the protective gas line 26 tears more easily than the tempering media line 24 .
  • a smaller diameter means that the protective gas line 26 could be arranged in the free space between the centrifuge container 16 and the windings 50 of the tempering media line 24 .
  • the windings 36 , 50 of the protective gas line 26 and the tempering medium line 24 could also run parallel to one another, for example as a multi-channel solution (not shown), so that the tempering medium line 24 would be arranged directly on the centrifuge container 16 .
  • tempering media line 24 and/or the inert gas line 26 at least partially form the centrifuge container 16 (not shown), as a result of which the necessary installation space could be reduced.
  • centrifuge 10 also effectively prevents ignition of the combustible temperature control medium in the event of a crash of centrifuge rotor 20, since in the event of such a crash, components of centrifuge rotor 20 damage protective gas line 26 after centrifuge container 16 has ruptured, causing the protective gas to escape.
  • the protective gas Since the protective gas is under overpressure, it will flow into the entire interior of the centrifuge 10 and displace the oxygen in the air there and also the Dilute any temperature control agents that may escape. Due to the flow generated out of the centrifuge 10, the exiting mixture in the ambient air is additionally swirled and further diluted. This prevents the formation of an ignitable mixture.
  • the pressure monitor 38 monitors this safety function and continuously monitors the quantity and/or pressure of the protective gas in the protective gas container 34 during operation of the centrifuge 10 . If the pressure monitor 38 detects a state of the inert gas that is below previously defined values that are adapted to the specific centrifuge 10, it intervenes in the control (not shown) of the centrifuge 10 in such a way that either the centrifuge 10 does not use the centrifuge rotor 20 at all, 20' starts and possibly outputs an error message or that the centrifuge rotor 20, 20' can only be operated up to a non-critical maximum speed at which a crash cannot release any energy that would damage the tempering medium line 24. This maximum speed is previously determined in a series of tests.
  • a throttle element (not shown) between protective gas container 34 and protective gas line 26 adjusts the outflow time in a targeted manner so that the ambient air and thus the oxygen in the air is displaced for a longer period of time and the escaping tempering medium is mixed with the escaping protective gas and dispersed.
  • the present invention provides a centrifuge 10 with which combustible temperature control media can also be used within the scope of temperature control without any safety concerns.

Description

  • Die vorliegende Erfindung betrifft eine Zentrifuge nach dem Oberbegriff von Anspruch 1 und ein Verfahren zur Verhinderung einer Zündung von brennbaren Temperierungsmedien nach dem Oberbegriff von Anspruch 14.
  • Zentrifugenrotoren werden in Zentrifugen, insbesondere Laborzentrifugen, dazu eingesetzt, um die Bestandteile von darin zentrifugierten Proben unter Ausnutzung der Massenträgheit zu trennen. Dabei werden zur Erzielung hoher Entmischungsraten immer höhere Rotationsgeschwindigkeiten eingesetzt. Laborzentrifugen sind dabei Zentrifugen, deren Rotoren bei vorzugsweise mindestens 3.000, bevorzugt mindestens 10.000, insbesondere mindestens 15.000 Umdrehungen pro Minute arbeiten und zumeist auf Tischen platziert werden. Um sie auf einem Arbeitstisch platzieren zu können, weisen sie insbesondere einen Formfaktor von weniger als 1 m × 1 m × 1 m auf, ihr Bauraum ist also beschränkt. Vorzugsweise ist dabei die Gerätetiefe auf max. 70 cm beschränkt.
  • Solche Zentrifugen werden auf Gebieten der Medizin, der Pharmazie, der Biologie und Chemie dgl. eingesetzt. Derartige Vorrichtung ist in JP2001321699 A bekannt geworden.
  • Die zu zentrifugierenden Proben werden in Probenbehältern gelagert und diese Probenbehälter mittels eines Zentrifugenrotors rotatorisch angetrieben. Dabei werden die Zentrifugenrotoren üblicherweise mittels einer senkrechten Antriebswelle, die von einem elektrischen Motor angetrieben wird, in Rotation versetzt. Es gibt verschiedene Zentrifugenrotoren, die je nach Anwendungszweck eingesetzt werden. Dabei können die Probenbehälter die Proben direkt enthalten oder in den Probenbehältern sind eigene Probenbehältnisse eingesetzt, die die Probe enthalten, so dass in einem Probenbehälter eine Vielzahl von Proben gleichzeitig zentrifugiert werden können. Ganz allgemein sind Zentrifugenrotoren in Form von Festwinkelrotoren und Ausschwingrotoren bekannt.
  • Zumeist ist vorgesehen, dass die Proben bei bestimmten Temperaturen zentrifugiert werden. Beispielsweise dürfen Proben, die Eiweiße und dgl. organische Substanzen enthalten, nicht überhitzt werden, so dass die Obergrenze für die Temperierung solcher Proben standardmäßig im Bereich von +40°C liegt. Andererseits werden bestimmte Proben standardmäßig im Bereich +4°C (die Anomalie des Wassers beginnt bei 3,98°C) gekühlt.
  • Neben solchen vorbestimmten Höchsttemperaturen von beispielsweise ca. +40°C und Standarduntersuchungstemperaturen wie beispielsweise +4°C sind auch weitere Standarduntersuchungstemperaturen vorgesehen, wie beispielsweise bei +11°C, um bei dieser Temperatur zu prüfen, ob die Kälteanlage der Zentrifuge unterhalb Raumtemperatur geregelt läuft. Andererseits ist es aus Arbeitsschutzgründen notwendig, ein Anfassen von Elementen zu verhindern, die eine Temperatur von größer gleich +60°C aufweisen.
  • Zur Temperierung können grundsätzlich aktive und passive Systeme verwendet werden. Passive Systeme basieren auf einer Luft unterstützten Belüftung. Diese Luft wird direkt an dem Zentrifugenrotor vorbei geführt, wodurch eine Temperierung erfolgt. Die Luft wird dabei durch Öffnungen in den Zentrifugenkessel gesaugt und durch weitere Öffnungen wird die aufgewärmte Luft an anderer Stelle des Zentrifugenkessels wieder abgeführt, wobei das Ansaugen und Abführen selbständig durch die Drehung des Zentrifugenrotors erfolgt.
  • Aktive Kühlungssysteme besitzen dagegen einen Kältemittelkreislauf, der den Zentrifugenbehälter temperiert, wodurch indirekt der Zentrifugenrotor und die darin aufgenommenen Probenbehälter gekühlt werden. Als Kälte- bzw. Temperierungsmedien kommen viele verschiedene Medien zum Einsatz. Da prinzipiell nicht nur Kühlungen, also Wärmereduzierungen, sondern auch Wärmeerhöhungen gezielt während der Zentrifugation gewünscht sein können, wird im Rahmen der vorliegenden Erfindung von Temperierung und Temperierungsmedien gesprochen. Neben den für Zentrifugen üblicherweise verwendeten Temperierungsmedien, wie Chlordifluormethan, Tetrafluorethan, Pentafluorethan oder Difluormethan und vielen weiteren gibt es auch brennbare Temperierungsmittel, wie Butan oder Propan oder auch verschiedenste synthetische Gemische.
  • Diese brennbaren Temperierungsmedien besitzen zwar sehr gute Wärmeübertragungseigenschaften, sie werden aber aus Sicherheitsgründen zumeist nicht eingesetzt, da im Rahmen eines Crashes des Zentrifugenrotors ein Austreten und Entzünden des Temperierungsmittels erfolgen kann. Bei einem solchen Crash können Bruchstücke des Zentrifugenrotors mit hoher Geschwindigkeit und damit sehr hoher Energie innerhalb der Zentrifuge wirken und dadurch auch den Verdampfer und Leitungen zerstören, die das Temperierungsmedium führen. Das ausströmende brennbare Temperierungsmedium kann dann durch die beim Crash freiwerdende Energie und durch elektrische bzw. elektronische Komponenten im Inneren der Zentrifuge oder in deren Umgebung leicht gezündet werden, womit sehr große Schäden, insbesondere auch Personenschäden verbunden sein können.
  • Um zu verhindern, dass ein Crash des Zentrifugenrotors zu Schäden außerhalb der Zentrifuge führt, wurden schon Versteifungs- und Verstärkungsmittel im Inneren der Zentrifuge vorgeschlagen. Allerdings würde dies nicht einen Austritt von Temperierungsmedien verhindern, weil die Leitungen des Temperierungsmittels, die den Verdampfer bilden, um den Zentrifugenbehälter verlaufen und zwar in Bezug auf diese Verstärkungsmittel zwischen Zentrifugenrotor und Verstärkungsmittel.
  • Es ist daher Aufgabe der vorliegenden Erfindung, eine Zentrifuge vorzuschlagen, mit der auch brennbare Temperierungsmedien eingesetzt werden können, ohne dass diese ein Sicherheitsrisiko im Fall eines Crashs des Zentrifugenrotors darstellen.
  • Diese Aufgabe wird gelöst mit der erfindungsgemäßen Zentrifuge nach Anspruch 1 und dem erfindungsgemäßen Verfahren zur Verhinderung einer Zündung von brennbaren Temperierungsmedien nach Anspruch 14. Vorteilhafte Weiterbildungen sind in den Unteransprüchen und in der nachfolgenden Beschreibung zusammen mit den Figuren angegeben.
  • Erfinderseits wurde erkannt, dass diese Aufgabe in überraschender Art und Weise dadurch besonders einfach gelöst werden kann, wenn im Fall eines Crashs des Zentrifugenrotors ein Schutzgas freigesetzt wird, so dass das Sauerstoff-Temperierungsmedium-Gemisch nicht zündfähig ist. Genauer gesagt bildet das freigesetzte Schutzgas eine Strömung, die den Sauerstoff verdrängt, das austretende Temperierungsmedium verteilt und das momentane Verhältnis der Konzentration Sauerstoff zu Temperierungsmedium grundlegend so verändert, dass sowohl innerhalb auch als außerhalb der Zentrifuge keine Zündung erfolgen kann.
  • Die erfindungsgemäße Zentrifuge, insbesondere Laborzentrifuge, weist daher einen Zentrifugenbehälter, in dem ein Zentrifugenrotor aufnehmbar ist, einen Motor zum Antrieb des Zentrifugenrotors, Temperierungsmittel zum Temperieren des Zentrifugenrotors und ein Gehäuse, in dem der Zentrifugenbehälter, der Zentrifugenrotor, die Temperierungsmittel und der Motor aufgenommen sind, auf, wobei die Temperierungsmittel ein brennbares Temperierungsmedium aufweisen, das in einer Temperierungsmedienleitung geführt ist, und zeichnen sich dadurch aus, dass die Zentrifuge ein Schutzgas aufweist und angepasst ist, das Schutzgas im Falle eines Crashs des Zentrifugenrotors freizusetzen.
  • In einer vorteilhaften Weiterbildung ist vorgesehen, dass das Schutzgas ein Inertgas ist, das bevorzugt zumindest ein Gas aus der Gruppe Argon, Helium, Kohlendioxid, Krypton, Neon, Stickstoff und Xenon umfasst. Solche Gase sind besonders wirksame Schutzgase.
  • In einer vorteilhaften Weiterbildung ist vorgesehen, dass das Schutzgas in einer Schutzgasleitung geführt ist, die sich zumindest mit einer, bevorzugt mit mehreren Windungen um den Zentrifugenbehälter erstreckt. Dann wird das Schutzgas nächstmöglich zum Zentrifugenbehälter geführt, so dass der im Zentrifugenbehälter befindliche Zentrifugenrotor im Falle eines Crashs stets unmittelbar die Schutzgasleitung zerstört und damit das Schutzgas selbsttätig freisetzt.
  • In einer vorteilhaften Weiterbildung ist vorgesehen, dass die Schutzgasleitung mit einer Schutzgasquelle, die bevorzugt das Schutzgas unter einem Überdruck beinhaltet, verbunden ist. Dadurch kann eine große Menge Schutzgas im Falle eines Crashs des Zentrifugenrotors kontinuierlich freigesetzt werden. Wenn Überdruck besteht, dann ist die sich ausbildende Strömung des Schutzgasses fremdenergieunabhängig und es wird nicht nur der Luftsauerstoff im Inneren der Zentrifuge verdrängt, sonders es entsteht eine Luftströmung aus der Zentrifuge heraus, die in der Umgebung eine bewegte Atmosphäre und damit eine weitere Verdünnung des Gemisch erzeugt, die eine Zündung verhindert.
  • In einer vorteilhaften Weiterbildung ist vorgesehen, dass zwischen Schutzgasleitung und Schutzgasquelle ein, insbesondere fest eingestelltes Drosselelement angeordnet ist. Dadurch wird eine plötzliche Expansion verhindert und die Ausströmzeit des Schutzgases verlängert, so dass die Umgebungsluft für längere Zeit verdrängt und austretendes Temperierungsmedium mit dem austretenden Schutzgas vermischt und verstreut wird.
  • In einer vorteilhaften Weiterbildung ist vorgesehen, dass zumindest zwei Abschnitte, bevorzugt mehr, insbesondere jede Wicklung der Schutzleitung mit der Schutzgasquelle parallel verbunden sind. Dadurch kann das Schutzgas in ausreichender Menge freigesetzt werden, unabhängig davon welcher Teil der Schutzgasleitung durch den Crash geöffnet wird.
  • In einer vorteilhaften Weiterbildung ist vorgesehen, dass die Schutzgasleitung zumindest bereichsweise in Bezug auf den Zentrifugenbehälter neben und/oder unter der Temperierungsmedienleitung angeordnet ist. Dann wird stets die Schutzgasleitung zuerst oder zumindest gleichzeitig mit der Temperierungsmedienleitung geöffnet. Außerdem bildet die Schutzgasleitung einen zusätzlichen Crashabsorber, so dass möglicherweise eine Öffnung der Temperierungsmedienleitung verhindert werden kann.
  • In einer vorteilhaften Weiterbildung ist vorgesehen, dass die Schutzgasleitung und die Temperierungsmedienleitung zumindest bereichsweise, bevorzugt zumindest über ein Viertel, höchst bevorzugt zumindest über ein Drittel, insbesondere zumindest über die Hälfte ihrer jeweiligen Wicklungslänge äußerlich miteinander verbunden, vorzugsweise verlötet sind. Das begünstigt einen besonders guten Wärmeübergang. Wenn die Lötverbindung bevorzugt weniger reißfest ausgebildet ist, als die Temperierungsmedienleitung, wird dafür gesorgt, dass die Schutzgasleitung eher geöffnet wird als die Temperierungsmedienleitung.
  • In einer vorteilhaften Weiterbildung ist vorgesehen, dass die Schutzgasleitung zumindest bereichsweise eine geringere Wandstärke aufweist als die Temperierungsmedienleitung. Damit ist sichergestellt, dass das Schutzgas vorrangig vor dem Temperierungsmedium freigesetzt wird.
  • In einer vorteilhaften Weiterbildung ist vorgesehen, dass die Schutzgasleitung und/oder die Temperierungsmedienleitung direkt auf dem Zentrifugenbehälter angeordnet sind oder zumindest bereichsweise zumindest Bestandteil der Wandung des Zentrifugenbehälters sind. Dadurch ist der Wärmeübergang ebenfalls besonders wirksam und der Bauraum kann ggf. kleiner gehalten werden.
  • In einer vorteilhaften Weiterbildung ist vorgesehen, dass ein Mehrkanalsystem dahingehend besteht, dass ein Kanal für das Schutzgas und ein Kanal für das Temperierungsmedium bestehen. Dadurch ist der Wärmeübergang ebenfalls besonders wirksam und der Bauraum kann ggf. kleiner gehalten werden.
  • In einer vorteilhaften Weiterbildung ist vorgesehen, dass Überwachungsmittel hinsichtlich des Zustands des Schutzgases, bevorzugt des Druckes und/oder der Schutzgasmenge bestehen, die angepasst sind, die Drehzahl des jeweils eingesetzten Zentrifugenrotors auf eine für einen Crash des Zentrifugenrotors unkritische Größe zu begrenzen, wenn vorgegebene Werte zum Zustand des Schutzgases nicht erreicht werden, beispielsweise vorgegebene Werte zu Druck und Menge unterschritten werden. Dadurch wird sichergestellt, dass ein riskanter Rotorbetrieb nur möglich ist, wenn ausreichend Schutzgas zu Verfügung gestellt werden kann.
  • In einer vorteilhaften Weiterbildung ist vorgesehen, dass ein Lüfter besteht, der im Betrieb der Zentrifuge ständig Luft aus dem Gehäuseinneren in die Umgebung der Zentrifuge leitet. Dadurch wird die Konzentration von brennbarem Medium im Inneren der Zentrifuge herabgesetzt, wodurch die Risiken der Bildung zündfähiger Gemische reduziert werden.
  • Unabhängiger Schutz wird beansprucht für das erfindungsgemäße Verfahren zur Verhinderung einer Zündung von brennbaren Temperierungsmedien in Zentrifugen nach einem Crash des Zentrifugenrotors, wobei die Zentrifuge, die insbesondere als Laborzentrifuge ausgebildet ist, einen Zentrifugenbehälter, in dem ein Zentrifugenrotor aufnehmbar ist, einen Motor zum Antrieb des Zentrifugenrotors, Temperierungsmittel zum Temperieren des Zentrifugenrotors und ein Gehäuse, in dem der Zentrifugenbehälter, der Zentrifugenrotor, die Temperierungsmittel und der Motor aufgenommen sind, wobei die Temperierungsmittel ein brennbares Temperierungsmedium aufweisen, das in einer Temperierungsmedienleitung geführt wird, und das sich dadurch auszeichnet, dass Schutzgas im Falle eines Crashs des Zentrifugenrotors freigesetzt wird.
  • In einer vorteilhaften Weiterbildung wird die erfindungsgemäße Zentrifuge verwendet.
  • Die Merkmale und weitere Vorteile der vorliegenden Erfindung werden im Folgenden anhand der Beschreibung eines bevorzugten Ausführungsbeispiels im Zusammenhang mit den Figuren deutlich werden. Dabei zeigen rein schematisch:
  • Fig. 1
    die erfindungsgemäße Zentrifuge in einer perspektivischen Ansicht,
    Fig. 2
    die erfindungsgemäße Zentrifuge nach Fig. 1 in einer ersten teilweisen Schnittansicht von rechts,
    Fig. 3
    die erfindungsgemäße Zentrifuge nach Fig. 1 in einer zweiten teilweisen Schnittansicht von links und
    Fig. 4
    eine Detailansicht der Fig. 2.
  • In den Fig. 1 bis 4 ist die erfindungsgemäße Zentrifuge 10 rein schematisch in verschiedenen Ansichten dargestellt.
  • Es ist zu erkennen, dass die Zentrifuge 10 als Laborzentrifuge ausgebildet ist, die ein Gehäuse 12 mit einem Deckel 14 und einer Bedienungsfront 15 aufweist. In dem Zentrifugenbehälter 16 der Zentrifuge 10 ist auf einer Antriebswelle (nicht gezeigt) eines Zentrifugenmotors 18 ein Zentrifugenrotor 20 angeordnet, der als Ausschwingrotor mit Zentrifugenbechern 22 ausgebildet ist.
  • In Fig. 2 ist zu erkennen, dass der Zentrifugenbehälter 16 von Wicklungen einer Temperierungsmedienleitung 24 und Wicklungen einer Schutzgasleitung 26 umgeben ist. (In Fig. 2 ist der Zentrifugenrotor 20' als Festwinkelrotor dargestellt, um zu zeigen, dass die vorliegende Erfindung unabhängig vom genauen Typ des Zentrifugenrotors 20, 20' ist.)
  • Die beiden Enden 28, 30 der Schutzgasleitung 26 sind zusammengeführt und dadurch parallel mit der Zuleitung 32 eines Schutzgasbehälters 34 verbunden, der eine große Menge (beispielsweise 1000 g) Kohlendioxid als Schutzgas unter Überdruck, beispielsweise verflüssigt, enthält.
  • Um die Leitungslänge von dem Schutzgasbehälter 34 zu allen möglichen Punkten der Schutzgasleitung 26 kurz zu halten, kann alternativ vorgesehen sein, dass die einzelnen Wicklungen 36 untereinander durch eine Querverbindung (nicht gezeigt) verbunden sind.
  • An dem Schutzgasbehälter 34 ist ein Druckwächter 38 angeordnet, der über einen Stecker 40 mit der Steuerung (nicht gezeigt) der Zentrifuge 10 verbunden ist.
  • Die Temperierungsmedienleitung 24 ist in üblicher Weise mit einem Kompressor 42 (hinter den Lüftungsschlitzen 43 des Gehäuses 12) und mit einem Filtertrockner 44 verbunden.
  • In Fig. 2 ist außerdem zu erkennen, dass die Zentrifuge 10 neben einer Bodenplatte 46 eine Schutzhülle 48 aufweist, die verhindern soll, dass im Falle eines Crashs des Zentrifugenrotors 20' dessen Teile aus der Zentrifuge 10 austreten können. Diese Schutzhülle 48 ist also so dimensioniert und materialmäßig ausgebildet, dass ausreichend viel Crashenergie absorbiert werden kann. Zwischen der Schutzhülle 48 und dem Zentrifugenbehälter 16 ist eine Wärmeisolierung 49 angeordnet.
  • Die Wicklungen der Temperierungsmedienleitung 24, speziell die Wicklungsteile 50, 52 bilden den Verdampfer. Der Wicklungsteil 50 befindet sich dabei auf der Wicklung 36 der Schutzgasleitung 26 und der Wicklungsteil 52 ist neben der Wicklung 36 der Schutzgasleitung 26 angeordnet.
  • Die Mantelfächen der Wicklungen 36 der Schutzgasleitung 26 sind mit den darüber angeordneten Wicklungsteilen 50 der Temperierungsmedienleitung 24 durch eine Lötverbindung 54 äußerlich verbunden (vgl. Fig. 4) und die Schutzgasleitung 26 und die neben der Schutzgasleitung 26 angeordneten Wicklungen 52 der Temperierungsmedienleitung 24 sind mit dem Zentrifugenbehälter 16 punktuell verlötet (nicht gezeigt), wodurch die Temperierungsmedienleitung 24 in allen Bereichen ihrer Wicklungen 50, 52 eine ausreichende Wärmeleitung zum Zentrifugenbehälter 16 hin aufweist und dadurch eine ausreichende aktive indirekte Temperierung des Zentrifugenrotors 20' und der darin aufgenommen Proben (nicht gezeigt) sichergestellt ist. Die Lötverbindung ist dabei in ihrer Festigkeit so ausgebildet, dass die Verbindung zur Temperierungsmedienleitung 24 im Bereich der Wicklungsteile 50 aufreißt, bevor die Temperierungsmedienleitung 24 hier selbst reißt.
  • Als Temperierungsmedienleitung 24 und Schutzgasleitung 26 werden Rohre in der Form länglicher Hohlkörper aus beliebigem Material, bevorzugt aus Kupfer oder Aluminium, verwendet, deren Länge in der Regel wesentlich größer ist als der Durchmesser ihres Querschnitts.
  • Dabei könnte vorgesehen sein, dass die Schutzgasleitung 26 und die Temperierungsmedienleitung 24 einen unterschiedlichen Durchmesser und/oder unterschiedliche Wandstärken aufweisen. Durch eine geringere Wandstärke ist sichergestellt, dass die Schutzgasleitung 26 eher reißt als die Temperierungsmedienleitung 24. Durch einen geringeren Durchmesser könnte die Schutzgasleitung 26 in den Freiraum zwischen dem Zentrifugenbehälter 16 und den Windungen 50 der Temperierungsmedienleitung 24 angeordnet werden.
  • Alternativ könnten die Wicklungen 36, 50 von Schutzgasleitung 26 und Temperierungsmedienleitung 24 auch parallel nebeneinander, beispielsweise als eine Mehrkanallösung (nicht gezeigt) verlaufen, so dass die Temperierungsmedienleitung 24 direkt auf dem Zentrifugenbehälter 16 angeordnet wäre.
  • Außerdem könnte auch vorgesehen sein, dass die Temperierungsmedienleitung 24 und/oder die Schutzgasleitung 26 zumindest teilweise den Zentrifugenbehälter 16 bilden (nicht gezeigt), wodurch der notwendige Bauraum reduziert werden könnte.
  • Im Betrieb wird durch diese Ausgestaltung der Zentrifuge 10 auch im Fall eines Crash des Zentrifugenrotors 20 ein Zünden des brennbaren Temperierungsmediums wirksam verhindert, da im Falle eines solchen Crashs Bestandteile des Zentrifugenrotors 20 nach Durchschlagen des Zentrifugenbehälters 16 die Schutzgasleitung 26 beschädigen, wodurch das Schutzgas austritt.
  • Da das Schutzgas unter Überdruck steht, wird es in den gesamten Innenraum der Zentrifuge 10 strömen und dort den Luftsauerstoff verdrängen und außerdem das möglicherweise austretende Temperierungsmittel verdünnen. Durch die erzeugte Strömung aus der Zentrifuge 10 heraus wird zusätzlich das austretende Gemisch in der Umgebungsluft verwirbelt und weiter verdünnt. Dadurch wird die Entstehung eines zündfähigen Gemischs verhindert.
  • Zur Überwachung dieser Sicherheitsfunktion besteht der Druckwächter 38, der im Betrieb der Zentrifuge 10 kontinuierlich Menge und/oder Druck des Schutzgases im Schutzgasbehälter 34 überwacht. Falls der Druckwächter 38 einen Zustand des Schutzgases erkennt, der unter vorab festgelegten und auf die konkrete Zentrifuge 10 angepassten Werten liegt, greift er so in die Steuerung (nicht gezeigt) der Zentrifuge 10 ein, dass entweder die Zentrifuge 10 überhaupt nicht den Zentrifugenrotor 20, 20' startet und ggf. eine Fehlermeldung ausgibt oder dass der Zentrifugenrotor 20, 20' nur bis zu einer unkritischen Maximaldrehzahl betreibbar ist, bei der ein Crash keine Energien freisetzen kann, die die Temperierungsmedienleitung 24 beschädigt. Diese Maximaldrehzahl wird vorher in Versuchsreihen bestimmt.
  • Durch ein Drosselelement (nicht gezeigt) zwischen Schutzgasbehälter 34 und Schutzgasleitung 26 wird die Ausströmzeit gezielt angepasst, so dass die Umgebungsluft und damit der Luftsauerstoff für einen längeren Zeitraum verdrängt und austretendes Temperierungsmedium mit dem austretenden Schutzgas vermischt und verstreut wird.
  • Durch Vorsehung eines im Betrieb der Zentrifuge 10 in Anlehnung an die DIN EN 378 ständig laufenden Ventilators (nicht gezeigt) werden innerhalb des Gehäuses 12 Risiken der Bildung eines zündfähigen Gemisches aus der Entstehung einer Leckage in der Temperierungsmedienleitung 24 zusätzlich vermieden.
  • Aus der vorstehenden Darstellung ist deutlich geworden, dass mit der vorliegenden Erfindung eine Zentrifuge 10 bereitgestellt wird, mit der ohne Sicherheitsbedenken auch brennbare Temperierungsmedien im Rahmen einer Temperierung eingesetzt werden können.
  • Bezugszeichenliste
  • 10
    erfindungsgemäße Zentrifuge, Laborzentrifuge
    12
    Gehäuse
    14
    Deckel
    15
    Bedienungsfront
    16
    Zentrifugenbehälter
    18
    Zentrifugenmotor
    20
    Zentrifugenrotor, Ausschwingrotor
    20'
    Zentrifugenrotor, Festwinkelrotor
    22
    Zentrifugenbecher
    24
    Temperierungsmedienleitung
    26
    Schutzgasleitung
    28, 30
    Enden der Schutzgasleitung 26
    32
    Zuleitung des Schutzgasbehälters 34
    34
    Schutzgasbehälter
    36
    Wicklungen der Schutzgasleitung 26
    38
    Druckwächter
    40
    Stecker
    42
    Kompressor
    44
    Filtertrockner
    46
    Bodenplatte
    48
    Schutzhülle
    49
    Wärmeisolierung
    50
    Wicklungen der Temperierungsmedienleitung 24, die sich über Wicklungen 36 der Schutzgasleitung 26 befinden
    52
    neben der Schutzgasleitung 26 angeordnete Wicklungen 52 der Temperierungsmedienleitung 24
    54
    Lötverbindung zwischen den Wicklunge 36 der Schutzgasleitung 26 und den Wicklungen 50 der Temperierungsmedienleitung 24

Claims (15)

  1. Zentrifuge (10), insbesondere Laborzentrifuge, mit einem Zentrifugenbehälter (16), in dem ein Zentrifugenrotor (20, 20') aufnehmbar ist, einem Motor (18) zum Antrieb des Zentrifugenrotors (20, 20'), Temperierungsmittel (24, 42, 44) zum Temperieren des Zentrifugenrotors (20, 20') und einem Gehäuse (12), in dem der Zentrifugenbehälter (16), der Zentrifugenrotor (20, 20'), die Temperierungsmittel (24, 42, 44) und der Motor (18) aufgenommen sind, wobei die Temperierungsmittel (24, 42, 44) ein brennbares Temperierungsmedium aufweisen, das in einer Temperierungsmedienleitung (24) geführt ist, wobei die Zentrifuge (10) ein Schutzgas aufweist und angepasst ist, das Schutzgas im Falle eines Crashs des Zentrifugenrotors (20, 20') freizusetzen.
  2. Zentrifuge (10) nach Anspruch 1, dadurch gekennzeichnet, dass das Schutzgas ein Inertgas ist, das bevorzugt zumindest ein Gas aus der Gruppe Argon, Helium, Kohlendioxid, Krypton, Neon, Stickstoff und Xenon umfasst.
  3. Zentrifuge (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Schutzgas in einer Schutzgasleitung (26) geführt ist, die sich zumindest mit einer, bevorzugt mit mehreren Wicklungen (36) um den Zentrifugenbehälter (16) erstreckt.
  4. Zentrifuge (10) nach Anspruch 3, dadurch gekennzeichnet, dass die Schutzgasleitung (26) mit einer Schutzgasquelle (34), die bevorzugt das Schutzgas unter einem Überdruck beinhaltet, verbunden ist.
  5. Zentrifuge (10) nach Anspruch 4, dadurch gekennzeichnet, dass zwischen Schutzgasleitung (26) und Schutzgasquelle (34) ein, insbesondere fest eingestelltes Drosselelement angeordnet ist.
  6. Zentrifuge (10) nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass zumindest zwei Abschnitte (28, 30), bevorzugt mehr, insbesondere jede Wicklung der Schutzleitung (26) mit der Schutzgasquelle (34) parallel verbunden sind.
  7. Zentrifuge (10) nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die Schutzgasleitung (26) zumindest bereichsweise (36) in Bezug auf den Zentrifugenbehälter (16) neben und/oder unter der Temperierungsmedienleitung (50) angeordnet ist.
  8. Zentrifuge (10) nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Schutzgasleitung (26) und die Temperierungsmedienleitung (24) zumindest bereichsweise, bevorzugt zumindest über ein Viertel, höchst bevorzugt zumindest über ein Drittel, insbesondere zumindest über die Hälfte ihrer jeweiligen Wicklungslänge miteinander verbunden, vorzugsweise verlötet sind.
  9. Zentrifuge (10) nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass die Schutzgasleitung (26) zumindest bereichsweise eine geringere Wandstärke aufweist als die Temperierungsmedienleitung (24).
  10. Zentrifuge (10) nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, dass die Schutzgasleitung (26) und/oder die Temperierungsmedienleitung (24) direkt auf dem Zentrifugenbehälter (16) angeordnet sind oder zumindest bereichsweise zumindest Bestandteil der Wandung des Zentrifugenbehälters (16) sind.
  11. Zentrifuge nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein Mehrkanalsystem dahingehend besteht, dass ein Kanal für das Schutzgas und ein Kanal für das Temperierungsmedium bestehen.
  12. Zentrifuge (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass Überwachungsmittel (38) hinsichtlich des Zustands des Schutzgases, bevorzugt des Druckes und/oder der Schutzgasmenge bestehen, die angepasst sind, die Drehzahl des Zentrifugenrotors (20, 20') auf eine für einen Crash des Zentrifugenrotors (20, 20') unkritische Größe zu begrenzen, wenn vorgegebene Werte zum Zustand des Schutzgases nicht erreicht werden.
  13. Zentrifuge (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein Lüfter besteht, der im Betrieb der Zentrifuge (10) ständig Luft aus dem Gehäuseinneren in die Umgebung der Zentrifuge (10) leitet.
  14. Verfahren zur Verhinderung einer Zündung von brennbaren Temperierungsmedien in Zentrifugen (10) nach einem Crash des Zentrifugenrotors (20, 20'), wobei die Zentrifuge (10), die insbesondere als Laborzentrifuge ausgebildet ist, einen Zentrifugenbehälter (16), in dem ein Zentrifugenrotor (20, 20') aufnehmbar ist, einen Motor (18) zum Antrieb des Zentrifugenrotors (20, 20'), Temperierungsmittel (24, 42, 44) zum Temperieren des Zentrifugenrotors (20, 20') und ein Gehäuse (12), in dem der Zentrifugenbehälter (16), der Zentrifugenrotor (20, 20'), die Temperierungsmittel (24, 42, 44) und der Motor (18) aufgenommen sind, wobei die Temperierungsmittel (24, 42, 44) ein brennbares Temperierungsmedium aufweisen, das in einer Temperierungsmedienleitung (24) geführt wird, wobei Schutzgas im Falle eines Crashs des Zentrifugenrotors (20, 20') freigesetzt wird.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet dass, die Zentrifuge (10) nach einem der Ansprüche 1 bis 13 verwendet wird.
EP18815977.6A 2017-12-20 2018-12-03 Temperierte zentrifuge Active EP3727701B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017130785.0A DE102017130785A1 (de) 2017-12-20 2017-12-20 Temperierte Zentrifuge
PCT/EP2018/083335 WO2019120967A1 (de) 2017-12-20 2018-12-03 Temperierte zentrifuge

Publications (2)

Publication Number Publication Date
EP3727701A1 EP3727701A1 (de) 2020-10-28
EP3727701B1 true EP3727701B1 (de) 2022-03-09

Family

ID=64664248

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18815977.6A Active EP3727701B1 (de) 2017-12-20 2018-12-03 Temperierte zentrifuge

Country Status (6)

Country Link
US (1) US11577257B2 (de)
EP (1) EP3727701B1 (de)
JP (1) JP7196180B2 (de)
CN (1) CN111655380B (de)
DE (1) DE102017130785A1 (de)
WO (1) WO2019120967A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014110467A1 (de) * 2014-07-24 2016-01-28 Andreas Hettich Gmbh & Co. Kg Zentrifuge
DE102017130785A1 (de) * 2017-12-20 2019-06-27 Eppendorf Ag Temperierte Zentrifuge

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2854189A (en) * 1956-05-25 1958-09-30 Gilbert J Garrett Centrifuge heating attachment
US3600900A (en) 1969-11-03 1971-08-24 North American Rockwell Temperature controlled centrifuge
GB1357010A (en) * 1971-05-03 1974-06-19 Chubb Fire Security Ltd Fire-extinguishing apparatus
JPS49103260A (de) * 1973-02-02 1974-09-30
GB2010706B (en) * 1977-04-22 1982-01-20 Marl Associates Ltd Centrifuges
EP0094192B1 (de) * 1982-05-12 1986-08-27 Chubb Fire Limited Feuerlöschgerät
KR890002660B1 (ko) * 1986-06-14 1989-07-22 남철우 복합가스터어빈 엔진 시스템
US4693702A (en) * 1986-08-04 1987-09-15 E.I. Du Pont De Nemours And Company Rotor having frangible projections thereon
US5137604A (en) * 1990-07-06 1992-08-11 Savant Instruments, Inc. Apparatus for drying biological specimens
WO1993016808A1 (en) * 1992-02-24 1993-09-02 Richter Gedeon Vegyészeti Gyár Rt. Method of and apparatus for making inerted closed spaces
EP0566252B1 (de) 1992-04-15 1999-01-27 Cobe Laboratories, Inc. Temperaturkontrollierte Zentrifuge
US5334130A (en) * 1992-05-13 1994-08-02 Savant Instruments, Inc. Centrifugal vacuum concentration with holder assembly
US5551241A (en) 1994-03-02 1996-09-03 Boeckel; John W. Thermoelectric cooling centrifuge
US6540966B1 (en) * 1998-06-29 2003-04-01 Hadronic Press Inc. Apparatus and method for recycling contaminated liquids
DE19932721C1 (de) * 1999-07-16 2001-01-18 Eppendorf Geraetebau Netheler Laborzentrifuge mit Kühlaggregat
JP3772640B2 (ja) * 2000-05-19 2006-05-10 日立工機株式会社 遠心機
SE0102219D0 (sv) * 2001-06-21 2001-06-21 Alphahelix Ab Thermocycling device and rotor means therefor
JP2006207928A (ja) * 2005-01-28 2006-08-10 Mitsubishi Electric Corp 冷凍空調システム
CN101941554B (zh) * 2008-12-22 2014-08-06 埃佩多夫股份公司 用于间接冷却物品的容器和设备以及制造该容器的方法
US20110160030A1 (en) * 2009-12-17 2011-06-30 Andreas Heilmann Laboratory centrifuge with compressor cooling
CN201823608U (zh) * 2010-09-20 2011-05-11 浙江诚信医化设备有限公司 离心机防爆保护装置
EP2541666B1 (de) * 2011-07-01 2014-08-20 Autoliv Development AB Batteriesicherheitsanordnung für ein Kraftfahrzeug
DE102012002593A1 (de) * 2012-02-13 2013-08-14 Eppendorf Ag Zentrifuge mit Kompressorkühleinrichtung und Verfahren zur Steuerung einer Kompressorkühleinrichtung einer Zentrifuge
DE102013101961A1 (de) * 2013-02-27 2014-08-28 Gea Mechanical Equipment Gmbh Verfahren zur Verarbeitung brennbarer Produkte mit einer Separatoranordnung
JP6105361B2 (ja) * 2013-04-09 2017-03-29 本田技研工業株式会社 汎用内燃機関の制御装置
JP6252748B2 (ja) * 2013-11-29 2017-12-27 日立工機株式会社 遠心機、及び遠心機におけるロータ室の開放方法
DE102014107294B4 (de) * 2014-05-23 2017-02-09 Andreas Hettich Gmbh & Co. Kg Zentrifuge
DE102014110467A1 (de) * 2014-07-24 2016-01-28 Andreas Hettich Gmbh & Co. Kg Zentrifuge
EP3015791A1 (de) * 2014-10-29 2016-05-04 Eppendorf Ag Zentrifuge mit einem Kompressorkühlkreislauf und Verfahren zum Betrieb einer Zentrifuge mit einem Kompressorkühlkreislauf
DE102015202192A1 (de) * 2015-02-06 2016-08-11 Andreas Hettich Gmbh & Co. Kg Gehäuse einer Zentrifuge
WO2016151641A1 (ja) * 2015-03-26 2016-09-29 三菱電機株式会社 空気調和機の室内機
CN104785382B (zh) * 2015-03-30 2018-03-16 绿水股份有限公司 卧式螺旋卸料沉降离心机密闭防爆结构
CN206082855U (zh) * 2016-08-05 2017-04-12 蚌埠精工制药机械有限公司 一种卧式离心机
CN106140491A (zh) * 2016-08-05 2016-11-23 蚌埠精工制药机械有限公司 一种平板式内置气缸密封离心机
CN206046279U (zh) * 2016-08-26 2017-03-29 江苏创英医疗器械有限公司 一种离心机的防护外壳及其离心机
CN206701515U (zh) * 2017-05-09 2017-12-05 铜仁学院 离心机清饼装置及离心机
CN106964501A (zh) * 2017-05-27 2017-07-21 湖北华丹医药科技股份有限公司 一种平板离心机加氮防爆装置
CN107470039A (zh) * 2017-08-01 2017-12-15 鲁南制药集团股份有限公司 一种醇沉罐、卧螺离心机组合系统
DE102017130785A1 (de) * 2017-12-20 2019-06-27 Eppendorf Ag Temperierte Zentrifuge
DE102018114450A1 (de) * 2018-06-15 2019-12-19 Eppendorf Ag Temperierte Zentrifuge mit Crashschutz

Also Published As

Publication number Publication date
DE102017130785A1 (de) 2019-06-27
JP7196180B2 (ja) 2022-12-26
WO2019120967A1 (de) 2019-06-27
US11577257B2 (en) 2023-02-14
EP3727701A1 (de) 2020-10-28
US20210001352A1 (en) 2021-01-07
CN111655380B (zh) 2022-04-15
CN111655380A (zh) 2020-09-11
JP2021506582A (ja) 2021-02-22

Similar Documents

Publication Publication Date Title
EP3727701B1 (de) Temperierte zentrifuge
DE102005017648A1 (de) Flüssigkeitsgekühlte Batterie und Verfahren zum Betreiben einer solchen
EP3303903B1 (de) Servicegerät für den einsatz bei der wartung von elektrischen schaltanlagen isoliert mit ein mehrkomponentiges isoliergas
DE102013204087A1 (de) Entgasungssystem für Batteriemodule
AT515312B1 (de) Batteriemodul
EP3171982B1 (de) Zentrifuge
DE2945603A1 (de) Geblaeseregelsystem fuer kuehlapparate
DE102016219284A1 (de) Elektrischer Energiespeicher mit einer Notkühleinrichtung
DE102007047772A1 (de) Temperierkammer zum Temperieren von elektronischen Bauelementen, insbesondere IC's
DE102017009686A1 (de) Klimakammer zur Prüfung von E-Mobilitäts-Hochvolt-Batterien, Brennstoffzellen oder anderen Energiespeichern oder damit ausgerüsteten oder verbunden Antriebseinheiten mit gefährlichem Energieinhalt
EP3414558B1 (de) Verfahren zum temperieren einer messprobe
EP1887671A1 (de) Endenabschluss für ein supraleitfähiges Kabel
DE4114529A1 (de) Sicherheitseinrichtung fuer eine kaeltetechnische anlage
EP2068105A2 (de) Kühl-Lagersystem
EP3976361B1 (de) Verteilervorrichtung zum einbringen von druckluft und/oder dichtmittel in einen fahrzeugluftreifen sowie verwendung einer abdeckeinheit der verteilervorrichtung und ein verfahren zum einbringen von druckluft und/oder dichtmittel in einen fahrzeugluftreifen
EP2335830B2 (de) Laborzentrifuge mit Kompressorkühlung
DE102008011508A1 (de) Energiespeicher sowie Verfahren zur Herstellung des Energiespeichers
WO2018028835A1 (de) Kühlvorrichtung und verfahren zum kühlen durchlaufender elemente
EP3486671B1 (de) Mas-nmr-probenkopfanordnung mit auswechselbarem stator
DE102010014026B4 (de) Hochtemperaturmischer mit gasfreiem Eintrag
DE10104320A1 (de) Vorrichtung zur Erfüllung von Sicherheitsfunktionen in Räumen mit Hochfrequenzstrahlung
EP2181770B1 (de) Zentrifuge
DE19946427A1 (de) Verfahren und Vorrichtung zum definierten gleichzeitigen Wärmebehandeln von mehreren Probenbehältern
EP3626327B1 (de) Inertisierungsverfahren und inertisierungsanlage, insbesondere zur brandvermeidung, sowie verwendung einer inertisierungsanlage
EP3921883B1 (de) Sicherheitsbehälter für galvanische zellen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211029

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EPPENDORF SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1473680

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018009063

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220610

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220709

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018009063

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

26N No opposition filed

Effective date: 20221212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221203

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231222

Year of fee payment: 6

Ref country code: DE

Payment date: 20231214

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309